Zoeken Afbeeldingen Maps Play YouTube Nieuws Gmail Drive Meer »
Inloggen
Gebruikers van een schermlezer: klik op deze link voor de toegankelijkheidsmodus. De toegankelijkheidsmodus beschikt over dezelfde essentiële functies, maar werkt beter met je lezer.

Patenten

  1. Geavanceerd zoeken naar patenten
PublicatienummerCN102288944 B
PublicatietypeVerlening
AanvraagnummerCN 201110120849
Publicatiedatum25 sept 2013
Aanvraagdatum12 mei 2011
Prioriteitsdatum12 mei 2011
Ook gepubliceerd alsCN102288944A
Publicatienummer201110120849.9, CN 102288944 B, CN 102288944B, CN 201110120849, CN-B-102288944, CN102288944 B, CN102288944B, CN201110120849, CN201110120849.9
Uitvinders朱伟, 陈伯孝, 杨明磊
Aanvrager西安电子科技大学
Citatie exporterenBiBTeX, EndNote, RefMan
Externe links:  SIPO, Espacenet
Super-resolution height measuring method based on topographic matching for digital array meter wave radar
CN 102288944 B
Samenvatting  vertaald uit het Chinees
本发明公开了一种基于地形匹配的数字阵列米波雷达超分辨测高方法,主要解决现有技术针对起伏阵地测高误差较大的问题。 The present invention discloses a method based on a digital terrain matching array 列米波雷达 super-resolution altimetry method, mainly to solve the prior art for the ups and downs of positions altimeter large errors. 其实现步骤:对雷达接收的目标信号进行杂波对消和干扰对消处理,得到对消后目标信号;使用波束形成法对粗测目标仰角;根据粗测仰角确定最大似然的搜索范围,并在搜索范围内搜索;根据搜索仰角,计算各阵元对应的地面反射点坐标和目标相对各阵元的直达波波程和反射波波程;利用直达波波程和反射波波程,计算相应的直达导向矢量和多径导向矢量;构造合成导向矢量并计算其投影矩阵;最后进行最大似然估计得到目标精确仰角。 Its implementation steps: the target signal received by the radar clutter cancellation and interference cancellation process, get to go after the consumer target signal; beam forming method using coarse target elevation; determining a maximum likelihood searches based on rough measurement elevation, and search within a search range; according to search elevation, calculated for each array element corresponding to the reflection surface and the target coordinates of each element relative 达波波 straight away and reflected wave drive; use straight away and reflected wave 达波波 drive computing steering vector corresponding direct and multipath steering vector; constructing a composite steering vector and calculate the projection matrix; and finally obtain the maximum likelihood estimation target precise elevation. 本发明将雷达阵地海拔参数和合成导向矢量引入超分辨测高中,提高了测高精度,可用于目标跟踪。 The invention of radar altitude position parameters and synthesis steering vector to introduce super-resolution measurements in high school, improve the measurement accuracy, can be used for target tracking.
Claims(6)  vertaald uit het Chinees
1.一种基于地形匹配的数字阵列米波雷达超分辨测高方法,包括以下步骤: (1)从雷达回波中提取目标信号,并对该目标信号进行杂波对消和干扰对消处理,得到对消后目标信号; (2)使用波束形成法对对消后目标信号进行仰角粗测,得到目标信号的粗测仰角V.(3)根据目标信号的粗测仰角P确定最大似然的搜索范围,当P小于Ψ/2时,搜索范围为O〜ψ,否则搜索范围为pr/2~P+^/2,其中Ψ表示半功率波束宽度; (4)在步骤(3)确定的搜索范围内搜索,根据搜索仰角,确定各阵元对应的地面反射点坐标: (4a)将反射区地面海拔按照I米间隔分层,根据搜索仰角,计算阵元在各层上的反射点,是通过如下公式进行: ,, 、G(m).之,,、 \(/?2,/2)二---psm — + hax(m), m = 1,2,...,Μ,η = 1,2,...,N ' 2 3 hy (m,η) = n_l,m = 1,2,...,M,η = 1,2,...,N 其中:m表示第m个阵元,M表示阵元个数,η表示反射区海拔分层的第η层,N为反射区地面海拔起伏高度,hx(m,n)和4(!11,11)分别为第m个阵元在第η层反射点的水平坐标和垂直坐标,G(m)为目标与第m个阵元的水平距离,G(m) =htx-hax(m),P为临时变量,P =吾令+ K -2« + 2) + (G(m)/2)2 ξ为临时变量, 2a„Gim)(h -/?,.(/»'))^ = arcSin-Λ~^ hax(m)为第m个阵元的水平坐标,htx为目标的水平坐标, ^ , 「(k + aj2 + (hm.{1) + αΫ - R2/?BC=aearccos.-^■….“■■■■■)(^■….吊;:.)^ ae为等效地球半径,hay(m)为第m个阵元的垂_ L- J ,直坐标,hty为目标的垂直坐标, K = + Oc)1+ ii: - 2(/^.(1) + C,L )i{ C0S(T ί 2 +θ) - Ci,, Rt 为目标距离,θ 为搜索仰角; (4b)查找雷达阵地海拔图上下两侧最近的反射点,记为a和b ; (4c)将a点和b点垂直投影到雷达阵地海拔图,得到投影点c和d,利用c点和d点之间的阵地海拔数据做曲线拟合,得到曲线Cd ; (4d)将直线ab和曲线cd的交点作为阵元在起伏地面上的反射点; (5)根据地面反射点,计算目标相对各阵元的直达波波程和反射波波程; (6)利用直达波波程和反射波波程,计算相应的直达导向矢量和多径导向矢量; (7)使用直达导向矢量和多径导向矢量计算合成导向矢量As: K = Ad+Ai, 其中=Ad为直达导向矢量,Ai为多径导向矢量; (8)计算合成导向矢量As的投影矩阵; (9)根据投影矩阵和对消后目标信号的协方差矩阵进行最大似然估计,得到目标精确仰角。 An array-based digital terrain matching 列米波雷达 super-resolution altimetry method comprising the steps of: (1) extracting a target signal from the radar echoes, and the target signal clutter cancellation and interference cancellation process to obtain the target signal after cancellation; (2) the use of beam forming method of the target signal after cancellation elevation coarse, coarse obtain the target signal elevation V. (3) Determine the maximum likelihood of the coarse elevation of the target signal P search, when P less than Ψ / 2, the search to O~ψ, otherwise the search range of pr / 2 ~ P + ^ / 2, where Ψ represents half-power beamwidth; (4) in the step (3) to determine the Search in the search, according to search elevation, ground reflection point to determine the coordinates of each array element corresponding to: (4a) the reflection area ground elevation stratified according to I meter intervals, according to search elevation, calculated on the layers picket reflection point, by the following formula: ,,, G (m) of ,,, \ two --- psm - + hax (m), m = 1,2, ..., Μ. (/ 2, / 2?) , η = 1,2, ..., N '2 3 hy (m, η) = n_l, m = 1,2, ..., M, η = 1,2, ..., N where: m represents the m-th array element, M is the number of array elements, η represents the first reflex zone elevation η stratified layer, N is the reflex zones undulating ground elevation height, hx (m, n) and 4 (! 11, 11), respectively for the m-th array element in the first layer of the reflection point η horizontal and vertical coordinates, G (m) as the target and the level of the m-th array element distance, G (m) = htx-hax (m), P is temporary variable, P = make + K -2 «+ 2) + (G (m) / 2) 2 ξ temporary variable, 2a" Gim) (h - /, (/?. »')) ^ = arcSin- Λ ~ ^ hax (m) for the horizontal coordinate m-th array element, htx horizontal coordinates of the target, ^, "(k + aj2 + (hm {1) + αΫ -.? R2 / BC = aearccos .- ^ .. ■ ... "■■■■■) (^ ■ ... hanging;:) ^ ae is the equivalent radius of the Earth, hay (m) of the m-th array element weeping _ L- J, straight coordinate, hty is. target vertical coordinate, K = + Oc) 1+ ii: - 2 (. / ^ (1) + C, L) i {C0S (T ί 2 + θ) - Ci ,, Rt target distance, θ is the search elevation; (4b) Find altitude radar position upper and lower sides in FIG recent reflection point, denoted by a and b; (4c) to a point and b point to the radar position vertically projected elevation map, get projected points c and d, use c front elevation data point and d between points do curve fitting to give the curve Cd; (4d) and the straight line ab cd curve at the intersection point of reflection on undulating ground as the pickets; (5) the ground reflection point calculation target relative of each element and the reflection wave straight Da Bobo Cheng Cheng; (6) the use of direct and reflected wave Cheng Cheng Da Bobo, calculate the corresponding direct steering vector and multipath steering vector; (7) the use of direct steering vector and Multipath guide synthesized vector calculating steering vector As: K = Ad + Ai, where = Ad is connected to a steering vector, Ai is a multipath steering vector; (8) As calculated Synthesis steering vector projection matrix; (9) and the projection matrix After the elimination of the covariance matrix of the target signal maximum likelihood estimation, to give the title accurate elevation.
2.根据权利要求1所述的米波雷达超分辨测高方法,其中步骤(2)所述的使用波束形成法对对消后目标信号进行仰角粗测,是通过如下公式进行:φ = arg niax( I / abs(a!' {//>)Ra(p))) φ 其中:^为目标粗测仰角,arg max为寻找具有最大评分的参量,abs为求模运算,a(的= ,e—, κ表示波数,M表示阵元个数,上标T表示转置,上标H表示共轭转置,R为对消后信号的协方差矩阵。 VHF radar according to claim 1, wherein the super-resolution altimetry method, wherein the step of using the beam forming method (2), after the cancellation of the target signal elevation rough measurement is performed by the following equation: φ = arg niax (I / abs (a '{//>) Ra (p)!)) φ where: ^ goal coarse elevation, arg max to find parameter has a maximum score, abs for the modulo operation, a (a = , e-, κ represents a wave number, M is the number of array elements, superscript T denotes the transpose, the superscript H indicates conjugate transpose, R for the cancellation after the signal covariance matrix.
3.根据权利要求1所述的米波雷达超分辨测高方法,其中步骤(5)所述计算目标相对各阵元的直达波波程和反射波波程,是通过如下三角公式进行: RAm) = ^(hjm) + aef + (hfy +aef -2(Ηα>.(ηι) + αΧ^, +ae)cos(G(m)f ac), m = I, 2,...,M Ri (m) = R1 (m) +R2 (m), m = I, 2,..., M 其中:m表示第m个阵元,M表示阵元个数,Rd (m)为第m个阵元的直达波波程,hay (m)为第m个阵元的垂直坐标,为等效地球半径,hty为目标的垂直坐标,G(m)为目标与第m个阵元的水平距离,RiOn)为第m个阵元的反射波波程,R1On)为第m个阵元与第m个阵元对应地面反射点的距离,R2 (m)为目标与第m个阵元对应地面反射点的距离, Ri (W) = + Aiv(m)f + (ae + hay{m)f - 2(ae + hby(m))(ae + hay(m))cos({hbx(m) -hax(m)) / a,),R2 (m) = +h^im))2 +(ae+hlyf -2(ae + (m))(ae + hIy ) cos((G(m) - hbx (m) + hm(m)) / ae) , hbx (m)和·hby(m)分别为第m个阵元对应地面反射点的水平坐标和垂直坐标,hax(m)为第m个阵元的水平坐标。 According to claim 1, wherein the super-resolution VHF radar altimeter, wherein step (5) the calculation of the target relative of each element and the reflection wave Cheng Da Bobo straight away by following the triangular formula: RAm ) = ^ (hjm) + aef + (hfy + aef -2 (Ηα>. (ηι) + αΧ ^, + ae) cos (G (m) f ac), m = I, 2, ..., M Ri (m) = R1 (m) + R2 (m), m = I, 2, ..., M where: m represents the m-th array element, M is the number of array elements, Rd (m) is the m a picket straight 达波波 Cheng, hay (m) of the m-th array element of the vertical coordinate, equivalent Earth radius, hty vertical coordinate goals, G (m) as the target and the level of the m-th array element distance, RiOn) to the m-th array element of reflection wave process, R1On) to the m-th array element and the m-th array element corresponding to the surface reflection point distance, R2 (m) as the target corresponding to the m-th array element from the ground reflection point, Ri (W) = + Aiv (m) f + (ae + hay {m) f - 2 (ae + hby (m)) (ae + hay (m)) cos ({hbx (m ) -hax (m)) / a,), R2 (m) = + h ^ im)) 2 + (ae + hlyf -2 (ae + (m)) (ae + hIy) cos ((G (m) - hbx (m) + hm (m)) / ae), hbx (m) and · hby (m) respectively, the m-th array element corresponding to the level of ground reflection points and vertical coordinates, hax (m) for the first m the level of a picket coordinates.
4.根据权利要求1所述的米波雷达超分辨测高方法,其中步骤(6)所述计算相应的直达导向矢量和多径导向矢量,是通过如下公式进行: Ad ( Θ ) = [ad (I), ad (2),..., ad (M)] Ai ( θ ) = Ia1 (I),aj (2),..., aj (M)] 其中:Ad(0)为直达导向矢量,Ai(Q)为多径导向矢量,Θ为搜索仰角,%(m) = e—Wm),= m表示第m个阵元,Rd(m)为第m个阵元的直达波波程,RiOn)为第m个阵元的反射波波程,Γ为地面反射系数,上标T表示转置,κ为波数。 VHF radar according to claim 1, wherein the super-resolution altimetry, wherein step (6) to calculate the corresponding direct steering vector and multipath steering vector, by the following formula: Ad (Θ) = [ad (I), ad (2), ..., ad (M)] Ai (θ) = Ia1 (I), aj (2), ..., aj (M)] where: Ad (0) for the direct steering vector, Ai (Q) is a multipath steering vector, Θ to search elevation,% (m) = e-Wm), = m indicates the m-th array element, Rd (m) is the m-th array element of the direct wave wave path, RiOn) to the m-th array element of reflection wave process, Γ reflection coefficient of the ground, superscript T represents transposition, κ is the wave number.
5.根据权利要求2所述的米波雷达超分辨测高方法,其中步骤(8)所述计算投影矩阵,是通过如下公式进行: 刚=A5 ⑷[Af (取㈧]-1 Af (Θ) 其中:Ρ(θ)为投影矩阵,Θ为搜索仰角,As(Q)为合成导向矢量,上标H表示共轭转置,上标-1表示矩阵求逆。 According to claim 2, wherein the super-resolution VHF radar altimeter, wherein step (8) of the projection matrix calculation is performed by the following equation: just = A5 ⑷ [Af (take viii] -1 Af (Θ ) where: Ρ (θ) of the projection matrix, Θ to search elevation, As (Q) for the synthesis of the steering vector, the superscript H indicates conjugate transpose, the superscript -1 indicates matrix inversion.
6.根据权利要求1所述的米波雷达超分辨测高方法,其中步骤(9)所述计算最大似然估计,是通过如下公式进行: Θ = arg max tr [P (Θ ) R]其中:θ为目标精确仰角,arg max为寻找具有最大评分的参量,tr为矩阵求迹,Ρ( Θ )为投影矩阵,R为对消后信·号的协方差矩阵。 VHF radar according to claim 1, wherein the super-resolution altimetry, wherein step (9) the calculation of the maximum likelihood estimation, by the following formula: Θ = arg max tr [P (Θ) R] where : θ target precise elevation, arg max to find parameter has a maximum score, tr for the matrix trace, Ρ (Θ) is the projection matrix, R is the cancellation after letter · number of covariance matrix.
Beschrijving  vertaald uit het Chinees

基于地形匹配的数字阵列米波雷达超分辨测高方法 Array-based digital terrain matching super-resolution altimetry method 列米波雷达

技术领域 Technical Field

[0001] 本发明属于雷达信号处理技术领域,涉及米波雷达测高,具体地说是针对数字阵列米波雷达,提出一种基于地形匹配的超分辨测高方法,可用于目标跟踪。 [0001] The present invention belongs to the field of radar signal processing technology, involving VHF radar altimeter, particularly for digital array 列米波雷达 proposes a method for measuring ultra-high resolution terrain-based matching can be used for target tracking.

背景技术 Background

[0002] 按照仰角波束的形成方式和扫描方式,三坐标3D雷达可分为堆积波束雷达、频扫雷达、相扫雷达和数字波束形成雷达。 [0002] The elevation beam forming mode and scan mode, coordinate 3D radar beam can be divided into stacked radar, frequency sweep radar, radar sweep and digital beamforming radar.

[0003] 堆积波束雷达把同时形成的接收波束在仰角上垂直堆积起来,并在方位上机械扫描,以实现搜索目标和目标三坐标的测量。 [0003] The reception beam radar beam deposited simultaneously formed vertically piled up in elevation and azimuth mechanical scanning, in order to achieve the goals and objectives of the search coordinate measurements. 例如,美国的陆基S波段三坐标AN/TPS-43雷达,以6个仰角波束覆盖20°的仰角范围。 For example, the United States coordinate land-based S-band AN / TPS-43 radar to six elevation beam coverage elevation range of 20 °. L波段三坐标S713Martello雷达用8个堆积波束覆盖20°的仰角范围。 L-band radar coordinate S713Martello with eight stacked beam coverage elevation range of 20 °.

[0004] 频率扫描雷达通过控制频率的变化在口径面上产生不同的相位变化梯度,从而通过电控的方法使波束指向所需的仰角,例如,S波段舰载三坐标AN/SPS-39、AN/SPS-48雷达。 [0004] The frequency scanning radar by controlling the frequency change produce different phase gradient in the caliber surface, so that the beam to the desired elevation by electronic control method, for example, S-band carrier coordinate AN / SPS-39, AN / SPS-48 radar.

[0005] 相控阵三坐标雷达采用移相器在仰角上扫描或控制笔形窄波束扫描。 [0005] The phased array radar uses coordinate or control the scanning phase shifters narrow pencil beam scanning in elevation. 例如L波段远程三坐标AN/TPS-59战术机动雷达。 Such as L-band remote CMM AN / TPS-59 radar tactical maneuver.

[0006] 可见,目前三坐标雷达主要是工作在S波段和L波段等微波波段。 [0006] shows that the current coordinate radar mainly in S-band and L-band and other microwave band. 而在米波波段,波束较宽,波束因地、海面反射而导致波瓣分裂。 In the UHF band, wide beam, the beam because of the ground, sea surface reflection caused lobe division. 因此,过去的米波雷达均为两坐标雷达,而两坐标雷达又不能满足现代战争的要求。 Therefore, past VHF radar are two coordinate radar, and the two coordinate radar can not meet the requirements of modern warfare.

[0007] 国内外雷达界普遍认为,米波雷达具有反隐身能力。 [0007] abroad radar field that, UHF radar has anti-stealth capability. 但是米波雷达因受波长长、天线尺寸和架高有限等因素的限制,天线波束宽度宽、角分辨力低,更重要的是因地、海面反射即所谓“多径”问题使其难以探测低空目标,且在多径环境下难以测高,故米波雷达的测高问题一直是雷达界尚未很好解决的难题。 However, due to a long wavelength VHF radar, antenna size and frame height restrictions and other factors limited the antenna beamwidth wide, low angular resolution, more importantly, because of the ground, the sea reflecting the so-called "multipath" problems make it difficult to detect low-altitude targets, and in high multipath environments, difficult to detect, so UHF radar radar altimetry has been the world has not yet solved the problem.

[0008] 为较好地解决米波测高难题,最主要的技术途径是增大天线在高度维的孔径,以减小天线垂直面的波束宽度。 [0008] The better solution VHF altimeter problems, the most important technical approach is to increase the antenna height dimension of the aperture, to reduce the vertical antenna beamwidth. 而对于低空目标,即使增大天线在高度维的孔径,因无法避开“多径”问题,其解决测高问题主要有三类技术: For low-altitude targets, even if the increase in the height dimension of the antenna aperture, inability to avoid the "multipath" problem, the solution altimetry problems are mainly three types of technology:

[0009] (I)穿越波束法,也就是单频波瓣分裂法,利用目标穿越波束时回波幅度的变化进行估高。 [0009] (I) through beam method, which is a single frequency lobe-secession law, the use of echo amplitude variation across the beam when the target be overestimated. 这种方法要求较长的时间,只能估高而不能测高。 This method requires a long time, and not only overestimated altimeter.

[0010] (2)多频波瓣分裂测高法。 [0010] (2) multi-frequency lobes split altimetry. 利用多个工作频率时分工作,但要求多个频率的工作带宽较宽。 Hours of work by a plurality of operating frequencies, but requires a plurality of frequencies wider operating bandwidth. 这种方法在理论可行,但实际系统较复杂,目前还没有这种实用系统。 This method is feasible in theory, but the actual system more complex, there is no such a practical system.

[0011] (3)基于波瓣分裂的米波雷达测高方法。 [0011] (3) Based on VHF radar altimeter lobe splitting. 利用不同天线分裂波瓣的相位关系,确定目标所在仰角区间,对接收信号进行比幅处理提取归一化误差信号,最后根据归一化误差信号和仰角区间查表得到目标的高度。 Split phase relationships with different antenna lobe, target range where the elevation, the received signal is processed to extract than the amplitude normalized error signal, and finally get highly targeted based on normalized error signal and the elevation range lookups. 陈伯孝等在2006年在《电子学报》和雷达年会上介绍了“基于波瓣分裂的米波雷达测高方法”。陈伯孝 etc. In 2006, "Electronic Journal" and radar presented at the annual meeting "based on the lobe splitting VHF radar altimetry method." 这是一种在垂直维只需3根天线的米波雷达的低仰角测高方法。 This is a low elevation altimetry method in vertical dimension only three VHF radar antenna. 该方法只适合于平坦阵地,对阵地的平坦性要求较高,且测高精度只能达到距离的I%,难以满足一些精度较高的实际使用要求。 This method is only suitable to the flat position, the higher the requirements for the position of flatness, and the measured distance with high accuracy can only reach I%, it is difficult to meet some of the actual use of high accuracy requirements. [0012] (4)阵列超分辨处理测高。 [0012] (4) an array of super-resolution processing altimetry. 把阵列信号处理中的超分辨技术应用于分辨直达波信号和多径信号。 The array signal processing technology for super-resolution signal to distinguish a direct wave and multipath signals. 因为直达波信号和多径信号是相干的,所以这类算法主要是估计相干源波达方向DOA的超分辨算法,先使用空间平滑和Topelitz变换等方法解相干,然后利用信号子空间、噪声子空间和子阵旋转不变性等来测角。 Because of the direct wave signal and multipath signals are coherent, so this type of algorithm is mainly estimated DOA DOA super-resolution algorithm, the first use spatial smoothing and Topelitz transform method for solving coherent, and then use the signal subspace and noise sub space and sub-array to measure angular rotation invariance. 例如,赵光辉等人于2009年2月在《电子与信息学报》发表的论文“基于差分预处理的米波雷达低仰角处理算法”和胡铁军等人于2009年8月在《电波科学学报》发表的论文“阵列内插的波束域ML米波雷达测高方法”,以及胡晓琴等于2008年8月在《电波科学学报》发表的论文“米波雷达测高多径模型研究”,提出了考虑多径延时差的米波雷达阵列信号综合模型。 For example, Zhao Guanghui, who in February 2009 in the "Electronics and Information Technology" papers "on VHF radar processing algorithms low elevation difference preprocessing" and 胡铁军 et al., "Radio Science in August 2009 "papers" beamspace ML VHF radar altimeter interpolation method within the array, "and Hu Xiaoqin equal to August 2008 in the" Journal of Radio Science "papers" high VHF Radar multipath model "proposed Consider VHF radar array signal integrated model multipath delay difference. 该方法是基于平坦阵地模型,同时存在瓶颈,那就是分辨既相干,空间位置又近的目标。 The method is based on a flat position model, at the same time there is a bottleneck, and that is both coherent resolution, spatial location and close to the goal.

[0013] 上述几种测高方法均只适用于平坦阵地模型,即各天线接收的直达波与地面反射波的波程差满足近似线性关系。 [0013] the several altimetry methods are only applicable to the flat position model, namely the direct wave and the wave path difference ground reflected wave received by each antenna to satisfy approximately linear relationship. 但是对于复杂雷达阵地,大型阵列各天线的地面发射点的起伏较大,各天线直达多径波程差不满足近似线性关系,因此在复杂阵地模型下,现有的各种测高方法测角误差较大,不再适用。 But for complex radar position, the ups and downs of a large array of ground-launched point of each antenna is large, each antenna multipath wave direct path difference is approximately linear relationship is not satisfied, and therefore the position in the complex model, various existing methods altimeter goniometer larger error, no longer apply.

发明内容 DISCLOSURE

[0014] 本发明的目的在于克服上述已有技术的不足,提出一种基于地形匹配的超分辨测高方法,消除非线性的直达多径波程差对测角的影响,提高复杂阵地模型下的测角精度和雷达的阵地适应能力。 [0014] The present invention is to overcome the deficiencies of the prior art described above, we propose a method based on high resolution measurements of ultra-terrain matching, eliminate the influence of nonlinear wave multipath direct path difference angle measurement, increase the complexity positions Model The angle measurement accuracy and radar positions adaptability.

[0015] 为实现上述目的,本发明通过各阵元地面反射点的两维坐标,来计算不同阵元的直达波波程与地面反射波波程,再利用直达波波程和反射波波程构造合成导向矢量进行超分辨处理,具体步骤包括如下: [0016] (I)从雷达回波中提取目标信号,并对该目标信号进行杂波对消和干扰对消处理,得到对消后目标信号; [0015] To achieve the above objects, the present invention is by two-dimensional coordinates of each array element ground reflection point to calculate various picket 达波波 straight away and the ground reflected wave drive, and then use straight away and reflected wave away 达波波constructing a composite steering vector super-resolution process, specific steps include the following: [0016] (I) to extract the target from the radar echo signals and the target signal clutter cancellation and interference cancellation to give the target after cancellation signal;

[0017] (2)使用波束形成法对对消后目标信号进行仰角粗测,得到目标信号的粗测仰角φ ; [0017] (2) the use of beam-forming method of the target signal after cancellation elevation coarse, coarse elevation angle φ to obtain the target signal;

[0018] (3)根据目标信号的粗测仰角^确定最大似然的搜索范围,当<j、于Ψ/2时,搜索范围为O〜Ψ,否则搜索范围为+ 其中Ψ表示半功率波束宽度; [0018] (3) According to the coarse elevation of the target signal ^ determine the maximum likelihood search, when the <j, in Ψ / 2, the search to O~Ψ, otherwise the search to + where Ψ denotes a half power beam width;

[0019] (4)在步骤(3)确定的搜索范围内搜索,根据搜索仰角,确定各阵元对应的地面反射点坐标: Search within a determined search range [0019] (4) in the step (3), based on the search elevation, ground reflection point to determine the coordinates of each array element corresponding to:

[0020] (4a)将反射区地面海拔按照I米间隔分层,根据搜索仰角,计算阵元在各层上的反射点; [0020] (4a) the reflection area ground elevation stratified according to I meter intervals, according to search elevation, calculated on the picket reflection point of each layer;

[0021] (4b)查找雷达阵地海拔图上下两侧最近的反射点,记为a和b ; [0021] (4b) Find a radar position both above and below the recent elevation of FIG reflection point, denoted by a and b;

[0022] (4c)将a点和b点垂直投影到雷达阵地海拔图,得到投影点c和d,利用c点和d点之间的阵地海拔数据做曲线拟合,得到曲线Cd ; [0022] (4c) to a point and b point to the radar position vertically projected elevation map, get projected points c and d, front elevation data points and the use of c d between points do curve fitting to give the curve Cd;

[0023] (4d)将直线ab和曲线Cd的交点作为阵元在起伏地面上的反射点; [0023] (4d) the straight line and the curve Cd intersection of ab array element as a reflection on the undulating ground points;

[0024] (5)根据地面反射点,计算目标相对各阵元的直达波波程和反射波波程; [0024] (5) The ground reflection point, calculate the target relative of each element and the reflection wave straight Da Bobo Cheng Cheng;

[0025] (6)利用直达波波程和反射波波程,计算相应的直达导向矢量和多径导向矢量; [0025] (6) the use of direct and reflected wave Cheng Cheng Da Bobo, calculate the corresponding direct steering vectors and vector-oriented multi-path;

[0026] (7)使用直达导向矢量和多径导向矢量计算合成导向矢量As: [0026] (7) Direct steering vector and vector-oriented multi-path synthesis steering vector calculation As:

[0027] As = Ad+Ai;[0028] 其中:Ad为直达导向矢量,Ai为多径导向矢量; [0027] As = Ad + Ai; [0028] where: Ad is direct steering vector, Ai multi-path steering vector;

[0029] (8)计算合成导向矢量As的投影矩阵; [0029] (8) As calculated synthesis-oriented vector projection matrix;

[0030] (9)根据投影矩阵和对消后目标信号的协方差矩阵进行最大似然估计,得到目标精确仰角。 [0030] (9) the maximum likelihood estimation and projection matrix after elimination of the target signal covariance matrix to obtain accurate target elevation.

[0031] 本发明与现有技术相比具有如下优点: [0031] The present invention over the prior art has the following advantages:

[0032] (I)本发明由于使用直达波波程和反射波波程构造合成导向矢量,通过合成导向矢量进行测角处理,从而消除了非线性的直达多径波程差对测角的影响,提高了测角精度; [0032] (I) of the present invention is the use of direct and reflected wave 达波波 Cheng Cheng-oriented structure synthesis vector by synthesizing steering vector angle measurement process, which eliminates the influence of nonlinear wave multipath direct path difference angle measurement improved angular accuracy;

[0033] (2)本发明由于使用了雷达阵地海拔图,将雷达阵地海拔参数引入测角算法中,从而提高了雷达的阵地适应能力; [0033] (2) The present invention is the use of a radar position elevation maps, radar front elevation angle measurement algorithm parameters introduced to improve the radar's ability to adapt to the position;

[0034] (3)本发明由于采用反射区海拔分层和曲线拟合的方法来计算反射点,因此简化了起伏地面上各阵元发射点的计算过程,减少了算法运算量。 [0034] (3) The present invention adopts the reflection area elevation stratification and curve fitting method to calculate the reflection point, thus simplifying the calculation process each array element emitting points on undulating ground, reducing the amount of arithmetic operations.

附图说明 Brief Description

[0035] 图1是本发明的流程图; [0035] FIG. 1 is a flow diagram of the present invention;

[0036] 图2是本发明中雷达接收信号模型图; [0036] FIG. 2 is the invention of radar reception signal model diagram;

[0037] 图3是本发明中地面反射点计算示意图; [0037] FIG. 3 is a reflection of the present invention, the ground point calculation schematic;

[0038] 图4是本发明仿真使用的雷达阵地海拔图; [0038] FIG. 4 is a front elevation diagram of the present invention radar simulation use;

[0039] 图5是用本发明在理想阵地模型下仿真的各阵元直达波和地面反射波的波程差图; [0039] FIG. 5 of the present invention is in the ideal position for each array element model simulation of wave path difference between direct and reflected wave of figure-ground;

[0040] 图6是用本发明在图4模型下仿真的各阵元直达波和地面反射波的波程差图; [0040] FIG. 6 is used in the present invention, Figure 4 model simulations of each array element wave path difference between direct and reflected wave of figure-ground;

[0041] 图7是用不同方法在图4模型下对高仰角目标随信噪比变化的测角精度仿真图; [0041] FIG. 7 is a different method in Figure 4 model with high signal to noise ratio target elevation change angle measurement accuracy simulation map;

[0042] 图8是用不同方法在图4模型下对低仰角目标随信噪比变化的测角精度仿真图; [0042] FIG. 8 is a different method in Figure 4 model with low elevation target SNR changing angle measurement accuracy simulation map;

[0043] 图9是针对实测数据的处理结果图。 [0043] FIG. 9 is a diagram for the results of the measured data.

具体实施方式 DETAILED DESCRIPTION

[0044] 下面结合附图详细说明本发明的内容和效果。 [0044] The following detailed description with reference content and effects of the present invention.

[0045] 参照图1,本发明包括如下步骤: [0045] Referring to FIG. 1, the present invention comprises the following steps:

[0046] 步骤1:对雷达接收的目标信号进行杂波对消和干扰对消处理,得到对消后目标信号。 [0046] Step 1: The target signal received by the radar clutter cancellation and interference cancellation to give the target signal after cancellation.

[0047] 本发明中雷达接收目标信号的模型如图2所示。 [0047] The present invention is received by the radar target signal model shown in Figure 2. 图2中一个远场的窄带信号入射到M个阵元组成的均匀线阵,天线的倾斜角为Θ a,架高为ha(l,阵元间隔为d,以第一根天线在海平面的投影点为坐标原点,D点为第m个阵元的地面投影点,E点为目标的地面投影点, ULA narrowband signal incident in Figure 2 to a far-field consisting of M array elements, the inclination angle of the antenna is Θ a, shelf height ha (l, picket spacing d, with the first antenna at sea level The projected coordinate origin point, D point of the m-th array element surface projection point, E point target on the ground projection points,

为等效地球半径,Rt为目标距离,Θ为搜索仰角,C点为地心,A点为第m个阵元,A点水平坐标和垂直坐标分别为hax(m)和hay(m),T点为目标,T点水平坐标和垂直坐标分别为htx和hty,G(m)表示D点与E点的水平距离,其中: Equivalent Earth radius, Rt target distance, Θ to search elevation, C geocentric point, A point of the m-th array element, A point horizontal and vertical coordinates, respectively hax (m) and hay (m), T point as the goal, T-point level and vertical coordinates, respectively htx and hty, G (m) represents the horizontal distance D point and E point, wherein:

[0048] hax (m) = -d(m_l) cos Θ a, m = I, 2L, M [0048] hax (m) = -d (m_l) cos Θ a, m = I, 2L, M

[0049] hay (m) = ha0+d(m_l) sin Θ a, m = I, 2L, M, 「(\+αβ)2+(〜(1) + ί02-^_ [0049] hay (m) = ha0 + d (m_l) sin Θ a, m = I, 2L, M, "(\ + αβ) 2+ (~ (1) + ί02 - ^ _

[0050] h = αρ arccos ----- [0050] h = αρ arccos -----

L 2(^+αβ)(^(1) + αβ) L 2 (^ + αβ) (^ (1) + αβ)

[0051 ] Hty =」(Hay(1) + αβ)2+^2-2{hay(I) + ae)Rt cos(;r/2 + θ) -ae [0051] Hty = "(Hay (1) + αβ) 2 + ^ 2-2 {hay (I) + ae) Rt cos (; r / 2 + θ) -ae

[0052] G (m) = htx-hax (m); [0052] G (m) = htx-hax (m);

[0053] B点为目标对应第m个阵元的地面反射点,B点水平坐标和垂直坐标分别为hbx(m)和hby(m),第m个阵元的目标直达波和地面反射波的波程分别为Rd(m)和民化),RiOn)=R1 (m) +R2 (m),R1 (m)和R2 (m)分别为B点与A点的距离和B点与T点的距离。 [0053] B corresponds to the target point of the m-th array element of ground reflection point, B point horizontal and vertical coordinates, respectively hbx (m) and hby (m), the target m-th array element of direct and ground reflected wave The beam path respectively Rd (m) and the people of), RiOn) = R1 (m) + R2 (m), R1 (m) and R2 (m) respectively distance and point B and T point B point A point distance.

[0054] 从图2信号模型中得到第m个阵元接收的目标信号x(m) [0054] m-th array element obtained from the received signal model in Figure 2 target signal x (m)

[0055] X (m) = xd (m) +Xi (m) +c (m) +g (m) +n (m), m = I,2L, M [0055] X (m) = xd (m) + Xi (m) + c (m) + g (m) + n (m), m = I, 2L, M

[0056] 其中:Xd(m)为目标直达波信号,= f A(m),Xi(m)为目标反射波信号,Xi(Ifi) = sYe^JKRi(m) ,C (m)为杂波信号,g(m)为干扰信号,n (m)为均值为零、方差为σ 2的高斯白噪声,s为雷达发射信号,κ为波数,Γ为地面反射系数。 [0056] in which: Xd (m) as the target of the direct wave signal, = f A (m), Xi (m) is the target signal reflected wave, Xi (Ifi) = sYe ^ JKRi (m), C (m) is heteroaryl wave signal, g (m) of the interference signal, n (m) is zero-mean, white Gaussian noise with variance σ 2, s for the radar transmitted signal, κ is the wave number, Γ is the reflection coefficient of the ground.

[0057] 对X (m)通过自适应滤波来对消杂波和干扰,得到对消后目标信号 [0057] The X (m) by adaptive filtering to eliminate noise and interference, to get to the target signal after cancellation

[0058] [0058]

χ(β) = xd (m) + Xi (m) + n(m), m = l,2L , M χ (β) = xd (m) + Xi (m) + n (m), m = l, 2L, M

[0059] 将对消后目标信·号用矢量X表不为: [0059] will disappear after the target signal vector X * number table is not used:

[0060] [0060]

X = [%,%,L ,X(M)J X = [%,%, L, X (M) J

[0061] 其中:上标T表示转置。 [0061] where: superscript T represents transposition.

[0062] 步骤2:使用波束形成法对对消后目标信号进行仰角粗测,得到目标信号的粗测仰角P: [0062] Step 2: Using beamforming method after cancellation of the target signal elevation coarse, coarse obtain the target signal elevation P:

[0063] [0063]

φ = arg max(l / abs(aH (炉)Ra(炉))) φ = arg max (l / abs (aH (oven) Ra (oven)))

φ φ

[0064] 其中:arg max为寻找具有最大评分的参量,abs为求模运算, [0064] where: arg max to find parameter has a maximum score, abs for the modulo operation,

[0065] a(炉)=[e^0^\e]Kl-sm^\L ,κ表示波数,M表示阵元个数,R为对消后信号的协方差矩阵,R = ΧΧΗ,上标T表示转置,上标H表示共轭转置,X为对消后目标信 [0065] a (stove) = [e ^ 0 ^ \ e] Kl-sm ^ \ L, κ represents a wave number, M is the number of array elements, R is the cancellation after the signal covariance matrix, R = ΧΧΗ, on superscript T denotes the transpose, the superscript H indicates conjugate transpose, X is the letter of the goal after cancellation

号矢量。 No. vector.

[0066] 步骤3:根据目标信号的粗测仰角^确定最大似然的搜索范围,当^小于Ψ/2时,搜索范围为O〜Ψ,否则搜索范围为+ 其中Ψ表示半功率波束宽度。 [0066] Step 3: coarse ^ elevation of the target signal to determine the maximum likelihood search, when ^ less than Ψ / 2, the search range of O~Ψ, otherwise the search to + where Ψ represents the half-power beamwidth.

[0067] 步骤4:在步骤(3)确定的搜索范围内搜索,根据搜索仰角,确定各阵元对应的地面反射点坐标。 [0067] Step 4: Search in step (3) to determine the scope of the search, according to search elevation, determine ground reflection point corresponding to the coordinates of each array element.

[0068] 由于反射点位于阵地海拔图上,而阵地海拔图难以使用数学表达式表示,因此反射点坐标不易直接求解,在此使用海拔分层和曲线拟合的方式进行求解,其求解步骤参照图3,包括如下: [0068] Since the reflection point is on the front elevation view, and front elevation diagram showing mathematical expressions difficult to use, and therefore difficult to directly solve the reflection point coordinates, in this altitude is solved using layering and curve fitting methods, the solution steps reference Figure 3, comprising the following:

[0069] (4a)将反射区地面海拔按照I米间隔分层,根据搜索仰角,计算阵元在各层上的反射点水平坐#hx(m,η)和垂直坐标hy(m,η),图3中横轴表示与雷达阵地的水平距离,纵轴表示海拔高度,阴影表示雷达阵地海拔,横虚线表示海拔分层,+表示阵元在各层上的反射点: [0069] (4a) the reflection area ground elevation stratified according to I meter intervals, according to search elevation point level computing picket reflection layers sit on #hx (m, η) and vertical coordinates hy (m, η) Figure 3, the horizontal axis represents the horizontal distance from the radar position, the vertical axis represents altitude, elevation shaded radar position, horizontal dashed line elevation stratification, + indicates picket reflection point on the layers:

Figure CN102288944BD00091

[0072] 其中:m表示第m个阵元,M表示阵元个数,η表示反射区海拔分层的第η层,N为反射区地面海拔起伏高度,hx(m, η)和hy(m,η)分别为第m个阵元在第η层反射点的水平坐标和垂直坐标,G(m)为目标与第m个阵元的地面水平距离,hax(m)为第m个阵元 [0072] wherein: m represents the m-th array element, M is the number of array elements, η represents a first reflective area elevation η hierarchical layer, N is the height of the reflection region undulating ground elevation, hx (m, η) and hy ( m, η) respectively, the m-th array element horizontal and vertical coordinates at η layer reflection points, G (m) as the target level with the floor of the m-th array element distance, hax (m) of the m-th array Yuan

的水平坐标,P为临时变量, The horizontal coordinate, P temporary variable,

Figure CN102288944BD00092

,ξ为临时变量, , Ξ temporary variable,

Figure CN102288944BD00093

ae为等效地球半径,hay (m)为第m个阵元的垂直坐标,hty为 ae is the equivalent radius of the Earth, hay (m) for the vertical coordinate m-th array element, hty to

目标的垂直坐标; Vertical coordinates of the target;

[0073] (4b)查找雷达阵地海拔图上下两侧最近的反射点,记为a和b ; [0073] (4b) Find a radar position both above and below the recent elevation of FIG reflection point, denoted by a and b;

[0074] (4c)将a点和b点垂直投影到雷达阵地海拔图,得到投影点c和d,图3中竖虚线表示垂直投影,利用c点和d点之间的阵地海拔数据做曲线拟合,得到曲线Cd ; [0074] (4c) to a point and b point to the radar position vertically projected elevation map, get projected points c and d, the vertical dashed line in Figure 3 the vertical projection, front elevation data utilization points c and d, between points to make curves curve fitting curve Cd;

[0075] (4d)将直线ab和曲线Cd的交点作为阵元在起伏地面上的反射点。 [0075] (4d) the straight line and the curve Cd intersection of ab array element as a reflection on the undulating ground point.

[0076] 步骤5:根据地面反射点,通过如下三角公式计算目标至各阵元的直达波波程Rd(Hl)和反射波波程Ri(Hl): [0076] Step 5: ground reflection point, the triangle is calculated by the following objectives to each array element straight Da Bobo Cheng Rd (Hl) and reflected wave Cheng Ri (Hl):

Figure CN102288944BD00094

[0079] 其中:m表示第m个阵元,M表示阵元个数,Rd (m)为目标至第m个阵元的直达波波程,hay(m)为第m个阵元的垂直坐标,ae为等效地球半径,hty为目标的垂直坐标,G (m)为目标与第m个阵元的地面水平距离,RiOn)为目标至第m个阵元的反射波波程,R1(Hi)为第m个阵元与第m个阵元对应地面反射点的距离,R2On)为目标与第m个阵元对应地面反射点的距离, [0079] wherein: m represents the m-th array element, M is the number of array elements, Rd (m) for the target to the m-th array element 达波波 straight away, hay (m) for the first m vertical array elements coordinate, ae is the equivalent radius of the Earth, hty vertical coordinates of the target, G (m) as the target level with the floor of the m-th array element distance, RiOn) for the target to the m-th array element of reflection wave process, R1 (Hi) to the m-th array element and the m-th array element corresponding to the surface reflection point distance, R2On) as the target and the m-th array element corresponding to the surface reflection point distance,

Figure CN102288944BD00095

[0082] hbx(m)和hby(m)分别为第m个阵元对应地面反射点的水平坐标和垂直坐标,hax(m)为第m个阵元的水平坐标。 [0082] hbx (m) and hby (m) respectively, the m-th array element corresponding to the level of ground reflection points and vertical coordinates, hax (m) for the horizontal coordinate of the m-th array element.

[0083] 步骤6:利用直达波波程Rd(m)和反射波波程RiOii),计算相应的直达导向矢量Ad(Q)和多径导向矢量Ai ( Θ ): [0083] Step 6: Use straight Da Bobo Cheng Rd (m) and reflected wave Cheng RiOii), calculate the corresponding direct steering vector Ad (Q) and multi-path steering vector Ai (Θ):

[0084] Ad ( Θ ) = [ad ⑴,ad ⑵,L,ad (M)] [0084] Ad (Θ) = [ad ⑴, ad ⑵, L, ad (M)]

[0085] Ai ( Θ ) = [&1(1), Bi ⑵,L,Bi (M) ]τ [0085] Ai (Θ) = [& 1 (1), Bi ⑵, L, Bi (M)] τ

[0086]其中:ad(m) = e-JKRAm') ,αχηι) = ,m = 1,2,L,M,m 表示第m 个阵元,M 表示 [0086] wherein: ad (m) = e-JKRAm '), αχηι) =, m = 1,2, L, M, m represents the m-th array element, M is

阵元个数,κ表示波数,Γ为地面反射系数,上标T表示转置。 Array element number, κ represents the wave number, Γ is the reflection coefficient of the ground, the superscript T represents transposition.

[0087] 步骤7:使用直达导向矢量Ad(0)和多径导向矢量Ai(Q)计算合成导向矢量As(0): [0087] Step 7: Use the direct steering vector Ad (0) and multi-path steering vector Ai (Q) calculated steering vector synthesis As (0):

[0088] Ks(Q) = Ad( Θ ) +Ai ( Θ )[0089] 其中:Θ为搜索仰角。 [0088] Ks (Q) = Ad (Θ) + Ai (Θ) [0089] where: Θ is the elevation search.

[0090] 步骤8:使用合成导向矢量As(0)计算合成导向矢量的投影矩阵Ρ(θ): [0090] Step 8: Use synthetic steering vector As (0) calculate the composite steering vector projection matrix Ρ (θ):

_1 ] P ⑷=Ax ㈧[Af (O)As ⑷]-1 Af (Θ) _1] P ⑷ = Ax (viii) [Af (O) As ⑷] -1 Af (Θ)

[0092] 其中:Θ为搜索仰角,上标H表示共轭转置,上标-1表示矩阵求逆。 [0092] where: Θ is searching elevation, superscript H indicates conjugate transpose, the superscript -1 is the matrix inversion.

[0093] 步骤9:根据投影矩阵和对消后目标信号的协方差矩阵进行最大似然估计,得到目标精确仰角: [0093] Step 9: The projection matrix and the target signal after cancellation of the covariance matrix maximum likelihood estimation, to give the desired precise elevation:

[0094] Θ = arg max ir [P (沒)R] [0094] Θ = arg max ir [P (no) R]

[0095] 其中:Θ为目标精确仰角,arg max为寻找具有最大评分的参量,tr为矩阵求迹,Ρ(θ)为投影矩阵,R为对消后信号的协方差矩阵。 [0095] where: Θ target precise elevation, arg max to find parameter has a maximum score, tr for the matrix trace, Ρ (θ) as the projection matrix, R is the cancellation after the signal covariance matrix.

[0096] 本发明的效果可以通过以下仿真结果和实测数据处理结果进一步说明。 [0096] effect of the present invention can be provided by the simulation results and experimental data processing results further instructions.

[0097] 1.仿真环境及条件 [0097] 1. The simulation environment and conditions.

[0098] 仿真环境使用图4所示的雷达阵地海拔图。 [0098] FIG. 4 radar position altitude simulation environment using FIG. 横轴表示与雷达阵地的水平距离,纵轴表示海拔高度,阴影表示雷达阵地海拔。 The horizontal axis represents the horizontal distance radar position, the vertical axis represents altitude, elevation shaded radar position. 雷达阵地的水平450米以内为起伏地形,水平450米以外为海平面。 Radar level positions within 450 meters of undulating terrain, the level of 450 meters beyond the sea level.

[0099] 仿真条件为以下雷达参数:天线架高6米,倾角6°,阵元个数22,阵元间隔为半波长,快拍数10。 [0099] The following simulation conditions for radar parameters: antenna mount six meters high, inclination 6 °, the array element number 22, picket spacing half wavelength, snapshots 10.

[0100] 2.仿真内容 [0100] 2. The simulation content

[0101] 仿真1,用本发明在理想阵地模型下对各阵元的直达波和地面反射波的波程差进行仿真,仿真结果如图5所示。 [0101] Simulation 1, the present invention is in the ideal position on the wave path difference model of each element direct and ground reflected wave simulation, simulation results shown in Figure 5. 其中横轴表示目标海拔高度从1000米至15000米变化,纵轴表示直达波和地面反射波的波程差。 Where the horizontal axis indicates the target altitude from 1000 to 15,000 meters change, the vertical axis represents the wave drive direct and ground reflected wave is poor. 图5中显示了目标与雷达水平距离50千米,目标海拔高度按照横轴变化时第1、6、11、16和22个阵元的直达波和地面反射波的波程差。 Figure 5 shows the horizontal distance between the target and the radar 50 kilometers, when the target altitude changes and 22 in accordance with the horizontal axis of the first array element 1,6,11,16 direct and ground reflected wave of wave path difference. 从图5可以得出,在理想阵地模型下,各阵元的直达波和地面反射波的波程差满足线性变化。 It can be drawn from Figure 5, in the ideal position model, the wave path difference of each element direct and ground reflected waves meet linear.

[0102] 仿真2,用本发明在图4模型下对各阵元的直达波和地面反射波的波程差进行仿真,仿真结果如图6所示。 [0102] Simulation 2, with the present invention in Figure 4 model wave path difference of each element direct and ground reflected wave simulation, simulation results shown in Figure 6. 其中横轴表示目标海拔高度从1000米至15000米变化,纵轴表示直达波和地面反射波的波程差。 Where the horizontal axis indicates the target altitude from 1000 to 15,000 meters change, the vertical axis represents the wave drive direct and ground reflected wave is poor. 图6中显示了目标与雷达水平距离50千米,目标海拔高度按照横轴变化时第1、6、11、16和22个阵元的直达波和地面反射波的波程差。 Figure 6 shows the target with radar horizontal distance 50 km, the target altitude changes when the horizontal beam path and 22 according to picket the first 1,6,11,16 direct and ground reflected wave is poor. 从图6可以得出,在起伏阵地模型下,各阵元的直达波和地面反射波的波程差不满足线性变化。 From Figure 6 can be drawn, in the undulating position model, the wave path difference of each element direct and ground reflected wave does not satisfy the linear.

[0103] 仿真3,用现有的波束形成算法、前后向空间平滑MUSIC算法和本发明分别在图4模型下对高仰角目标进行测角精度仿真,仿真结果如图7所示。 [0103] 3 emulation, with the conventional beam forming algorithm, forward-backward spatial smoothing MUSIC algorithm and the present invention in FIG. 4 models are high-elevation target angle measurement accuracy simulation results shown in Figure 7. 其中横轴表示信噪比从-5分贝至15分贝变化,纵轴表示测角误差。 Where the horizontal axis represents SNR of -5 dB to 15 db change, the vertical axis represents the measured angle error. 仿真选取的目标参数:目标仰角4度,目标与雷达距离50千米,蒙特卡罗实验次数100次。 Target simulation parameters selected: target elevation 4 degrees, and radar target distance of 50 km, Monte Carlo experiment 100 times. 图7中DBF表示波束形成算法在信噪比按照横轴变化时的测角误差,SSMUSIC表示前后向空间平滑MUSIC算法在信噪比按照横轴变化时的测角误差,GSVML表示本发明在信噪比按照横轴变化时的测角误差。 Figure 7 represents DBF beamforming algorithm in accordance with the measured SNR changes of horizontal angle error, SSMUSIC represents the space before and after smoothing MUSIC algorithm in accordance with the measured SNR changes of horizontal angle error, GSVML represents the present invention in letter noise ratio measuring angle error in accordance with the horizontal axis varies. 从图7可以得出,对高仰角目标现有的波束形成算法、前后向空间平滑MUSIC算法测角误差偏大,而本发明的测角误差最小。 Can be drawn from Figure 7, the existing high-elevation target beamforming algorithm, before and after the spatial smoothing MUSIC algorithm to measure the angle error is too large, and the angle measurement error of the present invention is minimized.

[0104] 仿真4,用现有的波束形成算法、前后向空间平滑MUSIC算法和本发明分别在图4模型下对低仰角目标进行测角精度仿真,仿真结果如图8所示。 [0104] simulation 4, with conventional beamforming algorithms, forward-backward spatial smoothing MUSIC algorithm and the present invention in FIG. 4 models are low elevation target angle measurement accuracy simulation results shown in Figure 8. 其中横轴表示信噪比从-5分贝至15分贝变化,纵轴表示测角误差。 Where the horizontal axis represents SNR of -5 dB to 15 db change, the vertical axis represents the measured angle error. 仿真选取的目标参数:目标仰角I度,目标与雷达距离200千米,蒙特卡罗实验次数100次。 Target simulation parameters selected: target elevation I degree, radar target distance of 200 kilometers, the Monte Carlo experiment 100 times. 图8中DBF表示波束形成算法在信噪比按照横轴变化时的测角误差,SSMUSIC表示前后向空间平滑MUSIC算法在信噪比按照横轴变化时的测角误差,GSVML表示本发明在信噪比按照横轴变化时的测角误差。 Figure 8 DBF represents beamforming algorithm SNR measuring angle error in accordance with changes in the horizontal axis, SSMUSIC represents the space before and after smoothing MUSIC algorithm in accordance with the measured SNR changes of horizontal angle error, GSVML represents the present invention in letter noise ratio measuring angle error in accordance with the horizontal axis varies. 从图8可以得出,对低仰角目标现有的波束形成算法、前后向空间平滑MUSIC算法测角误差偏大,而本发明的测角误差最小。 Figure 8 can be drawn on the low elevation target existing beamforming algorithm, before and after the spatial smoothing MUSIC algorithm to measure the angle error is too large, and the angle measurement error of the present invention is minimized.

[0105] 3.对某警戒雷达实测数据的测角结果 [0105] 3. The angle measurement results of the measured data of a surveillance radar

[0106] 该警戒雷达架设阵地海拔图如图9(a)所示,其中横轴表示与雷达阵地的水平距离,纵轴表示海拔高度,实线表示雷达阵地海拔,雷达阵地的水平6千米以内为起伏地形,水平6千米以外为海平面。 [0106] The warning radar altitude erected position shown in Figure 9 (a), in which the horizontal axis represents the horizontal distance from the radar position, the vertical axis represents altitude, the solid line represents the horizontal position altitude radar, radar positions 6km Within the undulating terrain, level 6 kilometers away to sea.

[0107] 用现有的波束形成算法、前后向空间平滑MUSIC算法和本发明对该警戒雷达实测数据进行测角处理,测角处理结果如图9(b)所示,其中横轴表示目标与阵地的距离,纵轴表示距离随横轴变化时的测角误差。 [0107] with the conventional beam forming algorithm, forward-backward spatial smoothing MUSIC algorithm and angle measurement process of the present invention the surveillance radar measurement data and angle measurement results shown in Figure 9 (b), in which the horizontal axis indicates the target and from the position of the vertical axis represents the distance with horizontal angle measurement error varies. 图9(b)中DBF表示波束形成算法的测角误差,SSMUSIC表示前后向空间平滑MUSIC算法的测角误差,GSVML表示本发明的测角误差。 Figure 9 (b) indicates that the measured angle error in DBF beamforming algorithm, SSMUSIC represents the measured angle error before and after spatial smoothing MUSIC algorithm, GSVML indicates that the measured angle error of the present invention. 从图9(b)可以得出,现有的波束形成算法、前后向空间平滑MUSIC算法测角误差偏大,而本发明的测角误差最小。 From Fig. 9 (b) can be drawn, the conventional beam forming algorithm, forward-backward spatial smoothing MUSIC algorithm measuring angle error is too large, and measuring angle error of the present invention is minimized.

Patentcitaties
Geciteerd patent Aanvraagdatum Publicatiedatum Aanvrager Titel
CN1740815A22 sept 20051 maart 2006西安电子科技大学Coding frequency-hopping high-resolution ratio range finding and velocity measuring method and radar
US739742429 juni 20058 juli 2008Mexens Intellectual Property Holding, LlcSystem and method for enabling continuous geographic location estimation for wireless computing devices
Niet-patentcitaties
Referentie
1Xueya Yang et al..High-resolution algorithm based on temporal-spatial extrapolation.《Journal of Systems Engineering and Electronics》.2010,第21卷(第1期),第9-15页.
2徐源等.地形对基于波瓣分裂的米波雷达测高方法的影响.《雷达科学与技术》.2008,第6卷(第1期),第9-14页.
3胡坤娇等.超分辨算法在米波雷达测高中的应用.《中国电子科学研究院学报》.2008,第3卷(第5期),第507-509页.
Classificaties
Internationale classificatieG01S13/68, G01S7/40
Juridische gebeurtenissen
DatumCodeGebeurtenisBeschrijving
21 dec 2011C06Publication
8 feb 2012C10Request of examination as to substance
25 sept 2013C14Granted