EP1586704A1 - Use of ultrafine calcium carbonate particles in papermaking - Google Patents

Use of ultrafine calcium carbonate particles in papermaking Download PDF

Info

Publication number
EP1586704A1
EP1586704A1 EP04101574A EP04101574A EP1586704A1 EP 1586704 A1 EP1586704 A1 EP 1586704A1 EP 04101574 A EP04101574 A EP 04101574A EP 04101574 A EP04101574 A EP 04101574A EP 1586704 A1 EP1586704 A1 EP 1586704A1
Authority
EP
European Patent Office
Prior art keywords
suspension
paper
pcc
ultrafine
dewatering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04101574A
Other languages
German (de)
French (fr)
Inventor
Mike Ball
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solvay SA
Original Assignee
Solvay SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay SA filed Critical Solvay SA
Priority to EP04101574A priority Critical patent/EP1586704A1/en
Priority to PCT/EP2005/051660 priority patent/WO2005100690A1/en
Priority to EP05733443A priority patent/EP1756363A1/en
Publication of EP1586704A1 publication Critical patent/EP1586704A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/675Oxides, hydroxides or carbonates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • D21H17/29Starch cationic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/31Gums
    • D21H17/32Guar or other polygalactomannan gum
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/56Polyamines; Polyimines; Polyester-imides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added

Definitions

  • the present invention relates to the use of a precipitated calcium carbonate (PCC) suspension, and in particular, a suspension of ultrafine PCC particles, in papermaking.
  • PCC precipitated calcium carbonate
  • the present invention also relates to an improved method for dewatering and an improved process for the production of paper.
  • colloidal silica such as that associated with the various Compozil® systems, in the production of paper to obtain improved retention and dewatering.
  • a suspension comprising ultrafine PCC particles is utilized in the manner analogous to the previously employed colloidal silica. It has been surprisingly discovered that these suspensions can provide, in combination with agents such as cationic polymers, a substantial improvement of the retention and dewatering in the production of paper. The improvements in dewatering can, for example, allow the speed of the papermaking machine to be increased. Accordingly, the economics of the papermaking process can be substantially improved.
  • the primary function of the PCC particles is the ability to provide a desired charge, e.g., typically a negative charge, thereby enhancing the charge characteristics of the system.
  • one aspect of the invention relates to a suspension of ultrafine PCC particles.
  • ultrafine it is meant particles having a mean particle size of less than 200nm, preferably less than 100 nm with particles sized on the order of 25-75 nm being suitable.
  • the PCC suspension according to the present invention can comprise ultrafine PCC particles such as those available from Solvay SA under the SOCAL® trademark. Specific examples of such ultrafine particles are illustrated in the following chart:
  • the ultrafine particles employed in the present invention typically have a higher surface area and a higher charge density which make them particularly suitable for use in the invention.
  • the ultrafine particles can be employed in an aqueous suspension in an amount suitable to provide the desired dewatering improvement.
  • a suitable suspension includes about 10 % by weight of the ultrafine particles in an aqueous suspension.
  • the suspension can be produced by techniques recognized in the art and need not be described in detail here.
  • suspensions according to the present invention can be used as a replacement for colloidal silica in paper-making processes.
  • paper-making processes are well recognized in the art, they need not be described in detail.
  • the inventors offer the following remarks regarding the paper-making suspensions that are suitable for the present invention.
  • the present invention can employ a variety of paper-making suspensions containing a variety of cellulose-containing fibers.
  • the suspensions should typically contain a suitable amount of fibers to provide the desired consistency at the various points of the paper making process.
  • the consistency of the fiber in thick stock can typically be on the order of 3%, of thin stock on the order of 0.5 to 1 % and later, at the drying section, at least about 50 percent by weight of such fibers, based on dry material. Such amounts are well recognized in this field.
  • the components can for example be used for suspensions of fibers from chemical pulp, such as sulphate and sulphite pulp, thermomechanical pulp, refiner pulp or groundwood pulp from both hardwood and softwood and can also be used for suspensions based on recycled fibers.
  • the suspension can also contain mineral fillers, such as for example kaolin, titanium dioxide, gypsum, chalk and talcum.
  • paper and paper-making do of course not include solely paper and its production but also other cellulose fiber containing products in sheet or web form such as pulp sheets, board and cardboard and their production.
  • cationic polymers suitable for use in the invention include natural, e.g. based on carbohydrates, and synthetic polymers.
  • suitable polymers include cationic starch, cationic guar gum, cationic acrylamide based polymers, cationic polyethyleneimines, polyamidoamines and poly(diallyldimethyl ammonium chloride).
  • the polymers can be used singly or in combination with each other.
  • the amount of polymer is to a high degree dependent on the type of this and other effects desired from this.
  • synthetic polymers at least 0.01 kg polymer per ton, calculated as dry on dry fibers and optional fillers are usually used.
  • amounts of from 0.01 to 3 and preferably from 0.03 to 2 kg per ton are used.
  • polymers based on carbohydrates such as cationic starch and cationic guar gum
  • amounts of at least 0.1 kg/ton calculated as dry on dry fibers and optional fillers, are used.
  • these are used in amounts of from 0.5 to 30 kg/ton and preferably from 1 to 15 kg/ton.
  • PCC suspension The other significant component of the paper-making suspension is the PCC suspension.
  • the amount of PCC suspension employed in the context of the present invention can vary within wide limits depending on, among other things, the type of suspension being employed.
  • the weight ratio of cationic polymer(s) to PCC is typically based on the charge characteristics of the system.
  • the other primary factor relates to the economics of the system. It is particularly suitable where the ratio of polymer to PCC in suspension is not less than 10, more preferably not less than 20.
  • the paper-making suspensions employed in the present invention can include one or more conventional paper additives such as hydrophobing agents, dry strength agents, wet strength agents etc. Such additives are suitable for, but not significant to, the present invention.
  • suitable additive examples include aluminum compounds that can be employed in combination with the PCC suspension and cationic polymers, since it has been found that aluminum compounds may provide a further improvement of retention and dewatering.
  • Any known aluminum compound for use in papermaking can be used, for example alum, polyaluminium compounds, aluminates, aluminum chloride and aluminum nitrate.
  • the polyaluminium compounds can for example be polyaluminium chlorides, polyaluminium sulphates and polyaluminium compounds containing both chloride and sulphate ions.
  • the polyaluminium compounds can also contain other anions than chloride ions, for example anions from sulphuric acid, phosphoric acid, organic acids such as citric acid and oxalic acid.
  • the process includes the forming and dewatering of the fiber-containing suspension on a wire to form paper.
  • techniques and devices for forming and dewatering the paper-making suspension are well-recognized in the art and need not be described in detail here. It is noted that the PCC suspension can be effectively employed over the entire pH range of 4 to 10 in papermaking, with 4.5 to 8.5 being typically preferred.
  • SOCAL® U3 A 10% suspension of SOCAL® U3 was employed. (Stirring speed 1500 rpm, small dissolver) 9854: 10 ml of a 1% hot suspension of starch in a magnetic stirrer was produced (regulation M1).
  • the thick material became on a concentration of ⁇ 7.0 g/l by addition of deionized water opposed.
  • the setting of the concentration occurs about the regulation of the whole retention (Regulation P.5.).
  • salt, NaCl was added to reach a conductivity of 1.2 M / cms.
  • Table I illustrates that the results for SOCAL®U3 while, Table II show the results for Compozil ® in tabular form.

Abstract

A process for the production of paper by introducing a suspension of ultrafine calcium carbonate particles to a fiber-containing suspension. A method for improving the dewatering of a paper-making suspension containing at least one cationic polymer.

Description

  • The present invention relates to the use of a precipitated calcium carbonate (PCC) suspension, and in particular, a suspension of ultrafine PCC particles, in papermaking. The present invention also relates to an improved method for dewatering and an improved process for the production of paper.
  • It is well known to use colloidal silica, such as that associated with the various Compozil® systems, in the production of paper to obtain improved retention and dewatering.
  • Here, a suspension comprising ultrafine PCC particles is utilized in the manner analogous to the previously employed colloidal silica. It has been surprisingly discovered that these suspensions can provide, in combination with agents such as cationic polymers, a substantial improvement of the retention and dewatering in the production of paper. The improvements in dewatering can, for example, allow the speed of the papermaking machine to be increased. Accordingly, the economics of the papermaking process can be substantially improved.
  • Although not wishing to be bound by an particle theory, it is believed that the primary function of the PCC particles is the ability to provide a desired charge, e.g., typically a negative charge, thereby enhancing the charge characteristics of the system.
  • To this end, one aspect of the invention relates to a suspension of ultrafine PCC particles. By "ultrafine" it is meant particles having a mean particle size of less than 200nm, preferably less than 100 nm with particles sized on the order of 25-75 nm being suitable. For example, the PCC suspension according to the present invention can comprise ultrafine PCC particles such as those available from Solvay SA under the SOCAL® trademark. Specific examples of such ultrafine particles are illustrated in the following chart:
    Figure 00020001
  • In view of their size, the ultrafine particles employed in the present invention typically have a higher surface area and a higher charge density which make them particularly suitable for use in the invention.
  • The ultrafine particles can be employed in an aqueous suspension in an amount suitable to provide the desired dewatering improvement. In this regard, it may be desirable to provide as high as concentration of the particles as possible subject to issues such as the manufacturing conditions, the maximum concentration at which the suspension would remain fluid and pourable without excessive settling. One example of a suitable suspension includes about 10 % by weight of the ultrafine particles in an aqueous suspension.
  • The suspension can be produced by techniques recognized in the art and need not be described in detail here.
  • As mentioned above, the suspensions according to the present invention can be used as a replacement for colloidal silica in paper-making processes. Insofar as paper-making processes are well recognized in the art, they need not be described in detail. However, for sake of completeness, the inventors offer the following remarks regarding the paper-making suspensions that are suitable for the present invention.
  • The present invention can employ a variety of paper-making suspensions containing a variety of cellulose-containing fibers. The suspensions should typically contain a suitable amount of fibers to provide the desired consistency at the various points of the paper making process. For example, the consistency of the fiber in thick stock can typically be on the order of 3%, of thin stock on the order of 0.5 to 1 % and later, at the drying section, at least about 50 percent by weight of such fibers, based on dry material. Such amounts are well recognized in this field.
  • The components can for example be used for suspensions of fibers from chemical pulp, such as sulphate and sulphite pulp, thermomechanical pulp, refiner pulp or groundwood pulp from both hardwood and softwood and can also be used for suspensions based on recycled fibers. The suspension can also contain mineral fillers, such as for example kaolin, titanium dioxide, gypsum, chalk and talcum.
  • Finally, it is noted that the terms "paper" and "paper-making" as used herein do of course not include solely paper and its production but also other cellulose fiber containing products in sheet or web form such as pulp sheets, board and cardboard and their production.
  • As discussed above, one or more cationic polymer(s) are employed in the paper-making suspension. The cationic polymers suitable for use in the invention include natural, e.g. based on carbohydrates, and synthetic polymers. Examples of suitable polymers include cationic starch, cationic guar gum, cationic acrylamide based polymers, cationic polyethyleneimines, polyamidoamines and poly(diallyldimethyl ammonium chloride). The polymers can be used singly or in combination with each other.
  • The amount of polymer is to a high degree dependent on the type of this and other effects desired from this. For synthetic polymers at least 0.01 kg polymer per ton, calculated as dry on dry fibers and optional fillers are usually used. Suitably amounts of from 0.01 to 3 and preferably from 0.03 to 2 kg per ton are used. For polymers based on carbohydrates, such as cationic starch and cationic guar gum, typically, amounts of at least 0.1 kg/ton, calculated as dry on dry fibers and optional fillers, are used. Suitably these are used in amounts of from 0.5 to 30 kg/ton and preferably from 1 to 15 kg/ton.
  • The other significant component of the paper-making suspension is the PCC suspension. The amount of PCC suspension employed in the context of the present invention can vary within wide limits depending on, among other things, the type of suspension being employed.
  • In the context of the present invention, the weight ratio of cationic polymer(s) to PCC is typically based on the charge characteristics of the system. The other primary factor relates to the economics of the system. It is particularly suitable where the ratio of polymer to PCC in suspension is not less than 10, more preferably not less than 20.
  • However, it is important to note that a wide range of amounts for the PCC suspension employed is capable of providing the dewatering advantages that can be associated with the present invention.
  • The paper-making suspensions employed in the present invention can include one or more conventional paper additives such as hydrophobing agents, dry strength agents, wet strength agents etc. Such additives are suitable for, but not significant to, the present invention.
  • Examples of suitable additive include aluminum compounds that can be employed in combination with the PCC suspension and cationic polymers, since it has been found that aluminum compounds may provide a further improvement of retention and dewatering. Any known aluminum compound for use in papermaking can be used, for example alum, polyaluminium compounds, aluminates, aluminum chloride and aluminum nitrate. The polyaluminium compounds can for example be polyaluminium chlorides, polyaluminium sulphates and polyaluminium compounds containing both chloride and sulphate ions. The polyaluminium compounds can also contain other anions than chloride ions, for example anions from sulphuric acid, phosphoric acid, organic acids such as citric acid and oxalic acid.
  • In addition, while the cationic polymer(s) are typically added prior to the PCC suspension, processes employing a reversed order of addition are not outside the scope of this invention.
  • Upon adding the PCC suspension to the fiber-containing suspension, the process includes the forming and dewatering of the fiber-containing suspension on a wire to form paper. In this regard, techniques and devices for forming and dewatering the paper-making suspension are well-recognized in the art and need not be described in detail here. It is noted that the PCC suspension can be effectively employed over the entire pH range of 4 to 10 in papermaking, with 4.5 to 8.5 being typically preferred.
  • The invention is further illustrated in the following examples which, however, are not intended to limit the same.
  • Example 1- Comparison of Ultrafine PCC Suspension to Compozil® Components:
  • Compozil® : used directly as so ld.
       SOCAL® U3: A 10% suspension of SOCAL® U3 was employed.
       (Stirring speed 1500 rpm, small dissolver)
       9854: 10 ml of a 1% hot suspension of starch in a magnetic stirrer was produced (regulation M1).
  • Production of the paper material:
  • The thick material became on a concentration of ~7.0 g/l by addition of deionized water
       opposed. The setting of the concentration occurs about the regulation of the whole retention
       (Regulation P.5.). Next, salt, NaCl, was added to reach a conductivity of 1.2 M / cms.
  • Afterwards this material became in proportions of 1000 ml.
  • The accordingly necessary amount of strength paste was added, and became these servings, the mixture was then treated by means of a DFS 03 mixer and drained.
  • Determination of the Drainage Time
  • From the mixer, 1000 ml material strength mixture was emptied into the funnel of the DFS03 (for the draining time intended) and was stirred with 500 rpm. After 60s the mixer stopped, and at the same moment, the cone of the moving chamber was raised. The amount of the filtrate resulted was taken up in dependence at the moment. The maximum filtrate amount amounted to 400 gs. The filtration occurred about the Riegler-standard metal sieve.
  • Material concentrations:
  • Samples employing SOCAL®U3: 6.51 gs / I
       Samples employing Compozil®: 6.84 gs / I
  • Table I illustrates that the results for SOCAL®U3 while, Table II show the results for Compozil ® in tabular form.
  • Drainage time for the product SOCAL® U3.
  • Like it is to be seen clear it could by means of mixing Starch: SOCAL® U3 (1.5 rel. %:0,1 rel. %, to the paper material concentration) the drainage time can be reduced by two-thirds.
  • By employing 0.1 ml from a 10% suspension, the drainage time was comparably to that associated with the addition of 0.1 ml Compozil ®.
  • An effect shows the ability of the SOCAL®U3 to decrease drainage time, where an aid, such as starch, has been previously added. Without the presence of starch, the Compozil® showed only a minor improvement in the drainage time. With the addition of starch, the reduction in drainage time was, indeed, only 0.1 and 0.7%. Increasing amounts actually led to a lengthening of the drainage time.
    Figure 00060001
    Figure 00070001

Claims (3)

  1. A process for the production of paper, comprising the steps of:
    (a) providing a fiber-containing suspension containing cellulose fibers, and optional fillers;
    (b) introducing at least one cationic polymer into the fiber-containing suspension, and
    (c) introducing at least one PCC suspension comprising ultrafine PCC particles to the fiber-containing suspension, and
    (d) forming and dewatering the fiber-containing suspension.
  2. A method for improving the dewatering of a paper-making suspension comprising the addition of a PCC suspension comprising ultrafine PCC particles to a paper-making suspension containing at least one cationic polymer.
  3. The use of a PCC suspension comprising ultrafine PCC particles as a substitute for colloidal silica as a dewatering agent in the formation of paper from a paper-making suspension.
EP04101574A 2004-04-16 2004-04-16 Use of ultrafine calcium carbonate particles in papermaking Withdrawn EP1586704A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04101574A EP1586704A1 (en) 2004-04-16 2004-04-16 Use of ultrafine calcium carbonate particles in papermaking
PCT/EP2005/051660 WO2005100690A1 (en) 2004-04-16 2005-04-14 Use of calcium carbonate particles in papermaking
EP05733443A EP1756363A1 (en) 2004-04-16 2005-04-14 Use of calcium carbonate particles in papermaking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04101574A EP1586704A1 (en) 2004-04-16 2004-04-16 Use of ultrafine calcium carbonate particles in papermaking

Publications (1)

Publication Number Publication Date
EP1586704A1 true EP1586704A1 (en) 2005-10-19

Family

ID=34928967

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04101574A Withdrawn EP1586704A1 (en) 2004-04-16 2004-04-16 Use of ultrafine calcium carbonate particles in papermaking
EP05733443A Withdrawn EP1756363A1 (en) 2004-04-16 2005-04-14 Use of calcium carbonate particles in papermaking

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP05733443A Withdrawn EP1756363A1 (en) 2004-04-16 2005-04-14 Use of calcium carbonate particles in papermaking

Country Status (2)

Country Link
EP (2) EP1586704A1 (en)
WO (1) WO2005100690A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2483151C1 (en) * 2011-11-10 2013-05-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Method of manufacturing paper for printing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007059736A1 (en) 2007-12-12 2009-06-18 Omya Development Ag Surface mineralized organic fibers
FI122304B (en) 2010-04-22 2011-11-30 Nordkalk Oy Ab Use of acidic water in paper making
US8858759B1 (en) * 2013-07-10 2014-10-14 Ecolab Usa Inc. Enhancement of sheet dewatering using soy flour or soy protein

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4793985A (en) * 1982-08-23 1988-12-27 J. M. Huber Corporation Method of producing ultrafine ground calcium carbonate
US5116418A (en) * 1984-12-03 1992-05-26 Industrial Progress Incorporated Process for making structural aggregate pigments
US5312484A (en) * 1989-10-12 1994-05-17 Industrial Progress, Inc. TiO2 -containing composite pigment products
EP0703193A2 (en) * 1990-03-13 1996-03-27 Minerals Technologies Inc. Rhombohedral calcium carbonate
US5798173A (en) * 1994-03-04 1998-08-25 Mitsubishi Paper Mills Limited Ink jet recording sheet
EP1099795A1 (en) * 1999-06-24 2001-05-16 Akzo Nobel N.V. Sizing emulsion
US6270626B1 (en) * 1998-04-27 2001-08-07 Rhodia Chimie Paper making retention system of bentonite and a cationic galactomannan
WO2002049765A2 (en) * 2000-12-20 2002-06-27 Coatex S.A.S. Grinding and/or dispersing aid of mineral materials in aqueous suspension, suspensions and uses thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279663A (en) * 1989-10-12 1994-01-18 Industrial Progesss, Inc. Low-refractive-index aggregate pigments products

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4793985A (en) * 1982-08-23 1988-12-27 J. M. Huber Corporation Method of producing ultrafine ground calcium carbonate
US5116418A (en) * 1984-12-03 1992-05-26 Industrial Progress Incorporated Process for making structural aggregate pigments
US5312484A (en) * 1989-10-12 1994-05-17 Industrial Progress, Inc. TiO2 -containing composite pigment products
EP0703193A2 (en) * 1990-03-13 1996-03-27 Minerals Technologies Inc. Rhombohedral calcium carbonate
US5798173A (en) * 1994-03-04 1998-08-25 Mitsubishi Paper Mills Limited Ink jet recording sheet
US6270626B1 (en) * 1998-04-27 2001-08-07 Rhodia Chimie Paper making retention system of bentonite and a cationic galactomannan
EP1099795A1 (en) * 1999-06-24 2001-05-16 Akzo Nobel N.V. Sizing emulsion
WO2002049765A2 (en) * 2000-12-20 2002-06-27 Coatex S.A.S. Grinding and/or dispersing aid of mineral materials in aqueous suspension, suspensions and uses thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2483151C1 (en) * 2011-11-10 2013-05-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Method of manufacturing paper for printing

Also Published As

Publication number Publication date
EP1756363A1 (en) 2007-02-28
WO2005100690A1 (en) 2005-10-27

Similar Documents

Publication Publication Date Title
RU2558484C2 (en) Filler composition
US7608644B2 (en) Aqueous silica-containing composition
EP1969183B1 (en) A process for the production of paper
EP1529133B1 (en) Method for the production of paper, paperboard, and cardboard
PL200811B1 (en) A process for the production of paper
KR20090106471A (en) Process for the production of cellulosic product
US20040250972A1 (en) Process for the production of paper
EP1456468B1 (en) Aqueous silica-containing composition and process for production of paper
AU2002309436A1 (en) Aqueous composition
EP1395703A1 (en) Aqueous composition
US5788815A (en) Process for the production of paper
EP1586704A1 (en) Use of ultrafine calcium carbonate particles in papermaking
US20070181275A1 (en) Use of calcuim carbonate particles in papermaking
EP1456469B1 (en) Aqueous silica-containing composition and process for production of paper
FI121119B (en) Procedure for making paper
RU2544826C2 (en) Application of acid water for manufacturing paper
WO2004104299A1 (en) A process for the production of paper
JPH0160118B2 (en)
DE10236252A1 (en) Preparation of paper, pasteboard, or cardboard involving cutting of the paper pulp, addition of microparticles of cationic polymer, e.g. cationic polyamide, and a finely divided inorganic component after the last cutting step
CA3037000A1 (en) Increased drainage performance in papermaking systems using microfibrillated cellulose
DE20220981U1 (en) Preparation of paper, pasteboard, or cardboard involving cutting of the paper pulp, addition of microparticles of cationic polymer, e.g. cationic polyamide, and a finely divided inorganic component after the last cutting step
DE20220980U1 (en) Preparation of paper, pasteboard, or cardboard involving cutting of the paper pulp, addition of microparticles of cationic polymer, e.g. cationic polyamide, and a finely divided inorganic component after the last cutting step

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060420