CN1620837A - 用于无线移动站的位置定位确定的校准数据库的维护 - Google Patents

用于无线移动站的位置定位确定的校准数据库的维护 Download PDF

Info

Publication number
CN1620837A
CN1620837A CNA028283066A CN02828306A CN1620837A CN 1620837 A CN1620837 A CN 1620837A CN A028283066 A CNA028283066 A CN A028283066A CN 02828306 A CN02828306 A CN 02828306A CN 1620837 A CN1620837 A CN 1620837A
Authority
CN
China
Prior art keywords
data base
calibration data
calibration
communication network
cordless communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028283066A
Other languages
English (en)
Other versions
CN100459779C (zh
Inventor
J·D·小德洛克
A·H·瓦亚诺斯
B·威尔森
R·J·格里德
G·马歇尔
M·莫格里恩
R·里克
S·史密斯
S·帕特尔
W·里雷
Z·比亚克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN1620837A publication Critical patent/CN1620837A/zh
Application granted granted Critical
Publication of CN100459779C publication Critical patent/CN100459779C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/021Calibration, monitoring or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0226Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0268Hybrid positioning by deriving positions from different combinations of signals or of estimated positions in a single positioning system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0273Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves using multipath or indirect path propagation signals in position determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S2013/466Indirect determination of position data by Trilateration, i.e. two antennas or two sensors determine separately the distance to a target, whereby with the knowledge of the baseline length, i.e. the distance between the antennas or sensors, the position data of the target is determined
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Abstract

在无线电信网络中,混合(GPS和AFLT)移动站提供冗余位置信息,该信息被用于时间基校准和/或位置测量的纠正。每个移动站(即手机或蜂窝电话)可以被用做测试工具,且来自正常无线电话呼叫的数据可以得到来自到处实地测试单元的数据辅助。时间基和/或位置偏移连同其他用于在各种条件下获得最可靠位置定点的信息一起被存储在校准数据库。提供自动系统用于建立、更新和维护校准数据库。自动系统不仅描述无线网络的性能的特征,还描述位置确定系统的性能的特征。自动系统提供系统反馈给系统操作者和用户。

Description

用于无线移动站的位置定位确定的校准数据库的维护
                         发明背景
发明领域
本发明一般涉及无线通信,尤其是在移动通信网络中确定无线移动站的位置。本发明尤其涉及维护用于移动站位置确定内的校准数据库。
相关技术的描述
移动通信网络日渐提供更成熟的定位网络内移动终端位置的能力。管辖的一般要求可能要求网络操作者在移动终端呼叫紧急服务诸如美国的911时能报告移动终端的位置。在码分多址(CDMA)数字蜂窝网络中,位置定位能力由高级前向链路三角测量(AFLT)提供,该技术移动站测量的来自基站的无线电信号到达时间而计算移动站(MS)的位置。更高级的技术是混合位置测量,其中移动站使用全球定位系统(GPS)接收机,且位置是基于AFLT和GPS测量而被计算。混合技术的进一步应用是当从GPS同步蜂窝网络获得的时间用于获得GPS测量以及计算移动站的位置。
AFLT或混合技术确定的位置准确性部分取决于每个基站发射机内的时间基准确性。例如,Arlington,VA的电信工业协会(TIA)公布的IS-95A标准允许从基站到移动站传输时间内10微秒的不确定性。IS-95A 7.1.5.2部分,题为“基站传输时间”内提到:“所有基站应在CDMA系统时间的±3μs内发送导频PN序列,并且应在CDMA系统时间的±10μs内发送导频PN序列。所有基站发送的CDMA信道相互间应在±1μs内”。由于无线信号以光速传播,光速大致为3×108米每秒,则传输时间内10微秒的偏移转换成3千米的范围误差。
为了维持基站间时间同步,基站可以相互间同步或同步到公共的时间基。例如,全球定位系统(GPS)被用做公共的时间基,且每个基站可以包括GPS接收机。GPS系统包括在地球11000海里以上的轨道内的24个卫星(加上备用的)的星图。每个卫星有原子时钟并发送由伪随机码调制的载波信号以及每秒50比特调制的导航消息。每个卫星发送的导航消息包含GPS系统时间、时钟纠正参数、电离层延时模型参数、卫星历书和健康以及其他卫星的历书和健康数据。来自四个或更多的卫星的GPS信号可以用于计算GPS系统时间和GPS接收机的地理位置。
虽然GPS系统可以为CDMA系统提供稳定的时间基,GPS系统时间的基准点是每个基站处的GPS天线。每个基站可以有GPS系统时间和CDMA信号传输间的相应时间偏移,该偏移是因为从GPS天线到GPS接收机、从GPS接收机到CDMA发射机以及从CDMA发射机到CDMA天线的传播延时或相位偏移变化而引起的。因此,为了减少AFLT位置确定内的范围误差和混合位置确定内的时序和范围误差,每个基站应在基站安装完成后单独地用特定的测试设备来校准。该校准过程的结果是每个基站导频的时间偏移。时间偏移被存储在数据库内,可以在移动站位置计算时被访问。任何接着的硬件改变需要重新校准基站并更新数据库。
当前,GPS接收机正在被包含在移动终端内,为了增加移动终端位置确定的准确性。GPS接收机可以是自动的,且实现所有GPS获取功能和位置计算,或它们可以是非自动的(也称为无线辅助),并依赖于蜂窝网络以提供GPS获取数据,并可能实现位置计算。通过从网络接收GPS帮助数据,在一个一般的电话呼叫中,有GPS能力的移动终端可以从GPS卫星在10秒或少于10秒获得时间和位置数据。许多,即使不是大多数的有GPS能力的CDMA无线电话预计是无线辅助GPS接收机,在服务基站处理来自无线电话的呼叫请求时能提供GPS和AFLT位置信息的混合能力。位置定位对话可以是MS辅助或基于MS的,这取决于位置计算在哪里发生。在MS辅助情况下,移动站将原始或经预处理的测量数据发送到基站。网络实体然后计算位置。在基于MS情况下,位置计算在移动站内实现。
使用AFLT、GPS和混合接收机的CDMA位置定位的协议和格式可以应用到基于MS和MS辅助的情况,这些协议和格式公布于TIA/EIA标准IS-801-12001、双模式扩频系统的位置确定服务标准-附录内,在此引入作为参考。该标准的第4到43页规定每个基站应发送基站天线的GPS基准时间纠正,该天线发送CDMA导频伪随机(PN)序列。
另一位置定位技术是测量由网络实体进行,而不是移动站。这些基于网络的方法的一示例是由服务基站执行的RTD测量。移动站进行的测量可以与基于网络的测量组合以增强计算的位置的可用性以及准确度。
与基站的校准和重新校准相关的数据被存储在被称为“基站历书”内。校准数据库被称为“基站历书”。校准数据库提供信息,用于确定初始位置估计以寻求GPS伪随机搜索。校准数据库提供信息,用于解决哪个观察到的伪随机噪声序列(PN)的歧义性,等同于具有GPS能力的IS-95 CDMA网络的哪个物理扇区的歧义性。校准数据库提供移动站位置的大致海拔,这使得地球的表面能被用做另一“测量”,这样减少了一个生成位置解所需要的范围测量的数目。校准数据库提供信号出现的蜂窝基站扇区天线位置。对这些天线位置进行AFLT范围测量。校准数据库提供前向链路和来回程延时校准信息以改善陆地AFLT范围和RTD测量的准确性。校准数据库还提供关于每个参数的不确定性信息,这使得位置确定实体(PDE)能构建每个范围测量的总体质量加权。
保证校准数据库的准确性和完整性是人工或半自动的过程。需要高级技术人员以保证准确性和完整性,以诊断问题,以确定需要对校准数据库进行何种改变,并为网络改变更新校准数据库。使用软件工具以从PDE重播单个日志文件以检测并检查一些特定的差错模式。校准数据库记录字段是在边界上被值选定。基站天线高度可以使用校准数据库覆盖区域特定的海拔数据库与地面以上的范围相比经测试。一些校准数据库记录还相互间经验证。扇区中心位置经检查以确认它在天线方向/开口以及天线位置的最大天线范围内。校准数据库还通过在整个校准数据库内选中每个记录经验证,以保证它有唯一记录扩展密钥。扩展的密钥被定义系统ID(SID)、网络ID(NID)、扩展基ID(ExBID)、潜在中继器(PR)以及交换号字段的组合。发送伪随机噪声(PN)序列被选中以保证它是PN偏移的准确倍数。记录的潜在中继器字段被选中,与以下的潜在中继器字段的准则相比,有其他相同的扩展密钥,该准则为:如果记录有0项,不允许其他记录,且如果记录有1项,则允许除0外的其他所有值。多个可选测试可以被运行以标识PDE可能检测到PN岐义性情况的潜在情况。
                      本发明的简要描述
已经发现校准数据库内的微小不一致、不完整数据或不准确数据会导致位置定点的较大差错。例如,初始位置估计确定可能被丢弃,引起GPS性能恶化。AFLT解可能恶化,且混合小区位置可能在扇区查询被错误标识或丢失时被去掉。当发生这些差错时,位置定位确定的性能一般不是逐渐变化。而是这些差错经常会导致重大失败。简而言之,位置定位确定的性能极端取决于校准数据库内的准确和完整信息。
而且还发现,很多蜂窝操作者以分布的方式管理其系统,使得负责维护校准数据库的组不一定知道正在远程实地操作进行的影响校准数据库的改变。现在不存在将该数据整合与完整性检查简单化的方法。现存的方法是人工的,且因此耗时且代价昂贵。
还期望能维持更准确的前向链路校准、来回程延时校准以及其相关的不确定性,为了能改善陆地范围测量的准确性,并获得更多的准确位置确定。
面对这些问题,本发明的基本方面提供几种自动技术,能无缝地整合入无线网络,用于检测并解决在校准数据库内的不一致、不准确或不完整数据的问题。这些技术包括自动用蜂窝操作者源不可用的信息填充校准数据库记录字段,诸如使用地形海拔数据库填充天线高度和小区矩心高度。这些技术还包括通过将位置确定性能与特定区域或地区、特定蜂窝性能和特定手机相关而跟踪长期位置确定系统趋势。
根据本发明的另一方面,提供了一种校准数据库服务器,它与位置确定实体共享校准数据库。校准数据库服务器作为与网络操作人员的接口,告知他们在校准数据库内可能存在不完整或不准确的数据,并建议他们修复不准确或不完整的数据。校准数据库服务器还提供给网络操作者除了位置校准数据和校准数据库维护外的网络数据和服务,诸如蜂窝覆盖地图和解析分析。
在最优实现中,对于每个位置定位定点,测量信息从PDE被发送到校准数据服务器。校准数据服务器精简信息到实现一些技术必须的程度,这些技术用于检测并解决不一致、不准确或不完整数据的问题,并本地存档经精简的数据的副本。校准数据库服务器还维持校准数据库的“主”副本,从该副本可以周期性地对一个或多个PDE进行更新。
在最优实现中,校准数据库服务器从网络操作者人员接收校准数据库更新,并负责将更新的信息整合入校准数据库的“主”副本,并将该更新的信息转发到PDE。当在蜂窝基础设施或蜂窝基础设施配置内有物理改变时,校准数据库维护校准数据库内反映新旧条件的记录,直到所有的PDE转换到新条件。校准数据库服务器管理何时新的记录从每个PDE中被移去,以及何时旧记录从每个PDE中被移去。
                        附图的简要描述
通过下面提出的结合附图的详细描述,本发明的其它特征和优点将变得更加明显,其中:
图1示出根据本发明的使用定位移动电话单元并校准基站的GPS的蜂窝电话网络;
图2是图一蜂窝电话网络内的基站的框图;
图3是图1的蜂窝电话网络的静态组件图,包括访问校准数据库的位置确定实体;
图4到7一起包括一进程流程图,该过程用于使用带有混合(GPS和AFLT)位置确定实体的移动站校准基站时间基;
图9是为校准数据库服务器使用以建立校准数据库的进程流程图;
图10是用于校准数据库服务器的特定配置框图;
图11是位置确定实体和校准数据库服务器的重复配置框图;
图12示出校准数据库内的各种字段组;
图13示出校准数据库内的小区标识信息的描述以及校准数据库服务器使用的相关问题检测方法;
图14示出校准数据库内天线位置信息的描述以及校准数据库服务器使用的相关问题检测方法;
图15示出校准数据库内小区扇区矩心信息的描述以及校准数据库服务器使用的相关问题检测方法;
图16示出校准数据库内天线方向、天线开口以及最大天线范围信息的描述以及校准数据库服务器使用的相关问题检测方法;
图17示出校准数据库内地形平均高度信息的描述以及校准数据库服务器使用的相关问题检测方法;
图18示出校准数据库内来回程延时(RTD)校准和前向链路校准信息的描述以及校准数据库服务器使用的相关问题检测方法;
图19示出校准数据库内的潜在中继器和PN递增信息以及校准数据库服务器使用的相关问题检测方法;
图20示出校准数据库内不确定性参数的描述以及校准数据库服务器使用的相关问题检测方法;
图21示出基站历书数据库内不确定性参数的描述以及基站历书数据库服务器使用的相关问题检测方法;
图22示出使用蜂窝手机位置的估计的问题检测方法列表。
虽然本发明可以有多种修改和其它形式,但在附图内示出的是其特定实施例且会详细被描述。然而值得注意的是,这不是为了将发明限制在示出的该特定形式,相反,这是为了覆盖如所附权利要求书定义的本发明范围内的所有修改、等价和变体。
                       本发明的详细描述
图1示出根据本发明的使用定位移动电话单元并校准基站的GPS的蜂窝电话网络。图1还示出五个CDMA基站11、12、13、14、15,位于地球16的表面六边形阵列的固定位置。在地球以上11000海里处,有与基站11到15直线(line-of-sight)通信的至少五个GPS卫星17、18、19、20、21。在基站的电信范围内,有多个移动CDMA电话单元22、23,这些在上述的TIA标准文档内被称为移动站(MS)。这些移动站(MS)包括只有AFLT移动站,诸如AFLT移动站22以及诸如混合移动站23的混合移动站。
CDMA网络能使用众知的移动站的AFLT技术定位AFLT移动站22和混合移动站23的位置,AFLT技术测量所谓的来自基站的导频无线电信号的到达时间。到达时间由与移动站的时间基相关的导频相位测量指明。计算来自相应的相邻基站的导频相位测量差以去除移动站的时间基内的任何时间偏移的影响。在大多数情况下,每个差定位特定双曲线上的移动站。双曲线的交点提供了移动站的位置。
CDMA网络还能使用已知的GPS技术定位混合移动站23的位置。每个CDMA基站11到15有接收至少一个GPS卫星17到21的载波和伪随机码序列的GPS接收机,以提供参考GPS系统时间基的CDMA系统时间基。当混合移动站参与CDMA网络的位置定位对话时,服务基站可以将GPS获取数据发送到混合移动站。混合移动站23可以使用GPS获取数据在大致十秒或更少的时间内获取每个GPS卫星17到21和移动站间的伪范围测量。如在以下将参考图3描述的,位置确定实体(PDE)可以从四个或更多的伪范围测量中计算混合移动站23的地理位置。或者,在基于MS方案情况下,移动站的地理位置可以由移动站本身计算。
图2示出图1的蜂窝电话网络中的每个基站内的功能模块。基站11包括提供参考GPS系统时间的基站时间基32的GPS接收机31。GPS接收机31从GPS天线39获取信号。基站还包括CDMA收发机33,用于与CDMA网络内的移动站通信。CDMA收发机33从基站时间基32获取CDMA系统时间。CDMA收发机33通过CDMA天线40发送并接收无线信号。
图3是图1的蜂窝电话网络的静态组件框图。移动交换中心(MSC)34接口基站11和多个电话线(诸如铜线或光纤)间的语音信号和电信数据。移动定位中心(MPC)36连接到移动交换中心(MSC)34。MPC 36管理位置定位应用程序以及通过互通函数(IWF)37和数据网络链接38到外部数据网络的接口位置数据。位置确定实体(PDE)41收集并格式化位置定位数据。PDE 41访问由基站历书数据库服务器43管理的基站历书数据库44。PDE 41连接到MPC 36和MSC 34。PDE 41以及基站历书数据库服务器43用例如常规的数字计算机或工作站实现。校准数据库42存储在基站历书数据库服务器43的计算机的硬盘内,以下将进一步描述。
如上所述,基站时间基(图2内32)应在基站被安装或修改时被校准。每个基站有相应的GPS系统时间和CDMA信号传输间的时间偏移,该偏移是由GPS天线(图2内39)到GPS接收机(图2内31)、从GPS接收机到CDMA收发机(图2内33)以及从CDMA收发机到CDMA天线(图2内40)的传播延时或相位偏移变化而引起的。因此,为了减少AFLT位置确定内的范围误差和混合位置确定内的范围和时间误差,每个基站应在基站安装完成后被校准,例如可以通过为基站历书数据库(图3内的42)存储时间偏移,该偏移为PDE所用(图3内41)。而且,最好能重新校准基站并为任何接着的硬件改变而更新数据库。
为了校准或重新校准基站,当混合站用户正常进行电话呼叫或当不是从正常位置定位对话时或实地服务人员开到选定位置并进行呼叫以获得位置测量数据时,GPS和AFLT位置测量数据在正常位置定位对话期间从混合移动站获得。这样,PDE(图3内的41)可以内部地计算校准数据并将校准数据在连续基础上存储在基站历书数据库中(图3内的44)。另外,为了保证机密性,正常的位置定位对话可以只在混合移动站的操作者进行或接受无线电话呼叫时才发生。这样,CDMA系统不会在操作者不知道和不同意的情况下确定操作者的位置。
图4到图7一起包括一进程流程图,该过程示出当CDMA系统内的混合移动站执行位置定位对话时执行的操作,并且还示出用于服务基站的校准进行的一定操作。用于确定位置的操作可以由PDE 41实现,用于校准服务基站的操作可以由校准数据库服务器42实现。在不同条件下确定的附加操作在以下参考图8进行说明,且用于校准的附加或其他方法参考图9和以下图进行讨论。
在图4的第一步骤51内,如果混合移动站不位于在呼叫期间进行位置确定对话的进程中,则终止校准过程。否则,执行继续到步骤52。在步骤52内,PDE(图3内41)确定是否帮助数据需要被发送到移动站。如果需要帮助,则在步骤53,服务基站发送帮助数据到混合移动站,且执行在步骤54处继续。否则,执行直接在步骤54处继续。在步骤54,混合移动站从至少五个GPS卫星获得GPS码相位(即伪范围)测量,这些卫星应提供用于确定混合移动站位置的最佳信号。在混合移动站(图1内23)内,应该相对于从服务基站接收到的导频相位进行码相位测量。GPS码相位参考服务导频相位可以直接或间接地完成。后者的一示例是当GPS码相位和CDMA导频相位参考MS系统时间标识,如在IS-801-1内规定的。在步骤55内,如果混合移动站还没有为五个或更多的GPS卫星获得充分质量的伪随机测量,则完成过程。(在该情况下,仍可以进行没有基站校准功能的正常位置定位对话)。伪范围测量的质量可以基于接收到的信噪比且可能基于观察相关峰值的形状(宽峰值可以指示多径误差)或其他因子而被确定。否则,执行在步骤56处继续。
在步骤56,执行位置定位计算的实体从混合移动站接收每个测量的GPS卫星的伪范围测量,并使用众知的导航解决方案计算移动的位置。在MS辅助方法的情况下,该实体可以是PDE(图3内的41),而在基于MS方法的情况下,该实体是移动站本身。作为结果,导航解提供移动站估计、平均伪范围偏差(即移动站时钟偏差)以及位置解代价(即残留伪范围差错平凡的平均)。在基于MS的情况下,位置估计和移动站时钟偏差从MS被返回到PDE。由于在导航解内使用至少五个测量,解代价是GPS测量完整性的较好指示符。因此,在图5的步骤57内,如果解代价大于预定最大值(CMAX),则完成校准过程。否则,执行在步骤58继续。当没有解代价时,(例如,在不会将其返回到PDE的基于MS的实现中),则可以省略步骤57。在该情况和所有其他情况中,步骤57的解代价阀值可以被替换或由基于测量标准偏离估计的阀值而递增。标准偏离估计可以基于测量测量的信号特征(诸如信噪比)或在多定点情况下基于从测量收集导出的统计特征。
在图5内的步骤58内,PDE从已知的服务基站的定点的位置以及步骤56内计算的GPS位置计算BS到MS范围。应用范围阀值会有用,以最大化服务基站和MS间直线信号的概率,因此最小化影响移动站系统时钟的服务导频多径的可能。因此,在步骤59,如果范围大于预定最大范围(RMAX),则完成校准过程。否则,执行在步骤60继续。在步骤60,测试RTD测量的可用性。如果没有RTD可用(一般由服务基站提供并由移动站汇报的基站接收到发射时序偏移纠正),则执行在步骤62处继续。否则,执行在步骤61处执行。在步骤61,在步骤58内计算的BS到MS范围与c*RTD/2,其中c是光速。如果差别大于预定最大值(EMAX)或小于预定最小值(EMIN),则完成校准过程。(当RTD已知可靠时,BS到MS范围以及c*RTD/2之间观察到的差异可以用做校准计算内的多径纠正项。)否则,执行在步骤62处继续。
在步骤62,由混合移动站进行服务导频信号强度测量。或者,可以在过程更早一级进行导频强度测量,其结果被存储。在步骤63,如果导频信号强度不大于或等于预定的最小信号强度(SMIN),则完成校准过程。否则,执行在步骤64继续。
在步骤64,计算服务基站到移动站的传播时间估计。传播时间估计可以基于在步骤58内计算的服务基站到移动站距离,或步骤61内计算的RTD值或其组合(例如加权的平均)。
在步骤65内,计算服务基站时间偏移估计。时间偏移作为步骤56内计算的移动站时钟偏差之差以及步骤64内计算的服务基站到移动站传播延时而被估计。(或者,服务基站时间偏移可以直接基于伪范围测量经估计,如以下描述。已知GPS历书,即卫星在空间的位置,可以计算混合移动站观察到的理论GPS码相位,且返回的伪范围测量和理论码相位之差是伪范围偏差。如果伪范围由步骤64内计算的服务基站到移动站的传播延时估计而纠正,则结果会是基站时间偏移估计。基站时间偏移估计可以通过将伪范围偏差在多个卫星上平均而经改善。)执行然后在步骤66继续。
在步骤66内,步骤65获得的服务基站时间偏移估计通过应用多项纠正项而被细化。残留CDMA多径影响引起的时间偏移估计可以基于已知本地信号传播环境经估计且经纠正。例如,如果已知在步骤56内确定的位置,可以预计一定量的多径,则该预计的延时可以被用做纠正项。如果有特定类型的移动站的校准数据可用,则由于混合移动站内的CDMA和GPS处理间的内部不对称引起的基站时间偏移估计差错可以被补偿。
这可能需要传递特定移动站的信息到PDE,诸如移动站的电子序列号。或者,可以略去混合移动站内CDMA和GPS处理间的内部不对称性,在该情况中,移动站时间偏移会是基站校准。不管怎样,这不会影响定位准确性,只要混合移动站内CDMA和GPS处理间的内部不对称在别处未被补偿。
基于收集的统计,在步骤66内计算的纠正的基站时间偏移估计上的平均下界将表示基站时间校准。更高的基站时间偏移估计可以被假设已经受到多径传播影响。值得注意的是多径引起的基站时间偏移估计差错总为正。阀值去除了多径相关差错的影响。例如,在图7的步骤67内,基于收集的统计计算阀值。在该示例中,基站时间偏移估计阀值用平均基站偏移加上两个表格标准偏离而计算。如果预计真实的基站时间偏移可以突然改变,则可能需要放松阀值电平,或最好使用更高级的统计方法确定阀值。这需要使得校准过程可以通过认为所有相继时间偏移估计受到多径影响而被禁用。例如该种方法可以计算所有收集的估计的年龄加权概率密度函数,其本地偏差接近较低值,且选择产生的概率密度函数的最高峰值。在步骤68内,如果基站时间偏移估计大于阀值,则完成校准过程,因为基站时间偏移估计被假设包含重大多径差错。否则,执行从步骤68到步骤69。如果接收到的服务导频信号可以通过其他方式被确定,则可以略去步骤68的阀值。
在步骤69,基站时间偏移在校准数据库内被输入。在步骤70内,基站时间偏移估计统计诸如平均和标准和偏离,基于基站时间偏移估计经重新计算,该估计被加入在先前步骤69内访问的校准数据库。当没有充分数据计算统计时,例如在第一校准过程的开始处,可以在初始时假设预定的平均和(充分大)标准偏离。在步骤71,在服务基站内存储的服务基站的时间偏移用先前步骤70内计算的平均计算时间偏移估计的新值进行更新。
简而言之,来自混合移动站的GPS和AFLT位置测量信息经组合以生成伪范围偏移和基站时间基偏移。除了为基站校准提供基站时间基偏移外,无线覆盖区域内的不同物理位置诸如对于不同小区扇区处的伪范围偏移可以经编译并用于纠正被确定在小区扇区邻域内的移动站的位置定点纠正。例如,距离纠正被量化为前向链路校准值(FLC)。特别是,FLC被定义为移动站发送的数据上的时间戳和实际传输时间之间的时间差。对FLC有贡献的分量是基站GPS接收天线的电缆延时、到基站发射硬件时序闸门输入的GPS接收机时序闸门输出以及基站发射天线。数据库校准服务器基于来自混合移动站的GPS和AFLT位置测量数据自动调整校准数据库内的FLC字段。通过使用扇区的多个准确FLC值,范围测量可以被改善0%到30%。
由于GPS伪范围要准确得多,如果看见充分数量的GPS卫星,则最终报告的定点会几乎只基于GPS。幸运地是,在这些情况下,到扇区天线的距离估计仍被测量,且保存在PDE日志文件内。因此所有确定新校准的FLC值需要的信息都可用。该信息包括:旧“缺省”或“平均”FLC值;使用GPS测量确定的定点位置;来自基站历书数据库的扇区天线位置;以及使用AFLT技术以及导频相位测量确定的到每个小区扇区天线的测量的距离估计。以下的等式将这些输入与新FLC值相关:
New_FLC=Old_FLC-(丛定点位置到天线的距离-测量的距离估计)
以上的等式略去了单位转换恒量。例如,如果FLC是以所谓的伪随机数Chip_x_8为单位被测量,则以下新FLC值的公式为:
Figure A0282830600171
其中
FLCNEW=新的前向链路校准值,以Chip_x_8为单位
FLCOLD=在PDE收集期间使用的前向链路校准值,以Chip_x_8为单位
留数= 特定扇区伪范围测量的留数,以米为单位,这是如果不知道真实
       范围时PDE中出现的
30.52=每Chip_x_8单位的米数
调整FLC的关键在于位置定点要有高度准确性,因为任何定点位置差错会转换成新的FLC值内的差错。定点位置可以使用“水平估计的位置差错”(HEPE)质量度量而以高置信度被评估,该度量是每个位置定点差错的PDE本身的估计。因此,只有符合一定质量阀值的定点-诸如HEPE值小于50米-可以用于这些计算。
为所有带有每个定点的手机听见的扇区计算导频测量。取决于环境,这一般至少有中等数量的扇区,经常在密集的城市环境中有多达20个甚至更多。因此,每个定点导致许多距离估计,所有这些估计都可以在本过程中使用。
初始基站历书数据库应在该过程中存在,使得PDE能解决每个看见的扇区的扇区标识。然而,这些扇区的FLC值的质量不重要。可以使用“缺省”或“平均”值。关键在于手机所见的扇区标识在基站历书数据库内存在。最好天线位置要较合理地准确,但不需要在任何时间准确地知道天线位置。如果对天线位置的了解随着时间改善,则这可以对获得更大确定性的天线位置起到作用,并用于改善前向链路校准准确性。另外,基站历书数据库服务器可以确定是否天线被移动,且在该情况下,可以从基站历书数据库中取出准确但过时的天线位置,并用更新的位置取代。
图8示出PDE如何经编程确定移动站的位置定位的示例。在图8的第一步骤81内,PDE基于开始时从MS发送到PDE的AFLT测量进行初始位置估计。在步骤82,PDE试图将移动站所见的PN与基站历书数据库内记录的特定小区扇区相关联。如果服务MS的扇区不能经唯一标识,则AFLT是不可能的,因为PDE不能确定AFLT范围测量来自哪个基站天线塔。因此,如果不能唯一地标识服务MS的扇区,则执行从步骤83到步骤84。否则,执行继续从步骤83到步骤85。
在步骤84,敏感度辅助(SA)和获取辅助(AA)数据基于网络ID/系统ID矩心或缺省位置而生成。SA/AA数据会被送回MS(图6的步骤90)以帮助MS进行GPS获取和GPS伪范围测量。因为服务小区还未被找到,则AFLT是不可能的,且GPS准确性和收益可能严重受损。执行从步骤84进行步骤90。
在图5内的步骤85中,PDE试图确定基准扇区和所有测量扇区。如果测量PN不能唯一地与单个扇区相关,则不使用该范围测量。如果所有的基准扇区不能经唯一确定,则在其位置使用服务小区。接着,在步骤86,PDE只基于AFLT计算“预-定点”。则在步骤87内,如果步骤86的“预-定点”计算不成功,则执行分流到步骤89。否则,执行继续从步骤87到步骤88。
在步骤88中,SA/AA数据基于小区扇区信息被生成。执行继续从步骤88到步骤90。
在步骤89内,SA/AA数据基于预-定点位置和不确定性而生成。初始位置不确定性越小,AA数据越准确,MS内处理越快,且可以获得更佳最终定点准确性和收益。执行从步骤89继续到步骤90。
在步骤90中,SA/AA数据被发送到MS。MS使用SA/AA数据用于GPS获取和GPS伪范围测量。MS搜索在辅助数据内指明的GPS卫星,并实现第二轮AFLT伪范围搜索。在步骤91中,PDE从MS接收GPS和AFLT伪范围。在步骤92中,PDE同样试图标识所有测量PN。如果PN不可以唯一地用单个扇区标识,则不使用范围测量。在步骤93中,PDE基于GPS和AFLT范围测量生成最终定点。
在步骤94,PDE可以并行使用几种方法以计算最终位置,且可以使用最可能获得最小位置误差的方法。首先尝试GPS定点,因为准确性远远高于任何其他方法。如果GPS定点失败,则PDE从几个其他方法中选择,且使用带有最小相关误差的结果。这些其他方法包括:只用AFLT、由已知扇区方向和大致范围使用RTD测量(当可用时)确定的位置、使用移动站所见的扇区知识确定“混合小区扇区”定点以及每个扇区的位置和方向、当前服务扇区覆盖范围矩心位置确定(或如果不可能确定当前服务扇区,则使用原始服务扇区覆盖范围矩心位置确定)、当前网络ID/系统ID覆盖区域的矩心位置、以及最终PDE配置文件内存储的缺省位置。
对每个扇区使用FLC纠正在扇区邻域内的MC的位置可以通过到每个扇区内的各个移动站(最好来自扇区覆盖区域内的不同位置)的多个距离估计的累加和统计分析而经改善。通过收集采样集合,集合的统计处理可以被应用于确定使用的最优新FLC。平均该数据并使用从每个扇区的覆盖区域内的不同位置集合能产生更准确的FLC值。
采样集合可以从混合移动站来或到混合移动站的正常电话呼叫以及来自或到到处实地收集期间的正常位置定位对话中被收集。对于收集数据的附加质量,到处实地收集可以通过在车辆内的实地技术人员实现,每辆车配有连接到外部PCS天线和外部活动GPS天线的混合移动手机。在多个CDMA频率被使用的区域内,可以在每个频率上收集数据,因为每个扇区CDMA频率排列是分开校准的。例如,当使用到处开车收集方法时,应使用多个手机以保证充分的频率分集。
图9示出校准数据库服务器如何建立校准数据库的流程图。在第一步骤101内,校准数据库服务器使用现存的称为数据和“前向”数据和“缺省”前向链路校准值组合初始校准数据库。该信息包括小区扇区标识信息(网络ID、系统ID、扩展基站ID、PN号等)、扇区天线位置纬度/经度/高度以及关于该扇区的覆盖区域信息。“缺省”前向链路校准值可以从与类似的基础设施设备的经验或通过校准较小的测试区域获得或估计,该测试区域使用相同的基础设备设施。在可选的第二步骤内,如果需要更准确的天线位置测试收集,则天线位置的准确性可以被改善。
在步骤103,如上所述,从正常的位置定位对话和/或从导出实地收集收集位置定点数据,且位置定点计算由PDE实现。则在步骤104内,校准数据库服务器生成新校准数据库包括来自旧校准数据库的新FLC值以及来自PDE日志文件的位置定点数据。步骤103和104如处理新PDE日志文件而被迭代,使得校准数据库在时间上根据无线网络、网络设备和网络环境内的各个改变而经调整。实际上,步骤103和104在时间上使用不同PDE和不同校准数据库服务器经迭代。
位置定点数据集合分析在确定校准数据库内其他参数时有用,这些参数诸如“最大天线范围”(MAR)。例如,校准数据库服务器调整MAR以满足两个目标。第一,MAR可以大到使得使用特定基站的移动单元在天线的MAR内且在2*MAR内100%。第二,MAR应小到使得带有相同PN和频率的两个基站不应获得覆盖的MAR。MAR的合适调整导致PDE内较好的基站查询成功以及更好GPS获取辅助窗口。
校准数据库服务器使用类似用于确定新FLC的过程来确定新MAR。测量文件内的每个定点被回顾以检查它是否“足够好”。测量被用于确定新MAR,如果它们符合所有以下的缺省准则:GPS或混合或AFLT方法的成功位置定点、小于500米的定点HEPE以及小于300的测量残留。
除了FLC和MAR外,校准数据库服务器使用海拔数据库计算FLC不确定值、小区扇区矩心位置、地形平均高度和标准偏离。
图10示出校准数据库服务器43的特定配置示例。校准数据库服务器43维护校准数据库42的“主”或主要副本,从该副本周期性地对PDE 41内的本地校准数据库110进行更新。且可能一个校准数据库服务器服务多于一个PDE,其中每个PDE服务服务相应基站。对于每个位置定位定点,测量信息从PDE 41被发送到校准数据库服务器。校准数据库服务器将内容精简到实现一些技术需要的程度,这些技术用于检测并解决不一致、不准确或不完整数据的问题,并本地存档精简后的数据副本。
校准数据库服务器43还有图形用户接口111,用于建议系统操作者112在主校准数据库42内的不完整或不准确数据的存在,并建议对不准确或不完整数据进行修补。校准数据库服务器还提供给系统操作者112除了位置校准数据和校准数据库维护外的网络数据和服务,诸如蜂窝覆盖地图和解析分析。
校准数据库服务器还接收来自系统操作者112的校准数据库更新,且管理将更新的信息整合入校准数据库42的主副本内,且将该更新后的信息转发到PDE 41。当在蜂窝基础设施内或蜂窝基础设施配置内有物理改变时,校准数据库服务器43维护校准数据库内反映新旧条件的记录,直到校准数据库服务器43切换到新条件。校准数据库服务器43管理何时新记录从每个PDE内被移除以及何时旧记录从每个PDE中被移去。校准数据库服务器还维护跟踪PDE性能跟踪信息113和地形高度数据库114。
图11示出一个校准数据库服务器110、111可以支持多个PDE 112、113且多个校准数据库服务器110、111可以同时支持多个PDE 112、113,用于完全冗余。
图12示出校准数据库内的各个字段组。字段组包括:小区扇区标识信息(在IS-95:网络ID、系统ID、交换号、扩展基站ID加上PN)、导频扇区号、天线位置纬度、经度和高度(椭面以上高度)、小区扇区矩心位置-纬度、经度和高度(椭面以上高度)、天线方向、天线开口、最大天线范围(MAR)、地形平均高度、RTD校准、前向链路校准、潜在中继器、PN递增以及不确定性参数。
RTD校准是基站接收链相对GPS时间的校准。影响该校准的因子是基站GPS电缆长度、GPS接收机延时、基站接收机天线电缆长度以及基站接收机处理延时。
图13示出小区扇区标识信息描述以及校准数据库服务器关于该信息使用的问题检测方法。小区扇区标识信息是将手机(即无线移动站)观察到的信号与校准数据内信息相关的关键。小区扇区标识信息尤其应该完整且准确,且必须没有重复或差错以保证好的位置确定性能。新或修改的蜂窝基础设施或蜂窝基础设施配置改变导致小区扇区标识改变。该种改变是频繁的。
校准数据库服务器发现所有手机观察到的标识在校准数据库内没有找到的实例,并在时间上跟踪该种发生。校准数据库服务器标识可以被加入网络的新扇区,并告知系统操作者该种改变。校准数据库服务器生成校准数据库项,这些项包括天线位置、观察到的标识、校准和自动计算的不确定参数以及缺省值的确定。校准数据库服务器还标识一些扇区,手机观察到的或蜂窝基础设施报告的这些扇区的标识因为网络改变或重新配置而改变,且不再匹配校准数据库。校准数据库服务器自动地改变校准数据库以反映新标识。
图14示出校准数据库内天线位置信息的描述以及校准数据库服务器关于该信息使用的问题检测方法。对于陆地范围测量,天线位置帮助PDE解决基准扇区和测量扇区标识,且该位置是范围测量发起的位置。天线位置差错转换成陆地范围差错。天线位置在生成“初始位置估计”中也是必要的,该估计用于生成GPS辅助信息。
校准数据库服务器标识不与测量的位置符合的校准数据库扇区天线位置。这源自移动小区(COW和COLTs)或源自基站历书数据库内的类型。校准数据库服务器告知系统操作者该种问题,且如果这样经配置,校准数据库服务器会自动解决问题。
图15示出校准数据库内小区扇区矩心信息的描述以及校准数据库服务器使用的与该信息相关的问题检测方法。当更准确的维护确定方法失败时,扇区矩心位置作为结果被返回。而且,扇区矩心位置在生成“初始位置估计”时也是必须的,该初始位置估计被用于生成GPS辅助信息。小区扇区矩心是一个帮助PDE理解扇区覆盖区域的参数。知道扇区覆盖区域是成功地将观察到的地形信号与校准基站内一项相关的关键。
校准数据库服务器映射扇区覆盖区域以及在时间上最优小区扇区矩心位置。校准数据库服务器还用最优小区扇区位置更新校准数据库。
图16示出校准数据库内天线方向、天线开口以及最大天线范围信息的描述以及校准数据库服务器使用的与该天线信息相关的问题检测方法。
天线方向是小区扇区天线指向的方向。天线方向经常被用于用离线工具确定大致的扇区覆盖区域以及用扇区矩心位置。校准数据库服务器映射扇区覆盖区域并确定在时间上最优的天线方向,并用最优的天线方向更新校准数据库。
天线开口(波束宽度)经常被用于用离线工具确定大致扇区覆盖区域和扇区中心位置。校准数据库服务器映射扇区覆盖区域并确定在时间上最优的天线开口,并用最优天线开口更新校准数据库。
最大天线范围(MAR)是PDE使用以量化扇区覆盖区域的关键参数。知道该扇区覆盖区域是成功地将观察到的地形信号与校准数据库内一项相关的关键。校准数据库服务器映射扇区覆盖区域并确定时间上最优的MAR,并用最优的MAR更新校准数据库。
图17示出校准数据库内地形平均高度信息的描述以及校准数据库服务器使用的与该信息相关的问题检测方法。AFLT需要地形平均高度,因为没有高度限制,AFLT会有相当大的偏差。而且知道高度使得一些测量能来自范围测量,这可以大大改善位置定点的可用性。校准数据库服务器在地形海拔数据库内维护平均高度数据(图10内的114)。校准数据库还跟踪从位置定点范围的带有较低不确定性的高度,并合适地在校准数据库内更新地形平均高度,并自动地设定标准偏离以反映实际定点的分布。
图18示出校准数据库内来回程延时(RTD)校准和前向链路校准信息的描述以及校准数据库服务器使用的与该信息相关的问题检测方法。
RTD校准特别用于改善反向链路AFLT范围测量的准确度。校准数据库服务器在时间上通过使用真实用户测量自动改善RTD校准和RTD校准准确度。
前向链路校准特别用于改善在IS-95 CDMA系统内的前向链路地形AFLT范围测量的准确性。前向链路校准差错转变成AFLT范围测量差错,这转化成位置定点差错。校准数据库服务器在时间上通过使用真实用户测量自动改善前向链路校准和前向链路校准准确度。
图19示出校准数据库内的潜在中继器和PN递增信息以及校准数据库服务器使用的相关该信息的问题检测方法。
潜在的中继器信息与使用中继器且PDE不知道这点的情况有关。在该情况下,AFLT范围测量可能错的很厉害,且AFLT算法可能变得不稳定。因为这个原因,任何使用中继器的扇区标识必须被记录在校准数据库内。校准数据库服务器检测未经记录的中继器的存在,并对校准数据库进行合适的定点。校准数据库跟踪每个记录的中继器被观察到的频度。校准数据库还移去中继器使用标记或建议操作者是否认为中继器不存在。
PN递增信息帮助PDE正确地解决相隔较远的PN偏移数。由于它很容易发现,则没有理由不将其包括在校准数据库。校准数据库服务器检测在空中观察到的以及在校准数据库间的任何PN递增不符,且当检测到不符时,校准数据库服务器纠正校准数据库内的PN递增信息。
图20示出校准数据库内不确定性参数的描述以及校准数据库服务器使用的与不确定参数相关的问题检测方法。不确定参数诸如“天线位置准确性”、“地形高度标度偏离”、“RTD校准准确性”以及“FLC准确性”给出了其相应的校准数据库参数的界,并使得PDE能构建使用这些参数的整个范围测量的总体不确定性,从而构建最终位置定点的差错估计。
例如,对于天线位置准确性,界是99%的确定性,即天线纬度和经度在真实位置的多厘米内。对于最大天线范围(MAR),界是99%确定性,即该扇区服务的任何位置在天线纬度和经度的该距离或更少内。MAR还被用于确定用于将PN与特定扇区匹配的搜索范围。对于地形高度标准偏离,界为大致68%,即该扇区覆盖区域内找到的高度在地形平均高度的一个地形高度标准偏离内。对于RTD校准准确性,界是99%可信度,即真实RTD校准在前向链路校准准确性的RTD校准值的一个RTD校准准确性内,该界是99%的可信度,即真实的前向链路校准在前向链路校准值的一个前向链路校准准确度内。
当有高度准确的最终位置定点时,校准数据库服务器使用该已知以访问这些定点内可见的地形范围测量的不确定性。校准数据库服务器将该不确定性分配给先前用于构建每个范围的不确定性参数,且一旦存在充分数量的采样以建立新值内的可信度,则自动更新不确定性参数。校准数据库服务器跟踪时间上的改变,并更新校准数据库内的不确定性参数。
上述的许多问题检测方法使用一事实,即已知的蜂窝手机位置估计基于位置定点本身的结果带有合理的较好准确性。该已知是向被分析且被校准数据库服务器保存的定点测量提供环境的关键。
另外,手机位置定点不确定性由PDE计算。该不确定性通过例如使得只有带有很好准确性的定点用于这里有效的情况,进一步增强了已知手机位置的有用性。
如图21内列出的,使用蜂窝手机位置估计的问题检测方法的示例包括:反扇区天线定位(以下将详细描述)、前向链路校准和RTD校准、在PDE内解决不正确的扇区标识、认出中继器的存在、认出新的或移动的扇区、确定不确定参数、提供蜂窝覆盖地图&诊断信息,并提供关于蜂窝系统或位置性能的反馈给用户。
反扇区天线定位是一种从来自移动站的数据确定扇区天线的位置的方法。在一些情况下,基于扇区信号的手机测量知道小区扇区的存在,但扇区天线位置不知道。如果手机位置可以基于其他测量而被确定,则手机位置以及到扇区天线的测量的范围可以作为用于确定扇区天线位置的有用输入。
在许多情况下,手机位置可以在不知道未知扇区源的情况下被确定-例如基于好的GPS定点,或不使用来自未知扇区的测量的AFLT或混合定点。如果这从不同位置发生多次,则这些定位定点的每个同时作为始发点(手机位置)以及到该位置扇区天线位置的范围。
这些位置和范围可以作为到导航处理器的输入,该处理器可以与以下相同的方式计算扇区天线位置,例如与GPS卫星位置和范围用于计算GPS接收机的位置相同的方式。进行该导航处理有许多可用方法,诸如最小均方迭代以及卡尔曼滤波,这些是领域内的技术人员众知的。
如同领域内的技术人员可以理解,很重要的是基准点比起到扇区天线的范围充分隔开,使得有充分的几何准确地计算扇区天线位置。另外,来自手机位置的每个输入范围应有与之相关的基于例如可能的过度路径长度信号延时的差错估计,该估计组合了基准手机位置内的不确定性以及范围内估计的不确定性。  这些测量差错估计可以在导航处理算法内经组合以估计在扇区天线位置的确定中的误差。
而且,到扇区天线的范围测量可以包含由于扇区发射机时间偏差引起的相当恒定的偏差。该前向链路校准可以在扇区天线位置的同时被解决。因此,三维扇区天线位置以及时间偏差可以在相同操作内被计算-与GPS接收机定位类似的方式。
可以意识到由于垂直方向上的受到限制的可观察几何,解决扇区天线的垂直高度可能很困难。扇区天线高度的估计可以基于:在手机基准位置的平均高度以上的平均天线高度(例如10米)和/或基于查询地形海拔数据库的地形高度。虽然扇区天线的垂直高度内的误差有时用该方法很难观察到,幸运地是,当该扇区最终被加入基站历书数据库并被用作用于手机定位的基准位置时,这些相同的误差对于位置定点误差影响很小。
一旦扇区天线位置使用该方法被合理地确定了,则新扇区可以被加入校准数据库并接着被用于手机定位,或手机所见的未经标识信号可以被加入校准数据库内的项,且带有不正确的标识信息,且该标识信息可以被纠正。
校准数据库服务器的一附加功能是蜂窝覆盖的详细理解。校准数据库服务器可以将该位置与信号强度以及从该位置可见的所有小区扇区的其他蜂窝诊断信息相关。覆盖地图、诊断度量以及性能警告基于该信息都是可能的。用户可以被警告恶化或受损的作为其位置的函数的蜂窝或位置性能。
以上描述了包括混合(GPS和AFLT)移动站的无线电信网络。混合移动站提供冗余的位置信息,这些信息被用于时间基校准和/或位置测量的纠正。每个移动站(即手机或蜂窝电话)可以被用做测试设备,且来自正常无线电话呼叫的数据可以由来自到处实地测量单元的数据辅助。时间基和/或位置偏移连同其他用于在各种条件下获得最可靠位置定点的信息一起被存储在校准数据库。提供自动系统用于建立、更新和维护校准数据库。一般,自动系统使用GPS定点给出蜂窝手机获得的陆地范围信息和其他测量。系统还使用位置定点以维护蜂窝性能的理解并提供系统反馈给系统操作者和用户。自动系统检测不完整或不准确信息,且进行自动定点和/或建议系统操作者。自动系统实现校准数据库内的参数校准。自动系统不仅描述无线网络性能特征而且还描述位置确定系统的性能特征。

Claims (33)

1.在带有与移动站通信的基站的无线通信网络内,所述的移动站包括带有用于从全球定位系统获得位置数据的全球定位系统(GPS)接收机的混合移动站;以及至少一个位置确定实体,用于基于基站和移动站间的信号无线传输并基于校准数据库内存储的信息确定移动站位置,一种维护校准数据库的自动方法,其特征在于包括:
维护前向链路校准、来回程延时校准以及相关不确定性,为了改善陆地范围测量的准确性并获得移动站位置更准确确定,以及
维护一性能数据库,所述数据库跟踪关于位置确定实体的性能信息。
2.如权利要求1所述的方法,其特征在于还包括维护地形海拔数据库。
3.如权利要求1所述的方法,其特征在于还包括操作图形用户接口,用于建议系统操作者对不准确或不完整的数据进行修补。
4.如权利要求3所述的方法,其特征在于进一步包括向系统操作者提供蜂窝覆盖地图。
5.如权利要求1所述的方法,其特征在于还包括通过自动地从现存已知的数据以及缺省前向链路校准值建立校准数据库,并自动地通过迭代地从位置确定实体收集位置定点数据并用来自位置确定实体的位置定点数据更新校准数据库以维护校准数据库。
6.如权利要求1所述的方法,其特征在于包括自动地基于至少一个移动站位置估计实现反扇区天线定位。
7.如权利要求1所述的方法,其特征在于包括基于至少一个移动站的位置估计自动地解决不正确的扇区标识。
8.如权利要求1所述的方法,其特征在于包括基于至少一个移动站的位置估计自动地认出中继器的存在。
9.如权利要求1所述的方法,其特征在于包括基于至少一个移动站的位置估计自动地认出新的或移动的扇区。
10.如权利要求1所述的方法,其特征在于自动地为每个基站更新最大天线范围。
11.如权利要求1所述的方法,其特征在于包括通过将位置确定性能与特定区域或地区以及特定蜂窝基础设施相关而自动地跟踪长期位置确定系统趋势。
12.在带有与移动站通信的基站的无线通信网络内,所述的移动站包括带有用于从全球定位系统获得位置数据的全球定位系统(GPS)接收机的混合移动站;无线通信网络还包括至少一个位置确定实体,用于基于基站和移动站间的信号无线传输并基于校准数据库内存储的信息确定移动站位置,
其中,无线通信网络还包括校准数据库服务器,用于维护准确的前向链路校准、来回程延时校准以及相关不确定性,为了改善陆地范围测量的准确性并获得移动站位置更准确的确定。
13.如权利要求12所述的无线通信网络,其特征在于校准数据库服务器存储校准数据库的主副本,且位置确定实体存储校准数据库的本地副本。
14.如权利要求13所述的无线通信网络,其特征在于发生位置定点时,位置确定实体向校准数据库服务器提供位置定点测量信息,且校准数据库服务器周期性地更新校准数据库的本地副本。
15.如权利要求12所述的无线通信网络,其特征在于包括多于一个位置确定实体以及多于一个校准数据库服务器,其中每个位置确定实体由多于一个校准数据库服务器服务为了提供冗余。
16.如权利要求12所述的无线通信网络,其特征在于校准数据库服务器维护一性能数据库,所述数据库跟踪与位置确定实体性能相关的信息。
17.如权利要求12所述的无线通信网络,其特征在于校准数据库服务器维护地形高度数据库。
18.如权利要求12所述的无线通信网络,其特征在于还包括到校准数据库服务器的图形用户接口,所述的图形用户接口使得校准数据库服务器能向系统操作者建议校准数据库内不完整和不准确的数据的可能存在,并建议对不准确或不完整的数据进行修复。
19.如权利要求18所述的无线通信网络,其特征在于校准数据库服务器提供给系统操作者蜂窝覆盖地图。
20.如权利要求12所述的无线通信网络,其特征在于校准数据库服务器经编程用于通过从现存、已知的数据和缺省前向链路校准值组建校准数据库而创建校准数据库,并用于通过迭代地从位置确定实体收集位置定点数据并用来自位置确定实体的位置定点数据更新校准数据库。
21.如权利要求12所述的无线通信网络,其特征在于校准数据库的字段组包括小区扇区标识信息、导频扇区名称、天线位置、小区扇区矩心位置、天线方向、天线开口、最大天线范围、地形平均高度、来回程延时校准、前向链路校准、潜在中继器信息、PN递增以及不确定性参数。
22.如权利要求12所述的无线通信网络,其特征在于校准数据库服务器经编程用于基于至少一个移动站位置估计实现反扇区天线定位。
23.如权利要求12所述的无线通信网络,其特征在于校准数据库服务器经编程用于基于至少一个移动站的位置估计自动地解决不正确的扇区标识。
24.如权利要求12所述的无线通信网络,其特征在于包括校准数据库服务器基于至少一个移动站的位置估计自动地认出中继器的存在。
25.如权利要求12所述的无线通信网络,其特征在于包括校准数据库服务器基于至少一个移动站的位置估计自动地认出新的或移动的扇区。
26.如权利要求12所述的无线通信网络,其特征在于校准数据库服务器经编程用于更新每个基站的最大天线范围。
27.如权利要求12所述的无线通信网络,其特征在于校准数据库服务器经编程用于通过将位置确定性能与特定的区域或地区以及特定的蜂窝基础设施相关联而跟踪长期位置确定系统趋势。
28.在带有与移动站通信的基站的无线通信网络内,所述的移动站包括带有用于从全球定位系统获得位置数据的全球定位系统(GPS)接收机的混合移动站;无线通信网络还包括至少一个位置确定实体,用于基于基站和移动站间的信号无线传输并基于校准数据库内存储的信息确定移动站位置,
其中,无线通信网络还包括校准数据库服务器,用于维护数据库并通过将位置确定性能与特定的区域或地区以及特定的蜂窝基础设施相关联而跟踪长期位置确定系统趋势。
29.如权利要求28所述的无线通信网络,其特征在于校准数据库服务器经编程用于基于至少一个移动站位置估计实现反扇区天线定位。
30.如权利要求28所述的无线通信网络,其特征在于校准数据库服务器经编程用于基于至少一个移动站的位置估计自动地解决不正确的扇区标识。
31.如权利要求28所述的无线通信网络,其特征在于包括校准数据库服务器经编程用于基于至少一个移动站的位置估计自动地认出中继器的存在。
32.如权利要求28所述的无线通信网络,其特征在于包括校准数据库服务器经编程基于至少一个移动站的位置估计自动地认出新的或移动的扇区。
33.如权利要求12所述的无线通信网络,其特征在于校准数据库服务器经编程用于更新每个基站的最大天线范围。
CNB028283066A 2001-12-27 2002-12-26 用于无线移动站的位置定位确定的基站历书数据库的维护 Expired - Fee Related CN100459779C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US34374801P 2001-12-27 2001-12-27
US60/343,748 2001-12-27
US10/093,751 US7383049B2 (en) 2001-12-27 2002-03-07 Automation of maintenance and improvement of location service parameters in a data base of a wireless mobile communication system
US10/093,751 2002-03-07

Publications (2)

Publication Number Publication Date
CN1620837A true CN1620837A (zh) 2005-05-25
CN100459779C CN100459779C (zh) 2009-02-04

Family

ID=26787868

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028283066A Expired - Fee Related CN100459779C (zh) 2001-12-27 2002-12-26 用于无线移动站的位置定位确定的基站历书数据库的维护

Country Status (4)

Country Link
US (1) US7383049B2 (zh)
CN (1) CN100459779C (zh)
MX (1) MXPA04006302A (zh)
WO (1) WO2003065740A2 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441015C (zh) * 2005-06-13 2008-12-03 中兴通讯股份有限公司 一种模拟移动台连续定位的测试系统及测试方法
CN103185888A (zh) * 2011-12-27 2013-07-03 东莞市泰斗微电子科技有限公司 一种基于卫星健康信息判断的卫星定位方法
CN104040371A (zh) * 2009-09-08 2014-09-10 高通股份有限公司 给移动站的位置估计辅助信息
CN105191359A (zh) * 2013-03-14 2015-12-23 高通股份有限公司 基于基站历书质量的众包
CN107450062A (zh) * 2017-07-07 2017-12-08 杭州申昊科技股份有限公司 天线延时校准的方法、装置及系统
CN107835485A (zh) * 2017-10-19 2018-03-23 北京工业大学 一种基于用户话单数据中基站位置可信度的加权基站位置纠偏的方法
CN109471134A (zh) * 2017-09-08 2019-03-15 网络搜索系统公司 地理定位分析系统和运营商网络装备参数的自动校准
TWI666824B (zh) * 2018-01-31 2019-07-21 酷米科技股份有限公司 用以控制智能天線模組之電子裝置及智能天線操舵方法
CN111190211A (zh) * 2019-12-30 2020-05-22 南京长峰航天电子科技有限公司 一种gps失效位置预测定位方法

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7949362B2 (en) 2000-05-18 2011-05-24 Sirf Technology, Inc. Satellite positioning aided communication system selection
US8078189B2 (en) * 2000-08-14 2011-12-13 Sirf Technology, Inc. System and method for providing location based services over a network
US7929928B2 (en) * 2000-05-18 2011-04-19 Sirf Technology Inc. Frequency phase correction system
US7970412B2 (en) 2000-05-18 2011-06-28 Sirf Technology, Inc. Aided location communication system
US7970411B2 (en) 2000-05-18 2011-06-28 Sirf Technology, Inc. Aided location communication system
US7236883B2 (en) * 2000-08-14 2007-06-26 Sirf Technology, Inc. Aiding in a satellite positioning system
US7668554B2 (en) 2001-05-21 2010-02-23 Sirf Technology, Inc. Network system for aided GPS broadcast positioning
WO2003024131A1 (en) * 2001-09-10 2003-03-20 Sirf Technology, Inc. System for utilizing cell information to locate a wireless device
US20030125045A1 (en) * 2001-12-27 2003-07-03 Riley Wyatt Thomas Creating and using base station almanac information in a wireless communication system having a position location capability
JP4190828B2 (ja) * 2002-08-21 2008-12-03 Necエレクトロニクス株式会社 プローブ検査装置および方法
US20040132464A1 (en) * 2002-12-20 2004-07-08 Sami Poykko Location system
TWI280807B (en) * 2003-02-19 2007-05-01 Sk Telecom Co Ltd Method and system for optimizing location-based service by adjusting maximum antenna range
US8023958B2 (en) * 2003-03-05 2011-09-20 Qualcomm Incorporated User plane-based location services (LCS) system, method and apparatus
US8971913B2 (en) * 2003-06-27 2015-03-03 Qualcomm Incorporated Method and apparatus for wireless network hybrid positioning
US8483717B2 (en) 2003-06-27 2013-07-09 Qualcomm Incorporated Local area network assisted positioning
US7123928B2 (en) * 2003-07-21 2006-10-17 Qualcomm Incorporated Method and apparatus for creating and using a base station almanac for position determination
RU2227373C1 (ru) * 2003-08-12 2004-04-20 Громаков Юрий Алексеевич Способ сотовой связи
US7477906B2 (en) * 2004-02-27 2009-01-13 Research In Motion Limited Methods and apparatus for facilitating the determination of GPS location information for a mobile station without disrupting communications of a voice call
US9137771B2 (en) * 2004-04-02 2015-09-15 Qualcomm Incorporated Methods and apparatuses for beacon assisted position determination systems
GB0409617D0 (en) 2004-04-30 2004-06-02 Ibm A method and system for determining the location of an improved carrier signal
CN100459463C (zh) * 2004-05-26 2009-02-04 海信集团有限公司 通信网络中移动台的gps接收机测试系统及其测试方法
US7319878B2 (en) 2004-06-18 2008-01-15 Qualcomm Incorporated Method and apparatus for determining location of a base station using a plurality of mobile stations in a wireless mobile network
EP1783929A4 (en) * 2004-08-26 2012-03-21 Vodafone Plc CORRECTION PROCEDURE FOR REFERENCE POSITION INFORMATION, SERVER SYSTEM AND CORRECTION SYSTEM FOR REFERENCE POSITION INFORMATION
KR100605980B1 (ko) * 2005-01-04 2006-07-31 삼성전자주식회사 휴대 인터넷 신호를 이용한 위치 측정 시스템 및 방법
CN100417253C (zh) * 2005-03-22 2008-09-03 中兴通讯股份有限公司 一种用于移动定位的基站时钟偏移量的校正方法
US8577283B2 (en) * 2005-07-15 2013-11-05 Qualcomm Incorporated TDD repeater
US7623857B1 (en) * 2005-10-21 2009-11-24 At&T Intellectual Property I, L.P. Intelligent pico-cell for transport of wireless device communications over wireline networks
RU2390791C2 (ru) * 2005-11-07 2010-05-27 Квэлкомм Инкорпорейтед Позиционирование для wlan и других беспроводных сетей
US8670787B1 (en) 2005-12-29 2014-03-11 At&T Intellectual Property Ii, L.P. Transmission of location and directional information associated with mobile communication devices
US7659850B1 (en) 2006-06-13 2010-02-09 Sprint Spectrum L.P. Method and system for determining locations of mobile stations using directional corrections
US8326296B1 (en) 2006-07-12 2012-12-04 At&T Intellectual Property I, L.P. Pico-cell extension for cellular network
BRPI0715637A2 (pt) * 2006-08-24 2013-07-02 Qualcomm Inc mÉtodo e equipamento para suportar posicionamento de estaÇÕes màveis em roaming
ATE491161T1 (de) * 2006-09-21 2010-12-15 Nokia Corp Unterstützte positionsbestimmung auf der basis von satellitensignalen
US8068984B2 (en) * 2006-10-17 2011-11-29 Ut-Battelle, Llc Triply redundant integrated navigation and asset visibility system
US9226257B2 (en) 2006-11-04 2015-12-29 Qualcomm Incorporated Positioning for WLANs and other wireless networks
US7797000B2 (en) * 2006-12-01 2010-09-14 Trueposition, Inc. System for automatically determining cell transmitter parameters to facilitate the location of wireless devices
US7920875B2 (en) * 2006-12-01 2011-04-05 Trueposition, Inc. Subscriptionless location of wireless devices
US7787888B2 (en) * 2006-12-29 2010-08-31 United States Cellular Corporation Inter-working location gateway for heterogeneous networks
CN101247627B (zh) * 2007-02-15 2011-05-11 广达电脑股份有限公司 用以计算飞行时间的无线通讯系统
US9083745B2 (en) 2007-03-12 2015-07-14 Qualcomm Incorporated Network independent location services
US8242959B2 (en) * 2007-04-18 2012-08-14 Trueposition, Inc. Sparsed U-TDOA wireless location networks
US8041367B2 (en) 2007-04-18 2011-10-18 Trueposition, Inc. Sparsed U-TDOA wireless location networks
US8045506B2 (en) 2007-04-18 2011-10-25 Trueposition, Inc. Sparsed U-TDOA wireless location networks
US8140092B2 (en) 2007-04-18 2012-03-20 Trueposition, Inc. Sparsed U-TDOA wireless location networks
US20080287139A1 (en) * 2007-05-15 2008-11-20 Andrew Corporation System and method for estimating the location of a mobile station in communications networks
US20080285505A1 (en) * 2007-05-15 2008-11-20 Andrew Corporation System and method for network timing recovery in communications networks
JP4379493B2 (ja) * 2007-06-07 2009-12-09 ソニー株式会社 撮像装置、情報処理装置、および情報処理方法、並びにコンピュータ・プログラム
US8447319B2 (en) * 2007-11-15 2013-05-21 Andrew Llc System and method for locating UMTS user equipment using measurement reports
US8548488B2 (en) * 2007-11-30 2013-10-01 Trueposition, Inc. Automated configuration of a wireless location system
US8126496B2 (en) * 2008-05-07 2012-02-28 At&T Mobility Ii Llc Signaling-triggered power adjustment in a femto cell
US8626223B2 (en) 2008-05-07 2014-01-07 At&T Mobility Ii Llc Femto cell signaling gating
US8644853B2 (en) 2008-05-12 2014-02-04 Qualcomm Incorporated Providing base station almanac to mobile station
US8179847B2 (en) 2008-05-13 2012-05-15 At&T Mobility Ii Llc Interactive white list prompting to share content and services associated with a femtocell
US8719420B2 (en) 2008-05-13 2014-05-06 At&T Mobility Ii Llc Administration of access lists for femtocell service
US8743776B2 (en) * 2008-06-12 2014-06-03 At&T Mobility Ii Llc Point of sales and customer support for femtocell service and equipment
US8094067B2 (en) * 2008-08-12 2012-01-10 Broadcom Corporation Method and system for determining a position of a mobile communication device
US8781505B2 (en) * 2008-08-29 2014-07-15 Qualcomm Incorporated Location determination of mobile device
US8478228B2 (en) * 2008-10-20 2013-07-02 Qualcomm Incorporated Mobile receiver with location services capability
US20100130230A1 (en) * 2008-11-21 2010-05-27 Qualcomm Incorporated Beacon sectoring for position determination
US20100135178A1 (en) 2008-11-21 2010-06-03 Qualcomm Incorporated Wireless position determination using adjusted round trip time measurements
US8892127B2 (en) 2008-11-21 2014-11-18 Qualcomm Incorporated Wireless-based positioning adjustments using a motion sensor
US9645225B2 (en) * 2008-11-21 2017-05-09 Qualcomm Incorporated Network-centric determination of node processing delay
US9125153B2 (en) * 2008-11-25 2015-09-01 Qualcomm Incorporated Method and apparatus for two-way ranging
US8768344B2 (en) 2008-12-22 2014-07-01 Qualcomm Incorporated Post-deployment calibration for wireless position determination
US8750267B2 (en) * 2009-01-05 2014-06-10 Qualcomm Incorporated Detection of falsified wireless access points
US20100178934A1 (en) * 2009-01-13 2010-07-15 Qualcomm Incorporated Environment-specific measurement weighting in wireless positioning
US8195191B1 (en) * 2009-02-05 2012-06-05 Sprint Spectrum L.P. Method and apparatus for communicating location of a split-sector in a cellular wireless communication system
US9793982B2 (en) 2009-04-21 2017-10-17 Commscope Technologies Llc System for automatic configuration of a mobile communication system
US8849190B2 (en) 2009-04-21 2014-09-30 Andrew Llc Radio communication systems with integrated location-based measurements for diagnostics and performance optimization
WO2010151217A2 (en) * 2009-06-24 2010-12-29 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements in a telecommunication system
US8600297B2 (en) * 2009-07-28 2013-12-03 Qualcomm Incorporated Method and system for femto cell self-timing and self-locating
US8437772B2 (en) * 2009-09-15 2013-05-07 Qualcomm Incorporated Transmitter position integrity checking
US8510801B2 (en) * 2009-10-15 2013-08-13 At&T Intellectual Property I, L.P. Management of access to service in an access point
US8965433B2 (en) * 2009-10-29 2015-02-24 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement in a communication system
US9651674B2 (en) * 2009-12-11 2017-05-16 At&T Mobility Ii Llc Devices, systems and methods for providing location information over a cellular network
US8781492B2 (en) 2010-04-30 2014-07-15 Qualcomm Incorporated Device for round trip time measurements
IL218046B (en) * 2012-02-12 2018-11-29 Elta Systems Ltd An architecture for a multi-directional relay and the devices and methods of operation useful by the way
US8699943B2 (en) 2011-06-03 2014-04-15 Andrew Llc Mobile repeater system and method having geophysical location awareness without use of GPS
US10560955B2 (en) 2012-04-22 2020-02-11 Elta Systems Ltd. Apparatus and methods for moving relay interference mitigation in mobile e.g. cellular communication networks
US8781507B2 (en) 2012-06-01 2014-07-15 Qualcomm Incorporated Obtaining timing of LTE wireless base stations using aggregated OTDOA assistance data
US8954089B2 (en) 2012-06-01 2015-02-10 Qualcomm Incorporated Positioning LTE wireless base stations using aggregated OTDOA assistance data
US9313669B2 (en) * 2012-08-30 2016-04-12 Lg Electronics Inc. Apparatus and method for calculating location of mobile station in wireless network
US9237417B2 (en) * 2013-02-07 2016-01-12 Qualcomm Incorporated Terrestrial positioning system calibration
US9549288B2 (en) * 2013-02-07 2017-01-17 Qualcomm Incorporated Determination of differential forward link calibration in LTE networks for positioning
CN103997713A (zh) * 2014-05-18 2014-08-20 漳州市恒丽电子有限公司 一种利用基站定位的手表
US9467869B2 (en) 2014-09-19 2016-10-11 Qualcomm Incorporated Cell coverage assignment
US10282685B2 (en) * 2015-02-13 2019-05-07 Atlassian Pty Ltd Issue rank management in an issue tracking system
CN104703209A (zh) * 2015-03-17 2015-06-10 浪潮通信信息系统有限公司 一种基于邻区关系发现小区经纬度错误的方法
US9939517B2 (en) * 2015-04-05 2018-04-10 Nicholaus J. Bauer Determining a location of a transmitter device
US10897686B2 (en) * 2016-03-24 2021-01-19 Qualcomm Incorporated Determining a time calibration value for a user equipment
CN108337388A (zh) * 2017-01-19 2018-07-27 南宁富桂精密工业有限公司 网络电话通信方法及路由器
IL284009B1 (en) * 2019-01-18 2023-12-01 Viasat Inc Systems and methods for optimizing a staggered array of antennas

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6473623B1 (en) * 1996-04-18 2002-10-29 At&T Wireless Services, Inc. Method for self-calibration of a wireless communication system
US6243587B1 (en) * 1997-12-10 2001-06-05 Ericsson Inc. Method and system for determining position of a mobile transmitter
US6014102A (en) * 1998-04-17 2000-01-11 Motorola, Inc. Method and apparatus for calibrating location finding equipment within a communication system
US6230018B1 (en) * 1998-05-14 2001-05-08 Nortel Networks Limited Devices and processing in a mobile radio communication network having calibration terminals
US6166685A (en) 1998-11-19 2000-12-26 Qualcomm Incorporated Wireless user position update using infrastructure measurements
US6275707B1 (en) * 1999-10-08 2001-08-14 Motorola, Inc. Method and apparatus for assigning location estimates from a first transceiver to a second transceiver
JP4292442B2 (ja) 2000-01-31 2009-07-08 ソニー株式会社 全地球測位システムの受信装置及び携帯無線端末
US6388612B1 (en) * 2000-03-26 2002-05-14 Timothy J Neher Global cellular position tracking device
IL139078A0 (en) * 2000-10-16 2001-11-25 Wireless Online Inc Method and system for calibrating antenna towers to reduce cell interference
US6570529B2 (en) * 2001-05-24 2003-05-27 Lucent Technologies Inc. Autonomous calibration of a wireless-global positioning system
US6799050B1 (en) 2001-06-04 2004-09-28 Snaptrack, Inc. Reducing cross-interference in a combined GPS receiver and communication system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441015C (zh) * 2005-06-13 2008-12-03 中兴通讯股份有限公司 一种模拟移动台连续定位的测试系统及测试方法
CN104040371A (zh) * 2009-09-08 2014-09-10 高通股份有限公司 给移动站的位置估计辅助信息
CN103185888A (zh) * 2011-12-27 2013-07-03 东莞市泰斗微电子科技有限公司 一种基于卫星健康信息判断的卫星定位方法
CN105191359B (zh) * 2013-03-14 2019-07-05 高通股份有限公司 用于节制众包数据的方法、移动装置和服务器
CN105191359A (zh) * 2013-03-14 2015-12-23 高通股份有限公司 基于基站历书质量的众包
CN107450062B (zh) * 2017-07-07 2019-11-19 杭州申昊科技股份有限公司 天线延时校准的方法、装置及系统
CN107450062A (zh) * 2017-07-07 2017-12-08 杭州申昊科技股份有限公司 天线延时校准的方法、装置及系统
CN109471134A (zh) * 2017-09-08 2019-03-15 网络搜索系统公司 地理定位分析系统和运营商网络装备参数的自动校准
CN109471134B (zh) * 2017-09-08 2023-09-29 网络搜索系统公司 地理定位分析系统和运营商网络装备参数的自动校准
CN107835485A (zh) * 2017-10-19 2018-03-23 北京工业大学 一种基于用户话单数据中基站位置可信度的加权基站位置纠偏的方法
CN107835485B (zh) * 2017-10-19 2020-10-16 北京工业大学 一种基于用户话单数据中基站位置可信度的加权基站位置纠偏的方法
TWI666824B (zh) * 2018-01-31 2019-07-21 酷米科技股份有限公司 用以控制智能天線模組之電子裝置及智能天線操舵方法
CN111190211A (zh) * 2019-12-30 2020-05-22 南京长峰航天电子科技有限公司 一种gps失效位置预测定位方法

Also Published As

Publication number Publication date
WO2003065740A3 (en) 2003-10-16
MXPA04006302A (es) 2004-11-10
US7383049B2 (en) 2008-06-03
WO2003065740A2 (en) 2003-08-07
US20030125044A1 (en) 2003-07-03
CN100459779C (zh) 2009-02-04

Similar Documents

Publication Publication Date Title
CN1620837A (zh) 用于无线移动站的位置定位确定的校准数据库的维护
CN1751248B (zh) 无线移动通信网络内使用移动站确定基站位置参数
US8483706B2 (en) Location services based on positioned wireless measurement reports
CN1957264A (zh) 用于辅助式无线位置确定系统的改进的数据传递效率
US20100093377A1 (en) Creating And Using Base Station Almanac Information In A Wireless Communication System Having A Position Location Capability
US7715849B2 (en) User positioning
CN102869038B (zh) 一种基站定位中的测量补偿方法、装置、服务器及系统
KR100986955B1 (ko) 위치 측정 능력을 갖는 무선 통신 시스템에서 기지국위성력 정보의 생성 및 이용
US9549284B2 (en) Apparatus and method for correcting location of base station
CN1500357A (zh) 验证移动站位置方位的方法和系统
CN1606840A (zh) 在规则的定位会话期间使用移动站发送的位置测量数据进行基站时间校准
CN1582600A (zh) 用有限的信息对发射机识别的系统和方法
CN1849525A (zh) 用于创建并使用基站历书来用于位置确定的方法和装置
US7262731B2 (en) Method and system for optimizing location-based service by adjusting maximum antenna range
Wennervirta et al. RTT positioning field performance
MXPA06001157A (es) Determinacion de ubicacion de un transmisor local utilizando una base de datos.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1075347

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1075347

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090204

Termination date: 20141226

EXPY Termination of patent right or utility model