EP2398272A1 - Signalling and mapping of Measurement Reports - Google Patents

Signalling and mapping of Measurement Reports Download PDF

Info

Publication number
EP2398272A1
EP2398272A1 EP11180942A EP11180942A EP2398272A1 EP 2398272 A1 EP2398272 A1 EP 2398272A1 EP 11180942 A EP11180942 A EP 11180942A EP 11180942 A EP11180942 A EP 11180942A EP 2398272 A1 EP2398272 A1 EP 2398272A1
Authority
EP
European Patent Office
Prior art keywords
measurement
report
report type
measurement report
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11180942A
Other languages
German (de)
French (fr)
Other versions
EP2398272B1 (en
Inventor
Martin Feuersänger
Joachim Löhr
Alexander Golitschek Edler Von Elbwart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Publication of EP2398272A1 publication Critical patent/EP2398272A1/en
Application granted granted Critical
Publication of EP2398272B1 publication Critical patent/EP2398272B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to indicating and identifying different versions of uplink measurement reports. Methods are presented to distinguish such reports so that the receiver can know which measurement report type has been sent.
  • the invention is applicable in the field of communication between a transmitter and a receiver. It is particularly related to communication systems where a receiver sends feedback information to the transmitter, where the feedback contains different information about the communication channel condition experienced by the receiver and the transmitter needs to distinguish between several such reports of different content.
  • High-Speed Downlink Packet Access HSDPA
  • HSUPA High Speed Uplink Packet Access
  • IP Internet Protocols
  • PS packet-switched
  • the main objectives of the evolution are to further improve service provisioning and reduce user and operator costs as already mentioned.
  • MIMO multiple-input-multiple-output
  • AML-OFDM adaptive multi-layer Orthogonal Frequency Division Multiplexing
  • the AML-OFDM-based downlink has a frequency structure based on a large number of individual sub-carriers with a spacing of 15 kHz. This frequency granularity facilitates to implement dual-mode UTRA/E-UTRA terminals.
  • the ability to reach high bit rates is highly dependent on short delays in the system and a prerequisite for this is short sub-frame duration. Consequently, the LTE sub-frame duration is set as short as 1 ms in order to minimize the radio-interface latency.
  • the OFDM cyclic prefix length can assume two different values. The shorter 4.7 ms cyclic prefix is enough to handle the delay spread for most unicast scenarios.
  • the length is extended by reducing the number of OFDM symbols in a sub-frame.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the first allocation mode or "localized mode” tries to benefit fully from frequency scheduling gain by allocating the sub-carriers on which a specific UE experiences the best radio channel conditions. Since this scheduling mode requires associated signalling (resource allocation signalling, measurement reporting in uplink), this mode would be best suited for non-real time, high data rate oriented services.
  • this mode In the localized resource allocation mode a user is allocated continuous blocks of sub-carriers.
  • the second resource allocation mode or "distributed mode” relies on the frequency diversity effect to achieve transmission robustness by allocating resources that are scattered over time and frequency grid.
  • the fundamental difference with localized mode is that the resource allocation algorithm does not try to allocate the physical resources based on some knowledge on the reception quality at the receiver but select more or less randomly the resource it allocates to a particular UE.
  • This distributed resource allocation method seems to be best suited for real-time services as less associated signalling (no fast measurement reporting, no fast allocation signalling) relative to "localized mode" is required.
  • Fig. 1 The two different resource allocation methods are shown in Fig. 1 for an OFDMA based radio access scheme.
  • the localized mode is characterized by the transmitted signal having a continuous spectrum that occupies a part of the total available spectrum.
  • Different symbol rates (corresponding to different data rates) of the transmitted signal imply different bandwidths (time/frequency bins) of a localized signal.
  • distributed mode is characterized by the transmitted signal having a non-continuous spectrum that is distributed over more or less the entire system bandwidth (time/frequency bins).
  • Channel Quality Reporting As a common example for uplink measurement reporting we will describe Channel Quality Reporting in this section.
  • the scheduler takes information on the channel status experienced by the users for the sub-carriers into account.
  • Channel quality information CQI
  • the control information signalled by the users allows the scheduler to exploit the multi-user diversity, thereby increasing the spectral efficiency.
  • CQI is used in a multi-user communication system to report the quality of channel resource(s). Apart from aid in a multi-user scheduler algorithm in the MAC layer on the network side this information may be used to assign channel resources to different users, or to adapt link parameters such as employed modulation scheme, coding rate, or transmit power, so as to exploit the assigned channel resource to its fullest potential.
  • a channel resource may be defined as a "resource block" as shown in Fig. 2 assuming a multi-carrier communication system, e.g. employing OFDM.
  • SINR Signal-to-Noise-plus-Interference Ratio
  • BLER Block Error Rate
  • UE capabilities like decoder complexity or RF improvements.
  • Fig. 1 depicts downlink transmissions in distributed and localized mode. Both transmission methods require different CQI reports.
  • the localized mode needs a quality report exactly on the bandwidth fraction used for the transmission to the specific UE, whereas the distributed mode needs information on the whole bandwidth (which would probably be reduced to an average overall value of e.g. SINR due to the resource constraints as discussed above)
  • the network can decide to configure an UE with different periodicity for CQl reporting.
  • a reduced reporting frequency saves uplink resources on the physical uplink control channel (PUCCH).
  • Intervals are typically in a range of 2 ms to 160 ms and depend on how often channel conditions need to be reported in order to be able to decide on the scheduling as described above. If the networks decides that the reported information is too infrequent or too often, it will reconfigure the corresponding UE with a new reporting periodicity.
  • the PUCCH parameters are configured by the network individually for each UE that is reporting CQI.
  • An object of the present invention is to provide a method for configuring a measurement report type to be used by a receiver to report a quality of a channel over which the receiver receives channel resources from a transmitter such that the measurement report type of each measurement report can be reliably identified by the transmitter.
  • the main idea of the invention is to provide methods for the network side in order to allow UEs to transmit measurement reports of different measurement reporting types where resources for measurement reporting on the feedback channel are assigned to each UE and these resources are distributed between the different measurement reports such that the receiving side in the network exactly knows which measurement report type it receives.
  • An embodiment of the invention provides a method for configuring a measurement report type to be used by a receiver to report a measurement to a transmitter, wherein the measurement is reported to the transmitter in a report signal over a control channel, said method comprising selecting a first measurement report type and at least one second measurement report type to be used by the receiver to report the measurement, generating a measurement reporting pattern defining an occurrence of the first measurement report type and the at least one second measurement report type in the report signal transmitted by the receiver to the transmitter over the control channel, and notifying the first measurement report type, the at least one second measurement report type, and the generated measurement reporting pattern to the receiver.
  • Another embodiment of the invention provides a method for configuring a measurement report type to be used by a receiver to report a measurement to a transmitter, wherein the measurement is reported to the transmitter in a report signal over a control channel, said method comprising selecting a first measurement report type and at least one second measurement report type to be used by the receiver to report the measurement, configuring a first measurement reporting process defining an occurrence of the first measurement report type in the report signal, configuring at least one second measurement reporting process defining an occurrence of the at least one second measurement report type in the report signal, and notifying the first measurement report type, the at least one second measurement report type, the configured first measurement reporting process, and the at least one second measurement reporting process to the receiver.
  • Another embodiment of the invention provides a method for reporting a measurement to a transmitter, wherein the measurement is reported to the transmitter in a report signal over a control channel, said method comprising receiving a notification from the transmitter about a first measurement report type and at least one second measurement report type to be used to report the measurement, and about a measurement reporting pattern defining an occurrence of the first measurement report type and the at least one second measurement report type in the report signal, determining a first measurement information according to the first measurement report type and at least one second measurement information according to the at least one second measurement report type, multiplexing the determined first and the at least one second measurement information according to the notified measurement reporting pattern, thereby obtaining a multiplexed signal, and transmitting the multiplexed signal to the transmitter.
  • Another embodiment of the invention provides a method for reporting a measurement to a transmitter, wherein the measurement is reported to the transmitter in a report signal over a control channel, said method comprising receiving a notification from the transmitter about a first measurement report type and at least one second measurement report type to be used to report the measurement, and about a first measurement reporting process defining an occurrence of the first measurement report type in the report signal, and at least one second measurement reporting process defining an occurrence of the at least one second measurement report type in the report signal, determining a first measurement information according to the first measurement report type and at least one second measurement information according to the at least one second measurement report type, multiplexing the determined first and the at least one second measurement information according to the notified first measurement reporting process and the at least one second measurement reporting process, respectively, thereby obtaining a multiplexed signal, and transmitting the multiplexed signal to the transmitter.
  • a transmitter comprising receiving means for receiving from a receiver over a control channel a report signal on a measurement, selecting means for selecting a first measurement report type and at least one second measurement report type to be used by the receiver to report the measurement, generating means for generating a measurement reporting pattern defining an occurrence of the first measurement report type and the at least one second measurement report type in the report signal transmitted by the receiver to the transmitter over the control channel, and notifying means for notifying the first measurement report type, the at least one second measurement report type, and the generated measurement reporting pattern to the receiver.
  • a transmitter comprising receiving means for receiving from a receiver over a control channel a report signal on a measurement, selecting means for selecting a first measurement report type and at least one second measurement report type to be used by the receiver to report the measurement, configuring means for configuring a first measurement reporting process defining an occurrence of the first measurement report type in the report signal, and at least one second measurement reporting process defining an occurrence of the at least one second measurement report type in the report signal, and notifying means for notifying the first measurement report type, the at least one second measurement report type, the configured first measurement reporting process, and the at least one second measurement reporting process to the receiver.
  • a receiver comprising transmitting means for transmitting to a transmitter over a control channel a report signal on a measurement, receiving means for receiving a notification from the transmitter about a first measurement report type and at least one second measurement report type to be used to report the measurement, and about a measurement reporting pattern defining an occurrence of the first measurement report type and the at least one second measurement report type in the report signal, determining means for determining a first measurement information according to the first measurement report type and at least one second measurement information according to the at least one second measurement report type, and multiplexing means for multiplexing the determined first and the at least one second measurement information according to the notified measurement reporting pattern, thereby obtaining a multiplexed signal, wherein the receiver is further adapted to transmit the multiplexed signal to the transmitter.
  • a receiver comprising transmitting means for transmitting to a transmitter over a control channel a report signal on a measurement, receiving means for receiving a notification from the transmitter about a first measurement report type and at least one second measurement report type to be used to report the measurement, and about a first measurement reporting process defining an occurrence of the first measurement report type in the report signal, and at least one second measurement reporting process defining an occurrence of the at least one second measurement report type in the report signal, determining means for determining a first measurement information according to the first measurement report type and at least one second measurement information according to the at least one second measurement report type, and multiplexing means for multiplexing the determined first and the at least one second measurement information according to the notified first measurement reporting process and the at least one second measurement reporting process, respectively, thereby obtaining a multiplexed signal, wherein the receiver is further adapted to transmit the multiplexed signal to the transmitter.
  • the invention describes a method for configuring an uplink measurement report type to be used by a receiver to report a measurement, e.g. a quality of a channel over which the receiver receives channel resources from a transmitter.
  • the measurement is reported by the receiver to the transmitter in a report signal over a control channel.
  • the receiver may send a first measurement report type and at least one second measurement report type, which are sent to the transmitter over the control channel.
  • the network in order to enable the receiver to send various measurement report types that are reliably distinguishable in the transmitter on the network side, not only configures the reporting interval, as presented in the prior art section, but additionally configures explicitly which measurement report type is to be sent by the receiver at each reporting occurrence.
  • mapping information indicates for each measurement report the type of each of these reports.
  • Fig. 4 illustrates two examples of measurement reporting patterns, depending on the number of different measurement report types that may be sent by the receiver.
  • the first measurement reporting pattern illustrated in Fig. 4 a) configures eight consecutive reporting events to report two different measurement report types.
  • the first measurement report is of type 1, the following seven measurement reports are of type 0.
  • a binary pattern is sufficient.
  • Fig. 4 a) represents a bit pattern, which defines the occurrence of two measurement report types in the measurement report signal to be transmitted by the receiver.
  • Fig 4 b represents a measurement reporting pattern using decimal values for measurement report types.
  • a further measurement report type is defined, which is referred as type 2.
  • the mapping of reporting events and measurement report types is such that each possible measurement report type is assigned to a unique predetermined measurement report type number. This allows the receiver to know in advance which measurement report type is to be used when receiving the measurement reporting pattern.
  • a receiver configured with the measurement reporting pattern shown in Fig. 4 a) transmits a measurement report signal as shown in Fig. 5 .
  • the first measurement report is of type 1, which is represented with horizontal lines, and the following seven measurement reports are of type 0, which is represented with vertical lines.
  • the pattern will be repeated. This results in a multiplexing of the two measurement report types.
  • measurement reporting is stopped (e.g. by explicit control message by either RRC or MAC from the network side) or the receiver, e.g. a UE, gets reconfigured by the transmitter, e.g. the eNodeB of the network, with a new measurement reporting pattern.
  • All measurement reports of one UE can thus be configured in a single control message that includes the reporting types used, the reporting periodicity, the reporting pattern and optionally the reporting duration, where the latter Information Element (IE) would save a message in order to explicitly stop measurement reporting.
  • IE Information Element
  • the necessary IEs for a Channel Quality Report are exemplarily described in Fig. 8 , which shows a table that does not contain all IEs possible for the measurement reporting message, but only those relevant to the invention.
  • a control message from the network configuring a measurement reporting process includes a measurement process ID, a measurement report type, a measurement reporting periodicity and an optional reporting duration.
  • a measurement reporting process message configures only a single measurement reporting process.
  • the lEs for this message are represented for the particular example of channel quality reporting in Fig. 9 .
  • the parameter designated therein as CQI feedback cycle represents the measurement reporting periodicity.
  • the configuration described above results in the same measurement reporting behavior as described with respect to the previously embodiment and illustrated in Fig. 5 .
  • the measurement reporting procedure according to this embodiment of the invention is depicted in Fig. 6 , where two measurement reporting processes are configured.
  • the first measurement reporting process which is represented with vertical lines, has a reporting periodicity of 10 ms
  • the second measurement reporting process which is represented with horizontal lines, has a reporting periodicity of 80 ms.
  • the measurement reporting process with the largest reporting periodicity has the highest priority and overrides all the other measurement reporting processes possessing a shorter reporting periodicity.
  • the second reporting process thus overrides the first reporting process. This results in the multiplexed measurement reporting scheme which is identical to the one described in Fig. 5 .
  • This embodiment of the invention provides the advantage that for reconfiguration of the reporting for one UE only new or discontinued measurement processes need to be addressed for adding or removing, while existing and continuing measurement processes do not need to be included in the reconfiguration message. In general, this would result in a smaller size of the reconfiguration message when compared to the previously described embodiment.
  • a further optimization of this embodiment for the case that two or more measurement configuration processes are configured or reconfigured at the same time consists in combining their configuration messages into a single RRC message, thus reducing the amount of messages that need to be sent.
  • FIG. 7 Yet another embodiment of the invention, which provides a further improvement of the method according to the invention, will now be described with respect to Fig. 7 .
  • the two measurement reports from the previous embodiment illustrated in Fig. 6 i.e. the first reporting process with a reporting periodicity of 10 ms and the second reporting process with a reporting periodicity of 80 ms, are now multiplexed in the code domain.
  • Each measurement reporting process is assigned to a specific code, for example a specific cyclic shift of a cyclic code, and each report is encoded with this specific code. Should two or more measurement reports happen at the same reporting occurrence, they are sent simultaneously, thus resulting in a measurement report signal as shown in Fig. 7 , where the first and second measurement report are code-multiplexed at the same reporting occurrence.
  • the configuration of this embodiment is similar to the previously described embodiment with the difference that each measurement reporting process needs to be assigned a unique code.
  • the benefit of this embodiment is that sending more than one measurement reporting process does not affect the time frequency/resources assigned to measurement reporting.
  • the data transmission property comprises at least one of a data rate, a modulation scheme, a MIMO mode, and a radio resource allocation.
  • a measurement report type is associated to a predetermined measurement report type number.
  • one second measurement report type is selected, and the generated measurement reporting pattern is a bit pattern, wherein a high bit of the bit pattern is associated to one of the first measurement report type and the second measurement report type, and a low bit of the bit pattern is associated to the other one of the first measurement report type and the second measurement report type.
  • the transmitter receives from the receiver a signal comprising measurement information, and distinguishes in the received measurement information first measurement information according to the first measurement report type from second measurement information according to the second measurement report type based on the bit pattern.
  • the measurement report type is a channel quality report type to be used by the receiver to report a quality of a channel over which the receiver receives channel resources from the transmitter, wherein the quality of the channel is reported to the transmitter in the report signal over the control channel.
  • the transmitter assigns a respective code to each one the first measurement reporting process and the at least one second measurement reporting process, and notifies each respective assigned code to the receiver.
  • the receiver receives a reporting frequency from the transmitter defining the frequency of the occurrence of the measurement reports in the report signal, wherein the first and the at least one second measurement information are multiplexed at the received reporting frequency.
  • the receiver receives from the transmitter, for the first measurement reporting process, a first reporting frequency defining the frequency of the occurrence of the first measurement report type in the first measurement reporting process, and, for the at least one second measurement reporting process, at least one second reporting frequency defining the frequency of the occurrence of the at least one second measurement report type in the at least one second measurement reporting process, wherein the first and the at least one second measurement information are multiplexed at the highest received reporting frequency.
  • the receiver receives from the transmitter a respective code assigned to each one the first measurement reporting process and the at least one second measurement reporting process, wherein the determined first and second measurement information are code-multiplexed according to the assigned respective codes.
  • a computing device or processor may for example be general purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, etc.
  • DSP digital signal processors
  • ASIC application specific integrated circuits
  • FPGA field programmable gate arrays
  • the various embodiments of the invention may also be performed or embodied by a combination of these devices.
  • the various embodiments of the invention may also be implemented by means of software modules, which are executed by a processor or directly in hardware. Also a combination of software modules and a hardware implementation may be possible.
  • the software modules may be stored on any kind of computer readable storage media, for example RAM, EPROM, EEPROM, flash memory, registers, hard disks, CD-ROM, DVD, etc.

Abstract

The present invention describes a method for configuring a measurement report type to be used by a receiver to report a measurement to a transmitter, wherein the measurement is reported to the transmitter in a report signal over a control channel, said method comprising selecting a first measurement report type and at least one second measurement report type to be used by the receiver to report the measurement, generating a measurement reporting pattern defining an occurrence of the first measurement report type and the at least one second measurement report type in the report signal transmitted by the receiver to the transmitter over control channel, and notifying the first measurement report type, the at least one second measurement report type, and the generated measurement reporting pattern to the receiver.

Description

    Field of the Invention
  • The present invention relates to indicating and identifying different versions of uplink measurement reports. Methods are presented to distinguish such reports so that the receiver can know which measurement report type has been sent. The invention is applicable in the field of communication between a transmitter and a receiver. It is particularly related to communication systems where a receiver sends feedback information to the transmitter, where the feedback contains different information about the communication channel condition experienced by the receiver and the transmitter needs to distinguish between several such reports of different content.
  • Background of the Invention
  • Third-generation mobile systems (3G) based on WCDMA radio-access technology are being deployed on a broad scale all around the world. A first step in enhancing or evolving this technology entails introducing High-Speed Downlink Packet Access (HSDPA) and an enhanced uplink, also referred to as High Speed Uplink Packet Access (HSUPA), giving a radio-access technology that is highly competitive.
  • However, knowing that user and operator requirements and expectations will continue to evolve, the 3GPP has begun considering the next major step or evolution of the 3G standard to ensure the long-term competitiveness of 3G. The 3GPP launched a Study Item "Evolved UTRA and UTRAN" (E-UTRA and E- UTRAN). The study will investigate means of achieving major leaps in performance in order to improve service provisioning and reduce user and operator costs.
  • It is generally assumed that there will be a convergence toward the use of Internet Protocols (IP), and all future services will be carried on top of IP. Therefore, the focus of the evolution is on enhancements to the packet-switched (PS) domain.
  • The main objectives of the evolution are to further improve service provisioning and reduce user and operator costs as already mentioned.
  • More specifically, some key performance and capability targets for the long-term evolution are:
    • Significantly higher data rates compared to HSDPA and HSUPA: envisioned target peak data rates of more than 100Mbps over the downlink and 50Mbps over the uplink
    • Improved coverage: high data rates with wide-area coverage
    • Significantly reduced latency in the user plane in the interest of improving the performance of higher layer protocols (for example, TCP) as well as reducing the delay associated with control plane procedures (for instance, session setup)
    • Greater system capacity: threefold capacity compared to current standards.
  • One other key requirement of the long-term evolution is to allow for a smooth migration to these technologies.
  • The ability to provide high bit rates is a key measure for LTE. Multiple parallel data stream transmission to a single terminal, using multiple-input-multiple-output (MIMO) techniques, is one important component to reach this. Larger transmission bandwidth and at the same time flexible spectrum allocation are other pieces to consider when deciding what radio access technique to use.
  • The choice of adaptive multi-layer Orthogonal Frequency Division Multiplexing (AML-OFDM) in downlink will not only facilitate to operate at different bandwidths in general but also large bandwidths for high data rates in particular. Varying spectrum allocations, ranging from 1.25 MHz to 20 MHz, are supported by allocating corresponding numbers of AML-OFDM sub-carriers. Operation in both paired and unpaired spectrum is possible as both time-division and frequency-division duplex is supported by AML-OFDM.
  • OFDM with Orthogonal Frequency Domain Adaptation
  • The AML-OFDM-based downlink has a frequency structure based on a large number of individual sub-carriers with a spacing of 15 kHz. This frequency granularity facilitates to implement dual-mode UTRA/E-UTRA terminals. The ability to reach high bit rates is highly dependent on short delays in the system and a prerequisite for this is short sub-frame duration. Consequently, the LTE sub-frame duration is set as short as 1 ms in order to minimize the radio-interface latency. In order to handle different delay spreads and corresponding cell sizes with a modest overhead, the OFDM cyclic prefix length can assume two different values. The shorter 4.7 ms cyclic prefix is enough to handle the delay spread for most unicast scenarios. With the longer cyclic prefix of 16.7 ms, very large cells, up to and exceeding 120 km cell radius, with large amounts of time dispersion can be handled. In this case, the length is extended by reducing the number of OFDM symbols in a sub-frame.
  • The basic principle of Orthogonal Frequency Division Multiplexing (OFDM) is to split the frequency band into a number of narrowband channels. Therefore, OFDM allows transmitting data on relatively flat parallel channels (sub-carriers) even if the channel of the whole frequency band is frequency selective due to a multipath environment. Since the sub-carriers experience different channel states, the capacities of the sub-carriers vary and permit a transmission on each sub-carrier with a distinct data-rate. Hence, sub-carrier wise (frequency domain) Link Adaptation (LA) by means of Adaptive Modulation and Coding (AMC) increases the radio efficiency by transmitting different data-rates over the sub-carriers. OFDMA allows multiple users to transmit simultaneously on the different sub-carriers per OFDM symbol. Since the probability that all users experience a deep fade in a particular sub-carrier is very low, it can be assured that sub-carriers are assigned to the users who see good channel gains on the corresponding sub-carriers.
  • Two different resource allocation methods can be distinguished upon when considering a radio access scheme that distributes available frequency spectrum among different users as in OFDMA. The first allocation mode or "localized mode" tries to benefit fully from frequency scheduling gain by allocating the sub-carriers on which a specific UE experiences the best radio channel conditions. Since this scheduling mode requires associated signalling (resource allocation signalling, measurement reporting in uplink), this mode would be best suited for non-real time, high data rate oriented services. In the localized resource allocation mode a user is allocated continuous blocks of sub-carriers.
  • The second resource allocation mode or "distributed mode" relies on the frequency diversity effect to achieve transmission robustness by allocating resources that are scattered over time and frequency grid. The fundamental difference with localized mode is that the resource allocation algorithm does not try to allocate the physical resources based on some knowledge on the reception quality at the receiver but select more or less randomly the resource it allocates to a particular UE. This distributed resource allocation method seems to be best suited for real-time services as less associated signalling (no fast measurement reporting, no fast allocation signalling) relative to "localized mode" is required.
  • The two different resource allocation methods are shown in Fig. 1 for an OFDMA based radio access scheme. As can be seen from the left-hand part of Fig. 1, which depicts the localized transmission mode, the localized mode is characterized by the transmitted signal having a continuous spectrum that occupies a part of the total available spectrum. Different symbol rates (corresponding to different data rates) of the transmitted signal imply different bandwidths (time/frequency bins) of a localized signal. On the other hand, as can be seen from the right-hand part of the figure, distributed mode is characterized by the transmitted signal having a non-continuous spectrum that is distributed over more or less the entire system bandwidth (time/frequency bins).
  • Measurement Reporting
  • As a common example for uplink measurement reporting we will describe Channel Quality Reporting in this section. As already mentioned above, when allocating resources in the downlink to different users in a cell, the scheduler takes information on the channel status experienced by the users for the sub-carriers into account. Channel quality information (CQI), the control information signalled by the users, allows the scheduler to exploit the multi-user diversity, thereby increasing the spectral efficiency.
  • CQI is used in a multi-user communication system to report the quality of channel resource(s). Apart from aid in a multi-user scheduler algorithm in the MAC layer on the network side this information may be used to assign channel resources to different users, or to adapt link parameters such as employed modulation scheme, coding rate, or transmit power, so as to exploit the assigned channel resource to its fullest potential.
  • A channel resource may be defined as a "resource block" as shown in Fig. 2 assuming a multi-carrier communication system, e.g. employing OFDM. In order to have information on the "quality" of this resource block, measurement of the channel quality have to be taken in the receiving side. An exemplary solution for this is to perform a measurement of the Signal-to-Noise-plus-Interference Ratio (SINR) using reference symbols provided by the transmitting side. However, quality reports are not limited to this and could also contain other types of measurement like a Block Error Rate (BLER) or even UE capabilities like decoder complexity or RF improvements. Examples of different CQI compression formats resulting in different CQI reporting types are given in the document "3GPP TSG-RAN WG1 Meeting #46bis, TDoc R1-062808, 09 - 13 October 2006, Seoul, Korea". The signalling flow between the network (eNodeB) and the UE for CQI reporting is depicted in Fig. 3.
  • Assuming that the smallest unit can be assigned or adapted according to the above, in the ideal case CQI for all resource blocks for all users should be always available. However, due to constrained capacity of the feedback channel, this is most likely not feasible. The feedback channel resources available for CQI is limited and these resources have to be shared among all reporting UEs.
  • Therefore, reduction techniques are required, so as to transmit for example CQI information only for a subset of resource blocks for a given user. One possibility is to report only the strongest resource blocks. Furthermore, different transmission techniques as described in the section above related to OFDM require also different forms of CQI reports. As already described above, Fig. 1 depicts downlink transmissions in distributed and localized mode. Both transmission methods require different CQI reports. The localized mode needs a quality report exactly on the bandwidth fraction used for the transmission to the specific UE, whereas the distributed mode needs information on the whole bandwidth (which would probably be reduced to an average overall value of e.g. SINR due to the resource constraints as discussed above)
  • Depending on the variability of the channel conditions experienced, the network can decide to configure an UE with different periodicity for CQl reporting. In case of a slowly changing channel, a reduced reporting frequency saves uplink resources on the physical uplink control channel (PUCCH). Intervals are typically in a range of 2 ms to 160 ms and depend on how often channel conditions need to be reported in order to be able to decide on the scheduling as described above. If the networks decides that the reported information is too infrequent or too often, it will reconfigure the corresponding UE with a new reporting periodicity. Thus, the PUCCH parameters are configured by the network individually for each UE that is reporting CQI.
  • When UEs reporting measurements, e.g. CQI, not only report a single type of report but provide different types of reports in the same allocated resources, this could, allow the network to e.g. make a decision for switching from distributed to localized mode downlink transmission or vice versa. For making such a decision, the network however needs measurement information for both modes. There is therefore a need for a method allowing the network to reliably identify which type of content each measurement report contains. Due to resource constraints on the feedback channel, measurement reports are kept as redundancy free as possible so that it is difficult for the network to detect the measurement report types blindly.
  • Summary of the Invention
  • An object of the present invention is to provide a method for configuring a measurement report type to be used by a receiver to report a quality of a channel over which the receiver receives channel resources from a transmitter such that the measurement report type of each measurement report can be reliably identified by the transmitter.
  • The main idea of the invention is to provide methods for the network side in order to allow UEs to transmit measurement reports of different measurement reporting types where resources for measurement reporting on the feedback channel are assigned to each UE and these resources are distributed between the different measurement reports such that the receiving side in the network exactly knows which measurement report type it receives.
  • An embodiment of the invention provides a method for configuring a measurement report type to be used by a receiver to report a measurement to a transmitter, wherein the measurement is reported to the transmitter in a report signal over a control channel, said method comprising selecting a first measurement report type and at least one second measurement report type to be used by the receiver to report the measurement, generating a measurement reporting pattern defining an occurrence of the first measurement report type and the at least one second measurement report type in the report signal transmitted by the receiver to the transmitter over the control channel, and notifying the first measurement report type, the at least one second measurement report type, and the generated measurement reporting pattern to the receiver.
  • Another embodiment of the invention provides a method for configuring a measurement report type to be used by a receiver to report a measurement to a transmitter, wherein the measurement is reported to the transmitter in a report signal over a control channel, said method comprising selecting a first measurement report type and at least one second measurement report type to be used by the receiver to report the measurement, configuring a first measurement reporting process defining an occurrence of the first measurement report type in the report signal, configuring at least one second measurement reporting process defining an occurrence of the at least one second measurement report type in the report signal, and notifying the first measurement report type, the at least one second measurement report type, the configured first measurement reporting process, and the at least one second measurement reporting process to the receiver.
  • Another embodiment of the invention provides a method for reporting a measurement to a transmitter, wherein the measurement is reported to the transmitter in a report signal over a control channel, said method comprising receiving a notification from the transmitter about a first measurement report type and at least one second measurement report type to be used to report the measurement, and about a measurement reporting pattern defining an occurrence of the first measurement report type and the at least one second measurement report type in the report signal, determining a first measurement information according to the first measurement report type and at least one second measurement information according to the at least one second measurement report type, multiplexing the determined first and the at least one second measurement information according to the notified measurement reporting pattern, thereby obtaining a multiplexed signal, and transmitting the multiplexed signal to the transmitter.
  • Another embodiment of the invention provides a method for reporting a measurement to a transmitter, wherein the measurement is reported to the transmitter in a report signal over a control channel, said method comprising receiving a notification from the transmitter about a first measurement report type and at least one second measurement report type to be used to report the measurement, and about a first measurement reporting process defining an occurrence of the first measurement report type in the report signal, and at least one second measurement reporting process defining an occurrence of the at least one second measurement report type in the report signal, determining a first measurement information according to the first measurement report type and at least one second measurement information according to the at least one second measurement report type, multiplexing the determined first and the at least one second measurement information according to the notified first measurement reporting process and the at least one second measurement reporting process, respectively, thereby obtaining a multiplexed signal, and transmitting the multiplexed signal to the transmitter.
  • Another embodiment of the invention provides a transmitter, comprising receiving means for receiving from a receiver over a control channel a report signal on a measurement, selecting means for selecting a first measurement report type and at least one second measurement report type to be used by the receiver to report the measurement, generating means for generating a measurement reporting pattern defining an occurrence of the first measurement report type and the at least one second measurement report type in the report signal transmitted by the receiver to the transmitter over the control channel, and notifying means for notifying the first measurement report type, the at least one second measurement report type, and the generated measurement reporting pattern to the receiver.
  • Another embodiment of the invention provides a transmitter, comprising receiving means for receiving from a receiver over a control channel a report signal on a measurement, selecting means for selecting a first measurement report type and at least one second measurement report type to be used by the receiver to report the measurement, configuring means for configuring a first measurement reporting process defining an occurrence of the first measurement report type in the report signal, and at least one second measurement reporting process defining an occurrence of the at least one second measurement report type in the report signal, and notifying means for notifying the first measurement report type, the at least one second measurement report type, the configured first measurement reporting process, and the at least one second measurement reporting process to the receiver.
  • Another embodiment of the invention provides a receiver, comprising transmitting means for transmitting to a transmitter over a control channel a report signal on a measurement, receiving means for receiving a notification from the transmitter about a first measurement report type and at least one second measurement report type to be used to report the measurement, and about a measurement reporting pattern defining an occurrence of the first measurement report type and the at least one second measurement report type in the report signal, determining means for determining a first measurement information according to the first measurement report type and at least one second measurement information according to the at least one second measurement report type, and multiplexing means for multiplexing the determined first and the at least one second measurement information according to the notified measurement reporting pattern, thereby obtaining a multiplexed signal, wherein the receiver is further adapted to transmit the multiplexed signal to the transmitter.
  • Another embodiment of the invention provides a receiver, comprising transmitting means for transmitting to a transmitter over a control channel a report signal on a measurement, receiving means for receiving a notification from the transmitter about a first measurement report type and at least one second measurement report type to be used to report the measurement, and about a first measurement reporting process defining an occurrence of the first measurement report type in the report signal, and at least one second measurement reporting process defining an occurrence of the at least one second measurement report type in the report signal, determining means for determining a first measurement information according to the first measurement report type and at least one second measurement information according to the at least one second measurement report type, and multiplexing means for multiplexing the determined first and the at least one second measurement information according to the notified first measurement reporting process and the at least one second measurement reporting process, respectively, thereby obtaining a multiplexed signal, wherein the receiver is further adapted to transmit the multiplexed signal to the transmitter.
  • Brief Description of the Drawings
  • Fig. 1
    Localized (left) and distributed (right) resource allocation of resource blocks for data transmission;
    Fig. 2
    Visualisation of used terms and symbols;
    Fig.3
    Signal flow for measurement reporting between an eNodeB and a UE for the particular example of channel quality reporting;
    Fig. 4
    Examples of a measurement reporting pattern for a) two measurement report types and b) more than two measurement report types;
    Fig.5
    Multiplexing of measurement reports using a measurement reporting pattern to distinguish between different measurement reports;
    Fig. 6
    Multiplexing of measurement reports by configuring different measurement reporting processes;
    Fig. 7
    Code-multiplexing of measurement reports;
    Fig.8
    Information Elements necessary for measurement reporting configuration/reconfiguration message; and
    Fig. 9
    Information Elements necessary for measurement reporting process message.
    Detailed description of the Invention
  • In the following, the invention is described in more detail in reference to the attached figures and drawings. Similar or corresponding details in the figures are marked with the same reference numerals.
  • The invention describes a method for configuring an uplink measurement report type to be used by a receiver to report a measurement, e.g. a quality of a channel over which the receiver receives channel resources from a transmitter. The measurement is reported by the receiver to the transmitter in a report signal over a control channel. The receiver may send a first measurement report type and at least one second measurement report type, which are sent to the transmitter over the control channel.
  • According to an embodiment of the invention, in order to enable the receiver to send various measurement report types that are reliably distinguishable in the transmitter on the network side, the network not only configures the reporting interval, as presented in the prior art section, but additionally configures explicitly which measurement report type is to be sent by the receiver at each reporting occurrence.
  • This can be done by extending the configuration with a measurement reporting pattern that contains mapping information between the measurement reporting occurrences and each measurement report type. In case of n measurement reports, the mapping information indicates for each measurement report the type of each of these reports.
  • Fig. 4 illustrates two examples of measurement reporting patterns, depending on the number of different measurement report types that may be sent by the receiver. The first measurement reporting pattern illustrated in Fig. 4 a) configures eight consecutive reporting events to report two different measurement report types. The first measurement report is of type 1, the following seven measurement reports are of type 0. For encoding such a reporting scheme, a binary pattern is sufficient. Hence, Fig. 4 a) represents a bit pattern, which defines the occurrence of two measurement report types in the measurement report signal to be transmitted by the receiver.
  • However, should there be more than two reporting types to be used, these have to be made distinguishable by using more than one bit for each measurement report type. Hence, Fig 4 b) represents a measurement reporting pattern using decimal values for measurement report types. In this example, a further measurement report type is defined, which is referred as type 2.
  • According to an embodiment of the invention, the mapping of reporting events and measurement report types is such that each possible measurement report type is assigned to a unique predetermined measurement report type number. This allows the receiver to know in advance which measurement report type is to be used when receiving the measurement reporting pattern.
  • A receiver configured with the measurement reporting pattern shown in Fig. 4 a) transmits a measurement report signal as shown in Fig. 5. As in the prior art systems, there exists a single periodicity between two measurement reporting events, where the first measurement report is of type 1, which is represented with horizontal lines, and the following seven measurement reports are of type 0, which is represented with vertical lines. After the eighth measurement report, the pattern will be repeated. This results in a multiplexing of the two measurement report types.
  • The procedure described above will continue until measurement reporting is stopped (e.g. by explicit control message by either RRC or MAC from the network side) or the receiver, e.g. a UE, gets reconfigured by the transmitter, e.g. the eNodeB of the network, with a new measurement reporting pattern.
  • All measurement reports of one UE can thus be configured in a single control message that includes the reporting types used, the reporting periodicity, the reporting pattern and optionally the reporting duration, where the latter Information Element (IE) would save a message in order to explicitly stop measurement reporting. The necessary IEs for a Channel Quality Report are exemplarily described in Fig. 8, which shows a table that does not contain all IEs possible for the measurement reporting message, but only those relevant to the invention.
  • Another embodiment of the invention, which provides a further improvement of the method according to the invention, will be now be described with respect to Fig. 6. In the previously described embodiment, the introduction of an additional measurement report type or the removal of an existing measurement report type from a UE requires that this specific UE has to be reconfigured with a new measurement reporting pattern. Hence, this requires including the full measurement reporting pattern when reconfiguring the uplink measurement reporting. According to this embodiment of the invention, measurement reporting processes are defined instead of the use of a measurement reporting pattern.
  • A control message from the network configuring a measurement reporting process includes a measurement process ID, a measurement report type, a measurement reporting periodicity and an optional reporting duration. A measurement reporting process message configures only a single measurement reporting process. The lEs for this message are represented for the particular example of channel quality reporting in Fig. 9. The parameter designated therein as CQI feedback cycle represents the measurement reporting periodicity.
  • The configuration described above results in the same measurement reporting behavior as described with respect to the previously embodiment and illustrated in Fig. 5. The measurement reporting procedure according to this embodiment of the invention is depicted in Fig. 6, where two measurement reporting processes are configured. The first measurement reporting process, which is represented with vertical lines, has a reporting periodicity of 10 ms, whereas the second measurement reporting process, which is represented with horizontal lines, has a reporting periodicity of 80 ms.
  • Should it be the case that more than one measurement reporting process is scheduled for the same reporting occurrence, the measurement reporting process with the largest reporting periodicity has the highest priority and overrides all the other measurement reporting processes possessing a shorter reporting periodicity. In the example in Fig. 6, the second reporting process thus overrides the first reporting process. This results in the multiplexed measurement reporting scheme which is identical to the one described in Fig. 5.
  • This embodiment of the invention provides the advantage that for reconfiguration of the reporting for one UE only new or discontinued measurement processes need to be addressed for adding or removing, while existing and continuing measurement processes do not need to be included in the reconfiguration message. In general, this would result in a smaller size of the reconfiguration message when compared to the previously described embodiment.
  • A further optimization of this embodiment for the case that two or more measurement configuration processes are configured or reconfigured at the same time consists in combining their configuration messages into a single RRC message, thus reducing the amount of messages that need to be sent.
  • Yet another embodiment of the invention, which provides a further improvement of the method according to the invention, will now be described with respect to Fig. 7. In this embodiment, the two measurement reports from the previous embodiment illustrated in Fig. 6, i.e. the first reporting process with a reporting periodicity of 10 ms and the second reporting process with a reporting periodicity of 80 ms, are now multiplexed in the code domain.
  • Each measurement reporting process is assigned to a specific code, for example a specific cyclic shift of a cyclic code, and each report is encoded with this specific code. Should two or more measurement reports happen at the same reporting occurrence, they are sent simultaneously, thus resulting in a measurement report signal as shown in Fig. 7, where the first and second measurement report are code-multiplexed at the same reporting occurrence.
  • The configuration of this embodiment is similar to the previously described embodiment with the difference that each measurement reporting process needs to be assigned a unique code. The benefit of this embodiment is that sending more than one measurement reporting process does not affect the time frequency/resources assigned to measurement reporting.
  • According to a further aspect, the data transmission property comprises at least one of a data rate, a modulation scheme, a MIMO mode, and a radio resource allocation.
  • According to a further aspect, a measurement report type is associated to a predetermined measurement report type number.
  • According to a further aspect, one second measurement report type is selected, and the generated measurement reporting pattern is a bit pattern, wherein a high bit of the bit pattern is associated to one of the first measurement report type and the second measurement report type, and a low bit of the bit pattern is associated to the other one of the first measurement report type and the second measurement report type.
  • According to a further aspect, the transmitter receives from the receiver a signal comprising measurement information, and distinguishes in the received measurement information first measurement information according to the first measurement report type from second measurement information according to the second measurement report type based on the bit pattern.
  • According to a further aspect, the measurement report type is a channel quality report type to be used by the receiver to report a quality of a channel over which the receiver receives channel resources from the transmitter, wherein the quality of the channel is reported to the transmitter in the report signal over the control channel.
  • According to a further aspect, the transmitter assigns a respective code to each one the first measurement reporting process and the at least one second measurement reporting process, and notifies each respective assigned code to the receiver.
  • In the embodiment of reporting a measurement to a transmitter, the receiver receives a reporting frequency from the transmitter defining the frequency of the occurrence of the measurement reports in the report signal, wherein the first and the at least one second measurement information are multiplexed at the received reporting frequency.
  • According to a further aspect, the receiver receives from the transmitter, for the first measurement reporting process, a first reporting frequency defining the frequency of the occurrence of the first measurement report type in the first measurement reporting process, and, for the at least one second measurement reporting process, at least one second reporting frequency defining the frequency of the occurrence of the at least one second measurement report type in the at least one second measurement reporting process, wherein the first and the at least one second measurement information are multiplexed at the highest received reporting frequency.
  • According to a further aspect, the receiver receives from the transmitter a respective code assigned to each one the first measurement reporting process and the at least one second measurement reporting process, wherein the determined first and second measurement information are code-multiplexed according to the assigned respective codes.
  • Another embodiment of the invention relates to the implementation of the above described various embodiments using hardware and software. It is recognized that the various embodiments of the invention may be implemented or performed using computing devices (processors). A computing device or processor may for example be general purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, etc. The various embodiments of the invention may also be performed or embodied by a combination of these devices.
  • Further, the various embodiments of the invention may also be implemented by means of software modules, which are executed by a processor or directly in hardware. Also a combination of software modules and a hardware implementation may be possible. The software modules may be stored on any kind of computer readable storage media, for example RAM, EPROM, EEPROM, flash memory, registers, hard disks, CD-ROM, DVD, etc.
  • In the previous paragraphs various embodiments of the invention and variations thereof have been described. It would be appreciated by a person skilled in the art that numerous variations and/or modifications may be made to the present invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described.
  • It should be further noted that most of the embodiments have been outlined in relation to a 3GPP-based communication system and the terminology used in the previous sections mainly relates to the 3GPP terminology. However, the terminology and the description of the various embodiments with respect to 3GPP-based architectures is not intended to limit the principles and ideas of the inventions to such systems.
  • Also the detailed explanations given in the Technical Background section above are intended to better understand the mostly 3GPP specific exemplary embodiments described herein and should not be understood as limiting the invention to the described specific implementations of processes and functions in the mobile communication network. Nevertheless, the improvements proposed herein may be readily applied in the architectures described in the Technological Background section. Furthermore the concept of the invention may be also readily used in the LTE RAN currently discussed by the 3GPP.

Claims (15)

  1. Method for configuring a measurement report type to be used by a receiver to report a measurement to a transmitter, wherein the measurement is reported to the transmitter in a report signal over a control channel, said method comprising the following steps executed by the transmitter:
    selecting a first measurement report type and at least one second measurement report type to be used by the receiver to report the measurement,
    generating a measurement reporting pattern defining an occurrence of the first measurement report type and the at least one second measurement report type in the report signal transmitted by the receiver to the transmitter over the control channel, and
    notifying the first measurement report type, the at least one second measurement report type, and the generated measurement reporting pattern to the receiver.
  2. The method according to claim 1, further comprising notifying a reporting frequency to the receiver defining the frequency of the occurrence of the measurement reports transmitted in the report signal.
  3. The method according to claim 1 or 2, further comprising receiving from the receiver a multiplexed signal comprising measurement information, and de-multiplexing the multiplexed signal according to the measurement reporting pattern.
  4. The method according to claim 3, further comprising:
    distinguishing in the received measurement information first measurement information according to the first measurement report type from at least one second measurement information according to the at least one second measurement report type based on the measurement reporting pattern, and
    modifying a data transmission property based on the distinguishing result.
  5. The method according to one of claims 1 to 4, wherein the measurement reporting pattern comprises mapping information between an occurrence time in the report signal and each measurement report type.
  6. Method for configuring a measurement report type to be used by a receiver to report a measurement to a transmitter, wherein the measurement is reported to the transmitter in a report signal over a control channel, said method comprising the following steps executed by the transmitter:
    selecting a first measurement report type and at least one second measurement report type to be used by the receiver to report the measurement,
    configuring a first measurement reporting process defining an occurrence of the first measurement report type in the report signal,
    configuring at least one second measurement reporting process defining an occurrence of the at least one second measurement report type in the report signal, and
    notifying the first measurement report type, the at least one second measurement report type, the configured first measurement reporting process, and the at least one second measurement reporting process to the receiver.
  7. The method according to claim 6, further comprising notifying to the receiver, for the first measurement reporting process, a first reporting frequency defining the frequency of the occurrence of the first measurement report type in the first measurement reporting process, and, for the at least one second measurement reporting process, at least one second reporting frequency defining the frequency of the occurrence of the at least one second measurement report type in the at least one second measurement reporting process.
  8. Method for reporting a measurement to a transmitter, wherein the measurement is reported to the transmitter in a report signal over a control channel, said method comprising the following steps executed by the receiver:
    receiving a notification from the transmitter about a first measurement report type and at least one second measurement report type to be used to report the measurement, and about a measurement reporting pattern defining an occurrence of the first measurement report type and the at least one second measurement report type in the report signal,
    determining a first measurement information according to the first measurement report type and at least one second measurement information according to the at least one second measurement report type,
    multiplexing the determined first and the at least one second measurement information according to the notified measurement reporting pattern, thereby obtaining a multiplexed signal, and
    transmitting the multiplexed signal to the transmitter.
  9. Method for reporting a measurement to a transmitter, wherein the measurement is reported to the transmitter in a report signal over a control channel, said method comprising the following steps executed by the receiver:
    receiving a notification from the transmitter about a first measurement report type and at least one second measurement report type to be used to report the measurement, and about a first measurement reporting process defining an occurrence of the first measurement report type in the report signal, and at least one second measurement reporting process defining an occurrence of the at least one second measurement report type in the report signal,
    determining a first measurement information according to the first measurement report type and at least one second measurement information according to the at least one second measurement report type,
    multiplexing the determined first and the at least one second measurement information according to the notified first measurement reporting process and the at least one second measurement reporting process, respectively, thereby obtaining a multiplexed signal, and
    transmitting the multiplexed signal to the transmitter.
  10. The method according to claim 9, wherein, when an occurrence of the first measurement report type and one of the at least one second measurement report type substantially coincide with each other in the report signal, the one of the first measurement reporting process and the at least one second measurement reporting process having the lowest reporting frequency has priority.
  11. A transmitter, comprising:
    receiving means for receiving from a receiver over a control channel a report signal on a measurement,
    selecting means for selecting a first measurement report type and at least one second measurement report type to be used by the receiver to report the measurement,
    generating means for generating a measurement reporting pattern defining an occurrence of the first measurement report type and the at least one second measurement report type in the report signal transmitted by the receiver to the transmitter over the control channel, and
    notifying means for notifying the first measurement report type, the at least one second measurement report type, and the generated measurement reporting pattern to the receiver.
  12. A transmitter, comprising:
    receiving means for receiving from a receiver over a control channel a report signal on a measurement,
    selecting means for selecting a first measurement report type and at least one second measurement report type to be used by the receiver to report the measurement,
    configuring means for configuring a first measurement reporting process defining an occurrence of the first measurement report type in the report signal, and at least one second measurement reporting process defining an occurrence of the at least one second measurement report type in the report signal, and
    notifying means for notifying the first measurement report type, the at least one second measurement report type, the configured first measurement reporting process, and the at least one second measurement reporting process to the receiver.
  13. A receiver, comprising:
    transmitting means for transmitting to a transmitter over a control channel a report signal on a measurement,
    receiving means for receiving a notification from the transmitter about a first measurement report type and at least one second measurement report type to be used to report the measurement, and about a measurement reporting pattern defining an occurrence of the first measurement report type and the at least one second measurement report type in the report signal,
    determining means for determining a first measurement information according to the first measurement report type and at least one second measurement information according to the at least one second measurement report type, and
    multiplexing means for multiplexing the determined first and the at least one second measurement information according to the notified measurement reporting pattern, thereby obtaining a multiplexed signal,
    wherein the receiver is further adapted to transmit the multiplexed signal to the transmitter.
  14. A receiver, comprising:
    transmitting means for transmitting to a transmitter over a control channel a report signal on a measurement,
    receiving means for receiving a notification from the transmitter about a first measurement report type and at least one second measurement report type to be used to report the measurement, and about a first measurement reporting process defining an occurrence of the first measurement report type in the report signal, and at least one second measurement reporting process defining an occurrence of the at least one second measurement report type in the report signal,
    determining means for determining a first measurement information according to the first measurement report type and at least one second measurement information according to the at least one second measurement report type, and
    multiplexing means for multiplexing the determined first and the at least one second measurement information according to the notified first measurement reporting process and the at least one second measurement reporting process, respectively, thereby obtaining a multiplexed signal,
    wherein the receiver is further adapted to transmit the multiplexed signal to the transmitter.
  15. A receiver, comprising:
    transmitting section for transmitting to a transmitter over a control channel, each of first measurement report and second measurement report periodically;
    controlling section for controlling said transmitting section to transmit the first measurement report and not to transmit the second measurement report, when (i) a timing for transmitting the first measurement report and a timing for transmitting the second measurement report conflict and (ii) the first measurement report is to be transmitted with a longer period than the second measurement report.
EP11180942A 2007-08-16 2007-08-16 Signalling and mapping of measurement reports Active EP2398272B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07016131A EP2028906B1 (en) 2007-08-16 2007-08-16 Signalling and mapping of measurement reports

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP07016131.0 Division 2007-08-16

Publications (2)

Publication Number Publication Date
EP2398272A1 true EP2398272A1 (en) 2011-12-21
EP2398272B1 EP2398272B1 (en) 2013-03-20

Family

ID=38961483

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11180942A Active EP2398272B1 (en) 2007-08-16 2007-08-16 Signalling and mapping of measurement reports
EP07016131A Active EP2028906B1 (en) 2007-08-16 2007-08-16 Signalling and mapping of measurement reports

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07016131A Active EP2028906B1 (en) 2007-08-16 2007-08-16 Signalling and mapping of measurement reports

Country Status (7)

Country Link
US (2) US8787219B2 (en)
EP (2) EP2398272B1 (en)
JP (2) JP5135436B2 (en)
CN (2) CN103326817B (en)
AT (1) ATE539588T1 (en)
BR (2) BRPI0814486B1 (en)
WO (1) WO2009021572A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5111536B2 (en) * 2009-04-27 2013-01-09 株式会社エヌ・ティ・ティ・ドコモ User apparatus, base station apparatus, and communication control method
KR20120037948A (en) * 2009-07-21 2012-04-20 엘지전자 주식회사 Apparatus and method for transmitting channel state information in a wireless communication system
CN101998497B (en) * 2009-08-19 2013-03-27 中兴通讯股份有限公司 Method and device for reporting channel state information aperiodically
US9112741B2 (en) * 2009-09-18 2015-08-18 Qualcomm Incorporated Protocol to support adaptive station-dependent channel state information feedback rate in multi-user communication systems
JP5523130B2 (en) * 2010-02-08 2014-06-18 キヤノン株式会社 COMMUNICATION DEVICE, COMMUNICATION METHOD, AND PROGRAM
CN102164375A (en) * 2010-02-22 2011-08-24 华为技术有限公司 Method and system for collecting terminal measurement data
US8989069B2 (en) * 2010-03-03 2015-03-24 Qualcomm Incorporated Method and apparatus for channel quality indicator (CQI) enhancements
US9042836B2 (en) * 2010-03-31 2015-05-26 Htc Corporation Apparatuses and methods for measurement control
US9451492B2 (en) 2010-03-31 2016-09-20 Htc Corporation Apparatuses and methods for reporting availability of measurement log
US9414269B2 (en) * 2010-05-14 2016-08-09 Blackberry Limited Systems and methods of transmitting measurement reports
EP2469916B1 (en) * 2010-12-21 2015-10-28 Innovative Sonic Corporation Method and apparatus for Log reporting in a wireless communication system for minimisation of drive tests
US8498640B2 (en) * 2011-03-31 2013-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Fast radio access technology detection for cell search
CN102802174B (en) * 2011-05-26 2014-12-10 中国移动通信集团公司 Drive test data acquiring method, drive test data acquiring system and drive test data acquiring device
CN103563434B (en) * 2011-06-08 2018-09-25 瑞典爱立信有限公司 Method and apparatus for reporting downlink channel quality
KR101896001B1 (en) * 2011-07-12 2018-09-06 한국전자통신연구원 Method of mobility management for mobile terminal in a heterogeneous network environment
US9590714B2 (en) * 2011-11-16 2017-03-07 Qualcomm Incorporated Method and apparatus for PCI signaling design
CN104221305A (en) * 2012-04-12 2014-12-17 诺基亚通信公司 Method of reporting channel state information
JP6403203B2 (en) * 2013-01-28 2018-10-10 シャープ株式会社 Wireless communication system, terminal device, base station device, wireless communication method, and integrated circuit
KR102122814B1 (en) 2013-07-10 2020-06-16 삼성전자 주식회사 method and apparatus for measurement of MU-MIMO interference in a cellular system
KR102273878B1 (en) 2014-07-02 2021-07-06 삼성전자 주식회사 Method and apparatus for load balancing inter cell in wireless communication system
US10841822B2 (en) * 2015-10-02 2020-11-17 Intel IP Corporation Transport format selection method and device
CN108093432B (en) * 2017-12-26 2021-04-02 中国移动通信集团江苏有限公司 User terminal distinguishing method, device, equipment and medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007050729A1 (en) * 2005-10-27 2007-05-03 Qualcomm Incorporated A method and apparatus for transmitting and receiving a channel measurement reports in wireless communication system
US20070149132A1 (en) * 2005-12-22 2007-06-28 Junyl Li Methods and apparatus related to selecting control channel reporting formats
US20070168326A1 (en) * 2003-02-24 2007-07-19 Arnab Das Efficient reporting of information in a wireless communication system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212368B1 (en) * 1998-05-27 2001-04-03 Ericsson Inc. Measurement techniques for diversity and inter-frequency mobile assisted handoff (MAHO)
CN1132465C (en) * 2000-08-29 2003-12-24 华为技术有限公司 Method for processing measured information in global mobile communication system
US6920171B2 (en) * 2000-12-14 2005-07-19 Motorola, Inc. Multiple access frequency hopping network with interference anticipation
KR100830494B1 (en) * 2001-02-20 2008-05-20 엘지전자 주식회사 Traffic Volume measurement method of mobile communication system
MXPA05005932A (en) * 2002-12-04 2005-08-18 Interdigital Tech Corp Detection of channel quality indicator.
KR100606129B1 (en) 2003-04-30 2006-07-28 삼성전자주식회사 Method for measuring and reporting channel quality in broadband wireless access communication system
JP4069034B2 (en) * 2003-07-31 2008-03-26 松下電器産業株式会社 Wireless transmission device, wireless reception device, wireless communication system, wireless transmission method, and wireless reception method
JP4418377B2 (en) * 2004-01-29 2010-02-17 パナソニック株式会社 Communication terminal device and base station device
US20080219201A1 (en) * 2005-09-16 2008-09-11 Koninklijke Philips Electronics, N.V. Method of Clustering Devices in Wireless Communication Network
CN100433920C (en) * 2005-09-29 2008-11-12 华为技术有限公司 Method for transmitting wireless resource control message in communication system
CN1992970A (en) * 2005-12-30 2007-07-04 华为技术有限公司 Measurement control method of co-frequency district under LTE architecture
JP2007189523A (en) * 2006-01-13 2007-07-26 Seiko Epson Corp Communication system, control method therefor, and communication device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070168326A1 (en) * 2003-02-24 2007-07-19 Arnab Das Efficient reporting of information in a wireless communication system
WO2007050729A1 (en) * 2005-10-27 2007-05-03 Qualcomm Incorporated A method and apparatus for transmitting and receiving a channel measurement reports in wireless communication system
US20070149132A1 (en) * 2005-12-22 2007-06-28 Junyl Li Methods and apparatus related to selecting control channel reporting formats

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP TSG-RAN WG1 MEETING #46BIS, TDOC R1-062808, 9 October 2006 (2006-10-09)
ETSI: "3GPP TS 25.331", 1 December 2006, ETSI, SOPHIA ANTIPOLIS, FRANCE, XP014036346 *

Also Published As

Publication number Publication date
JP2012090300A (en) 2012-05-10
US20110211504A1 (en) 2011-09-01
BRPI0814486A2 (en) 2015-02-03
CN101828415A (en) 2010-09-08
CN103326817B (en) 2016-12-28
EP2028906A1 (en) 2009-02-25
ATE539588T1 (en) 2012-01-15
WO2009021572A1 (en) 2009-02-19
EP2028906B1 (en) 2011-12-28
US8787219B2 (en) 2014-07-22
JP5135436B2 (en) 2013-02-06
CN101828415B (en) 2013-06-12
JP2010537459A (en) 2010-12-02
EP2398272B1 (en) 2013-03-20
US9258080B2 (en) 2016-02-09
JP5443462B2 (en) 2014-03-19
BR122019027537B1 (en) 2020-09-29
BRPI0814486B1 (en) 2020-10-13
CN103326817A (en) 2013-09-25
US20140348045A1 (en) 2014-11-27
BRPI0814486A8 (en) 2018-12-11

Similar Documents

Publication Publication Date Title
US9258080B2 (en) Communication terminal and method for use in a communication terminal
EP1909518B1 (en) Communication terminal apparatus, base station apparatus and reception quality reporting method
US9985743B2 (en) Channel quality indicator for time, frequency and spatial channel in terrestrial radio access network
US9681460B2 (en) Wireless communication system, base station apparatus and mobile station apparatus
CA2534677C (en) Wireless communication apparatus and wireless communication method
CA2724153C (en) Mobile station apparatus, base station apparatus, communication method and communication system
EP2282575A1 (en) Channel quality reporting in a mobile communications system
JP5484333B2 (en) Reporting channel quality information
JP2004312291A (en) Base station device and communication method
CN108352976B (en) Method, apparatus, and computer-readable storage medium for controlling signal transmission
EP1947783A1 (en) Radio communication method, radio communication system, base station, and mobile station
EP2443864A1 (en) Overhead reduction for multi-carrier transmission systems
JP2005318434A (en) Transmission apparatus and scheduling method
Su et al. A hierarchical selective CQI feedback scheme for 3GPP long-term evolution system

Legal Events

Date Code Title Description
AC Divisional application: reference to earlier application

Ref document number: 2028906

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120523

17Q First examination report despatched

Effective date: 20120619

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602007029271

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H04W0024100000

Ipc: H04L0001000000

RIC1 Information provided on ipc code assigned before grant

Ipc: H04W 24/10 20090101ALI20120821BHEP

Ipc: H04L 1/00 20060101AFI20120821BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 2028906

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 602617

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007029271

Country of ref document: DE

Effective date: 20130516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130701

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130620

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 602617

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130320

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130621

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130720

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130722

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

26N No opposition filed

Effective date: 20140102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007029271

Country of ref document: DE

Effective date: 20140102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007029271

Country of ref document: DE

Representative=s name: GRUENECKER, KINKELDEY, STOCKMAIR & SCHWANHAEUS, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20140619 AND 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130816

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007029271

Country of ref document: DE

Owner name: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF, US

Free format text: FORMER OWNER: PANASONIC CORPORATION, KADOMA, OSAKA, JP

Effective date: 20140711

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007029271

Country of ref document: DE

Representative=s name: GRUENECKER, KINKELDEY, STOCKMAIR & SCHWANHAEUS, DE

Effective date: 20140711

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007029271

Country of ref document: DE

Representative=s name: GRUENECKER PATENT- UND RECHTSANWAELTE PARTG MB, DE

Effective date: 20140711

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007029271

Country of ref document: DE

Owner name: PANASONIC CORPORATION, KADOMA-SHI, JP

Free format text: FORMER OWNER: PANASONIC CORPORATION, KADOMA, OSAKA, JP

Effective date: 20140711

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF, US

Effective date: 20140722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130816

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070816

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007029271

Country of ref document: DE

Representative=s name: GRUENECKER PATENT- UND RECHTSANWAELTE PARTG MB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007029271

Country of ref document: DE

Owner name: PANASONIC CORPORATION, KADOMA-SHI, JP

Free format text: FORMER OWNER: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA, TORRANCE, CALIF., US

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170105 AND 20170111

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: PANASONIC CORPORATION, JP

Effective date: 20170327

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230822

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230824

Year of fee payment: 17

Ref country code: DE

Payment date: 20230821

Year of fee payment: 17