Zoeken Afbeeldingen Maps Play YouTube Nieuws Gmail Drive Meer »
Inloggen
Gebruikers van een schermlezer: klik op deze link voor de toegankelijkheidsmodus. De toegankelijkheidsmodus beschikt over dezelfde essentiėle functies, maar werkt beter met je lezer.

Patenten

  1. Geavanceerd zoeken naar patenten
PublicatienummerCN102288944 A
PublicatietypeAanvraag
AanvraagnummerCN 201110120849
Publicatiedatum21 dec 2011
Aanvraagdatum12 mei 2011
Prioriteitsdatum12 mei 2011
Ook gepubliceerd alsCN102288944B
Publicatienummer201110120849.9, CN 102288944 A, CN 102288944A, CN 201110120849, CN-A-102288944, CN102288944 A, CN102288944A, CN201110120849, CN201110120849.9
Uitvinders朱伟, 杨明磊, 陈伯孝
Aanvrager西安电子科技大学
Citatie exporterenBiBTeX, EndNote, RefMan
Externe links:  SIPO, Espacenet
基于地形匹配的数字阵列米波雷达超分辨测高方法 Array-based digital terrain matching 列米波雷达 super-resolution method altimetry vertaald uit het Chinees
CN 102288944 A
Samenvatting
The invention discloses a super-resolution height measuring method based on topographic matching for a digital array meter wave radar, which is mainly used for solving the problem of high height measuring error of a fluctuating position in the prior art. The method comprises the following implementation steps of: performing clutter cancellation and interference cancellation processing on a targetsignal received by the radar to obtain a cancelled target signal; roughly measuring a target elevation angle by using a beam forming method; determining a maximum likelihood search range according tothe roughly-measured elevation angle and searching in the search range; computing a ground reflection point coordinate corresponding to each array element and a direct wave path and a reflection wavepath of each target relative to each array element according to a search elevation angle; computing a corresponding direct steering vector and a multipath steering vector by using the direct wave path and the reflection wave path; constructing a synthetic steering vector and computing a projection matrix of the synthetic steering vector; and performing maximum likelihood estimation to obtain a target accurate elevation angle. In the method, an altitude parameter of a radar position and the synthetic steering vector are introduced into super-resolution height measurement, so that the measuringaccuracy is increased; and the method can be applied to target tracking.
Claims(7)  vertaald uit het Chinees
1. 一种基于地形匹配的数字阵列米波雷达超分辨测高方法,包括以下步骤:(1)从雷达回波中提取目标信号,并对该目标信号进行杂波对消和干扰对消处理,得到对消后目标信号;(2)使用波束形成法对对消后目标信号进行仰角粗测,得到目标信号的粗测仰角P ;(3)根据目标信号的粗测仰角^确定最大似然的搜索范围,当Vh于Ψ/2时,搜索范围为0〜Ψ,否则搜索范围为识-^/2~^ + 1///2,其中Ψ表示半功率波束宽度;(4)在步骤C3)确定的搜索范围内搜索,根据搜索仰角,确定各阵元对应的地面反射点坐标:(4a)将反射区地面海拔按照1米间隔分层,根据搜索仰角,计算阵元在各层上的反射占.(4b)查找雷达阵地海拔图上下两侧最近的反射点,记为a和b ; (4c)将a点和b点垂直投影到雷达阵地海拔图,得到投影点c和d,利用c点和d点之间的阵地海拔数据做曲线拟合,得到曲线cd ;(4d)将直线ab和曲线cd的交点作为阵元在起伏地面上的反射点;(5)根据地面反射点,计算目标相对各阵元的直达波波程和反射波波程;(6)利用直达波波程和反射波波程,计算相应的直达导向矢量和多径导向矢量;(7)使用直达导向矢量和多径导向矢量计算合成导向矢量As : As = Ad+Aj,其中:Ad为直达导向矢量,Ai为多径导向矢量;(8)计算合成导向矢量As的投影矩阵;(9)根据投影矩阵和对消后目标信号的协方差矩阵进行最大似然估计,得到目标精确仰角。 A digital terrain matching based super-resolution array 列米波雷达 altimetry method comprises the following steps: (1) extract the target from radar echo signal and the target signal clutter cancellation and interference cancellation processing to give the target signal after cancellation; (2) using the beam forming method of the target signal after cancellation elevation coarse, rough measurement to obtain a target signal elevation angle P; (3) according to the coarse elevation of the target signal to determine the maximum likelihood ^ search, when Vh in Ψ / 2, the search range for 0~Ψ, otherwise the search for knowledge - ^ / 2 ~ ^ + 1 // 2, where Ψ represents the half-power beamwidth; (4) in the step C3) within the scope of the search to determine the search, according to search elevation, ground reflection point to determine the coordinates of each array element corresponding to: (4a) the reflection area ground elevation stratified according to one meter intervals, according to search elevation is calculated on the array elements in layers reflective accounts (4b) Find radar position on both sides of the upper and lower elevation map recently reflection points, denoted by a and b;. (4c) to a point and b point vertical elevation map projected onto the radar position to obtain projection points c and d, use positions elevation data points c and d, between points do curve fitting to obtain a curve cd; (4d) to the straight line ab and cd of the intersection curve as picket on undulating ground reflection point; (5) According to the ground reflection points calculate the target relative of each element straight Da Bobo Bobo Cheng Cheng and reflection; (6) the use of straight Da Bobo Bobo Cheng Cheng and reflection, a direct calculation of the corresponding vector-oriented and multi-path steering vector; (7) the use of a direct guide vector and multipath guide synthesized vector calculating steering vector As: As = Ad + Aj, wherein: Ad for direct steering vector, Ai is a multipath steering vector; (8) calculates a combined vector As a guide projection matrix; (9) The projection After the cancellation of the matrix and the target signal covariance matrix maximum likelihood estimation, to get accurate target elevation.
2.根据权利要求1所述的米波雷达超分辨测高方法,其中步骤(¾所述的使用波束形成法对对消后目标信号进行仰角粗测,是通过如下公式进行:φ = arg maxφ(l / abs(aH (φ)Ra(φ)))其中W为目标粗测仰角,arg max为寻找具有最大评分的参量,abs为求模运算, a(φ) = [ejK-0-smin(φ),ejK-l-sin(φ)L,ejk.(M-1).sin(φ)W]Tκ表示波数,M表示阵元个数,上标T表示转置, 上标H表示共轭转置,R为对消后信号的协方差矩阵。 According to claim 1, wherein the super-resolution VHF radar altimeter, wherein step (using beamforming method ¾ after the cancellation of the target signal elevation rough measurement is performed by the following equation: φ = arg maxφ (l / abs (aH (φ) Ra (φ))) where W is the target coarse elevation, arg max for finding parameters having the greatest score, abs for the modulo operation, a (φ) = [ejK-0-smin (φ), ejK-l-sin (φ) L, ejk. (M-1) .sin (φ) W] Tκ represents a wave number, M is the number of array elements, superscript T denotes transpose, the superscript H denotes conjugate transpose, R for cancellation after the signal covariance matrix.
3.根据权利要求1所述的米波雷达超分辨测高方法,其中步骤Ga)所述将反射区地面海拔按照1米间隔分层,根据搜索仰角,计算阵元在各层上的反射点,是通过如下公式进行: Meter according to claim 1, wherein the super-resolution radar altimeter, wherein step Ga) ground elevation of the reflection area stratified according to one meter intervals, according to search elevation array element is calculated on each layer reflection point , by the following formula:
Figure CN102288944AC00021
其中:m表示第m个阵元,M表示阵元个数,η表示反射区海拔分层的第η层, N为反射区地面海拔起伏高度,hx(m,η)和hy(m,η)分别为第m个阵元在第η层反射点的水平坐标和垂直坐标,G(m)为目标与第m个阵元的水平距离,G(m)=htx-hax(m),ρ 为临时变量 Wherein: m represents the m-th array element, M is the number of array elements, η represents the first reflective area elevation η hierarchical layer, N is a reflective region undulating ground elevation height, hx (m, η) and hy (m, η ) respectively for the m-th array element level and vertical coordinates in the first layer reflection point η, G (m) as the target and the level of the m-th array element distance, G (m) = htx-hax (m), ρ for temporary variables
Figure CN102288944AC00022
为临时变量, For temporary variables,
Figure CN102288944AC00031
hax(m)为第m个阵元的水平坐标,htx为目标的水平坐标, hax (m) for the horizontal coordinate m-th array element, htx horizontal coordinate goals
Figure CN102288944AC00032
,ae为等效地球半径,ha„ (m)为第m个阵元的垂直坐标,hty为目标的垂直坐标 , Ae is the equivalent radius of the earth, ha „ (m) for the m-th array element of the vertical coordinate, hty targeted vertical coordinate
Figure CN102288944AC00033
为目标距离,θ为搜索仰角。 Target distance, θ is searching elevation.
4.根据权利要求1所述的米波雷达超分辨测高方法,其中步骤(¾所述计算目标相对各阵元的直达波波程和反射波波程,是通过如下三角公式进行: According to claim 1, wherein the super-resolution VHF radar altimeter, wherein step (¾ of the target is calculated relative to each array element straight away and reflection Da Bobo Bobo drive through the following triangle formula:
Figure CN102288944AC00034
其中:m表示第m个阵元,M表示阵元个数,&(m)为第m个阵元的直达波波程,hay (m)为第m个阵元的垂直坐标,〜为等效地球半径,hty为目标的垂直坐标,G(m)为目标与第m个阵元的水平距离,Ri(Iii)为第m个阵元的反射波波程,R1(Hi)为第m个阵元与第m个阵元对应地面反射点的距离,R2 (m)为目标与第m个阵元对应地面反射点的距离, Where: m represents the m-th array element, M is the number of array elements, & (m) for the m-th array element 达波波 straight away, hay (m) is the vertical coordinate m-th array element, and so on - for effective radius of the earth, hty vertical coordinates of the target, G (m) as the target and the level of the m-th array element distance, Ri (Iii) of the m-th array element in the reflection wave process, R1 (Hi) for the m and the m-th array element corresponding to a distance from the reflection point ground array element, R2 (m) for the m-th target and the array element corresponding to the surface reflection point distance,
Figure CN102288944AC00035
hby(m)分别为第m个阵元对应地面反射点的水平坐标和垂直坐标,hax(m)为第m个阵元的水平坐标。 hby (m), respectively, for the m-th array element corresponding to the ground reflection point of the horizontal coordinates and vertical coordinates, hax (m) of the horizontal coordinates of the m-th array element.
5.根据权利要求1所述的米波雷达超分辨测高方法,其中步骤(6)所述计算相应的直达导向矢量和多径导向矢量,是通过如下公式进行: According to claim 1, wherein the super-resolution VHF radar altimeter, wherein step (6) the calculation of the corresponding direct steering vector and multipath steering vector, by the following formula:
Figure CN102288944AC00036
其中:Ad(9)为直达导向矢量,Ai(Q)为多径导向矢量,θ为搜索仰角 Wherein: Ad (9) for the direct steering vector, Ai (Q) is a multipath steering vector, θ is an elevation angle search
Figure CN102288944AC00037
m表示第m个阵元,Rd(m)为第m个阵元的直达波波程, Ri(Hi)为第m个阵元的反射波波程,Γ为地面反射系数,上标T表示转置。 m denotes the m-th array element, Rd (m) for the m-th array element Da Bobo straight away, Ri (Hi) for the m-th array element of reflection wave drive, Γ is the reflection coefficient of the ground, and the superscript T denotes transpose.
6.根据权利要求2所述的米波雷达超分辨测高方法,其中步骤(8)所述计算投影矩阵, 是通过如下公式进行: According to claim 2, wherein the super-resolution VHF radar altimeter, wherein step (8) of the projection matrix calculation is performed by the following equation:
Figure CN102288944AC00038
其中:Ρ( θ )为投影矩阵,θ为搜索仰角,As( θ)为合成导向矢量,上标H表示共轭转置,上标-1表示矩阵求逆。 Wherein: Ρ (θ) is the projection matrix, θ search elevation, As (θ) for the synthesis of the steering vector, the superscript H denotes the conjugate transpose and the superscript -1 represents matrix inversion.
7.根据权利要求1所述的米波雷达超分辨测高方法,其中步骤(9)所述计算最大似然估计,是通过如下公式进行: According to claim 1, wherein the super-resolution VHF radar altimeter, wherein step (9) to calculate the maximum likelihood estimation is performed by the following equation:
Figure CN102288944AC00039
其中:θ为目标精确仰角,arg max为寻找具有最大评分的参量,tr为矩阵求迹,Ρ( θ ) 为投影矩阵,R为对消后信号的协方差矩阵。 Wherein: θ target precise elevation, arg max for finding parameters having the greatest score, tr is the trace matrix, Ρ (θ) is the projection matrix, R is the signal after cancellation of the covariance matrix.
Beschrijving  vertaald uit het Chinees

基于地形匹配的数字阵列米波雷达超分辨测高方法 Array-based digital terrain matching 列米波雷达 super-resolution method altimetry

技术领域 FIELD

[0001] 本发明属于雷达信号处理技术领域,涉及米波雷达测高,具体地说是针对数字阵列米波雷达,提出一种基于地形匹配的超分辨测高方法,可用于目标跟踪。 [0001] The present invention belongs to the field of radar signal processing techniques involving VHF radar altimeter, specifically for digital array 列米波雷达 proposes a method for measuring ultra-high-resolution terrain-based matching can be used for target tracking.

背景技术 BACKGROUND

[0002] 按照仰角波束的形成方式和扫描方式,三坐标3D雷达可分为堆积波束雷达、频扫雷达、相扫雷达和数字波束形成雷达。 [0002] According to the elevation beam forming mode and scan mode, the radar can be divided CMM 3D stacked beam radar, radar frequency sweep, sweep phase digital beamforming radar and radar.

[0003] 堆积波束雷达把同时形成的接收波束在仰角上垂直堆积起来,并在方位上机械扫描,以实现搜索目标和目标三坐标的测量。 [0003] stacked radar beam while the reception beam forming in the elevation vertically stacked, and mechanical scanning in azimuth, in order to achieve the goals and objectives of the search for coordinate measurement. 例如,美国的陆基S波段三坐标AN/TPS-43雷达, 以6个仰角波束覆盖20°的仰角范围。 For example, US land-based S-band coordinate AN / TPS-43 radar to six elevation beam coverage range of elevation angles of 20 °. L波段三坐标S713Martell0雷达用8个堆积波束覆盖20°的仰角范围。 L-band radar coordinate S713Martell0 with eight stacked beam coverage elevation range of 20 °.

[0004] 频率扫描雷达通过控制频率的变化在口径面上产生不同的相位变化梯度,从而通过电控的方法使波束指向所需的仰角,例如,S波段舰载三坐标AN/SPS-39、AN/SPS-48雷达。 [0004] By controlling the change in frequency scanning radar frequencies produce different phase gradients in surface diameter, so that the beam to the desired elevation by means of electronic control methods, for example, S-band carrier coordinate AN / SPS-39, AN / SPS-48 radar.

[0005] 相控阵三坐标雷达采用移相器在仰角上扫描或控制笔形窄波束扫描。 [0005] The use of phased array radar coordinate or control the scanning phase shifters narrow pencil beam scanning in elevation. 例如L波段远程三坐标AN/TPS-59战术机动雷达。 Such as L-band remote coordinate AN / TPS-59 radar tactical maneuver.

[0006] 可见,目前三坐标雷达主要是工作在S波段和L波段等微波波段。 [0006] shows that the current coordinate radar mainly in S-band and L-band such as microwave band. 而在米波波段, 波束较宽,波束因地、海面反射而导致波瓣分裂。 In the UHF band, wide beam, the beam due to land, sea and cause reflection lobes split. 因此,过去的米波雷达均为两坐标雷达,而两坐标雷达又不能满足现代战争的要求。 Therefore, the last two are the coordinates of VHF radar radar, and the two coordinate radar can not meet the requirements of modern warfare.

[0007] 国内外雷达界普遍认为,米波雷达具有反隐身能力。 [0007] abroad radar field that, VHF radar has anti-stealth capability. 但是米波雷达因受波长长、天线尺寸和架高有限等因素的限制,天线波束宽度宽、角分辨力低,更重要的是因地、海面反射即所谓“多径”问题使其难以探测低空目标,且在多径环境下难以测高,故米波雷达的测高问题一直是雷达界尚未很好解决的难题。 However, due to a long wavelength VHF radar, antenna size and elevated limited constraints and other factors, the antenna beamwidth wide, angular resolution is low, more importantly because of the ground, sea surface reflection so-called "multi-path" problems make it difficult to detect low-altitude targets, and in high multipath environments is difficult to measure, so the UHF radar altimetry has been the radar community has not yet solved the problem.

[0008] 为较好地解决米波测高难题,最主要的技术途径是增大天线在高度维的孔径,以减小天线垂直面的波束宽度。 [0008] To better solve meter altimeter problems, the most important technical approach is to increase the height dimension of the antenna aperture to reduce the vertical antenna beamwidth. 而对于低空目标,即使增大天线在高度维的孔径,因无法避开“多径”问题,其解决测高问题主要有三类技术: For low-altitude targets, even if the increase in the height dimension of the antenna aperture, inability to avoid the "multipath" problems, problem solving altimetry technology are mainly three types:

[0009] (1)穿越波束法,也就是单频波瓣分裂法,利用目标穿越波束时回波幅度的变化进行估高。 [0009] (1) cross-beam method, which is the single-frequency lobe-secession law, the use of echo amplitude variation across the beam when the target were overestimated. 这种方法要求较长的时间,只能估高而不能测高。 This approach requires a longer period of time, can not be overestimated and altimeter.

[0010] (2)多频波瓣分裂测高法。 [0010] (2) multi-frequency lobes split altimetry. 利用多个工作频率时分工作,但要求多个频率的工作带宽较宽。 Hours of work with multiple operating frequencies, but requires a wide operating bandwidth of multiple frequencies. 这种方法在理论可行,但实际系统较复杂,目前还没有这种实用系统。 This method is feasible in theory, but the actual system more complex, there is no such a practical system.

[0011] C3)基于波瓣分裂的米波雷达测高方法。 [0011] C3) VHF radar altimeter based on splitting lobe. 利用不同天线分裂波瓣的相位关系,确定目标所在仰角区间,对接收信号进行比幅处理提取归一化误差信号,最后根据归一化误差信号和仰角区间查表得到目标的高度。 Using different antenna lobes split phase relationships to determine where the elevation range of the target, the received signal is processed to extract than the amplitude normalized error signal, and finally get highly targeted based on normalized error signal and elevation range look-up table. 陈伯孝等在2006年在《电子学报》和雷达年会上介绍了“基于波瓣分裂的米波雷达测高方法”。陈伯孝 etc. In 2006 the "Electronic Journal" and the radar presentation at the annual meeting of the "lobe-based division of VHF radar altimetry methods." 这是一种在垂直维只需3根天线的米波雷达的低仰角测高方法。 This is a low elevation in the vertical dimension altimetry method only three VHF radar antennas. 该方法只适合于平坦阵地,对阵地的平坦性要求较高,且测高精度只能达到距离的1%,难以满足一些精度较高的实际使用要求。 This method is only suitable for flat position, the higher the position of the flatness of the requirements, and can only be measured with high accuracy up to 1% of the distance, it is difficult to meet some of the higher accuracy of the actual requirements. [0012] (4)阵列超分辨处理测高。 [0012] (4) an array of super-resolution processing altimetry. 把阵列信号处理中的超分辨技术应用于分辨直达波信号和多径信号。 The array signal processing technology for super resolution to distinguish the direct wave signal and multipath signals. 因为直达波信号和多径信号是相干的,所以这类算法主要是估计相干源波达方向DOA的超分辨算法,先使用空间平滑和Topelitz变换等方法解相干,然后利用信号子空间、噪声子空间和子阵旋转不变性等来测角。 Because of the direct wave signal and multipath signals are coherent, so these algorithms are mainly estimated DOA DOA super-resolution algorithm, the first use spatial smoothing and Topelitz transform method decoherence, and then using the signal subspace and noise child space and sub-array to the goniometer rotation invariance. 例如,赵光辉等人于2009年2月在《电子与信息学报》发表的论文“基于差分预处理的米波雷达低仰角处理算法”和胡铁军等人于2009年8月在《电波科学学报》发表的论文“阵列内插的波束域ML米波雷达测高方法”,以及胡晓琴等于2008年8月在《电波科学学报》发表的论文“米波雷达测高多径模型研究”, 提出了考虑多径延时差的米波雷达阵列信号综合模型。 For example, Zhao Guanghui et al February 2009 in the "Electronics & Information Technology" papers "on VHF radar low elevation difference pretreatment processing algorithms," and Hu Tiejun et al, "Radio Science in August 2009 "papers" Beamspace ML VHF radar altimetry interpolation method within the array, "and Hu Xiaoqin equal to August 2008 in the" Journal of Radio Science "papers" high VHF radar multipath model "proposed consider VHF radar array signal integrated model multipath delay difference. 该方法是基于平坦阵地模型,同时存在瓶颈,那就是分辨既相干,空间位置又近的目标。 The method is based on a flat position model, while there is a bottleneck, and that is both coherent resolution, spatial location and near the goal.

[0013] 上述几种测高方法均只适用于平坦阵地模型,即各天线接收的直达波与地面反射波的波程差满足近似线性关系。 [0013] the several altimetry methods are only applicable to flat position model, namely the wave path difference between the direct wave and the ground reflected waves received by each antenna to satisfy approximately linear relationship. 但是对于复杂雷达阵地,大型阵列各天线的地面发射点的起伏较大,各天线直达多径波程差不满足近似线性关系,因此在复杂阵地模型下,现有的各种测高方法测角误差较大,不再适用。 But for complex radar position, large undulating ground launch point each antenna array is large, each antenna multipath wave direct path difference is approximately linear relationship is not satisfied, and therefore positions in complex models, various existing methods altimeter goniometer error is large, no longer apply.

发明内容 SUMMARY

[0014] 本发明的目的在于克服上述已有技术的不足,提出一种基于地形匹配的超分辨测高方法,消除非线性的直达多径波程差对测角的影响,提高复杂阵地模型下的测角精度和雷达的阵地适应能力。 [0014] The present invention is to overcome the deficiencies of the prior art, we propose a method based on high-resolution measurement of ultra-terrain matching, eliminate the effects of multipath waves through nonlinear path difference goniometer and improve complex position model The angle measurement accuracy and radar positions adaptability.

[0015] 为实现上述目的,本发明通过各阵元地面反射点的两维坐标,来计算不同阵元的直达波波程与地面反射波波程,再利用直达波波程和反射波波程构造合成导向矢量进行超分辨处理,具体步骤包括如下: [0015] To achieve the above objects, the present invention by two-dimensional coordinates of each array element ground reflection point to calculate the different array elements 达波波 straight away and the ground reflected wave drive, and then use straight away and reflection wave away 达波波steering vector construct synthetic super-resolution processing, concrete steps include the following:

[0016] (1)从雷达回波中提取目标信号,并对该目标信号进行杂波对消和干扰对消处理, 得到对消后目标信号; [0016] (1) to extract the target from radar echo signal and the target signal clutter cancellation and interference cancellation, to give the target signal after cancellation;

[0017] (2)使用波束形成法对对消后目标信号进行仰角粗测,得到目标信号的粗测仰角φ ; [0017] (2) using the beam forming method of the target signal after cancellation elevation rough measurement to obtain coarse elevation angle φ of the target signal;

[0018] (3)根据目标信号的粗测仰角^确定最大似然的搜索范围,当<j、于Ψ/2时,搜索范围为0〜Ψ,否则搜索范围为^-^//2-^ + ^///2,其中Ψ表示半功率波束宽度; [0018] (3) According to rough measurement of the elevation of the target signal ^ determine the maximum likelihood search, when the <j, in Ψ / 2, the search for 0~Ψ, otherwise search for ^ - ^ // 2- /// ^ + ^ 2, where Ψ represents the half-power beamwidth;

[0019] (4)在步骤C3)确定的搜索范围内搜索,根据搜索仰角,确定各阵元对应的地面反射点坐标: [0019] (4) Search in step C3) to determine the scope of the search, according to search elevation, ground reflection point to determine the coordinates of each array element corresponding to:

[0020] (4a)将反射区地面海拔按照1米间隔分层,根据搜索仰角,计算阵元在各层上的反射点; [0020] (4a) the reflection area ground elevation stratified according to one meter intervals, according to search elevation array element is calculated on the layers of reflection point;

[0021] (4b)查找雷达阵地海拔图上下两侧最近的反射点,记为a和b ; [0021] (4b) Find a radar position on both sides of the upper and lower elevation map recently reflection points, denoted by a and b;

[0022] (4c)将a点和b点垂直投影到雷达阵地海拔图,得到投影点c和d,利用c点和d 点之间的阵地海拔数据做曲线拟合,得到曲线cd ; [0022] (4c) to a point and the point b to the radar position vertically projected elevation view obtain projection points c and d, front elevation data utilization points c and d, between points do curve fitting to obtain a curve cd;

[0023] (4d)将直线ab和曲线Cd的交点作为阵元在起伏地面上的反射点; [0023] (4d) the straight and curved Cd ab array element at the intersection as a point of reflection on the ups and downs of the ground;

[0024] (5)根据地面反射点,计算目标相对各阵元的直达波波程和反射波波程; [0024] (5) The ground reflection point, calculate the target relative of each element straight Da Bobo Bobo Cheng Cheng and reflection;

[0025] (6)利用直达波波程和反射波波程,计算相应的直达导向矢量和多径导向矢量; [0025] (6) the use of straight Da Bobo Bobo Cheng Cheng and reflection, a direct calculation of the corresponding vector-oriented and multi-path steering vectors;

[0026] (7)使用直达导向矢量和多径导向矢量计算合成导向矢量As : [0026] (7) using direct steering vector and vector calculation multipath oriented synthesis-oriented vector As:

[0027] As = Ad+Ai;[0028] 其中:Ad为直达导向矢量,Ai为多径导向矢量; [0027] As = Ad + Ai; [0028] where: Ad for direct steering vector, Ai for multipath steering vector;

[0029] (8)计算合成导向矢量As的投影矩阵; [0029] (8) As the steering vector computing synthetic projection matrix;

[0030] (9)根据投影矩阵和对消后目标信号的协方差矩阵进行最大似然估计,得到目标精确仰角。 [0030] (9) based on the maximum likelihood estimation and projection matrix after elimination target signal covariance matrix to obtain accurate target elevation.

[0031] 本发明与现有技术相比具有如下优点: [0031] The present invention over the prior art has the following advantages:

[0032] (1)本发明由于使用直达波波程和反射波波程构造合成导向矢量,通过合成导向矢量进行测角处理,从而消除了非线性的直达多径波程差对测角的影响,提高了测角精度; [0032] (1) The present invention due to the use straight away and reflection wave 达波波 synthesis process-oriented vector construct, by combining orientation vector angle measurement processing, thereby eliminating the influence of nonlinear wave multipath direct path difference of angle measurement improve the angular accuracy;

[0033] (2)本发明由于使用了雷达阵地海拔图,将雷达阵地海拔参数引入测角算法中,从而提高了雷达的阵地适应能力; [0033] (2) The present invention uses a radar position due to elevation maps, radar front elevation angle measurement algorithm parameters introduced to improve the radar's ability to adapt to the position;

[0034] (3)本发明由于采用反射区海拔分层和曲线拟合的方法来计算反射点,因此简化了起伏地面上各阵元发射点的计算过程,减少了算法运算量。 [0034] (3) As a result of the present invention is a hierarchical reflex zone elevation and curve fitting method to calculate the reflection point, thus simplifying the calculation of each array element emission points on the undulating ground, reducing the amount of arithmetic operations.

附图说明 Brief Description

[0035] 图1是本发明的流程图; [0035] FIG. 1 is a flowchart of the present invention;

[0036] 图2是本发明中雷达接收信号模型图; [0036] Figure 2 is the present invention, the received radar signal model diagram;

[0037] 图3是本发明中地面反射点计算示意图; [0037] FIG. 3 is the invention schematic ground reflection point calculation;

[0038] 图4是本发明仿真使用的雷达阵地海拔图; [0038] Figure 4 is a front elevation of the radar diagram of the present invention is the use of simulation;

[0039] 图5是用本发明在理想阵地模型下仿真的各阵元直达波和地面反射波的波程差图; [0039] FIG. 5 is used in the present invention is an ideal position for each array element model simulation of the wave path difference between the direct wave and the reflected wave of figure-ground;

[0040] 图6是用本发明在图4模型下仿真的各阵元直达波和地面反射波的波程差图; [0040] FIG. 6 is used in the present invention, the simulation model of FIG. 4 each array element of the direct wave and the reflected wave path difference FIG ground wave;

[0041] 图7是用不同方法在图4模型下对高仰角目标随信噪比变化的测角精度仿真图; [0041] Figure 7 is a different method in Figure 4 model with the goal of high elevation change of angle measurement accuracy SNR simulation map;

[0042] 图8是用不同方法在图4模型下对低仰角目标随信噪比变化的测角精度仿真图; [0042] FIG. 8 is different from the method used in Figure 4 model with the goal of low elevation angle measurement accuracy SNR variation simulation map;

[0043] 图9是针对实测数据的处理结果图。 [0043] FIG. 9 is a processing result for the measured data of FIG.

具体实施方式 DETAILED DESCRIPTION

[0044] 下面结合附图详细说明本发明的内容和效果。 [0044] described in detail below in conjunction with the accompanying drawings and the effects of the invention content.

[0045] 参照图1,本发明包括如下步骤: [0045] Referring to Figure 1, the present invention comprises the steps of:

[0046] 步骤1 :对雷达接收的目标信号进行杂波对消和干扰对消处理,得到对消后目标信号。 [0046] Step 1: The target signal received by the radar clutter cancellation and interference cancellation, to give the target signal after cancellation.

[0047] 本发明中雷达接收目标信号的模型如图2所示。 [0047] In the present invention, the target signal received by the radar in the model shown in Figure 2. 图2中一个远场的窄带信号入射到M个阵元组成的均勻线阵,天线的倾斜角为θ a,架高为ha(l,阵元间隔为d,以第一根天线在海平面的投影点为坐标原点,D点为第m个阵元的地面投影点,E点为目标的地面投影点, 〜为等效地球半径,Rt为目标距离,θ为搜索仰角,C点为地心,A点为第m个阵元,A点水平坐标和垂直坐标分别为hax(m)和hay(m),T点为目标,T点水平坐标和垂直坐标分别为htx 和hty,G(m)表示D点与E点的水平距离,其中: ULA narrowband signal incident in Figure 2 to a far-field array element consisting of M, the tilt angle of the antenna is θ a, frame height ha (l, array element spacing is d, the first antenna at sea projection coordinate origin point, D point of the m-th array element of the ground projection point, E point of the projection target ground point, - the equivalent earth radius, Rt as the target distance, θ is an elevation angle search, C point to Heart, A point for the m-th array element, A horizontal coordinate and vertical coordinates are hax (m) and hay (m), T-point target, T-point level and vertical coordinates, respectively htx and hty, G ( m) D point and E represents the horizontal distance to the point, wherein:

[0048] hax (m) = -d (m-1) cos θ a,m = 1,2L, M [0048] hax (m) = -d (m-1) cos θ a, m = 1,2L, M

[0049] hay (m) = ha0+d(ml)sin θ a,m = 1,2L,M [0049] hay (m) = ha0 + d (ml) sin θ a, m = 1,2L, M

Figure CN102288944AD00071

[0052] G(m) = htx-hax(m); [0052] G (m) = htx-hax (m);

[0053] B点为目标对应第m个阵元的地面反射点,B点水平坐标和垂直坐标分别为hbx(m) 和hby(m),第m个阵元的目标直达波和地面反射波的波程分别为和氏(m),Ri(Hi)= R1 (m) +R2 (m),R1 (m)和R2 (m)分别为B点与A点的距离和B点与T点的距离。 [0053] B corresponds to the target point of the m-th array element of the ground reflection point, B point horizontal and vertical coordinates, respectively hbx (m) and hby (m), the goal of the m-th array element direct and ground reflected wave The beam path respectively and s (m), Ri (Hi) = R1 (m) + R2 (m), R1 (m) and R2 (m) respectively point B and point A and point B and the distance between the point T distance.

[0054] 从图2信号模型中得到第m个阵元接收的目标信号χ (m) [0054] to get the m-th array element signals received from the two model diagram of the target signal χ (m)

[0055] χ (m) = xd (m) +Xi (m) +c (m) +g (m) +n (m), m = 1, 2L, M [0055] χ (m) = xd (m) + Xi (m) + c (m) + g (m) + n (m), m = 1, 2L, M

[0056] 其中xd(m)为目标直达波信号,xd(m)= se-jkRd(m),Xi(m)为目标反射波信号, Xi(M) = STe-jkRi(m),, c (m)为杂波信号,g(m)为干扰信号,n(m)为均值为零、方差为ο 2的高斯白噪声,s为雷达发射信号,κ为波数,Γ为地面反射系数。 [0056] wherein xd (m) as the target of the direct wave signal, xd (m) = se-jkRd (m), Xi (m) for the target reflected wave signal, Xi (M) = STe-jkRi (m) ,, c (m) for the clutter signal, g (m) is the interference signal, n (m) is zero-mean, white Gaussian noise with variance ο 2, s for the radar transmit signal, κ is the wave number, Γ is the reflection coefficient of the ground.

[0057] 对χ (m)通过自适应滤波来对消杂波和干扰,得到对消后目标信号 [0057] The χ (m) through adaptive filtering to eliminate clutter and interference, to get to the target signal after cancellation

[0058] [0058]

Figure CN102288944AD00072

[0059] 将对消后目标信号用矢量X表示为: [0059] After the target signal will eliminate the vector X is expressed as:

[0060] [0060]

Figure CN102288944AD00073

[0061] 其中:上标T表示转置。 [0061] Where: superscript T denotes transpose.

[0062] 步骤2 :使用波束形成法对对消后目标信号进行仰角粗测,得到目标信号的粗测 [0062] Step 2: Using the method of beamforming signal after cancellation target elevation rough measurement to obtain a rough measurement of the target signal

仰角识: Elevation know:

[0063] [0063]

Figure CN102288944AD00074

[0064] 其中:arg max为寻找具有最大评分的参量,abs为求模运算, [0064] where: arg max to find parameter has a maximum score, abs for the modulo operation,

[0065] [0065]

Figure CN102288944AD00075

,κ表示波数,Μ表示阵元个数,R为对消后信号的协方差矩阵,R = ΧΧΗ,上标T表示转置,上标H表示共轭转置,X为对消后目标信 , Κ represents a wave number, Μ represents the number of array elements, R is the cancellation of the signal covariance matrix, R = ΧΧΗ, superscript T denotes transpose, the superscript H denotes the conjugate transpose, X is the target signal cancellation after

号矢量。 No. vectors.

[0066] 步骤3 :根据目标信号的粗测仰角袖角定最大似然的搜索范围,当<j、于Ψ/2时,搜索范围为0〜Ψ,否则搜索范围为φ-ψ//2-φ + ψ/2,其中Ψ表示半功率波束宽度。 [0066] Step 3: According to the coarse elevation angle of the target signal sleeve set maximum likelihood search, when the <j, in Ψ / 2, the search for 0~Ψ, otherwise the search range for φ-ψ // 2 -φ + ψ / 2, where Ψ represents the half-power beamwidth.

[0067] 步骤4 :在步骤(3)确定的搜索范围内搜索,根据搜索仰角,确定各阵元对应的地面反射点坐标。 [0067] Step 4: Search in step (3) to determine the scope of the search, according to search elevation, ground reflection point to determine the coordinates of each array element corresponding.

[0068] 由于反射点位于阵地海拔图上,而阵地海拔图难以使用数学表达式表示,因此反射点坐标不易直接求解,在此使用海拔分层和曲线拟合的方式进行求解,其求解步骤参照图3,包括如下: [0068] Due to the reflection point is located on the front elevation view, and front elevation map is difficult to use mathematical expressions said therefore difficult to directly solve the reflection point coordinates, in this altitude is solved using layering and curve fitting methods, the solution steps reference Figure 3, comprising the following:

[0069] (4a)将反射区地面海拔按照1米间隔分层,根据搜索仰角,计算阵元在各层上的反射点水平坐#hx(m,η)和垂直坐标hy(m,n),图3中横轴表示与雷达阵地的水平距离,纵轴表示海拔高度,阴影表示雷达阵地海拔,横虚线表示海拔分层,+表示阵元在各层上的反射点: [0069] (4a) according to the altitude of the ground reflection area 1 m intervals stratified, based on the search elevation angle, calculating picket reflection point on the horizontal layers sit #hx (m, η) and the vertical coordinate hy (m, n) Figure 3 the horizontal axis represents the horizontal distance from the radar position, the vertical axis represents the altitude, altitude shaded radar position, horizontal dotted line indicates elevation hierarchical, + represents the array element on the reflection point of each layer:

Figure CN102288944AD00081

[0072] 其中:m表示第m个阵元,M表示阵元个数,η表示反射区海拔分层的第η层,N 为反射区地面海拔起伏高度,hx(m, η)和hy(m,η)分别为第m个阵元在第η层反射点的水平坐标和垂直坐标,G(m)为目标与第m个阵元的地面水平距离,hax(m)为第m个阵元 [0072] wherein: m represents the m-th array element, M is the number of array elements, η represents the first reflective area elevation η hierarchical layer, N is a reflective region undulating ground elevation height, hx (m, η) and hy ( m, η) are the m-th array element horizontal and vertical coordinates in the first layer reflection point η, G (m) as the target and the ground level of the m-th array element distance, hax (m) for the m-th array Yuan

的水平坐标,ρ为临时变量 The horizontal coordinate, ρ is a temporary variable

Figure CN102288944AD00082

ξ为临时变量, ξ for temporary variables,

Figure CN102288944AD00083

,ae为等效地球半径,hay (m)为第m个阵元的垂直坐标,hty为 , Ae is the equivalent radius of the earth, the vertical coordinate hay (m) for the m-th array element, hty for

目标的垂直坐标; Vertical coordinates of the target;

[0073] (4b)查找雷达阵地海拔图上下两侧最近的反射点,记为a和b ; [0073] (4b) Find a radar position on both sides of the upper and lower elevation map recently reflection points, denoted by a and b;

[0074] (4c)将a点和b点垂直投影到雷达阵地海拔图,得到投影点c和d,图3中竖虚线表示垂直投影,利用c点和d点之间的阵地海拔数据做曲线拟合,得到曲线Cd ; [0074] (4c) to a point and the point b to the radar position vertically projected elevation view obtain projection points c and d, the vertical dashed line in Figure 3 a vertical projection, front elevation data utilization points c and d, between points do curve curve fitting curve Cd;

[0075] (4d)将直线ab和曲线Cd的交点作为阵元在起伏地面上的反射点。 [0075] (4d) the straight and curved Cd intersection ab array element as a reflection on the undulating ground point.

[0076] 步骤5 :根据地面反射点,通过如下三角公式计算目标至各阵元的直达波波程Rd (m)和反射波波程: [0076] Step 5: Under ground reflection point, the triangle is calculated by the following objectives to each array element straight Dabo Bo Cheng Rd (m) and the reflection wave range:

[0077] [0077]

Figure CN102288944AD00084

[0078] Ri (m) = R1 (m) +R2 (m), m = 1,2, L, M [0078] Ri (m) = R1 (m) + R2 (m), m = 1,2, L, M

[0079] 其中:m表示第m个阵元,M表示阵元个数,&(m)为目标至第m个阵元的直达波波程,hay(m)为第m个阵元的垂直坐标,〜为等效地球半径,hty为目标的垂直坐标,G (m)为目标与第m个阵元的地面水平距离,Ri(Hi)为目标至第m个阵元的反射波波程,R1(Hi)为第m个阵元与第m个阵元对应地面反射点的距离,为目标与第m个阵元对应地面反射点的距尚, [0079] where: m represents the m-th array element, M is the number of array elements, & (m) for the target to the m-th array element 达波波 straight away, hay (m) of vertical m-th array element coordinates, ~ is the equivalent radius of the earth, hty vertical coordinates of the target, G (m) as the target level with the floor of the m-th array element distance, Ri (Hi) for the target to the m-th array element of the reflective wave Cheng , R1 (Hi) for the m-th array element and the m-th array element corresponds to a distance of ground reflection points, as the goal of the m-th array element corresponding to the ground from the reflection point yet,

[0080] [0080]

Figure CN102288944AD00085
Figure CN102288944AD00086

[0082] hbx(m)和hby(m)分别为第m个阵元对应地面反射点的水平坐标和垂直坐标,hax(m) 为第m个阵元的水平坐标。 [0082] hbx (m) and hby (m), respectively, for the m-th array element corresponding to the ground reflection point of the horizontal coordinates and vertical coordinates, hax (m) of the horizontal coordinates of the m-th array element.

[0083] 步骤6 :利用直达波波程&011)和反射波波程氏(111),计算相应的直达导向矢量Α,(θ)和多径导向矢量Ai(Q): [0083] Step 6: Using the straight Dabo Bo Cheng & 011) and reflection wave Cheng (111), calculate the corresponding direct steering vector Α, (θ) and multi-path steering vector Ai (Q):

[0084] Ad ( θ ) = [ad(l),ad (2),L,ad (M) ]τ [0084] Ad (θ) = [ad (l), ad (2), L, ad (M)] τ

[0085] Ai ( θ ) = [ai(D, Bi (2),L,Bi (M) ]τ [0085] Ai (θ) = [ai (D, Bi (2), L, Bi (M)] τ

[0086]其中:ad(m) = e-JKRAm') ,Cii(Jn) = Te-m(jn'),m = 1,2,L,M,m 表示第m 个阵元,M 表示阵元个数,κ表示波数,Γ为地面反射系数,上标T表示转置。 [0086] wherein: ad (m) = e-JKRAm '), Cii (Jn) = Te-m (jn'), m = 1,2, L, M, m represents the m-th array element, M represents the array The number of element, κ represents a wave number, Γ is the reflection coefficient of the ground, the superscript T represents transposition.

[0087] 步骤7 :使用直达导向矢量Ad(e)和多径导向矢量&(9)计算合成导向矢量As(0): [0087] Step 7: Using Direct steering vector Ad (e) and the steering vector & multipath (9) calculates a combined steering vector As (0):

[0088] Ks(Q) = Ad( θ )+Ai( θ )[0089] 其中:θ为搜索仰角。 [0088] Ks (Q) = Ad (θ) + Ai (θ) [0089] where: θ is an elevation angle search.

[0090] 步骤8:使用合成导向矢量As( θ )计算合成导向矢量的投影矩阵Ρ( θ): [0090] Step 8: Synthesis of steering vectors As (θ) calculated steering vector synthesized projection matrix Ρ (θ):

[0091 ] [0091]

Figure CN102288944AD00091

[0092] 其中:θ为搜索仰角,上标H表示共轭转置,上标-1表示矩阵求逆。 [0092] where: θ is searching elevation, superscript H denotes the conjugate transpose, superscript -1 is the inverse matrix.

[0093] 步骤9 :根据投影矩阵和对消后目标信号的协方差矩阵进行最大似然估计,得到目标精确仰角: [0093] Step 9: According to the projection matrix and the target signal cancellation after the covariance matrix of the maximum likelihood estimation, to get accurate target elevation:

[0094] [0094]

Figure CN102288944AD00092

[0095] 其中:θ为目标精确仰角,arg max为寻找具有最大评分的参量,tr为矩阵求迹, Ρ(θ)为投影矩阵,R为对消后信号的协方差矩阵。 [0095] wherein: θ target precise elevation, arg max for finding parameters having the greatest score, tr is the trace matrix, Ρ (θ) is the projection matrix, R is the cancellation of the signal covariance matrix.

[0096] 本发明的效果可以通过以下仿真结果和实测数据处理结果进一步说明。 [0096] The present invention can be obtained by the effect of the following simulation results and experimental data processing results further instructions.

[0097] 1.仿真环境及条件 [0097] 1. The simulation environment and conditions

[0098] 仿真环境使用图4所示的雷达阵地海拔图。 [0098] Figure 4 shows the radar position altitude simulation environment using a map. 横轴表示与雷达阵地的水平距离,纵轴表示海拔高度,阴影表示雷达阵地海拔。 The horizontal axis represents the horizontal distance from the radar position, the vertical axis represents the altitude, elevation shaded radar position. 雷达阵地的水平450米以内为起伏地形,水平450米以外为海平面。 Radar level positions within 450 meters of undulating terrain, except for the level of 450 meters above sea level.

[0099] 仿真条件为以下雷达参数:天线架高6米,倾角6°,阵元个数22,阵元间隔为半波长,快拍数10。 [0099] The following conditions for radar simulation parameters: antenna mount six meters high, inclination 6 °, the array element number 22, the array element spacing for half-wavelength, 10 snapshots.

[0100] 2.仿真内容 [0100] 2. Simulation content

[0101] 仿真1,用本发明在理想阵地模型下对各阵元的直达波和地面反射波的波程差进行仿真,仿真结果如图5所示。 [0101] Simulation 1, the present invention is in the ideal position on the wave model path difference of each element of the direct wave and the ground reflected wave is simulated, the simulation results shown in Figure 5. 其中横轴表示目标海拔高度从1000米至15000米变化,纵轴表示直达波和地面反射波的波程差。 Where the horizontal axis represents the target altitude from 1000-15000 m changes, the vertical axis represents the wave drive direct and ground reflected wave is poor. 图5中显示了目标与雷达水平距离50千米,目标海拔高度按照横轴变化时第1、6、11、16和22个阵元的直达波和地面反射波的波程差。 Figure 5 shows the horizontal distance between the target and the radar 50 km, when the target altitude changes in accordance with the horizontal axis and the first array element 22 1,6,11,16 ground reflected wave and direct wave of the wave path difference. 从图5可以得出,在理想阵地模型下,各阵元的直达波和地面反射波的波程差满足线性变化。 From Figure 5 can be drawn, in the ideal position model, the wave path difference of each element of the direct wave and reflected waves meet ground varies linearly.

[0102] 仿真2,用本发明在图4模型下对各阵元的直达波和地面反射波的波程差进行仿真,仿真结果如图6所示。 [0102] Simulation 2, the present invention in FIG. 4 model wave path difference of each element of the direct wave and the ground reflected wave is simulated, the simulation results shown in Figure 6. 其中横轴表示目标海拔高度从1000米至15000米变化,纵轴表示直达波和地面反射波的波程差。 Where the horizontal axis represents the target altitude from 1000-15000 m changes, the vertical axis represents the wave drive direct and ground reflected wave is poor. 图6中显示了目标与雷达水平距离50千米,目标海拔高度按照横轴变化时第1、6、11、16和22个阵元的直达波和地面反射波的波程差。 Figure 6 shows the horizontal distance between the target and the radar 50 km, when the target altitude changes in accordance with the beam path length and the horizontal axis 22 of the first array element 1,6,11,16 ground reflected wave and direct wave of difference. 从图6可以得出,在起伏阵地模型下,各阵元的直达波和地面反射波的波程差不满足线性变化。 Can be drawn from Figure 6, the ups and downs in the position model, the wave path difference of each array element of direct and ground reflected wave does not satisfy the linear change.

[0103] 仿真3,用现有的波束形成算法、前后向空间平滑MUSIC算法和本发明分别在图4 模型下对高仰角目标进行测角精度仿真,仿真结果如图7所示。 [0103] 3 emulation, using existing beamforming algorithms, forward and backward spatial smoothing MUSIC algorithm and the invention Figure 4 model targets were high elevation angle measurement accuracy simulation results shown in Figure 7. 其中横轴表示信噪比从-5 分贝至15分贝变化,纵轴表示测角误差。 Where the horizontal axis represents the SNR of -5 dB to 15 db change, the vertical axis represents the measured angle error. 仿真选取的目标参数:目标仰角4度,目标与雷达距离50千米,蒙特卡罗实验次数100次。 Simulation selected target parameters: target elevation 4 degrees, the target and the radar distance of 50 km, Monte Carlo experiment 100 times. 图7中DBF表示波束形成算法在信噪比按照横轴变化时的测角误差,SSMUSIC表示前后向空间平滑MUSIC算法在信噪比按照横轴变化时的测角误差,GSVML表示本发明在信噪比按照横轴变化时的测角误差。 Figure 7 represents DBF beamforming algorithm in accordance with the measured SNR changes of horizontal angle error, SSMUSIC represents around a smooth space MUSIC algorithm to noise ratio measured in accordance with changes in the horizontal angle error, GSVML expressed in a letter to the present invention noise ratio in accordance with the horizontal angle measurement error varies. 从图7可以得出,对高仰角目标现有的波束形成算法、前后向空间平滑MUSIC算法测角误差偏大,而本发明的测角误差最小。 Can be drawn from Figure 7, the high elevation of the target existing beamforming algorithm, before smoothing space MUSIC algorithm to measure the angle error is too large, and the angle measurement error of the present invention to a minimum.

[0104] 仿真4,用现有的波束形成算法、前后向空间平滑MUSIC算法和本发明分别在图4 模型下对低仰角目标进行测角精度仿真,仿真结果如图8所示。 [0104] The simulation 4, with the existing beamforming algorithms, forward and backward spatial smoothing MUSIC algorithm and the invention Figure 4 model targets were low elevation angle measurement accuracy simulation results shown in Figure 8. 其中横轴表示信噪比从-5 分贝至15分贝变化,纵轴表示测角误差。 Where the horizontal axis represents the SNR of -5 dB to 15 db change, the vertical axis represents the measured angle error. 仿真选取的目标参数:目标仰角1度,目标与雷达距离200千米,蒙特卡罗实验次数100次。 Simulation selected target parameters: target elevation 1 degree, 200 km away from the target and radar, Monte Carlo experiment 100 times. 图8中DBF表示波束形成算法在信噪比按照横轴变化时的测角误差,SSMUSIC表示前后向空间平滑MUSIC算法在信噪比按照横轴变化时的测角误差,GSVML表示本发明在信噪比按照横轴变化时的测角误差。 Figure 8 represents DBF beamforming algorithm SNR measured in accordance with changes in the horizontal angle error, SSMUSIC represents around a smooth space MUSIC algorithm to noise ratio measured in accordance with changes in the horizontal angle error, GSVML expressed in a letter to the present invention noise ratio in accordance with the horizontal angle measurement error varies. 从图8可以得出,对低仰角目标现有的波束形成算法、前后向空间平滑MUSIC算法测角误差偏大,而本发明的测角误差最小。 Can be drawn from Figure 8, for low elevation targets existing beamforming algorithm, before smoothing space MUSIC algorithm to measure the angle error is too large, and the angle measurement error of the present invention to a minimum.

[0105] 3.对某警戒雷达实测数据的测角结果 [0105] 3. The angle measurement results of a surveillance radar measured data

[0106] 该警戒雷达架设阵地海拔图如图9(a)所示,其中横轴表示与雷达阵地的水平距离,纵轴表示海拔高度,实线表示雷达阵地海拔,雷达阵地的水平6千米以内为起伏地形, 水平6千米以外为海平面。 [0106] The erection of warning radar altitude position shown in Figure 9 (a), in which the horizontal axis represents the horizontal distance from the radar position, the vertical axis represents the altitude, the solid line represents the horizontal position altitude radar, radar positions 6km Within the terrain is undulating, 6 kilometers away to sea level.

[0107] 用现有的波束形成算法、前后向空间平滑MUSIC算法和本发明对该警戒雷达实测数据进行测角处理,测角处理结果如图9(b)所示,其中横轴表示目标与阵地的距离,纵轴表示距离随横轴变化时的测角误差。 [0107] use the existing beam forming algorithm, forward and backward spatial smoothing MUSIC algorithm and the present invention goniometer measurement data processing for the surveillance radar angle measurement results shown in Figure 9 (b), in which the horizontal axis represents the target and distance positions, the vertical axis represents the distance with the horizontal angle measurement error varies. 图9(b)中DBF表示波束形成算法的测角误差,SSMUSIC 表示前后向空间平滑MUSIC算法的测角误差,GSVML表示本发明的测角误差。 Figure 9 (b) indicates that the measured angle error in DBF beamforming algorithm, SSMUSIC represent forward and backward angle measurement error spatial smoothing MUSIC algorithm, GSVML represents the measured angle error of the present invention. 从图9(b)可以得出,现有的波束形成算法、前后向空间平滑MUSIC算法测角误差偏大,而本发明的测角误差最小。 From Figure 9 (b) can be drawn, the existing beamforming algorithm, the space around the MUSIC algorithm to smooth the measured angle error is too large, and angle measurement error of the present invention to a minimum.

Patentcitaties
Geciteerd patent Aanvraagdatum Publicatiedatum Aanvrager Titel
CN1740815A *22 sept 20051 maart 2006西安电子科技大学Coding frequency-hopping high-resolution ratio range finding and velocity measuring method and radar
US7397424 *29 juni 20058 juli 2008Mexens Intellectual Property Holding, LlcSystem and method for enabling continuous geographic location estimation for wireless computing devices
Niet-patentcitaties
Referentie
1 *XUEYA YANG ET AL.: "High-resolution algorithm based on temporal-spatial extrapolation", 《JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS》, vol. 21, no. 1, 28 February 2010 (2010-02-28), pages 9 - 15
2 *徐源等: "地形对基于波瓣分裂的米波雷达测高方法的影响", 《雷达科学与技术》, vol. 6, no. 1, 28 February 2008 (2008-02-28), pages 9 - 14
3 *胡坤娇等: "超分辨算法在米波雷达测高中的应用", 《中国电子科学研究院学报》, vol. 3, no. 5, 31 October 2008 (2008-10-31), pages 507 - 509
Verwijzingen naar dit patent
Citerend patent Aanvraagdatum Publicatiedatum Aanvrager Titel
CN103293526A *13 mei 201311 sept 2013西安电子科技大学Synthetic steering vector based beam forming meter-wave radar height measurement method
CN103293526B *13 mei 20133 juni 2015西安电子科技大学Synthetic steering vector based beam forming meter-wave radar height measurement method
CN103308909A *6 maart 201318 sept 2013西安电子科技大学Multi-parameter alternating search-based metrewave radar low elevation height measurement method
CN103323835A *11 maart 201325 sept 2013中国科学院电子学研究所Antenna range direction weighting specific value height measurement method and device
CN103353595A *18 juni 201316 okt 2013西安电子科技大学Meter wave radar height measurement method based on array interpolation compression perception
CN103353595B *18 juni 20137 jan 2015西安电子科技大学Meter wave radar height measurement method based on array interpolation compression perception
CN103353596A *18 juni 201316 okt 2013西安电子科技大学Wave beam space domain meter wave radar height measurement method based on compressed sensing
CN103353596B *18 juni 201318 feb 2015西安电子科技大学Wave beam space domain meter wave radar height measurement method based on compressed sensing
CN103744077A *15 jan 201423 april 2014西安电子科技大学Angle measurement method of mechanical-scanning meter-wave radar under multi-target condition
CN103744077B *15 jan 201413 jan 2016西安电子科技大学机扫米波雷达在多目标情况下的测角方法
CN103969624A *25 jan 20136 aug 2014中国科学院声学研究所Beam domain coherent azimuth estimation method and system based on fluctuated phase alignment
Classificaties
Internationale classificatieG01S7/40, G01S13/68
Juridische gebeurtenissen
DatumCodeGebeurtenisBeschrijving
21 dec 2011C06Publication
8 feb 2012C10Entry into substantive examination
25 sept 2013C14Grant of patent or utility model