CA2637869A1 - Polyurethane dispersions based on polycarbonate polyols and suitable for use in personal care products - Google Patents

Polyurethane dispersions based on polycarbonate polyols and suitable for use in personal care products Download PDF

Info

Publication number
CA2637869A1
CA2637869A1 CA002637869A CA2637869A CA2637869A1 CA 2637869 A1 CA2637869 A1 CA 2637869A1 CA 002637869 A CA002637869 A CA 002637869A CA 2637869 A CA2637869 A CA 2637869A CA 2637869 A1 CA2637869 A1 CA 2637869A1
Authority
CA
Canada
Prior art keywords
diol
molecular weight
radical
prepolymer
hair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002637869A
Other languages
French (fr)
Inventor
Yuliya Berezkin
Peter D. Schmitt
Serkan Unal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro LLC
Original Assignee
Bayer MaterialScience LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience LLC filed Critical Bayer MaterialScience LLC
Publication of CA2637869A1 publication Critical patent/CA2637869A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/87Polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0861Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers
    • C08G18/0866Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being an aqueous medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6659Compounds of group C08G18/42 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/722Combination of two or more aliphatic and/or cycloaliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Abstract

The invention relates to a process for preparing an aqueous polyurethane dispersion suitable for use in personal care products, wherein the polyurethane is based on one or more polycarbonate polyols.

Description

POLYURETHANE DISPERSIONS BASED ON POLYCARBONATE
POLYOLS AND SUITABLE FOR USE IN PERSONAL CARE PRODUCTS
BACKGROUND OF THE INVENTION
The invention relates to aqueous polyurethane dispersions, to a process for preparing them and to their use in cosmetic applications such as hair fixatives.
Polyurethane dispersions have recently been incorporated into cosmetic products, such as hair fixatives, suntan lotions, etc., offering several advantages over conventional technologies such as acrylics and acryl amide copolymers, polyvinyl pyrrolidone, and PVP/VA copolymers. Such advantages include water compatibility, ease of formulating low VOC sprays, water resistance and excellent film forming ability. Specifically in hair care products, polyurethane dispersions provide great setting effect without sticky feel, excellent style retention owing to the polymer's elastic memory, natural look and feel. All these attributes are highly valuable to the consumer. Commercial polyurethane dispersions designed as hair fixatives and hair styling polymers generally exhibit good high humidity curl retention, style retention, good feel and shine. However, their lack of adhesion to hair is demonstrated by extensive flakiness on hair after combing.
This creates a significant aesthetic problem for consumers.

The challenge of designing a hair fixative polymer consists of achieving a balance between often conflicting requirements: the polymer should be hydrophobic enough to provide curl retention even under humid conditions, while it should remain sufficiently hydrophilic in order to be removable from hair by washing with water. Also, the polymer has to possess an optimum combination of glass transition temperature, flexibility and molecular weight to provide setting strength, elasticity, adhesion to hair and soft feel.

U.S. Patent No. 5,626,840 discloses hair fixatives based on polyurethane dispersions that are prepared utilizing 2,2-hydroxymethyl-substituted carboxylic DOC'SM'TL: 2831747\l acid. It illustrates how to achieve good humidity resistance and spray characteristics using water soluble or dispersable polyurethanes. The examples demonstrate the efficacy of the polymer only in aerosol spray formulations containing alcohol. This is detrimental for both the environment and the health of the hair. Finally, the invention utilizes a range of dimethylol propionic acid (DMPA) of 0.35 - 2.25 meq of COOH per gram of polyurethane in the polyurethane dispersion that must be observed in order for the dispersion to be effective.

However, the disclosure does not teach how to avoid the common problem of the polymer's flakiness on hair by achieving good adhesion to hair. Moreover, it does not teach how to attain style retention, e.g. elastic behavior of the polymer.
Finally, a lower amount of acid should preferably be used, while still achieving curl retention and washability, as the acid tends to accelerate the breakdown of the polymer.

U.S. Patent 6,613,314 discloses reshapeable hair compositions that utilize polyurethane dispersions. During preparation of the polyurethane, an isocyanate-functional prepolymer is formed. The prepolymer incorporates at least one polyactive hydrogen compound that is soluble in the medium of dispersion.
Preferably, sulfonated compounds are utilized. The sulfonic group is incorporated into the prepolymer, rather than via the urea segment.

U.S. Patent No. 6,106,813 discloses polyester polyurethanes that are suitable in cosmetic applications. It discloses a new family of polyester polyurethanes that possess not only good film-forming properties, but also impart great rigidity and excellent resistance to removal by water and detergents. With regard to the hair styling/hair fixative applications, the examples in the patent demonstrate the use of the invention only in hair style shaping lotions, claiming good shape retention.

However, the reference does not mention adhesion to hair or how to achieve excellent humidity resistance with good removability by water. It also does not mention important attributes of hair styling/hair fixative polymers, such as natural feel and luster on hair.
Thus, the purpose of present invention was to provide a polymer composition which would improve adhesion to hair and also demonstrate excellent curl and style retention, natural feel and look.

The present invention provides a composition that demonstrates excellent adhesion to hair. In comparison to commercially available hair fixative polyurethane dispersions, the composition of the present invention impart significantly less or no flaking at all. In addition, it provides improved humidity retention, higher luster and natural feel in comparison to the above-mentioned polyurethane dispersions.

SUMMARY OF THE INVENTION
The present invention relates to a process for preparing an aqueous polyurethane dispersion suitable for use in personal care products, comprising:
1) preparing a prepolymer according to the formula:

OCN-RZ N-C-O-RI-O-C-N-RZ{N-C-O-R3-O-C-N-RZ NCO
n m wherein Rl represents a bivalent radical of a polycarbonate polyol, R2 represents a radical of an aliphatic or cycloaliphatic polyisocyanate, R3 represents a radical of a low molecular weight diol, optionally substituted with ionic groups, n is from 1 to 5, and m is >1;
by reacting:

1 a) at least one polycarbonate polyol, lb) one or more aliphatic or cycloaliphatic polyisocyanates, and 1c) at least one low molecular weight diol optionally substituted with ionic groups;
2) reacting the prepolymer with at least one monohydroxyl-functional polyalkylene oxide with a number average molecular weight of less than about 3,000;
3) chain-extending the prepolymer with 3a) at least one chain extender according to the formula:

wherein R4 represents an alkylene or alkylene oxide radical not substituted with ionic or potentially ionic groups, and 3b) optionally at least one chain extender according to the formula:

wherein R5 represents an alkylene radical substituted with ionic or potentially ionic groups, in the presence of an organic solvent to form a polyurethane;
4) dispersing the polyurethane in water; and 5) removing the organic solvent, resulting in an aqueous polyurethane dispersion;
wherein the radical of the monohydroxyl-functional polyalkylene oxide constitutes between about 0.1 wt.% to about 5 wt.% of the polyurethane.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
As used herein and in the following claims, unless indicated otherwise, the term "molecular weight" shall be interpreted to mean number average molecular weight.

Suitable polycarbonate polyols for providing the bivalent radical Rl are polycarbonate polyols having at least two hydroxyl groups and having number average molecular weights of from about 700 to about 16,000, and preferably from about 750 to about 5000.

Polycarbonates containing hydroxyl groups include those known per se such as the products obtained from the reaction of diols such as propanediol-(1,3), butanediol-(1,4) and/or hexanediol-(1,6), diethylene glycol, bisphenol-A, triethylene glycol or tetraethylene glycol with diarylcarbonates, e.g.
diphenylcarbonate, dimethylcarbonate, diethyleneglycol carbonate or phosgene.
Suitable polyisocyanates for providing the hydrocarbon radical R2 include organic diisocyanates having a molecular weight of from about 112 to 1,000, and preferably from about 140 to 400. Preferred diisocyanates are those represented by the general formula R2(NCO)2 indicated above in which R2 represents a bivalent aliphatic hydrocarbon group having from 4 to 18 carbon atoms, a bivalent cycloaliphatic hydrocarbon group having from 5 to 15 carbon atoms, a bivalent araliphatic hydrocarbon group having from 7 to 15 carbon atoms or a bivalent aromatic hydrocarbon group having 6-15 carbon atoms. Examples of the organic diisocyanates which are suitable include tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, dodecamethylene diisocyanate, cyclohexane-l,3-and -1,4-diisocyanate, 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethylcyclohexane (isophorone diisocyanate or IPDI), bis-(4-isocyanatocyclohexyl)-methane, 1,3- and 1,4-bis(isocyanatomethyl)-cyclohexane, bis-(4-isocyanato-3-methyl-cyclohexyl)-methane, isomers of toluene diisocyanate (TDI) such as 2,4-diisocyanatotoluene, 2,6-diisocyanatotoluene, mixtures of these isomers, hydrogenated TDI, 4,4'-diisocyanato diphenyl methane and its isomeric mixtures with 2,4- and optionally 2,2'-diisocyanato diphenylmethane, and 1,5-diisocyanato naphthalene. Mixtures of diisocyanates can, of course, be used.
Preferred diisocyanates are aliphatic and cycloaliphatic diisocyanates.
Particularly preferred are 1,6-hexamethylene diisocyanate and isophorone diisocyanate.

The low molecular weight diols usually result in a stiffening of the polymer chain, when they are used. By "low molecular weight diols" it is meant diols having a molecular weight from about 62 to 700, preferably 62 to 200. At least one of the low molecular weight diols contains ionic or potentially ionic groups.
Suitable lower molecular weight diols containing ionic or potentially ionic groups are those disclosed in U.S. Patent No. 3,412,054. Preferred compounds include dimethylol butanoic acid (DMBA), dimethylol propionic acid (DMBA) and carboxyl-containing caprolactone polyester diol. The lower molecular weight diols containing ionic or potentially ionic groups are used in an amount such that <0.30 meq of COOH per gram of polyurethane in the polyurethane dispersion are present.
Other low molecular weight diols not containing ionic or potentially ionic groups may optionally be used. They may contain aliphatic, alicyclic or aromatic groups.
Preferred compounds contain only aliphatic groups. The low molecular weight diols having up to about 20 carbon atoms per molecule include ethylene glycol, diethylene glycol, propane 1,2-diol, propane 1,3-diol, butane 1,4-diol, butylene 1,3-glycol, neopentyl glycol, butyl ethyl propane diol, cyclohexane diol, 1,4-cyclohexane dimethanol, hexane 1,6-diol, bisphenol A (2,2-bis(4-hydroxy-phenyl)propane), hydrogenated bisphenol A (2,2-bis(4-hydroxycyclohexyl)-propane), and mixtures thereof.

The monohydroxyl-functional polyalkylene oxide compounds suitable for use in the present invention include any monohydroxyl-functional polyether with a number average molecular weight of less than about 3,000, preferably from 300 to 3,000, based on ethylene oxide or propylene oxide or both. Suitable compounds include Desmopheri LB-25, an ethylene oxide/polyethylene oxide monol available from Bayer MaterialScience, Pittsburgh, PA, the CARBOWAX
SENTRY line of methoxypolyethylene glycols available from Dow Chemical Company, Midland, MI, as well as the UCON LB Fluids and UCON 50-HB
Fluids, also available from Dow Chemical Company. The monohydroxyl-functional compounds are used in an amount such that the polyalkylene oxide radicals incorporated into the prepolymer via the urethane segment constitute between about 0.1 wt. % to about 5 wt.% of the polyurethane.

The prepolymer may be chain extended using at least one, optionally two classes of chain extenders. First, compounds having the formula:

wherein R4 represents an alkylene or alkylene oxide radical not substituted with ionic or potentially ionic groups are used. Alkylene diamines include hydrazine, ethylenediamine, propylenediamine, 1,4-butylenediamine and piperazine, 2-methyl-1,5-pentanediamine (Dytek A from DuPont), hexane diamine, isophorone diamine, and 4,4-methylenedi(cyclohexylamine). The alkylene oxide diamines include dipropylamine diethyleneglycol (Ancamine 1922A available from Air Products, Allentown, PA) and the ANCAMINE series ether amines available from Air Products, including dipropylamine propyleneglycol, dipropylamine dipropyleneglycol, dipropylamine tripropyleneglycol, dipropylamine poly(propylene glycol), dipropylamine ethyleneglycol, dipropylamine poly(ethylene glycol), dipropylamine 1,3-propane diol, dipropylamine 2-methyl-1,3-propane diol, dipropylamine 1,4-butane diol, dipropylamine 1,3-butane diol, dipropylamine 1,6-hexane diol and dipropylamine cyclohexane- 1,4-dimethanol.
Mixtures of the listed diamines may also be used. The first class of chain extenders may have a molecular weight from about 100 to 1500, preferably from about 170 to 1000.

The optional second class of chain extenders is compounds having the formula:

wherein R5 represents an alkylene radical substituted with ionic or potentially ionic groups. Such compounds have an ionic or potentially ionic group and two groups that are reactive with isocyanate groups. Such compounds contain two isocyanate-reactive groups and an ionic group or group capable of forming an ionic group. The ionic group or potentially ionic group can be selected from the group consisting of ternary or quaternary ammonium groups, groups convertible into such a group, a carboxyl group, a carboxylate group, a sulfonic acid group and a sulfonate group. The at least partial conversion of the groups convertible into salt groups of the type mentioned may take place before or during the mixing with water. Specific compounds include diaminosulfonates, such as for example the sodium salt of N-(2-aminoethyl)-2-aminoethane sulfonic acid or the sodium salt of N-(2-aminoethyl)-2- aminopropionic acid. The second class of chain extenders may have a molecular weight from about 32 to 600, preferably from about 32 to 200.
The polyurethane according to the invention may also include compounds which are situated in each case at the chain ends and terminate said chains (chain terminators). These chain terminators can be derived from compounds having the formula:

~~ NH

wherein R6 is an H atom or alkylene radical optionally having a hydroxyl end and R7 is alkylene radical optionally having a hydroxyl end. Suitable compounds include compounds such as monoamines, particularly monosecondary amines, or monoalcohols. Examples include: methylamine, ethylamine, propylamine, butylamine, octylamine, laurylamine, stearylamine, isononyloxy-propylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, N-methylamino-propylamine, diethyl(methyl)aminopropylamine, morpholine, piperidine, diethanolamine and suitable substituted derivatives thereof, amide amines of diprimary amines and monocarboxylic acids, monoketimes of diprimary amines, primary/tertiary amines such as N,N-dimethylamino-propylamine and the like.
Also suitable are chain terminating alcohols such as, Ct - CI o or higher alcohols including, methanol, butanol, hexanol, 2-ethylhexyl alcohol, isodecyl alcohol, and the like and even mixtures thereof, as well as amino-alcohols such as aminomethylpropanol (AMP). The chain terminators may have a molecular weight from about 31 to 600, preferably from about 31 to 200.

In one embodiment of the invention, diethylene glycol is incorporated into the polyurethane dispersion either as the low molecular weight diol, or as part of the non-ionic chain extender through the use of dipropylamine-diethyleneglycol ("DPA-DEG"). If the diethylene glycol is used as the low molecular weight diol, then preferably the DPA-DEG is not used as the non-ionic chain extender.
Likewise, if the DPA-DEG is used as the non-ionic chain extender, then diethylene glycol is preferably not used as the low molecular weight diol. The use of the diethylene glycol or DPA-DEG is especially desirable when the polyurethane dispersion is incorporated into a hair fixative, as the diethylene glycol significantly increases the adhesion to hair.

The present invention also relates to a process for the production of a polyurethane dispersion suitable for use in personal care products, comprising a) reacting in a first step at least the polycarbonate polyol and the diisocyanate to form the prepolymer A), then b) dissolving in a second step the prepolymer in an organic solvent, c) reacting in a third step the isocyanate-containing prepolymer solution with the two classes of chain extenders and optionally, the chain terminator, d) forming, in a fourth step, the dispersion by addition of water, and e) removing in a fifth step the organic solvent.

Free sulfonic acid groups and carboxylic acid groups incorporated are neutralized between the second and third steps or between the third and fourth steps.
Suitable neutralizing agents included are the primary, secondary or tertiary amines. Of these the trialkyl-substituted tertiary amines are preferred. Examples of these amines are trimethyl amine, triethyl amine, triisopropyl amine, tributyl amine, N,N-dimethyl-cyclohexyl amine, N,N-dimethylstearyl amine, N,N-dimethyl-aniline, N-methylmorpholine, N-ethylmorpholine, N-methylpiperazine, N-methylpyrrolidine, N-methylpiperidine, N,N-dimethyl-ethanol amine, N,N-diethyl-ethanol amine, triethanolamine, N-methyldiethanol amine, dimethylaminopropanol, 2-methoxyethyldimethyl amine, N-hydroxyethyl-piperazine, 2-(2-dimethylaminoethoxy)-ethanol and 5-diethylamino-2-pentanone.
The most preferred tertiary amines are those which do not contain active hydrogen(s) as determined by the Zerewitinoff test since they are capable of reacting with the isocyanate groups of the prepolymers which can cause gelation, the formation of insoluble particles or chain termination.

The polyurethane dispersions according to the invention can be produced by the so-called acetone process. In the acetone process the synthesis of the aqueous preparations of polyurethane on which the dispersions according to the invention are based is performed in a multistage process.

In a first stage a prepolymer containing isocyanate groups is synthesized from the polycarbonate polyol, the diisocyanate and the low molecular weight diol. The amounts of the individual components are calculated in such a way that the isocyanate content of the prepolymer is between 1.4 and 5.0 wt.%, preferably between 2.0 and 4.5 wt.%, and particularly preferably between 2.6 and 4.Owt.%.
The low molecular weight diol is present in an amount from 0 to 80 eq.% based on the amount of NCO equivalents, preferably from 0 to 10 eq.%.

The resulting prepolymer has a structure of:

OCN-R, N-C-O-RI-O-C-N-R2~N-C-O-R-O-C-N-R, NCO
n m wherein Rl represents a bivalent radical of a polycarbonate polyol, R2 represents a hydrocarbon radical of an aliphatic or cycloaliphatic polyisocyanate, R3 represents a radical of a low molecular weight diol, optionally substituted with ionic groups, n is <5, and mis>1.
Preferably, n is from 1 to 3, and m is from 1 to 5.

The prepolymer is then reacted with the monohydroxyl-functional polyalkylene oxide with a number average molecular weight of less than about 3,000.

In a second stage the prepolymer produced in stage I is dissolved in an organic, at least partially water-miscible, solvent containing no isocyanate-reactive groups.
The preferred solvent is acetone. Other solvents, such as, for example, 2-butanone, tetrahydrofuran or dioxan or mixtures of these solvents can also be used, however. The quantities of solvent to be used must be calculated in such a way that a solids content of 25 to 60 wt. %, preferably 30 to 50 wt. %, particularly preferably 35 to 45 wt. %, is obtained.

In a third stage the isocyanate-containing prepolymer solution is reacted with mixtures of the amino-functional chain extenders and, optionally, chain terminator, to form the high-molecular weight polyurethane. Sufficient amounts of the chain extenders and chain terminator are used such that the calculated number-average molecular weight (Mn) of the resulting polyurethane is between 10,000 and 100,000 daltons, preferably between 10,000 and 50,000 daltons. The ionic and non-ionic chain extenders are present in an amount from 15 to 98 eq.%, preferably 35 to 80 eq.% total, based on the residual amount of NCO
equivalents present in the prepolymer. The chain terminator is present in an amount from 0 to 35 eq.%, preferably from 10 to 20 eq.%, based on the residual amount of NCO
equivalents present in the prepolymer.

In a fourth stage the high-molecular weight polyurethane is dispersed in the form of a fme-particle dispersion by addition of water to the solution or solution to the water.
In a fifth stage the organic solvent is partially or wholly removed by distillation, optionally under reduced pressure. The amount of water in stage four is calculated in such a way that the aqueous polyurethane dispersions according to the invention display a solids content of 20 to 60 wt. %, preferably 28 to 42 wt. %.
The polyurethane dispersions of the present invention are suitable for use in personal care products. Preferably, they are used in non-aerosol hair fixatives.
Such hair fixatives are easily prepared by the addition of water or ethanol to the dispersion. Likewise, the dispersions may be used in the preparation of other personal care products such as suntan lotions, skin care products, lipstick, mascara and deodorants, by the addition of components well known to those of ordinary skill in the art.

EXAMPLES
Products used in the Examples:
Desmophen C-2200 (hexane diol-based polycarbonate, M/wt. 2000, OH No. 56;
Bayer MaterialScience LLC, Pittsburgh, PA).

Desmodur W(Dicyclohexylmethane-4,4'-diisocyanate, NCO content 31.8%, Bayer MaterialScience LLC, Pittsburgh, PA).

Desmodur I (Isophorone diisocyanate, NCO content 37.5%, Bayer MaterialScience LLC, Pittsburgh, PA).

Desmophen LB-25 (Ethylene oxide/Polyethlyene oxide monol, M/wt. 2220, Bayer MaterialScience LLC, Pittsburgh, PA).

Acclaim 4200 (Propylene oxide based polyether diol, M/wt. 2,000, Bayer MaterialScience LLC, Pittsburgh, PA).
PPG 425 (Propylene oxide based polyether diol, M/wt. 425, Bayer MaterialScience LLC, Pittsburgh, PA).

Ancamine 1922A (dipropylamine-diethyleneglycol, Air Products, Allentown, PA).

Kathon LX (biocide, Rohm & Haas, Philadelphia, PA).

Microcare MTG (biocide, Thor Specialties (UK) Ltd., Cheshire, UK).
Example 1: Composition according to the invention 25.74 g of Desmopheri C-2200, 0.18 g neopentyl glycol, and 0.62 g of DMBA
were mixed together in the flask at 75 C to obtain a homogeneous mixture. 4.31 g of Desmodur W and 3.65 g of Desmodur I were added into the flask at 70 T.
Reaction proceeded at 95 C until actual NCO content became lower or equal to theoretical NCO. Then 0.7 g of Desmopheri LB-25 was added and reacted until actual NCO became constant. Prepolymer was cooled to 60 C, and 60 g acetone was charged into the reaction flask. The clear prepolymer solution was mixed for 15 min while cooling to 40 C. 0.43 g of triethylamine was added into the prepolymer solution at 40 C and mixed for 10 min. Chain extension step took place next at 40 C with the addition of 2.65 g of Ancamine 1922A in 15 g of distilled water. After 15 min, 61.34 g of distilled water was added at room temperature into the prepolymer under 600 rpm agitation. Extra water was added as the dispersion became too viscous. The distillation of the acetone followed the dispersion stage. Upon completion of the distillation, 0.38 g of Microcare MTG
was added.

Examples 2-5 were prepared using the same procedure as Example 1.
Non-aerosol hair fixative formulations were prepared utilizing deionized water and the polyurethane dispersions according to the invention. The formulations were 4 parts polyurethane dispersion active resin solids by the mixing of 10 parts polyurethane dispersion and 90 parts water. The non-aerosol spray formulations (20 ml) containing 3% active resin solids were prepared as following: ((3 /%
solids PUD) x 20 ml)/100= X g of PUD dissolved in (20-X) g of water.
Curl retention testing was performed in accordance with the test methods detailed in U.S. Patent No. 5,626,840. Spray bottles with fine mist were used for application. The sample hair used was Yaki brown hair, 8in., color 4. The Curl Retention test was performed as follows. The hair was cut into swatches of -2 g each and bound together at one end. Each swatch was washed in 10% solution of clarifying shampoo for 30 seconds and rinsed in warm tap water. The hair on each swatch was cut into 6 in length from secured end. Then the hair was wetted again and combed, and the excess water was squeezed out. The hair swatches were rolled and secured onto %2 in diameter rollers and dried at 49 C for approximately one hour. The dried hair was removed from the roller and the resulting curl was suspended by the bound end. The curl height was measured for each swatch.

Each curl was sprayed uniformly with 4 sprays per side. The curl was placed in an aluminum pan and placed in a 49 C oven for about 30 minutes to dry. The dried curl was then resuspended, and the curl length was measured for time 0 minutes, and set into Thermotron at 22 C, 95% R.H. The curl height was measured after 24 hours.

Curl retention was calculated as follows:

' L-L % Curl Retention = x 100 L -L

where L is length of hair fully extended, 6 in.
L is length of curl before spray and exposure, and L' is length of curl after spray and exposure.
Style retention was evaluated as follows: after 24 hours exposure to high humidity, the curl was combed 10 times. The style retention was judged based on the curl's ability to retain its initial shape and length. In most cases, the curl remained unaffected by combing.
Feel was evaluated as follows: untreated hair and hair and treated with PUD
were subjected to a panel of 10 judges. Panelists were asked to rank the feel from 1-5, with 1 being the most natural soft feel with no revealing presence of the polymer.

Adhesion to hair was evaluated by running a comb through the treated hair, and visually observing the comb and the hair for flakes and residue.

Component Ex.1 Ex. 2 Ex. 3 Ex. 4 Ex.5 Desmophen C 2200 25.74 28.19 19.23 19.25 26.89 Acclaim 4200 0 0 9.43 8.13 0 PPG 425 0 0 0.73 0.63 0 Neopentyl glycol 0.18 0 0 0 0.35 Desmophen LB-25 0.70 0.77 0.77 0.66 1.49 Dimethylol propanoic acid 0 0 0 0 0.97 Dimethylol butanoic acid 0.62 0.97 0.89 0.81 0 Desmodur W 4.31 4.72 6.80 0 8.4 Desmodur I 3.65 4,00 1.54 6.40 1.39 Triethylamine 0.43 0.66 0.61 0.55 0.72 Diethanolamine 0 0 0 0 0 Hydrazine Hydrate 0 0 0 0 0.31 Ancamine 1922A 2.65 0 0 0 0 Ethylenediamine 0 0.72 0.57 0.23 0 Diethylenetriamine 0 0 0 0.18 0.30 Water 61.34 59.56 59.25 62.64 56.96 % Solids 28 32.55 36.2 36.31 40 pH N/A N/A N/A N/A 7.5 Mean particle size, nm 74 57 3,134 123 73 Viscosity @ 25 C, cps 56 207 112 82 115 Property Ex.1 Ex. 2 Ex.3 Ex. 4 Ex. 5 %Curl Retention 100 93 95 94 98 Style Retention 1 1 1 1 I
Adhesion to Hair 1 2 3 4 4 Feel 1 1 1 2 As can be seen, Example 1, according to the invention, gave surprisingiy good results with regard to adhesion to hair and feel, while still providing excellent results with regard to curl and style retention.

Example 6: Suntan Lotion A suntan lotion was foimulated using the polyurethane dispersion of Example 1, and having an SPF rating of 30+:

Phase Ingredients Wt.%
A-water Propylene Glycol 1.00 D.I. water 59.75 PUD of Example 1 5.00 Polargel UV 1116 (Amcol) 3.75 Methylparaben and Butylparaben, and Propylparaben 1.0 B-Oil Octyl methoxycinnamate 5.0 Octyl salicylate 3.0 Oxybenzone 3.0 Avobenzone 2.0 Isopropyl Myristate 5.0 Stearyl Alcohol 2.0 Glyceryl Stearate 2.0 Stearic acid 2.0 Polyethylene 2.5 Cetyl Phosphate 1.0 Total 100.00 The sunscreen had perfect waterproofing property, applied in a smooth fashion and had good feel. Further, the sunscreen exhibited no balling effect.
Although the invention has been described in detail in the foregoing for the purpose of illustration, it is to be understood that such detail is solely for that purpose and that variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention except as it may be limited by the claims.

Claims (14)

1. A process for preparing an aqueous polyurethane dispersion suitable for use in personal care products, comprising:
1) preparing a prepolymer according to the formula:
wherein R1 represents a bivalent radical of a polycarbonate polyol, R2 represents a radical of an aliphatic or cycloaliphatic polyisocyanate, R3 represents a radical of a low molecular weight diol, optionally substituted with ionic groups, n is from 1 to 5, and mis>1;
by reacting:
1a) at least one polycarbonate polyol, 1b) one or more aliphatic or cycloaliphatic polyisocyanates, and 1c) at least one low molecular weight diol optionally substituted with ionic groups;
2) reacting the prepolymer with at least one monohydroxyl-functional polyalkylene oxide with a number average molecular weight equal to or less than about 3,000;
3) chain-extending the prepolymer with 3a) at least one chain extender according to the formula:

wherein R4 represents an alkylene or alkylene oxide radical not substituted with ionic or potentially ionic groups, and 3b) optionally at least one chain extender according to the formula:

wherein R5 represents an alkylene radical substituted with ionic or potentially ionic groups, in the presence of an organic solvent to form a polyurethane;
4) dispersing the polyurethane in water; and
5) removing the organic solvent, resulting in an aqueous polyurethane dispersion;
wherein the radical of the monohydroxyl-functional polyalkylene oxide constitutes between about 0.1 wt.% to about 5 wt.% of the polyurethane.
2. The process of Claim 1, wherein the process further comprises chain terminating the prepolymer with at least one compound according to the formula:

wherein R6 is an H atom or alkylene radical optionally having a hydroxyl end and R7 is alkylene radical optionally having a hydroxyl end.

3. The process of Claim 2, wherein the compound for chain terminating is selected from the group consisting of methylamine, ethylamine, propylamine, butylamine, octylamine, laurylamine, stearylamine, isononyloxy-propylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, N-methylaminopropylamine, diethyl(methyl)amino-propylamine, morpholine, piperidine and diethanolamine, amide amines of diprimary amines and monocarboxylic acids, monoketimes of diprimary amines, primary/tertiary amines, methanol, butanol, hexanol, 2-ethylhexyl alcohol, isodecyl alcohol, aminomethylpropanol and mixtures thereof.

4. The process of Claim 1, wherein the one or more polyisocyanates are selected from the group consisting of tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, dodecamethylene diisocyanate, 1,4-diisocyanatocyclohexane, 3-isocyanatomethyl-3,5,5-trimethylcyclo-hexylisocyanate (isophorone diisocyanate), 4,4'-diisocyanatodicyclo-hexylmethane, 4,4'-diisocyanatodicyclohexylpropane-(2,2) and mixtures thereof.

5. The process of Claim 1, wherein the low molecular weight diol is selected from the group consisting of ethylene glycol, diethylene glycol, propane 1,2-diol, propane 1,3-diol, butane 1,4-diol, butylene 1,3-glycol, cyclohexane diol, 1,4-cyclohexane dimethanol, hexane 1,6-diol, bisphenol A (2,2-bis(4-hydroxyphenyl)propane), hydrogenated bisphenol A (2,2-bis(4-hydroxycyclohexyl)propane) and mixtures thereof.
6. The process of Claim 1, wherein the low molecular weight diol is selected from the group consisting of dimethylol butanoic acid and dimethylol propanoic acid.
7. The process of Claim 3 wherein the low molecular weight diol is selected from the group consisting of dimethylol butanoic acid and dimethylol propanoic acid.
8. The process of Claim 1, wherein the second chain extender is the sodium salt of N-(2-aminoethyl)-2-aminoethane sulfonic acid.
9. The process of Claim 1, wherein the monohydroxyl-functional polyalkylene oxide compound is a polyethylene oxide monol having a number average molecular weight of approximately 2220.
10. The process of Claim 1, wherein n is from 1 to 3, and m is from 1 to 5.
11. The process of Claim 1, wherein either R3 is a radical of diethylene glycol or R4 is a radical of dipropylamine-diethyleneglycol.
12. An aqueous polyurethane dispersion obtained by the process of Claim 1.
13. A hair fixative comprising the aqueous polyurethane dispersion of Claim 12 and water.

13. A hair fixative comprising the aqueous polyurethane dispersion of Claim 12 and ethanol.
14. A suntan lotion comprising the polyurethane dispersion of Claim 1.
CA002637869A 2007-08-08 2008-07-15 Polyurethane dispersions based on polycarbonate polyols and suitable for use in personal care products Abandoned CA2637869A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/890,979 2007-08-08
US11/890,979 US7452525B1 (en) 2007-08-08 2007-08-08 Polyurethane dispersions based on polycarbonate polyols and suitable for use in personal care products

Publications (1)

Publication Number Publication Date
CA2637869A1 true CA2637869A1 (en) 2009-02-08

Family

ID=39942718

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002637869A Abandoned CA2637869A1 (en) 2007-08-08 2008-07-15 Polyurethane dispersions based on polycarbonate polyols and suitable for use in personal care products

Country Status (9)

Country Link
US (2) US7452525B1 (en)
EP (1) EP2028205B1 (en)
JP (1) JP5410049B2 (en)
KR (1) KR101545348B1 (en)
CN (1) CN101361701B (en)
BR (1) BRPI0803505A2 (en)
CA (1) CA2637869A1 (en)
RU (1) RU2487900C2 (en)
TW (1) TWI468181B (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7445770B2 (en) * 2007-03-14 2008-11-04 Bayer Materialscience Llc Polyurethane dispersions for use in personal care products
EP2103316A1 (en) * 2008-03-20 2009-09-23 Bayer MaterialScience AG Hydrophilic polyurethane dispersions
DE102008025613A1 (en) * 2008-05-28 2009-12-03 Bayer Materialscience Ag Hydrophilic polyurethane coatings
TWI461453B (en) * 2008-05-30 2014-11-21 Bayer Materialscience Llc Polyurethane-polyurea dispersions based on polycarbonate-polyols
ATE546473T1 (en) * 2008-09-04 2012-03-15 Bayer Materialscience Ag TCD-BASED HYDROPHILIC POLYURETHANE DISPERSIONS
BRPI0918070A2 (en) * 2008-09-04 2015-12-01 Bayer Materialscience Ag tcd-based hydrophilic polyurethane solutions
EP2432449A2 (en) * 2009-05-22 2012-03-28 L'Oréal A cosmetic composition comprising at least one elastomeric anionic polyurethane and at least one non-ionic thickener
EP2432448A2 (en) * 2009-05-22 2012-03-28 L'Oréal Cosmetic composition comprising at least one elastomeric polyurethane
DE102010021465A1 (en) * 2010-05-25 2011-12-01 Clariant International Ltd. Aqueous polyurethane-polyurea dispersions
CN102260366B (en) * 2010-05-29 2014-04-02 比亚迪股份有限公司 Water-soluble polyurethane and preparation method thereof, and water-soluble ink composition containing water-soluble polyurethane and preparation method thereof
US8647471B2 (en) * 2010-12-22 2014-02-11 Bayer Materialscience Llc Process for the production of sized and/or wet-strength papers, paperboards and cardboards
EP2570190A1 (en) 2011-09-15 2013-03-20 Braun GmbH Spray nozzle for dispensing a fluid and sprayer comprising such a spray nozzle
WO2014210309A2 (en) 2013-06-28 2014-12-31 The Procter & Gamble Company Aerosol hairspray product comprising a spraying device
CN103467695B (en) * 2013-09-03 2015-09-16 山东天庆科技发展有限公司 The preparation method of a kind of high hydrophobicity, high yellowing resistance hide finishes
EP3145485A1 (en) * 2014-07-01 2017-03-29 Coty Inc. Water-based color compositions
MX368467B (en) 2015-06-01 2019-10-03 Procter & Gamble Aerosol hairspray product comprising a spraying device.
ES2959454T3 (en) 2015-07-06 2024-02-26 Dow Global Technologies Llc Polyurethane prepolymers
WO2017058504A1 (en) * 2015-10-02 2017-04-06 Resinate Materials Group, Inc. High performance coatings
US11622929B2 (en) 2016-03-08 2023-04-11 Living Proof, Inc. Long lasting cosmetic compositions
TWI761404B (en) 2016-12-19 2022-04-21 德商科思創德意志股份有限公司 Process for producing (cyclo) aliphatic polycarbonate polyols having low reactivity
JP7244495B2 (en) * 2017-09-13 2023-03-22 リビング プルーフ インコーポレイテッド Long lasting cosmetic composition
US10842729B2 (en) 2017-09-13 2020-11-24 Living Proof, Inc. Color protectant compositions
EP3530322A1 (en) * 2018-02-27 2019-08-28 Covestro Deutschland AG Cosmetic composition for improving the resistance of a hair style
CN111135120B (en) * 2018-11-06 2021-04-20 万华化学集团股份有限公司 Waterborne polyurethane functional surface film matrix and application thereof
WO2020171002A1 (en) * 2019-02-19 2020-08-27 株式会社Adeka Polyurethane for cosmetic preparations and method for producing polyurethane for cosmetic preparations
TW202104720A (en) 2019-05-09 2021-02-01 英商萊卡英國有限公司 Transfer printable elastic dispersion with solid low melt powder
KR102138180B1 (en) * 2020-03-05 2020-07-27 이관모 Composition for improving damaged hair
WO2021221196A1 (en) * 2020-04-28 2021-11-04 주식회사 뷰티콜라겐 Composition for improving damaged hair

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3412054A (en) 1966-10-31 1968-11-19 Union Carbide Corp Water-dilutable polyurethanes
US5626840A (en) 1993-04-06 1997-05-06 National Starch And Chemical Investment Holding Corporation Use of polyurethanes with carboxylate functionality for hair fixative applications
FR2708199B1 (en) 1993-07-28 1995-09-01 Oreal New cosmetic compositions and uses.
US6106813A (en) 1993-08-04 2000-08-22 L'oreal Polyester polyurethanes, process for preparing them, produced from the said polyester polyurethanes and their use in cosmetic compositions
DE19541329A1 (en) 1995-11-06 1997-05-07 Basf Ag Hair treatment products
US6007793A (en) 1996-09-20 1999-12-28 Helene Curtis, Inc. Hair spray compositions containing carboxylated polyurethane resins
US5968494A (en) 1998-02-24 1999-10-19 National Starch And Chemical Investment Holding Corporation Polyurethanes with carboxylate functionality for hair fixative applications
DE19807908A1 (en) 1998-02-25 1999-08-26 Basf Ag Cosmetic agent
EP1117726B1 (en) 1998-08-26 2006-05-03 Basf Aktiengesellschaft Cosmetic products based on urethane(meth)acrylates containing siloxane groups and their free radical polymerisation products
DE19913875A1 (en) 1999-03-26 2000-09-28 Basf Ag Water-soluble or water-dispersible polymeric salts
JP4104790B2 (en) * 1999-08-10 2008-06-18 日本エヌエスシー株式会社 Cosmetics
US6692729B1 (en) 2000-04-13 2004-02-17 National Startch And Chemical Investment Holding Corporation Cosmetic resin composition and cosmetic using the same
RU2234912C2 (en) * 2000-04-13 2004-08-27 Нэшнл Старч Энд Кемикал Инвестмент Холдинг Корпорейшн Resin-base cosmetic composition and its application in cosmetics
US6576702B2 (en) * 2000-07-20 2003-06-10 Noveon Ip Holdings Corp. Plasticized waterborne polyurethane dispersions and manufacturing process
US6433073B1 (en) * 2000-07-27 2002-08-13 3M Innovative Properties Company Polyurethane dispersion in alcohol-water system
US6517821B1 (en) 2000-07-27 2003-02-11 L'oreal Reshapable hair styling composition comprising aqueous colloidal dispersions of sulfonated polyurethane urea
US6613314B1 (en) 2000-07-27 2003-09-02 L'oreal Reshapable hair styling composition comprising polyurethane dispersions
US6524562B2 (en) * 2000-12-12 2003-02-25 The Procter & Gamble Company Single-phase antiperspirant compositions containing solubilized antiperspirant active and silicone elastomer
FR2821621B1 (en) 2001-03-05 2004-11-05 Oreal ANIONIC POLYURETHANES WITH ELASTIC CHARACTER AND THEIR USE IN COSMETIC COMPOSITIONS
DE10122444A1 (en) * 2001-05-09 2002-11-14 Bayer Ag Polyurethane-polyurea dispersions as coating agents
US6897281B2 (en) 2002-04-05 2005-05-24 Noveon Ip Holdings Corp. Breathable polyurethanes, blends, and articles
US20050288430A1 (en) * 2004-06-25 2005-12-29 Gindin Lyubov K Polyurethane dispersions with high acid content
DE102004045533A1 (en) * 2004-09-20 2006-03-23 Bayer Materialscience Ag Hydrolysis-stable coating composition
DE102004060139A1 (en) * 2004-12-13 2006-06-29 Bayer Materialscience Ag Solid-rich polyurethane-polyurea dispersions
DE102005018692A1 (en) * 2005-04-22 2006-10-26 Bayer Materialscience Ag size composition
DE102006002156A1 (en) 2006-01-17 2007-07-19 Bayer Materialscience Ag Polyurethane-polyurea dispersions based on polyether-polycarbonate polyols

Also Published As

Publication number Publication date
KR20090015842A (en) 2009-02-12
RU2487900C2 (en) 2013-07-20
BRPI0803505A2 (en) 2009-05-12
US8034322B2 (en) 2011-10-11
EP2028205B1 (en) 2012-06-20
CN101361701B (en) 2013-04-24
TWI468181B (en) 2015-01-11
CN101361701A (en) 2009-02-11
JP2009046673A (en) 2009-03-05
TW200914058A (en) 2009-04-01
RU2008132440A (en) 2010-02-20
US7452525B1 (en) 2008-11-18
US20090041689A1 (en) 2009-02-12
JP5410049B2 (en) 2014-02-05
KR101545348B1 (en) 2015-08-18
EP2028205A1 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
US7452525B1 (en) Polyurethane dispersions based on polycarbonate polyols and suitable for use in personal care products
US8114938B2 (en) Polyurethane dispersions for use in personal care products
DE60112948T2 (en) POLYURETHANE DISPERSION IN ALCOHOL WATER SYSTEM
EP2271304B1 (en) Hair fixing composition
AU2001272946A1 (en) Polyurethane dispersion in alcohol-water system
EP1052970B1 (en) Resin composition for cosmetics
EP2688929B1 (en) Polyurethane urea mixture for hair cosmetics
AU2001271945A1 (en) Biocidal polyurethane compositions and method of use
WO2002010244A2 (en) Biocidal polyurethane compositions and method of use
US20110027211A1 (en) Hair styling composition
US20100215608A1 (en) Hair setting composition
US20140105846A1 (en) Cosmetic polyurethaneurea copolymer composition
MXPA02001353A (en) Cosmetics.
EP3020454A1 (en) Polyurethane urea substances for hair styling compositions
CN111867681A (en) Cosmetic composition for improving tolerance of hairstyle
DE102009042727A1 (en) Use of a composition comprising nitrocellulose-polyurethane-polyurea particles as a cosmetic for hair designing and setting

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20130515

FZDE Discontinued

Effective date: 20170228