CA2562680A1 - Methods and apparatus for selecting between multiple carriers using a single receiver chain tuned to a single carrier - Google Patents

Methods and apparatus for selecting between multiple carriers using a single receiver chain tuned to a single carrier Download PDF

Info

Publication number
CA2562680A1
CA2562680A1 CA 2562680 CA2562680A CA2562680A1 CA 2562680 A1 CA2562680 A1 CA 2562680A1 CA 2562680 CA2562680 CA 2562680 CA 2562680 A CA2562680 A CA 2562680A CA 2562680 A1 CA2562680 A1 CA 2562680A1
Authority
CA
Canada
Prior art keywords
signal
frequency band
component
selecting
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA 2562680
Other languages
French (fr)
Other versions
CA2562680C (en
Inventor
Rajiv Laroia
Junyi Li
Frank A. Lane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2562680A1 publication Critical patent/CA2562680A1/en
Application granted granted Critical
Publication of CA2562680C publication Critical patent/CA2562680C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/40Monitoring; Testing of relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/406Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with more than one transmission mode, e.g. analog and digital modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover

Abstract

Receivers accommodating carrier frequency selection methods in wireless communications systems employing multiple carrier frequencies are described.
Although the receiver is tuned to a single band, an estimate of the channel quality corresponding to the currently used carrier and an alternative carrier is generated without switching between carriers. Transmitters of different cells and/or different sectors primarily use different carrier frequencies but periodically transmit using a neighboring sector's carrier frequency. Mobile node receivers use a single RF chain with a controllable RF filter to receive and process a signal within a first selected carrier band including two components, a first signal component identified with the first currently selected band and a second signal component identified with a second alternative band. Separate quality indicator values are obtained from the first and second signal components, compared, and a determination is made as to whether the receiver's RF filter should be switched to the second band.

Claims (37)

1. A communications method, the method comprising:
receiving a signal including a first component and a second component;
operating a filter to pass said first and second signal components, said first and second signal components being within a first frequency band;
performing a first signal measurement on said first signal component to generate a first signal quality indicator;
performing a second signal measurement on said second signal component to generate a second signal quality indicator; and selecting between operating in the first frequency band and a second frequency band associated with said second signal component as a function of said first and second signal quality indicators.
2. The method of 1, wherein said second frequency band is outside said first frequency band.
3. The method of 2, wherein said receiving, performing and selecting steps are performed by a mobile communications device, the method further comprising:
operating a first transmitter which primarily transmits in the first frequency band to transmit said first signal component; and operating a second transmitter which primarily transmits in said second frequency band to transmit said second signal component in said first frequency band.
4. The method of 3, wherein said first transmitter and said second transmitter are located in different sectors of the same cell;
wherein the first signal component is transmitted using a first antenna corresponding to a first sector of said same cell; and wherein the second signal component is transmitted using a second antenna corresponding to a second sector of said same cell.
5. The method of 3, wherein said first transmitter and said second transmitter are located in different cells;
wherein the first signal component is transmitted using a first antenna corresponding to a first cell; and wherein the second signal component is transmitted using a second antenna corresponding to a second cell.
6. The method of 4, wherein said signal is received over a period of time; and wherein said first and second signal components are received at different points in time.
7. The method of 6, wherein said first and second signal components are narrow in frequency width compared to the width of said filter.
8. The method of 7, wherein said first and second signal components have a frequency width at most 1/20 the frequency width of said filter.
9. The method of 3, further comprising:
operating the first transmitter to periodically transmit a signal in the second frequency band.
10. The method of 3, wherein the first and second frequency bands are at least 1 MHz in width.
11. The method of 10, wherein said filter has a band less than 2 MHz in width.
12. The method of 1, further comprising:
when said second frequency band is selected, controlling said filter to pass said second band instead of said first band.
13. The method of 12, further comprising:
operating the filter to pass third and fourth signal components, said third and fourth signal components being within the second frequency band;

performing a third signal measurement on said third signal component to generate a third signal quality indicator;
performing a fourth signal measurement on said fourth signal component to generate a fourth signal quality indicator; and selecting between operating in the first frequency band and the second frequency band as a function of said third and fourth signal quality indicators.
14. The method of 13, further comprising:
when said first frequency band is selected, controlling said filter to pass said first frequency band instead of said second frequency band.
15. The method of 1, further comprising:
repeating said receiving step and first and second measurement steps multiple times, said selecting between said first and second frequency bands selecting the second frequency band after said second quality indicator exceeds said first quality indicator for a predetermined interval.
16. The method of 15, wherein said interval is a time interval of a predetermined duration.
17. The method of 15, wherein said predetermined interval includes a fixed number of signal measurements.
18. The method of 1, wherein said selecting is based on a predetermined threshold.
19. The method of 18, wherein said selecting includes selecting the frequency band corresponding to the lower signal quality value when said first and second signal quality values both exceed said predetermined threshold for a preselected interval.
20. The method of 18, wherein said selecting includes selecting the frequency band corresponding to the higher signal quality value when one of said first and second signal quality values is below said predetermined threshold.
21. The method of 1, wherein said selecting includes selecting the second frequency band when said first signal quality value decreases over time and said second signal quality value increases over time and a difference in the first and second quality values changes sign.
22. The method of 1, wherein said selecting step is a function of a quality of service (QoS) to be provided to a user, said selecting function changing in response to information indicating a change in the QoS to be provided to said user.
23. The method of 1, wherein said selecting step is a function of communication system loading, the method further comprising:
receiving information indicative of communications system loading; and modifying said selecting function in response to an indication in a change in communication system loading.
24. The method of 23, wherein said communication system loading information is communicated from a base station to a device receiving said signal from said base station.
25. A communications device, comprising:
a receiver antenna for receiving a signal including a first component and a second component;
a controllable filter coupled to said antenna for filtering said received signal and for passing signals in a selected one of a first frequency band and a second frequency band while discarding as least some frequencies included in the other one of said first and second frequency bands, said first and second signal components being within the selected one of the first and second frequency bands, the first signal component being associated with said first frequency band, said second signal component being associated with said second frequency band;
a first signal measurement device coupled to said controllable filter for performing a first signal measurement on said first signal component to generate a first signal quality indicator;
a second signal measurement device coupled to said controllable filter for performing a second signal measurement on said second signal component to generate a second signal quality indicator; and a frequency band selection module for selecting between operating in the first frequency band and a second frequency band as a function of said first and second signal quality indicators and for generating a control signal used to control the one of the first and second frequency bands which will be passed by said controllable filter.
26. The device of claim 25, wherein said second frequency band is outside said first frequency band.
27. The device of claim 25, wherein said controllable filter passes said second frequency band and discards at least a portion of said first frequency band when said second frequency band is selected.
28. The device of claim 27, wherein said controllable filter passes third and fourth signal components included within the second frequency band when said second frequency band is selected, the device further comprising:
means for performing a third signal measurement on said third signal component to generate a third signal quality indicator;
means for performing a fourth signal measurement on said fourth signal component to generate a fourth signal quality indicator; and means for selecting between operating in the first frequency band and the second frequency band as a function of said third and fourth signal quality indicators.
29. A communications system comprising:
a portable communications device including:
i) a receiver antenna for receiving a signal including a first component and a second component;
ii) a controllable filter coupled to said antenna for filtering said received signal and for passing signals in a selected one of a first frequency band and a second frequency band while discarding at least some frequencies included in the other one of said first and second frequency bands, said first and second signal components being within the selected one of the first and second frequency bands, the first signal component being associated with said first frequency band, said second signal component being associated with said second frequency band;

iii) a first signal measurement device coupled to said controllable filter for performing a first signal measurement on said first signal component to generate a first signal quality indicator;
iv) a second signal measurement device coupled to said controllable filter for performing a second signal measurement on said second signal component to generate a second signal quality indicator;
v) a frequency band selection module for selecting between operating in the first frequency band and a second frequency band as a function of said first and second signal quality indicators and for generating a control signal used to control the one of the first and second frequency bands which will be passed by said controllable filter; and a first base station, the base station being located in a communications cell, the base station including:
a first transmitter which primarily transmits in the first frequency band for transmitting said first signal component.
30. The system of claim 29, wherein said first base station further comprises:
a first transmit antenna directed towards a first sector of said cell for transmitting the first signal component;
a second transmitter which primarily transmits in said second frequency band for transmitting said second signal component in said first frequency band during a fraction of the time said second transmitter operates, said second transmitter corresponding to a different sector of said cell than a sector to which said first transmitter corresponds; and a second transmit antenna directed towards the second sector of said cell for transmitting the second signal component, the first and second sectors being located in different physical areas of said cell.
31. The system of claim 30, wherein said signal is received over a period of time; and wherein said first and second signal components are received at different points in time.
32. The system of claim 31, wherein said controllable filter is a passband filter and wherein said first and second signal components are narrow in frequency width compared to the width of said controllable filter, said first and second signal components having a width less than one half the passband width of said controllable filter.
33. The system of claim 32, wherein said first and second signal components have a frequency width at most 1/20 the frequency width of passband of said controllable filter.
34. The system of claim 29, further comprising:
a second base station located in a second cell, the second base station including a second transmitter, said first transmitter and said second transmitter being located in different cells;
said first cell including a first antenna for transmitting the first signal component; and the second cell including a second antenna for transmitting the second signal component.
35. The system of claim 29, further comprising:
means for controlling the first transmitter to periodically transmit a signal in the second frequency band.
36. The system of claim 34, wherein the first and second frequency bands are at least 1 MHz in width.
37. The system of claim 36, wherein said controllable filter has a passband less than 2 MHz in width.
CA 2562680 2004-04-15 2004-10-15 Methods and apparatus for selecting between multiple carriers using a single receiver chain tuned to a single carrier Expired - Fee Related CA2562680C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US56290004P 2004-04-15 2004-04-15
US60/562,900 2004-04-15
US10/872,674 US6990324B2 (en) 2004-04-15 2004-06-21 Methods and apparatus for selecting between multiple carriers using a single receiver chain tuned to a single carrier
US10/872,674 2004-06-21
PCT/US2004/034129 WO2005109701A1 (en) 2004-04-15 2004-10-15 Methods and apparatus for selecting between multiple carriers using a single receiver chain tuned to a single carrier

Publications (2)

Publication Number Publication Date
CA2562680A1 true CA2562680A1 (en) 2005-11-17
CA2562680C CA2562680C (en) 2010-04-13

Family

ID=35096887

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2562680 Expired - Fee Related CA2562680C (en) 2004-04-15 2004-10-15 Methods and apparatus for selecting between multiple carriers using a single receiver chain tuned to a single carrier

Country Status (16)

Country Link
US (2) US6990324B2 (en)
EP (2) EP2254255B1 (en)
JP (3) JP2007533253A (en)
KR (1) KR100883527B1 (en)
CN (2) CN1998170B (en)
AU (2) AU2004319484C1 (en)
BR (1) BRPI0418747A (en)
CA (1) CA2562680C (en)
EG (1) EG24346A (en)
IL (1) IL178605A (en)
MX (1) MXPA06011856A (en)
NO (1) NO20065210L (en)
NZ (1) NZ550515A (en)
RU (2) RU2369006C2 (en)
WO (1) WO2005109701A1 (en)
ZA (1) ZA200608583B (en)

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6993333B2 (en) * 2003-10-16 2006-01-31 Flarion Technologies, Inc. Methods and apparatus of improving inter-sector and/or inter-cell handoffs in a multi-carrier wireless communications system
US7590080B2 (en) * 2003-11-07 2009-09-15 Interdigital Technology Corporation Channel assignment to maximize battery efficiency in wireless systems
US6990324B2 (en) * 2004-04-15 2006-01-24 Flarion Technologies, Inc. Methods and apparatus for selecting between multiple carriers using a single receiver chain tuned to a single carrier
US7385953B2 (en) 2004-10-26 2008-06-10 At&T Mobility Ii Llc Method and apparatus for allocating a beacon signal in a wireless communications network
CN101116272A (en) * 2005-02-18 2008-01-30 三菱电机株式会社 Communication apparatus
JPWO2006092856A1 (en) * 2005-03-02 2008-08-07 富士通株式会社 Multi-carrier communication method and base station and mobile station used therefor
US8364185B2 (en) * 2005-04-18 2013-01-29 Samsung Electronics Co., Ltd. Method and system for synchronizing a clock for an adjacent network to a clock for an overlay network
US7961700B2 (en) * 2005-04-28 2011-06-14 Qualcomm Incorporated Multi-carrier operation in data transmission systems
CA2616715C (en) 2005-07-27 2015-11-24 T-Mobile, Usa, Inc. Frequency band adaptive wireless communication
US10469205B2 (en) 2005-07-27 2019-11-05 T-Mobile Usa, Inc. Application-based multi-band transmission
WO2009117944A1 (en) * 2008-03-25 2009-10-01 华为技术有限公司 Carrier frequency control method and apparatus in multi-carrier /cell system
US8897234B2 (en) 2005-09-07 2014-11-25 Huawei Technologies Co., Ltd. Method and apparatus for controlling carrier frequency in multi-carrier/cell system
WO2007139063A1 (en) * 2006-05-29 2007-12-06 Kyocera Corporation Base station device, control method of base station device, receiving device, adaptive algorism control method, wireless communication device and wireless communication method
US7616696B1 (en) 2006-06-14 2009-11-10 Nextel Communications, Inc. System and method to increase sector throughput in a multi-carrier operation
US7856185B2 (en) * 2006-08-04 2010-12-21 Emcore Corporation Wireless monitoring of optoelectronic modules and network components
US8102825B2 (en) * 2006-11-30 2012-01-24 Kyocera Corporation Detection of a multi-mode portable communication device at a mesh network
US9532399B2 (en) 2006-11-30 2016-12-27 Kyocera Corporation Apparatus, system and method for managing wireless local area network service to a multi-mode portable communication device
US7978667B2 (en) * 2006-11-30 2011-07-12 Kyocera Corporation Management of WLAN and WWAN communication services to a multi-mode wireless communication device
US7969930B2 (en) * 2006-11-30 2011-06-28 Kyocera Corporation Apparatus, system and method for managing wireless local area network service based on a location of a multi-mode portable communication device
US8200169B2 (en) * 2007-02-28 2012-06-12 Ntt Docomo, Inc. Transmitter apparatus, mobile communication system, base station and communication enable signal transmitter apparatus
JP5185561B2 (en) 2007-04-16 2013-04-17 株式会社エヌ・ティ・ティ・ドコモ Communication apparatus and communication method
US8103285B2 (en) * 2007-04-19 2012-01-24 Kyocera Corporation Apparatus, system and method for determining a geographical location of a portable communication device
US8145229B1 (en) 2007-04-27 2012-03-27 Nextel Communications Inc. System and method for improving sector throughput in a broadband data-optimized multi-carrier environment
US20080317185A1 (en) * 2007-06-25 2008-12-25 Broadcom Corporation Dual phase locked loop (pll) architecture for multi-mode operation in communication systems
US7918611B2 (en) * 2007-07-11 2011-04-05 Emcore Corporation Reconfiguration and protocol adaptation of optoelectronic modules and network components
US7794157B2 (en) * 2007-07-11 2010-09-14 Emcore Corporation Wireless tuning and reconfiguration of network units including optoelectronic components
CN101803236A (en) * 2007-08-08 2010-08-11 三星电子株式会社 Apparatus and method for connecting radio link in wireless communication system having private network cell
US8532605B2 (en) 2007-08-09 2013-09-10 Intel Mobile Communications GmbH Determining a receiving quality in a radio communication device
US20090054054A1 (en) * 2007-08-20 2009-02-26 Samsung Electronics Co., Ltd. System and method for maintaining reliable beacon transmission and reception in a wireless communication network
JP5122264B2 (en) * 2007-12-18 2013-01-16 京セラ株式会社 COMMUNICATION METHOD AND BASE STATION DEVICE AND TERMINAL DEVICE USING THE SAME
US8233433B2 (en) * 2008-02-26 2012-07-31 Kyocera Corporation Apparatus, system and method for initiating WLAN service using beacon signals
KR20090095434A (en) * 2008-03-03 2009-09-09 삼성전자주식회사 System and method for transmitting and receiving a signal using multiple frequency in a wireless communication system
US8676240B2 (en) 2008-03-25 2014-03-18 Telefonaktiebolaget L M Ericsson (Publ) Timing of component carriers in multi-carrier wireless networks
CN101553000B (en) * 2008-03-31 2011-04-06 中兴通讯股份有限公司 Method for measuring subdistrict beaconing channel wireless quality
US8498249B2 (en) 2008-05-05 2013-07-30 Mediatek Inc. Method of network entry in OFDM multi-carrier wireless communications systems
US8583137B2 (en) 2008-05-16 2013-11-12 Qualcomm Incorporated Dynamic coverage adjustment in a multi-carrier communication system
US8676208B2 (en) * 2008-06-11 2014-03-18 Mediatek Inc. Scanning and handover operation in multi-carrier wireless communications systems
US8879508B2 (en) * 2008-07-31 2014-11-04 Qualcomm Incorporated Method and apparatus for throttling persistent always on applications
KR101682034B1 (en) * 2008-08-18 2016-12-05 삼성전자주식회사 Apparatus and method for using secondary frequency assignment optionnally in a wireless communication system using multiple band
GB2463074B (en) * 2008-09-02 2010-12-22 Ip Access Ltd Communication unit and method for selective frequency synchronisation in a cellular communication network
US7961679B2 (en) * 2008-10-14 2011-06-14 Qualcomm Incorporated Methods and systems for broadcasting QoS information to assist admission control in wireless communication systems
JP5436562B2 (en) 2008-10-15 2014-03-05 エルジー エレクトロニクス インコーポレイティド Multi-carrier information transmission / reception method and apparatus in multi-carrier communication system
US8897277B2 (en) * 2008-11-07 2014-11-25 Kyocera Corporation Device beacon for handoff management of handoffs to base stations
US8233875B2 (en) 2008-11-07 2012-07-31 Kyocera Corporation Device beacon for handoff management of handoffs to access nodes
US20100118834A1 (en) 2008-11-07 2010-05-13 Amit Kalhan Device beacon for communication management for peer to peer communications
CN101772130A (en) * 2009-01-07 2010-07-07 中兴通讯股份有限公司 Auxiliary detection signaling sending method
KR101855425B1 (en) 2009-03-12 2018-05-08 인터디지탈 패튼 홀딩스, 인크 Method and apparatus for selecting and reselecting an uplink primary carrier
US8165577B2 (en) * 2009-03-19 2012-04-24 Kyocera Corporation Pilot signal transmission management
CN101965692B (en) * 2009-04-24 2014-06-04 联发科技股份有限公司 Distribution method of carrier wave, base station and mobile station
EP2422544A4 (en) * 2009-04-24 2016-01-06 Mediatek Inc Carrier assignment with mobility support in multi-carrier ofdm systems
KR101472572B1 (en) 2009-04-28 2014-12-17 한국전자통신연구원 Device, method for managing carrier of base station, terminal and method for managing carrier thereof
US8346091B2 (en) * 2009-04-29 2013-01-01 Andrew Llc Distributed antenna system for wireless network systems
KR101607336B1 (en) * 2009-06-07 2016-03-30 엘지전자 주식회사 Apparatus and method of setting up radio bearer in wireless communication system
US9054480B2 (en) 2009-08-06 2015-06-09 Neophotonics Corporation Small packaged tunable traveling wave laser assembly
US8462823B2 (en) * 2009-08-06 2013-06-11 Emcore Corporation Small packaged tunable laser with beam splitter
US20110033192A1 (en) * 2009-08-06 2011-02-10 Emcore Corporation Small Packaged Tunable Optical Transmitter
US8923348B2 (en) 2009-08-06 2014-12-30 Emcore Corporation Small packaged tunable laser assembly
US9337611B2 (en) 2009-08-06 2016-05-10 Neophotonics Corporation Small packaged tunable laser transmitter
CN101998556B (en) * 2009-08-11 2016-02-10 中兴通讯股份有限公司 The method and system that a kind of subscriber equipment switches to carrier aggregation subdistrict
US8897799B2 (en) * 2009-08-25 2014-11-25 Sharp Kabushiki Kaisha Wireless communication system, wireless communication apparatus, and wireless communication method
US20110075630A1 (en) * 2009-09-25 2011-03-31 Eilon Riess Enabling inter frequency assignment scanning while remaining at one frequency
ES2886154T3 (en) * 2010-02-12 2021-12-16 Fujitsu Ltd Radio communication apparatus, radio communication system, and radio communication method
EP2547016A4 (en) 2010-03-10 2017-05-17 LG Electronics Inc. Method and device for signaling control information in carrier aggregation system
CN101841372B (en) * 2010-04-15 2013-01-23 武汉虹信通信技术有限责任公司 Method for implementing continuous carrier frequency configuration for CDMA (Code Division Multiple Address) digital optical fiber repeater
JP2012004721A (en) * 2010-06-15 2012-01-05 Panasonic Corp Terminal device, base station device, mobile communication system and different frequency measurement method
ES2499217T3 (en) 2010-06-21 2014-09-29 Telefonaktiebolaget Lm Ericsson (Publ) Procedure and arrangement for signaling parameters in a wireless network
US8462874B2 (en) * 2010-07-13 2013-06-11 Qualcomm Incorporated Methods and apparatus for minimizing inter-symbol interference in a peer-to-peer network background
CN102378277B (en) * 2010-08-24 2013-09-18 普天信息技术研究院有限公司 Method for coordinating high power frequency band in long term evolved system
EP2641418B1 (en) * 2010-11-16 2018-07-11 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement for cell outage compensation in a communication network system
CN102196542B (en) 2011-05-27 2014-06-25 上海华为技术有限公司 Power control method, equipment and system
CN103026747B (en) * 2011-07-29 2015-07-08 华为技术有限公司 Hard assignment method and radio access network device
US9042287B2 (en) * 2011-11-14 2015-05-26 Qualcomm Incorporated Methods and apparatus for improving network loading
US20130156074A1 (en) * 2011-12-14 2013-06-20 Aviacomm Inc. Wideband rf front-end
WO2013133681A1 (en) * 2012-03-09 2013-09-12 엘지전자 주식회사 Method for cell selection for narrowband terminal and apparatus using same
CN103686869B (en) * 2012-09-18 2017-03-29 瑞昱半导体股份有限公司 bandwidth selection method
BR112015009601A2 (en) 2012-10-31 2017-07-04 Commscope Technologies Llc telecommunication system and distributed antenna system
US9036741B2 (en) * 2012-12-28 2015-05-19 Motorola Solutions, Inc. Systems, methods, and devices for frequency-selective AGC
CN103152777B (en) * 2013-03-11 2016-03-09 东莞宇龙通信科技有限公司 Communicator and frequency band switching method
KR102079350B1 (en) 2013-03-20 2020-02-19 삼성전자주식회사 Apparatus and circuit for processing carrier aggregation
JP6301065B2 (en) * 2013-04-04 2018-03-28 株式会社Nttドコモ Radio base station, user terminal, and radio communication method
US9692700B1 (en) 2013-08-28 2017-06-27 Juniper Networks, Inc. Processing data flows based on information provided via beacons
US9246595B2 (en) 2013-12-09 2016-01-26 Neophotonics Corporation Small packaged tunable laser transmitter
US9544070B2 (en) * 2014-10-06 2017-01-10 Rohde & Schwarz Gmbh & Co. Kg Frequency-converting sensor and system for providing a radio frequency signal parameter
US10117152B2 (en) * 2015-05-13 2018-10-30 Qualcomm Incorporated Cell selection procedures for machine type communication devices
US11012106B2 (en) 2016-09-23 2021-05-18 Qualcomm Incorporated Implementation of improved omni mode signal reception
US10693698B2 (en) * 2017-06-21 2020-06-23 Qualcomm Incorporated Techniques for carrier sharing between radio access technologies
WO2019119249A1 (en) * 2017-12-19 2019-06-27 南通朗恒通信技术有限公司 Method and apparatus used in user equipment and base station for wireless communication
PT3766286T (en) * 2018-03-15 2022-05-25 Ericsson Telefon Ab L M A method of placing a node in a wireless communication into a standby mode, as well as the corresponding node
KR102120480B1 (en) * 2020-02-13 2020-06-08 삼성전자주식회사 Apparatus and circuit for processing carrier aggregation
CN111431627B (en) * 2020-03-25 2021-09-28 哈尔滨工程大学 Dynamic frequency selection method and underwater current field communication method based on dynamic multi-carrier
KR102177204B1 (en) * 2020-06-02 2020-11-10 삼성전자주식회사 Apparatus and circuit for processing carrier aggregation

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU588637A1 (en) 1976-02-13 1978-01-15 Киевское Высшее Военное Инженерное Дважды Краснознаменное Училище Им.М.И.Калинина Frequency-time coded radiosignal receiver
US4388496A (en) * 1980-08-11 1983-06-14 Trio Kabushiki Kaisha FM/AM Stereo receiver
US4792993A (en) * 1985-10-30 1988-12-20 Capetronic (Bsr) Ltd. TVRD receiver system with automatic bandwidth adjustment
US4748642A (en) * 1986-09-17 1988-05-31 Itt Aerospace Optical Double detection video processing apparatus
US5008939A (en) * 1989-07-28 1991-04-16 Bose Corporation AM noise reducing
US5742896A (en) 1990-11-09 1998-04-21 Bose Corporation Diversity reception with selector switching at superaudible rate
US5790587A (en) * 1991-05-13 1998-08-04 Omnipoint Corporation Multi-band, multi-mode spread-spectrum communication system
JPH05102899A (en) * 1991-08-16 1993-04-23 Shiyoudenriyoku Kosoku Tsushin Kenkyusho:Kk Multi-frequency communication system
US5267261A (en) * 1992-03-05 1993-11-30 Qualcomm Incorporated Mobile station assisted soft handoff in a CDMA cellular communications system
EP0566551B1 (en) * 1992-04-17 1999-08-04 Telefonaktiebolaget L M Ericsson Mobile assisted handover using CDMA
DE4396900C2 (en) * 1992-12-22 1999-11-04 Motorola Inc HF antenna switch, in particular for switching between a first and a second antenna
FI92259C (en) * 1992-12-30 1994-10-10 Nokia Telecommunications Oy Arrangements for measuring the condition of the receiving antenna
US6292508B1 (en) 1994-03-03 2001-09-18 Proxim, Inc. Method and apparatus for managing power in a frequency hopping medium access control protocol
WO1995034138A1 (en) 1994-06-07 1995-12-14 Celsat America, Inc. Communications system
US5551064A (en) * 1994-07-27 1996-08-27 Motorola, Inc. Method and apparatus for communication unit frequency assignment
DE4441566A1 (en) * 1994-11-23 1996-05-30 Bosch Gmbh Robert Method for digital frequency correction in multi-carrier transmission methods
US5745479A (en) * 1995-02-24 1998-04-28 3Com Corporation Error detection in a wireless LAN environment
US5933787A (en) 1995-03-13 1999-08-03 Qualcomm Incorporated Method and apparatus for performing handoff between sectors of a common base station
US5719871A (en) * 1995-04-19 1998-02-17 Motorola, Inc. Method and apparatus for performing diversity voting in a communication system
FI100286B (en) * 1996-04-01 1997-10-31 Nokia Mobile Phones Ltd Transmitter / receiver for transmitting and receiving an RF signal in two frequency ranges
US5915212A (en) * 1996-08-29 1999-06-22 Ericsson Inc. System and method for achieving extended radio coverage and additional capacity using extended frequency bands
US6029044A (en) * 1997-02-03 2000-02-22 Hughes Electronics Corporation Method and apparatus for in-line detection of satellite signal lock
FI103160B1 (en) 1997-05-30 1999-04-30 Nokia Mobile Phones Ltd The measurement of the measurements on parallel frequencies in a radio communication apparatus
BR9812816A (en) * 1997-09-15 2000-08-08 Adaptive Telecom Inc Processes for wireless communication, and to efficiently determine a space channel of the mobile unit in a wireless communication system at the base station, and cdma base station
US6078571A (en) * 1997-09-19 2000-06-20 Motorola, Inc. Apparatus and method for transmitting beacon signals in a communication system
JPH11113049A (en) 1997-09-30 1999-04-23 Matsushita Electric Ind Co Ltd Radio communication system
US6216012B1 (en) 1997-11-07 2001-04-10 Conexant Systems, Inc. Dualband power amplifier control using a single power amplifier controller
US6018647A (en) * 1997-11-10 2000-01-25 Electrocom Communication Systems, Inc. Diversity reception system
JP3795536B2 (en) 1997-12-25 2006-07-12 株式会社エヌ・ティ・ティ・ドコモ Radio channel assignment and selection method
JP3830068B2 (en) 1998-04-09 2006-10-04 株式会社エヌ・ティ・ティ・ドコモ Method for detecting signal quality in mobile communication and method for controlling mobile station
US6141536A (en) 1998-06-23 2000-10-31 Visteon Global Technologies, Inc. Diversity radio system with RDS
US6760880B1 (en) 1998-09-10 2004-07-06 Ceva D.S.P. Ltd. Scalar product and parity check
US6304748B1 (en) * 1998-09-23 2001-10-16 Conexant Systems, Inc. Transmitter circuitry for a cellular phone
US6546252B1 (en) * 1998-12-18 2003-04-08 Telefonaktiebolaget Lm Ericsson (Publ) System and method for estimating interfrequency measurements used for radio network function
JP3805984B2 (en) 1998-12-24 2006-08-09 ノキア ネットワークス オサケ ユキチュア Apparatus and method for reducing signal amplification
JP2001094529A (en) 1999-09-21 2001-04-06 Sanyo Electric Co Ltd Pilot signal extracting circuit in ofdm receiver
US6606485B1 (en) * 1999-10-06 2003-08-12 Qualcomm, Incorporated Candidate system search and soft handoff between frequencies in a multi-carrier mobile communication system
DE60023663T2 (en) * 2000-01-12 2006-05-24 Mitsubishi Denki K.K. MOBILE COMMUNICATION TERMINAL
US6546248B1 (en) 2000-02-10 2003-04-08 Qualcomm, Incorporated Method and apparatus for generating pilot strength measurement messages
DE10006701C2 (en) 2000-02-16 2002-04-11 Harman Becker Automotive Sys receiver
EP1156609A1 (en) * 2000-05-15 2001-11-21 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Transmission quality measurement in a communication network
DE60035411T2 (en) * 2000-05-23 2008-03-06 Sony Deutschland Gmbh Multi-band radio system and method for operating a multi-band radio system
US20020094785A1 (en) * 2000-07-18 2002-07-18 Deats Bradley W. Portable device used to measure passive intermodulation in radio frequency communication systems
DE60134038D1 (en) 2000-12-20 2008-06-26 Hi Key Ltd METHOD AND DEVICE FOR RECEIVING AN AMPLITUDE MODULATED RADIO SIGNAL
US6901256B2 (en) * 2000-12-29 2005-05-31 Sprint Spectrum L.P. Cellular/PCS CDMA system with pilot beacons for call handoffs
JP4125958B2 (en) * 2000-12-30 2008-07-30 アクイティ・リミテッド・ライアビリティ・カンパニー Carrier interferometry coding and multicarrier processing
JP2002223479A (en) 2001-01-29 2002-08-09 Mitsubishi Materials Corp Wireless data communication system, base station, mobile station and program
JP3989688B2 (en) 2001-02-26 2007-10-10 クラリオン株式会社 Wireless communication network system
JP2002280993A (en) 2001-03-22 2002-09-27 Sanyo Electric Co Ltd Digital signal demodulator
JP2002300628A (en) 2001-04-02 2002-10-11 Matsushita Electric Ind Co Ltd Processing method of handover and its transceiver
KR20020094920A (en) * 2001-06-13 2002-12-18 가부시키가이샤 엔티티 도코모 Mobile communication system, mobile communication method, base station, mobile station, and method for transmitting signal in the mobile communication system
US7181171B2 (en) * 2001-07-20 2007-02-20 Kyocera Wireless Corp. System and method for providing auxiliary reception in a wireless communications system
JPWO2003037027A1 (en) * 2001-10-18 2005-02-17 富士通株式会社 Mobile communication system and communication method for mobile communication system
JP2003283458A (en) 2002-03-25 2003-10-03 Sanyo Electric Co Ltd Carrier discrimination method, carrier discrimination circuit, and automatic frequency tuning circuit capable of utilizing them
US7136653B2 (en) 2002-03-28 2006-11-14 Lucent Technologies Inc. Wireless base station supporting multiple hyperbands
EP1500193B1 (en) * 2002-04-26 2008-10-01 Thomson Licensing Tuner input filter with electronically adjustable response for adapting to antenna characteristic
US7424296B2 (en) * 2002-04-29 2008-09-09 Nokia Corporation Method and apparatus for soft handover area detection for uplink interference avoidance
JP4003536B2 (en) * 2002-05-22 2007-11-07 日本電気株式会社 Cellular system, mobile station, base station controller, and different frequency switching method used therefor
JP2004015193A (en) 2002-06-04 2004-01-15 Shimadzu Corp Remote control method and apparatus
JP4004877B2 (en) 2002-07-09 2007-11-07 シャープ株式会社 Mobile station equipment
US8228849B2 (en) * 2002-07-15 2012-07-24 Broadcom Corporation Communication gateway supporting WLAN communications in multiple communication protocols and in multiple frequency bands
US6993333B2 (en) 2003-10-16 2006-01-31 Flarion Technologies, Inc. Methods and apparatus of improving inter-sector and/or inter-cell handoffs in a multi-carrier wireless communications system
US7366200B2 (en) 2002-08-26 2008-04-29 Qualcomm Incorporated Beacon signaling in a wireless system
US6836726B2 (en) 2002-10-04 2004-12-28 Integrasys, S.A. Satellite and terrestrial remote monitoring system for wireless handheld mobile terminals
JP4325976B2 (en) * 2002-10-29 2009-09-02 Nsc株式会社 Receiving machine
US20040203567A1 (en) 2002-11-22 2004-10-14 Jeffrey Berger Apparatus and method for providing emergency information in a signpost location system
US7068703B2 (en) * 2003-02-18 2006-06-27 Qualcomm, Incorporated Frequency hop sequences for multi-band communication systems
JP3711117B2 (en) * 2003-03-25 2005-10-26 株式会社東芝 Wireless receiver
JP2004349805A (en) * 2003-05-20 2004-12-09 Alpine Electronics Inc Iboc broadcast receiver
US7359692B2 (en) * 2003-06-30 2008-04-15 Zarbana Digital Fund, Llc Method of and device for antennae diversity switching
US7382757B2 (en) 2003-09-23 2008-06-03 Motorola, Inc. Method for supporting a plurality of subscribers operating on different frequency bands using a single access point
EP1533916A1 (en) * 2003-11-18 2005-05-25 Mitsubishi Electric Information Technology Centre Europe B.V. Diversity switch combiner
US7212821B2 (en) 2003-12-05 2007-05-01 Qualcomm Incorporated Methods and apparatus for performing handoffs in a multi-carrier wireless communications system
US7047009B2 (en) 2003-12-05 2006-05-16 Flarion Technologies, Inc. Base station based methods and apparatus for supporting break before make handoffs in a multi-carrier system
US7460082B2 (en) * 2003-12-30 2008-12-02 Intel Corporation Sectored antenna systems for WLAN
US6990324B2 (en) * 2004-04-15 2006-01-24 Flarion Technologies, Inc. Methods and apparatus for selecting between multiple carriers using a single receiver chain tuned to a single carrier
US7444127B2 (en) 2004-04-15 2008-10-28 Qualcomm Incorporated Methods and apparatus for selecting between multiple carriers using a receiver with multiple receiver chains
EP1736011A4 (en) 2004-04-15 2011-02-09 Qualcomm Inc Multi-carrier communications methods and apparatus
US7453912B2 (en) 2004-04-15 2008-11-18 Qualcomm Incorporated Methods and apparatus for selecting between multiple carriers based on signal energy measurements
US20050286547A1 (en) * 2004-06-24 2005-12-29 Baum Kevin L Method and apparatus for accessing a wireless multi-carrier communication system
JP4381945B2 (en) * 2004-09-30 2009-12-09 株式会社ルネサステクノロジ Receiver, receiving method, and portable wireless terminal

Also Published As

Publication number Publication date
KR20060133108A (en) 2006-12-22
CA2562680C (en) 2010-04-13
JP2011030241A (en) 2011-02-10
NO20065210L (en) 2006-12-18
CN102006263A (en) 2011-04-06
IL178605A (en) 2010-12-30
NZ550515A (en) 2008-07-31
WO2005109701A1 (en) 2005-11-17
EP1735930A4 (en) 2011-04-27
US20060084404A1 (en) 2006-04-20
JP2007533253A (en) 2007-11-15
EP2254255A3 (en) 2012-05-09
RU2006140236A (en) 2008-05-20
RU2369006C2 (en) 2009-09-27
KR100883527B1 (en) 2009-02-13
EP1735930B1 (en) 2014-04-16
MXPA06011856A (en) 2007-01-16
JP4903890B2 (en) 2012-03-28
CN102006263B (en) 2013-09-11
US6990324B2 (en) 2006-01-24
CN1998170A (en) 2007-07-11
RU2006140256A (en) 2008-05-20
RU2354077C2 (en) 2009-04-27
AU2009206173A1 (en) 2009-08-27
JP2011211742A (en) 2011-10-20
IL178605A0 (en) 2007-02-11
AU2004319484A1 (en) 2005-11-17
ZA200608583B (en) 2008-05-28
BRPI0418747A (en) 2007-09-11
AU2004319484C1 (en) 2009-10-15
EG24346A (en) 2009-02-11
CN1998170B (en) 2011-12-07
AU2009206173B2 (en) 2010-12-09
US9118358B2 (en) 2015-08-25
EP2254255A2 (en) 2010-11-24
EP2254255B1 (en) 2014-04-02
JP5027324B2 (en) 2012-09-19
US20050233715A1 (en) 2005-10-20
AU2004319484B2 (en) 2009-05-07
EP1735930A1 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
CA2562680A1 (en) Methods and apparatus for selecting between multiple carriers using a single receiver chain tuned to a single carrier
US5737359A (en) Method for supervising base station radio channels
KR100809796B1 (en) Methods and apparatus for selecting between multiple carriers using a receiver with multiple receiver chains
KR101231399B1 (en) Adaptive received power control method and apparatus for antenna wireless channel measurement equipments
US8849209B2 (en) Communications device with selective spectrum assignment and related methods
WO2008098898A3 (en) Network element and method for setting a power level in a wireless communication system
US6907094B2 (en) Diversity receiving device
JPH1032530A (en) Antenna selection control circuit
CA2583075A1 (en) Apparatus and method for receiving packet data on a subset of carrier frequencies in a wireless communication system
CN101174892A (en) Candidate system search and soft handoff between frequencies in a multi-carrier mobile communication system
WO2010140846A3 (en) Method of measurement over multiple downlink carriers and apparatus therefor
JP3732441B2 (en) Method of controlling antenna of receiving apparatus in radio system, particularly mobile radio system
WO2010077192A1 (en) Subcell measurement procedures in a distributed antenna system
GB2458908A (en) Low power multi-channel signal processor
EP1797739A1 (en) Predictive power control in a digital diversity receiver
US6032052A (en) Apparatus and method for data transmission
CN101499829A (en) Data transmitting method and system under high-speed mobile environment
WO2008118049A1 (en) A method and a device for finding imperfections in an rf path
TW202320522A (en) Network communication apparatus and network communication monitoring method thereof having full band monitoring mechanism
US20030114111A1 (en) Method of verifying operation of listening control channel
UA89041C2 (en) Methods and apparatus for selecting between multiple carriers using a single receiver chain tuned to a single carrier
JPH04298128A (en) Mobile communication system
RU2005136270A (en) METHOD OF RADIO COMMUNICATION WITH MOBILE OBJECTS AND RADIO SYSTEM FOR ITS IMPLEMENTATION
JPH06164457A (en) Receiving equipment

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20211015