US20040116132A1 - Rapid acquisition and system selection of mobile wireless devices using a system map - Google Patents

Rapid acquisition and system selection of mobile wireless devices using a system map Download PDF

Info

Publication number
US20040116132A1
US20040116132A1 US10/729,049 US72904903A US2004116132A1 US 20040116132 A1 US20040116132 A1 US 20040116132A1 US 72904903 A US72904903 A US 72904903A US 2004116132 A1 US2004116132 A1 US 2004116132A1
Authority
US
United States
Prior art keywords
service
mobile station
reference location
available
systems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/729,049
Inventor
Jason Hunzinger
Robert Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/729,049 priority Critical patent/US20040116132A1/en
Publication of US20040116132A1 publication Critical patent/US20040116132A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service

Definitions

  • This invention relates to wireless communication systems, and more particularly to cellular carrier selection within wireless communication systems.
  • CDMA code division multiple access
  • TIA/EIA TIA/EIA
  • IS-95 Mobile station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System
  • CDMA is a technique for spread-spectrum multiple-access digital communications that creates channels through the use of unique code sequences.
  • signals can be and are received in the presence of high levels of interference. The practical limit of signal reception depends on the channel conditions, but CDMA reception in the system described in the aforementioned IS-95 Standard can take place in the presence of interference that is 18 dB larger than the signal for a static channel.
  • the system operates with a lower level of interference and dynamic channel conditions.
  • a cellular telephone communication system typically provides services to an area by dividing the area into many smaller geographic areas, known as cells, each of which is serviced by a transmitter-receiver station, known as a cell site.
  • the cell sites are connected through landlines, or other communication links, to so-called mobile telephone switching offices (MTSO's) which are, in turn, connected to the public switched telephone network (PSTN).
  • MTSO's mobile telephone switching offices
  • PSTN public switched telephone network
  • any given area is serviced by up to two competing providers of cellular airtime communication services (i.e., cellular carriers).
  • a and B carriers are assigned different groups of frequencies, or frequency sets, through which services are provided along paging, control, access, and voice channels, as would be understood by those reasonably skilled in the industry and as dictated by technical standards of appropriate regulatory agencies.
  • the mobile station When a mobile station first activates in a particular area, the mobile station searches for available service systems. Based on the service subscription and other factors, the mobile station has a preference when selecting a service system. The mobile station generally looks for a system supported by the subscriber, and if none if available the mobile system searches for a compatible system. At present, the mobile station simply searches for systems-regardless of the geographic location of the mobile station. What is desired is a system where the mobile station can limit the number of systems required for searching based on the geographic position of the mobile station.
  • the present invention enhances service system selection by a mobile unit in a wireless communication system.
  • the mobile unit determines its geographic position, and based on that position selects the proper service system.
  • the geographic position may be determined using a global position system, deck reckoning, or estimated from a last known position.
  • the distance of varying service systems from the mobile station can then be calculated and a service system selected based on this distance.
  • the mobile station may also use the position information in combination with a database including position information of service systems to select the proper service system.
  • the position information of the service systems can be included in the system selection database.
  • the mobile station may also map service systems based on position information and service availability. The mobile station can then subsequently refer to these maps to estimate available service.
  • One aspect of the invention is a method of prioritizing a plurality of service systems in a wireless communication system.
  • the method comprises determining a reference location and calculating a distance from the reference location to each of the plurality of service systems.
  • the method the prioritizes the plurality of service systems based on the distance from the reference location.
  • the reference location may be determined using a global positioning system or dead reckoning, among other techniques.
  • the calculating step further comprises determining a drift term and adjusting the reference location based on the drift term.
  • Another aspect of the invention is a method of prioritizing a plurality of service systems in a wireless communication system.
  • the method comprises determining a reference location and obtaining a prioritized list of service systems based on the reference location.
  • the reference location may be determined using a global positioning system or dead reckoning.
  • the prioritized list of service systems based on the reference location is obtained from stored data within a mobile station.
  • the data may be stored in the system selection database.
  • the system selection database includes a position reference for each of the plurality of service systems.
  • the mobile station for use in a wireless communication system.
  • the mobile station comprises a position determination device and a database of system providers based oh position information.
  • the position determination device may be a global positioning system.
  • the database is included in the system selection database, and the selects one of the system providers based on the database information.
  • the mobile station for use in a wireless communication system.
  • the mobile station comprises a position determination device and a service detector.
  • the service detector determines if service is available at any given position.
  • the mobile station includes memory locations for storing data regarding service availability for a plurality of locations.
  • a grouping of the memory locations provides a map of a service area showing service availability.
  • the grouping of memory locations containing position information can be converted to a formula defining a service area.
  • Each memory location stores both a latitude and a longitude of a position along with information indicating whether service was available at the position.
  • Another aspect of the invention is a method of mapping a service system for a wireless communication system.
  • the method comprises establishing a reference location and determining service availability for the reference location. Information on service availability for the reference location is then stored.
  • the method further comprises collecting data on service information for a plurality of reference locations and combining the data to provide a map of a service area showing service availability.
  • the combined data may be converted into a formula defining a service area.
  • FIG. 1 illustrates the components of an exemplary wireless communication system used by the present invention.
  • FIG. 2 illustrates the system selection map structure according to the present invention.
  • FIG. 3 is a flowchart illustrating the system selection process according to the present invention.
  • FIG. 4A illustrates a first system map according to the present invention.
  • FIG. 4B illustrates a second system map according to the present invention.
  • FIG. 5 illustrates an exemplary system map having an exclusion area according to the present invention.
  • FIG. 6 illustrates an exemplary system map showing a coverage boundary which is mapped according to the present invention.
  • FIG. 1 illustrates components of an exemplary wireless communication system.
  • a mobile switching center 102 communicates with base stations 104 a - 104 k (only one connection shown).
  • the base stations 104 a - 104 k (generally 104 ) broadcasts data to and receives data from mobile stations 106 within cells 108 a - 108 k (generally 108 ).
  • the cell 108 is a geographic region, roughly hexagonal, having a radius of up to 35 kilometers or possibly more.
  • a mobile station 106 is capable of receiving data from and transmitting data to a base station 104 .
  • the mobile station 106 receives and transmits data according to the Code Division Multiple Access (CDMA) standard.
  • CDMA is a communication standard permitting mobile users of wireless communication devices to exchange data over a telephone system wherein radio signals carry data to and from the wireless devices.
  • additional cells 108 a , 108 c , 108 d , and 108 e adjacent to the cell 108 b permit mobile stations 106 to cross cell boundaries without interrupting communications. This is so because base stations 104 a , 104 c , 104 d , and 104 e in adjacent cells assume the task of transmitting and receiving data for the mobile stations 106 .
  • the mobile switching center 102 coordinates all communication to and from mobile stations 106 in a multi-cell region. Thus, the mobile switching center 102 may communicate with many base stations 104 .
  • Mobile stations 106 may move about freely within the cell 108 while communicating either voice or data. Mobile stations 106 not in active communication with other telephone system users may, nevertheless, scan base station 104 transmissions in the cell 108 to detect any telephone calls or paging messages directed to the mobile station 106 .
  • a mobile station 106 is a cellular telephone used by a pedestrian who, expecting a telephone call, powers on the cellular telephone while walking in the cell 108 .
  • the cellular telephone scans certain frequencies (frequencies known to be used by CDMA) to synchronize communication with the base station 104 .
  • the cellular telephone then registers with the mobile switching center 102 to make itself known as an active user within the CDMA network.
  • the cellular telephone When detecting a call, the cellular telephone scans data frames broadcast by the base station 104 to detect any telephone calls or paging messages directed to the cellular telephone. In this call detection mode, the cellular telephone receives, stores and examines paging message data, and determines whether the data contains a mobile station identifier matching an identifier of the cellular telephone. If a match is detected, the cellular telephone establishes a call with the mobile switching center 102 via the base station 104 . If no match is detected, the cellular telephone enters an idle state for a predetermined period of time, then exits the idle state to receive another transmission of paging message data.
  • the mobile station 106 When a mobile station 106 activates, the mobile station 106 searches for an active and desirable wireless communication system. Different areas may be served by multiple wireless communication systems, and depending on the selected service provider and other factors, the mobile station 106 selects which system to operate within.
  • the present invention provides a means to use location information to enhance proper system selection.
  • the invention defines a system selection map and system selection algorithm that use the map to optimize the service acquisition process.
  • the area covered by a wireless communication system can generally be approximated with system circles or other shapes.
  • Each system may be defined by one or more circles which, when combined, approximate the general service area of the system.
  • Each of the system circles may be defined by a data set containing the system circle latitude (latitude s ), the system circle longitude (longitude s ), and the radius of the system circle (radius s ).
  • a system selection map may contain varying levels, and the varying levels may be diagramed in a system tree 200 .
  • the system tree 200 shows a system selection map having two levels (level N and level N+1). In level N, the system tree 200 has a system group M i 205 .
  • the system group M i 205 of FIG. 2 has a plurality of child system nodes including a child system ⁇ N+1.1 ⁇ 210 , a child system ⁇ N+1.2 ⁇ 215 , and other child systems until child system ⁇ N+1.n N+1 ⁇ 220 .
  • the system group M i 205 of FIG. 2 also has a plurality of child system group nodes including a child system group ⁇ N+1.1 ⁇ 225, a child system group ⁇ N+1.2 ⁇ 230 , and other child systems groups until child system group ⁇ N+1.M N+1 ⁇ 220 .
  • Each of the child systems groups may have its own child systems or child system groups.
  • the system group M i 205 may also have no child systems or no child system groups.
  • the system group M i 205 , each of the child systems 210 , 215 , 220 , and each of the child system groups 225 , 230 , 235 are generally defined as a circle having a centerpoint and a radius.
  • the centerpoint of each circle may be defined by a corresponding set of coordinate points ⁇ latitude s , longitude s ⁇ .
  • the radius of each system and system group may vary.
  • the system group M i 205 encompasses, at a minimum, the centerpoint of each child node.
  • the system group M i 205 may also encompass the majority of the child nodes, or completely encompass the child nodes.
  • the present invention uses a reference location ⁇ latitude r , longitude r ⁇ for the mobile station 106 to enhance the system selection process.
  • the process 300 of using position information to enhance system selection is shown in FIG. 3.
  • the process begins at a start state 305 . Proceeding to state 310 , the mobile station 106 determines if the position information is available.
  • the position information may be available to the mobile station 106 from a variety of sources, including a global positioning system (GPS), base station triangulation, dead reckoning, and any other positioning system that is well known in the art. If the position information is available, the process 300 proceeds along the YES branch to state 315 . At state 315 , the mobile station 106 obtains the position information.
  • the position information is stored as the reference location ⁇ latitude r , longitude r ⁇ .
  • the mobile station 106 determines if the system selection database contains position information.
  • the system selection database provides the mobile station 106 with information for the user zones to which the mobile station 106 is subscribed.
  • the system selection database contains information on user zone priority, user zone identification, user zone system identification, user zone name, active flag, priority control field, notification flag, user zone revision, and overhead parameters.
  • an additional field is inserted into the system selection database containing position information.
  • the position information can be listed with each entry in the system selection database, or may be included only for each group of listings.
  • the mobile station 106 can use the position information of the mobile station 106 combined with the position information in the system selection database to determine the most desirable system. If the system selection database does not contain any position information, the process 300 proceeds along the NO branch to state 345 , which will be described below. If the system selection database does contain position information, the process 300 proceeds to state 325 .
  • the mobile station 106 retrieves the system listings from the system selection database. Based on the position information, the mobile station 106 can classify each of the systems with a priority level, with the system having the highest priority being the most desirable system and the first system with which the mobile station 106 attempts to connect.
  • the process 300 proceeds along the NO branch to state 335 .
  • the mobile station 106 determines a reference location ⁇ latitude r , longitude r ⁇ .
  • the reference location is an approximation of the position of the mobile station 106 , and may be the last known position available, any nearby or recently communicated infrastructure location, the last known system circle centerpoint, or any other position information that may be available to the mobile station 106 .
  • the mobile station 106 determines an estimated drift factor (radius d ).
  • the drift factor is used when timing information is available and no system has been available for a significant amount of time. If timing information is not available, the drift factor (radius d ) is set to 0.
  • the drift factor can be calculated using the formula:
  • t is the current time
  • t last-system is the time that service was last available on the last known system
  • V max is the maximum expected velocity that the mobile station 106 would travel during the period without service.
  • the mobile station 106 calculates the distance to each available system (d sys(n) ).
  • the location of each system is defined by a set of coordinate points ⁇ latitude s , longitude s ⁇ .
  • the mobile station 106 disregards any systems located beyond a threshold distance (d sys(n) >d threshold ).
  • the threshold distance (d threshold ) may be predetermined or the mobile station 106 may calculate the threshold distance (d threshold ) based on prior performance. Of course, if it is desired for the mobile station 106 to consider all available systems, the threshold distance may be ignored. After any systems beyond the threshold distance are removed, the mobile station 106 prioritizes the remaining systems. Prioritization of the systems is well known in the art and will not be described herein.
  • the mobile station selects the highest priority system and attempts to connect to that system.
  • the system is chosen from either the list generated from the system selection database information or the list calculated by the mobile station 106 .
  • the mobile station 106 determines if service is available on the selected system. If service is available, the mobile-unit 106 connects with the service and the process 300 proceeds along the YES branch to an end state 360 . Returning to state 355 , if service is not available, the process 300 proceeds along the NO branch back to state 330 , where the next highest priority system is selected and connection attempted. This process is repeated until the mobile station 106 connects to a system, at which point the process 300 terminates in the end state 360 .
  • the present invention may also use the position information to create a map of serving systems within the mobile station 106 .
  • the map may be used to determine the likelihood of service being available from any particular system at any geographic location.
  • a mobile station 106 obtains service, it can begin to map the service area.
  • the current position information (which may be stored as a ⁇ latitude, longitude ⁇ ), along with the service information is recorded within the mobile station 106 . The more a mobile station 106 travels within a service area, the more detailed the map.
  • FIG. 4A illustrates a map 400 according to one embodiment of the present invention.
  • the map 400 illustrates a service area 402 defined by a series of points 405 , 410 , 415 , 420 , 425 , 430 , 435 , and 440 .
  • Each of the series of points 405 , 410 , 415 , 420 , 425 , 430 , 435 , and 440 is recorded by the mobile station 106 by recording the ⁇ latitude, longitude ⁇ of each point along with the information that service is available at that point. In general, it is not necessary to map points inside the service area, as those points would be assumed to have service.
  • an area inside a service area does not have service, that information may also be mapped as will be discussed below.
  • the map 400 may be condensed to a centerpoint and a radius. By condensing the map 400 to an equation, the amount of memory required to store the map 400 within the mobile station 106 is reduced.
  • a service map 400 such as a point 450 that are within the service area, but the map 400 may not completely define.
  • the point 450 is within the service area 402 , but because only the points 420 and 425 define the outer perimeter of the service area, the mobile station 106 cannot accurately predict whether service is available at the point 450 .
  • One technique that may be used to enhance the accuracy of the mobile station 106 is to include a confidence factor.
  • the confidence factor is a measure of how definite the mobile station 106 is that the current location has service, and may range for example from 0 (not confident) to 1 (extremely confident). If a mobile station 106 is in an area that has not been mapped, the confidence factor for that area would be 0. If the mobile station 106 looks for service in at an exact location it had service before, the confidence factor would be 1.
  • the series of points 405 , 410 , 415 , 420 , 425 , 430 , 435 , and 440 define the service area 402 .
  • that shape can only be approximated. Therefore, if service is desired at the point 450 , the mobile station 106 would assign a relatively low confidence factor that service is available at that point.
  • the mobile station 106 records data at an additional point 445 as shown in FIG. 4B, the service area 402 becomes better defined. Therefore, the mobile station 106 can now assign a higher confidence factor to the point 450 .
  • FIG. 5 illustrates a service map 500 having a service area 505 .
  • the service area 505 generally defines the geographic area where service may be expected to be available. In general, any points within the service area 505 would have a high confidence factor.
  • the service area 505 may include an exclusion area 510 .
  • the exclusion area 510 defines an area within the service area 505 where the mobile station 106 has determined that either no service is available, or the service is weak.
  • the exclusion area 510 may also define that service is only available for a certain operating mode. For example, digital service may not be available in the exclusion area 510 but service may be available on an analog network.
  • FIG. 6 illustrates a service map 600 having a point 605 where service is available.
  • the service boundary is indicated by a line 610 . If the mobile station 106 is turned off at the point 605 , no further mapping occurs. As the mobile station 106 travels east from the point 605 , the mobile station 106 will pass the service boundary. If the mobile station 106 is turned on again at a point 615 where no service is available, the mobile station 106 will not know at what point service is lost. However, the mobile station 106 does know that service is available at the point 605 , so as the mobile station travels west, the confidence factor is increased. Of course, the mobile station 106 is continually mapping new points to enhance the mapping area stored in memory.

Abstract

The present invention enhances service system selection by a mobile unit in a wireless communication system. The mobile unit determines its geographic position, and based on that position selects the proper service system. The geographic position may be determined using a global position system, deck reckoning, or estimated from a last known position. The distance of varying service systems from the mobile station can then be calculated and a service system selected based on this distance. The mobile station may also use the position information in combination with a database including position information of service systems to select the proper service system. The position information of the service systems can be included in the system selection database. The mobile station may also map service systems based on position information and service availability. The mobile station can then subsequently refer to these maps to estimate available service.

Description

    TECHNICAL FIELD
  • This invention relates to wireless communication systems, and more particularly to cellular carrier selection within wireless communication systems. [0001]
  • BACKGROUND
  • The use of wireless communication systems is growing with users now numbering well into the millions. One of the popular wireless communications systems is the cellular telephone, having a mobile station (or handset) and a base station. Cellular telephones allow a user to talk over the telephone without having to remain in a fixed location. This allows users to, for example, move freely about the community while talking on the phone. [0002]
  • Cellular telephones may operate under a variety of standards including the code division multiple access (CDMA) cellular telephone communication system as described in TIA/EIA, IS-95, Mobile station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System, published July 1993. CDMA is a technique for spread-spectrum multiple-access digital communications that creates channels through the use of unique code sequences. In CDMA systems, signals can be and are received in the presence of high levels of interference. The practical limit of signal reception depends on the channel conditions, but CDMA reception in the system described in the aforementioned IS-95 Standard can take place in the presence of interference that is 18 dB larger than the signal for a static channel. Typically, the system operates with a lower level of interference and dynamic channel conditions. [0003]
  • A cellular telephone communication system typically provides services to an area by dividing the area into many smaller geographic areas, known as cells, each of which is serviced by a transmitter-receiver station, known as a cell site. The cell sites are connected through landlines, or other communication links, to so-called mobile telephone switching offices (MTSO's) which are, in turn, connected to the public switched telephone network (PSTN). According to current FCC rules, any given area is serviced by up to two competing providers of cellular airtime communication services (i.e., cellular carriers). The two service providers in any given geographic area, commonly referred to as “A” and “B” carriers, are assigned different groups of frequencies, or frequency sets, through which services are provided along paging, control, access, and voice channels, as would be understood by those reasonably skilled in the industry and as dictated by technical standards of appropriate regulatory agencies. [0004]
  • When a mobile station first activates in a particular area, the mobile station searches for available service systems. Based on the service subscription and other factors, the mobile station has a preference when selecting a service system. The mobile station generally looks for a system supported by the subscriber, and if none if available the mobile system searches for a compatible system. At present, the mobile station simply searches for systems-regardless of the geographic location of the mobile station. What is desired is a system where the mobile station can limit the number of systems required for searching based on the geographic position of the mobile station. [0005]
  • SUMMARY
  • The present invention enhances service system selection by a mobile unit in a wireless communication system. The mobile unit determines its geographic position, and based on that position selects the proper service system. The geographic position may be determined using a global position system, deck reckoning, or estimated from a last known position. The distance of varying service systems from the mobile station can then be calculated and a service system selected based on this distance. The mobile station may also use the position information in combination with a database including position information of service systems to select the proper service system. The position information of the service systems can be included in the system selection database. The mobile station may also map service systems based on position information and service availability. The mobile station can then subsequently refer to these maps to estimate available service. [0006]
  • One aspect of the invention is a method of prioritizing a plurality of service systems in a wireless communication system. The method comprises determining a reference location and calculating a distance from the reference location to each of the plurality of service systems. The method the prioritizes the plurality of service systems based on the distance from the reference location. The reference location may be determined using a global positioning system or dead reckoning, among other techniques. The calculating step further comprises determining a drift term and adjusting the reference location based on the drift term. [0007]
  • Another aspect of the invention is a method of prioritizing a plurality of service systems in a wireless communication system. The method comprises determining a reference location and obtaining a prioritized list of service systems based on the reference location. The reference location may be determined using a global positioning system or dead reckoning. The prioritized list of service systems based on the reference location is obtained from stored data within a mobile station. The data may be stored in the system selection database. The system selection database includes a position reference for each of the plurality of service systems. [0008]
  • Another aspect of the invention is a mobile station for use in a wireless communication system. The mobile station comprises a position determination device and a database of system providers based oh position information. The position determination device may be a global positioning system. The database is included in the system selection database, and the selects one of the system providers based on the database information. [0009]
  • Another aspect of the invention is a mobile station for use in a wireless communication system. The mobile station comprises a position determination device and a service detector. The service detector determines if service is available at any given position. The mobile station includes memory locations for storing data regarding service availability for a plurality of locations. A grouping of the memory locations provides a map of a service area showing service availability. The grouping of memory locations containing position information can be converted to a formula defining a service area. Each memory location stores both a latitude and a longitude of a position along with information indicating whether service was available at the position. [0010]
  • Another aspect of the invention is a method of mapping a service system for a wireless communication system. The method comprises establishing a reference location and determining service availability for the reference location. Information on service availability for the reference location is then stored. The method further comprises collecting data on service information for a plurality of reference locations and combining the data to provide a map of a service area showing service availability. The combined data may be converted into a formula defining a service area.[0011]
  • DESCRIPTION OF DRAWINGS
  • These and other features and advantages of the invention will become more apparent upon reading the following detailed description and upon reference to the accompanying drawings. [0012]
  • FIG. 1 illustrates the components of an exemplary wireless communication system used by the present invention. [0013]
  • FIG. 2 illustrates the system selection map structure according to the present invention. [0014]
  • FIG. 3 is a flowchart illustrating the system selection process according to the present invention. [0015]
  • FIG. 4A illustrates a first system map according to the present invention. [0016]
  • FIG. 4B illustrates a second system map according to the present invention. [0017]
  • FIG. 5 illustrates an exemplary system map having an exclusion area according to the present invention. [0018]
  • FIG. 6 illustrates an exemplary system map showing a coverage boundary which is mapped according to the present invention.[0019]
  • DETAILED DESCRIPTION
  • FIG. 1 illustrates components of an exemplary wireless communication system. A [0020] mobile switching center 102 communicates with base stations 104 a-104 k (only one connection shown). The base stations 104 a-104 k (generally 104) broadcasts data to and receives data from mobile stations 106 within cells 108 a-108 k (generally 108). The cell 108 is a geographic region, roughly hexagonal, having a radius of up to 35 kilometers or possibly more.
  • A [0021] mobile station 106 is capable of receiving data from and transmitting data to a base station 104. In one embodiment, the mobile station 106 receives and transmits data according to the Code Division Multiple Access (CDMA) standard. CDMA is a communication standard permitting mobile users of wireless communication devices to exchange data over a telephone system wherein radio signals carry data to and from the wireless devices.
  • Under the CDMA standard, [0022] additional cells 108 a, 108 c, 108 d, and 108 e adjacent to the cell 108 b permit mobile stations 106 to cross cell boundaries without interrupting communications. This is so because base stations 104 a, 104 c, 104 d, and 104 e in adjacent cells assume the task of transmitting and receiving data for the mobile stations 106. The mobile switching center 102 coordinates all communication to and from mobile stations 106 in a multi-cell region. Thus, the mobile switching center 102 may communicate with many base stations 104.
  • [0023] Mobile stations 106 may move about freely within the cell 108 while communicating either voice or data. Mobile stations 106 not in active communication with other telephone system users may, nevertheless, scan base station 104 transmissions in the cell 108 to detect any telephone calls or paging messages directed to the mobile station 106.
  • One example of such a [0024] mobile station 106 is a cellular telephone used by a pedestrian who, expecting a telephone call, powers on the cellular telephone while walking in the cell 108. The cellular telephone scans certain frequencies (frequencies known to be used by CDMA) to synchronize communication with the base station 104. The cellular telephone then registers with the mobile switching center 102 to make itself known as an active user within the CDMA network.
  • When detecting a call, the cellular telephone scans data frames broadcast by the base station [0025] 104 to detect any telephone calls or paging messages directed to the cellular telephone. In this call detection mode, the cellular telephone receives, stores and examines paging message data, and determines whether the data contains a mobile station identifier matching an identifier of the cellular telephone. If a match is detected, the cellular telephone establishes a call with the mobile switching center 102 via the base station 104. If no match is detected, the cellular telephone enters an idle state for a predetermined period of time, then exits the idle state to receive another transmission of paging message data.
  • When a [0026] mobile station 106 activates, the mobile station 106 searches for an active and desirable wireless communication system. Different areas may be served by multiple wireless communication systems, and depending on the selected service provider and other factors, the mobile station 106 selects which system to operate within. The present invention provides a means to use location information to enhance proper system selection. The invention defines a system selection map and system selection algorithm that use the map to optimize the service acquisition process.
  • The area covered by a wireless communication system can generally be approximated with system circles or other shapes. Each system may be defined by one or more circles which, when combined, approximate the general service area of the system. Each of the system circles may be defined by a data set containing the system circle latitude (latitude[0027] s), the system circle longitude (longitudes), and the radius of the system circle (radiuss). As shown in FIG. 2, a system selection map may contain varying levels, and the varying levels may be diagramed in a system tree 200. The system tree 200 shows a system selection map having two levels (level N and level N+1). In level N, the system tree 200 has a system group M i 205. In level N+1, the system group M i 205 of FIG. 2 has a plurality of child system nodes including a child system {N+1.1} 210, a child system {N+1.2} 215, and other child systems until child system {N+1.nN+1} 220. The system group M i 205 of FIG. 2 also has a plurality of child system group nodes including a child system group {N+1.1} 225, a child system group {N+1.2} 230, and other child systems groups until child system group {N+1.MN+1} 220. Each of the child systems groups may have its own child systems or child system groups. Of course, the system group M i 205 may also have no child systems or no child system groups.
  • The [0028] system group M i 205, each of the child systems 210, 215, 220, and each of the child system groups 225, 230, 235 are generally defined as a circle having a centerpoint and a radius. The centerpoint of each circle may be defined by a corresponding set of coordinate points {latitudes, longitudes}. As depicted in FIG. 2, the radius of each system and system group may vary. The system group M i 205 encompasses, at a minimum, the centerpoint of each child node. The system group M i 205 may also encompass the majority of the child nodes, or completely encompass the child nodes.
  • The present invention uses a reference location {latitude[0029] r, longituder} for the mobile station 106 to enhance the system selection process. The process 300 of using position information to enhance system selection is shown in FIG. 3. The process begins at a start state 305. Proceeding to state 310, the mobile station 106 determines if the position information is available. The position information may be available to the mobile station 106 from a variety of sources, including a global positioning system (GPS), base station triangulation, dead reckoning, and any other positioning system that is well known in the art. If the position information is available, the process 300 proceeds along the YES branch to state 315. At state 315, the mobile station 106 obtains the position information. The position information is stored as the reference location {latituder, longituder}.
  • Proceeding to [0030] state 320, the mobile station 106 determines if the system selection database contains position information. The system selection database provides the mobile station 106 with information for the user zones to which the mobile station 106 is subscribed. The system selection database contains information on user zone priority, user zone identification, user zone system identification, user zone name, active flag, priority control field, notification flag, user zone revision, and overhead parameters. According to the present invention, an additional field is inserted into the system selection database containing position information. The position information can be listed with each entry in the system selection database, or may be included only for each group of listings. By including position information in the system selection database, the mobile station 106 can use the position information of the mobile station 106 combined with the position information in the system selection database to determine the most desirable system. If the system selection database does not contain any position information, the process 300 proceeds along the NO branch to state 345, which will be described below. If the system selection database does contain position information, the process 300 proceeds to state 325.
  • In [0031] state 325, the mobile station 106 retrieves the system listings from the system selection database. Based on the position information, the mobile station 106 can classify each of the systems with a priority level, with the system having the highest priority being the most desirable system and the first system with which the mobile station 106 attempts to connect.
  • Returning to [0032] state 310, if position information is not available, the process 300 proceeds along the NO branch to state 335. In state 335, the mobile station 106 determines a reference location {latituder, longituder}. The reference location is an approximation of the position of the mobile station 106, and may be the last known position available, any nearby or recently communicated infrastructure location, the last known system circle centerpoint, or any other position information that may be available to the mobile station 106.
  • Proceeding to [0033] state 340, the mobile station 106 determines an estimated drift factor (radiusd). The drift factor is used when timing information is available and no system has been available for a significant amount of time. If timing information is not available, the drift factor (radiusd) is set to 0. The drift factor can be calculated using the formula:
  • radiusd=(t−t last-system)V max
  • where t is the current time, t[0034] last-system is the time that service was last available on the last known system, and Vmax is the maximum expected velocity that the mobile station 106 would travel during the period without service.
  • Proceeding to [0035] state 345, the mobile station 106 calculates the distance to each available system (dsys(n)). As stated above, the location of each system is defined by a set of coordinate points {latitudes, longitudes}. The mobile station 106 uses the reference location and the drift factor to determine the distance to each available system (dsys(n)) according to the following formula: d sys ( n ) = ( latitude s - latitude r ) + ( longitude s - longitude r ) radius s + radius d
    Figure US20040116132A1-20040617-M00001
  • The distance (d[0036] sys(n)) is calculated for each available system.
  • Proceeding to [0037] state 350, the mobile station 106 disregards any systems located beyond a threshold distance (dsys(n)>dthreshold). The threshold distance (dthreshold) may be predetermined or the mobile station 106 may calculate the threshold distance (dthreshold) based on prior performance. Of course, if it is desired for the mobile station 106 to consider all available systems, the threshold distance may be ignored. After any systems beyond the threshold distance are removed, the mobile station 106 prioritizes the remaining systems. Prioritization of the systems is well known in the art and will not be described herein.
  • Proceeding to [0038] state 330, the mobile station selects the highest priority system and attempts to connect to that system. The system is chosen from either the list generated from the system selection database information or the list calculated by the mobile station 106.
  • Proceeding to [0039] state 355, the mobile station 106 determines if service is available on the selected system. If service is available, the mobile-unit 106 connects with the service and the process 300 proceeds along the YES branch to an end state 360. Returning to state 355, if service is not available, the process 300 proceeds along the NO branch back to state 330, where the next highest priority system is selected and connection attempted. This process is repeated until the mobile station 106 connects to a system, at which point the process 300 terminates in the end state 360.
  • The present invention may also use the position information to create a map of serving systems within the [0040] mobile station 106. The map may be used to determine the likelihood of service being available from any particular system at any geographic location. When a mobile station 106 obtains service, it can begin to map the service area. The current position information (which may be stored as a {latitude, longitude}), along with the service information is recorded within the mobile station 106. The more a mobile station 106 travels within a service area, the more detailed the map.
  • FIG. 4A illustrates a [0041] map 400 according to one embodiment of the present invention. The map 400 illustrates a service area 402 defined by a series of points 405, 410, 415, 420, 425, 430, 435, and 440. Each of the series of points 405, 410, 415, 420, 425, 430, 435, and 440 is recorded by the mobile station 106 by recording the {latitude, longitude} of each point along with the information that service is available at that point. In general, it is not necessary to map points inside the service area, as those points would be assumed to have service. However, if an area inside a service area does not have service, that information may also be mapped as will be discussed below. After a service area is mapped, it may be possible to condense the map 400 down from a number of points to an equation defining the map 400. For example, if the service area generally defined a circular area, the map 400 may be condensed to a centerpoint and a radius. By condensing the map 400 to an equation, the amount of memory required to store the map 400 within the mobile station 106 is reduced.
  • As shown in FIG. 4, there may be areas within a [0042] service map 400 such as a point 450 that are within the service area, but the map 400 may not completely define. For example, in FIG. 4, the point 450 is within the service area 402, but because only the points 420 and 425 define the outer perimeter of the service area, the mobile station 106 cannot accurately predict whether service is available at the point 450. One technique that may be used to enhance the accuracy of the mobile station 106 is to include a confidence factor. The confidence factor is a measure of how definite the mobile station 106 is that the current location has service, and may range for example from 0 (not confident) to 1 (extremely confident). If a mobile station 106 is in an area that has not been mapped, the confidence factor for that area would be 0. If the mobile station 106 looks for service in at an exact location it had service before, the confidence factor would be 1.
  • In FIG. 4A, the series of [0043] points 405, 410, 415, 420, 425, 430, 435, and 440 define the service area 402. However, because no points have been recorded at the top of the arc, that shape can only be approximated. Therefore, if service is desired at the point 450, the mobile station 106 would assign a relatively low confidence factor that service is available at that point. However, if the mobile station 106 records data at an additional point 445 as shown in FIG. 4B, the service area 402 becomes better defined. Therefore, the mobile station 106 can now assign a higher confidence factor to the point 450.
  • Some areas located within a service area may not have coverage available or may have poor coverage. This may happen for a variety of reasons, including entering a tunnel, encountering natural obstacles such as hills, or entering the basement of a building. FIG. 5 illustrates a [0044] service map 500 having a service area 505. The service area 505 generally defines the geographic area where service may be expected to be available. In general, any points within the service area 505 would have a high confidence factor. However, the service area 505 may include an exclusion area 510. The exclusion area 510 defines an area within the service area 505 where the mobile station 106 has determined that either no service is available, or the service is weak. The exclusion area 510 may also define that service is only available for a certain operating mode. For example, digital service may not be available in the exclusion area 510 but service may be available on an analog network.
  • The use of mapping and the confidence factor may be used to predict the availability of service when the [0045] mobile station 106 moves a long distance between measured points. FIG. 6 illustrates a service map 600 having a point 605 where service is available. The service boundary is indicated by a line 610. If the mobile station 106 is turned off at the point 605, no further mapping occurs. As the mobile station 106 travels east from the point 605, the mobile station 106 will pass the service boundary. If the mobile station 106 is turned on again at a point 615 where no service is available, the mobile station 106 will not know at what point service is lost. However, the mobile station 106 does know that service is available at the point 605, so as the mobile station travels west, the confidence factor is increased. Of course, the mobile station 106 is continually mapping new points to enhance the mapping area stored in memory.
  • Numerous variations and modifications of the invention will become readily apparent to those skilled in the art. Accordingly, the invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The detailed embodiment is to be considered in all respects only as illustrative and not restrictive and the scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope. [0046]

Claims (27)

What is claimed is:
1. A method of prioritizing a plurality of service systems in a wireless communication system comprising:
determining a reference location;
calculating a distance from the reference location to each of the plurality of service systems; and
prioritizing the plurality of service systems based on the distance from the reference location.
2. The method of claim 1, wherein the reference location is determined using a global positioning system.
3. The method of claim 1, wherein the reference location is determined using dead reckoning.
4. The method of claim 1, wherein the reference location is a last known location of a mobile station.
5. The method of claim 1, wherein the calculating step further comprises:
determining a drift term; and
adjusting the reference location based on the drift term.
6. The method of claim 5, wherein the drift term is determined using the equation:
radiusd=(t−t last-system)V max
where t is a current time, tlast-system is a time that service was last available on a last known system, and Vmax is a maximum expected velocity that a mobile station would travel during the period without service.
7. The method of claim 6, wherein the distance is calculated using the equation:
d sys ( n ) = ( latitude s - latitude r ) + ( longitude s - longitude r ) radius s + radius d .
Figure US20040116132A1-20040617-M00002
8. A method of prioritizing a plurality of service systems in a wireless communication system comprising:
determining a reference location; and
obtaining a prioritized list of service systems based on the reference location.
9. The method of claim 8, wherein the reference location is determined using a global positioning system.
10. The method of claim 8, wherein the reference location is determined using dead reckoning.
11. The method of claim 1, wherein the prioritized list of service systems based on the reference location is obtained from stored data within a mobile station.
12. The method of claim 11, wherein the data is stored in the system selection database.
13. The method of claim 12, wherein the system selection database includes a position reference for each of the plurality of service systems.
14. A mobile station for use in a wireless communication system comprising:
a position determination device; and
a database of system providers based on position information.
15. The mobile station of claim 14, wherein the position determination device is a global positioning system.
16. The mobile station of claim 14, wherein the database is included in the system selection database.
17. The mobile station of claim 14, wherein the mobile station selects one of the system providers based on the database information.
18. A mobile station for use in a wireless communication system comprising:
a position determination device;
a service detector which determines if service is available at any given position; and
memory locations for storing data regarding service availability for a plurality of locations, wherein the grouping of the memory locations provides a map of a service area showing service availability.
19. The mobile station of claim 18, wherein the position determination device is a global positioning system.
20. The mobile station of claim 18, wherein a grouping of memory locations containing position information can be converted to a formula defining a service area.
21. The mobile station of claim 18, wherein each memory location stores both a latitude and a longitude of a position along with information indicating whether service was available at the position.
22. A method of mapping a service system for a wireless communication system comprising:
establishing a reference location;
determining service availability for the reference location; and
storing the information on service availability for the reference location.
23. The method of claim 22, wherein the reference location is established using a global positioning system.
24. The method of claim 22, wherein the reference location is determined using dead reckoning.
25. The method of claim 22, further comprising:
collecting data on service information for a plurality of reference locations; and
combining the data to provide a map of a service area showing service availability.
26. The method of claim 25, further comprising converting the combined data into a formula defining a service area.
27. The method of claim 22, wherein the stored information includes both a latitude and a longitude of the reference location along with information indicating whether service was available at the reference location.
US10/729,049 1999-12-30 2003-12-05 Rapid acquisition and system selection of mobile wireless devices using a system map Abandoned US20040116132A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/729,049 US20040116132A1 (en) 1999-12-30 2003-12-05 Rapid acquisition and system selection of mobile wireless devices using a system map

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/476,301 US6748217B1 (en) 1999-12-30 1999-12-30 Rapid acquisition and system selection of mobile wireless devices using a system map
US10/729,049 US20040116132A1 (en) 1999-12-30 2003-12-05 Rapid acquisition and system selection of mobile wireless devices using a system map

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/476,301 Division US6748217B1 (en) 1999-12-30 1999-12-30 Rapid acquisition and system selection of mobile wireless devices using a system map

Publications (1)

Publication Number Publication Date
US20040116132A1 true US20040116132A1 (en) 2004-06-17

Family

ID=23891303

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/476,301 Expired - Fee Related US6748217B1 (en) 1999-12-30 1999-12-30 Rapid acquisition and system selection of mobile wireless devices using a system map
US10/729,049 Abandoned US20040116132A1 (en) 1999-12-30 2003-12-05 Rapid acquisition and system selection of mobile wireless devices using a system map

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/476,301 Expired - Fee Related US6748217B1 (en) 1999-12-30 1999-12-30 Rapid acquisition and system selection of mobile wireless devices using a system map

Country Status (3)

Country Link
US (2) US6748217B1 (en)
JP (1) JP2003519997A (en)
WO (1) WO2001050788A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020116384A1 (en) * 1999-08-31 2002-08-22 Pasi Laurila Utilization of subscriber data in a telecommunication system
US20050124351A1 (en) * 2003-12-03 2005-06-09 Black Greg R. Method and apparatus for establishing direct mobile to mobile communication between cellular mobile terminals
US20060223525A1 (en) * 2005-04-01 2006-10-05 Ram Satish N System for providing dynamic group and service assignments
GB2427326A (en) * 2005-06-15 2006-12-20 Toshiba Res Europ Ltd Method and Apparatus for Wireless Communication.
US20070004405A1 (en) * 2005-07-01 2007-01-04 Research In Motion Limited System and method for accelerating network selection by a wireless user equipment (UE) device
US20070004404A1 (en) * 2005-07-01 2007-01-04 Research In Motion Limited System and method for accelerating network selection by a wireless user equipment (UE) device using satellite-based positioning system
EP1830596A1 (en) * 2006-03-02 2007-09-05 Research In Motion Limited Method and wireless user equipment for position assisted network scanning
US20070207815A1 (en) * 2006-03-02 2007-09-06 Research In Motion Limited Cross-technology coverage mapping system and method for modulating scanning behavior of a wireless user equipment (UE) device
US20070270142A1 (en) * 2006-05-19 2007-11-22 Research In Motion Limited System and method for facilitating accelerated network selection in a radio network environment
US20090156206A1 (en) * 2007-12-18 2009-06-18 Telefonaktiebolaget L M Ericsson (Publ) Frequency Band Selection Methods and Apparatus
US7809379B2 (en) 2004-06-21 2010-10-05 Lg Electronics Inc. Multi-mode mobile terminal and method of triggering communication service using position information thereof
US8744443B2 (en) 2006-05-19 2014-06-03 Blackberry Limited System and method for facilitating accelerated network selection using a weighted network list
US8818449B2 (en) 2005-04-28 2014-08-26 Blackberry Limited Method and device for network selection in multiple access technologies

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7929928B2 (en) * 2000-05-18 2011-04-19 Sirf Technology Inc. Frequency phase correction system
US7970411B2 (en) 2000-05-18 2011-06-28 Sirf Technology, Inc. Aided location communication system
US7970412B2 (en) 2000-05-18 2011-06-28 Sirf Technology, Inc. Aided location communication system
US7949362B2 (en) 2000-05-18 2011-05-24 Sirf Technology, Inc. Satellite positioning aided communication system selection
US8078189B2 (en) 2000-08-14 2011-12-13 Sirf Technology, Inc. System and method for providing location based services over a network
US8041817B2 (en) 2000-06-30 2011-10-18 At&T Intellectual Property I, Lp Anonymous location service for wireless networks
US7236883B2 (en) * 2000-08-14 2007-06-26 Sirf Technology, Inc. Aiding in a satellite positioning system
US7143171B2 (en) * 2000-11-13 2006-11-28 Telefonaktiebolaget Lm Ericsson (Publ) Access point discovery and selection
US7130630B1 (en) 2000-12-19 2006-10-31 Bellsouth Intellectual Property Corporation Location query service for wireless networks
US7085555B2 (en) 2000-12-19 2006-08-01 Bellsouth Intellectual Property Corporation Location blocking service from a web advertiser
US7116977B1 (en) 2000-12-19 2006-10-03 Bellsouth Intellectual Property Corporation System and method for using location information to execute an action
US7428411B2 (en) 2000-12-19 2008-09-23 At&T Delaware Intellectual Property, Inc. Location-based security rules
US7110749B2 (en) 2000-12-19 2006-09-19 Bellsouth Intellectual Property Corporation Identity blocking service from a wireless service provider
US7181225B1 (en) 2000-12-19 2007-02-20 Bellsouth Intellectual Property Corporation System and method for surveying wireless device users by location
US7224978B2 (en) 2000-12-19 2007-05-29 Bellsouth Intellectual Property Corporation Location blocking service from a wireless service provider
US7245925B2 (en) 2000-12-19 2007-07-17 At&T Intellectual Property, Inc. System and method for using location information to execute an action
JP2002209246A (en) * 2001-01-11 2002-07-26 Mitsubishi Electric Corp Wireless communication unit
US8554617B2 (en) 2007-10-02 2013-10-08 Ingenio Llc Systems and methods to provide alternative connections for real time communications
US7289623B2 (en) * 2001-01-16 2007-10-30 Utbk, Inc. System and method for an online speaker patch-through
US20020168976A1 (en) * 2001-03-16 2002-11-14 Ram Krishnan Accelerating acquisition of a preferred cellular system by a portable communication device using position location
US7668554B2 (en) * 2001-05-21 2010-02-23 Sirf Technology, Inc. Network system for aided GPS broadcast positioning
US20020198980A1 (en) * 2001-06-15 2002-12-26 Hamid Najafi Asset management and monitoring system and method for selecting a wireless network for data transmission
FR2830161B1 (en) * 2001-09-24 2004-08-27 Sagem MULTI-NETWORK DATA TRANSMISSION METHOD
US6897805B2 (en) * 2001-12-19 2005-05-24 Intel Corporation Method and apparatus for location based wireless roaming between communication networks
US7706516B2 (en) 2002-10-02 2010-04-27 Avaya Inc. Intelligent handling of message refusal
US9558475B2 (en) 2002-05-06 2017-01-31 Avaya Inc. Location based to-do list reminders
US9572095B2 (en) 2002-05-06 2017-02-14 Avaya Inc. Intelligent selection of message delivery mechanism
US7818015B2 (en) * 2002-09-12 2010-10-19 Broadcom Corporation Method of determining optimal cell configuration based upon determined device location
EP1427236A1 (en) * 2002-12-02 2004-06-09 Alcatel A location map for selecting reception conditions for a mobile station depending on its present actual location
US6954649B2 (en) * 2002-12-12 2005-10-11 Motorola, Inc Method and device for choosing a system selection algorithm that is location dependent
JP3984922B2 (en) 2003-03-20 2007-10-03 株式会社エヌ・ティ・ティ・ドコモ Mobile device, server device, and information providing method
US20050003830A1 (en) * 2003-06-27 2005-01-06 Microsoft Corporation Smart telephone call routing for wireless communication devices
US7146158B2 (en) * 2003-11-14 2006-12-05 Motorola, Inc. Method and apparatus for reformatting dialed numbers
CN101526986B (en) * 2004-02-09 2012-03-28 爱可信美国有限公司 Method and system for a security model for a computing device
US20060021231A1 (en) * 2004-07-28 2006-02-02 Carey Nancy D Adaptive scissors
KR100656349B1 (en) * 2004-12-07 2006-12-11 한국전자통신연구원 Method for handover of mobile terminal using location information in a network consisting of different systems and apparatus thereof
US7689218B2 (en) * 2005-04-14 2010-03-30 Nokia Corporation Method, apparatus and computer program providing network-associated system priority list for multimode system selection
US7937083B2 (en) 2005-04-14 2011-05-03 Nokia Corporation Method, apparatus and computer program providing for rapid network selection in a multimode device
US9525996B2 (en) * 2005-06-21 2016-12-20 Nokia Technologies Oy System, terminal, network entity, method, and computer program product for system selection in a multi-mode communication system
US8437288B2 (en) * 2006-03-07 2013-05-07 Qualcomm Incorporated Network selection by wireless terminals
TWI328407B (en) * 2006-03-15 2010-08-01 Acer Inc Device and method for automatically selecting a communication band and mode
US20080080477A1 (en) * 2006-10-02 2008-04-03 Nokia Corporation System and method for connection functionality
GB2447438A (en) * 2007-01-31 2008-09-17 Hewlett Packard Development Co Automatic configuration of mobile communication device based upon location
WO2008099341A2 (en) * 2007-02-12 2008-08-21 Nokia Corporation Apparatus, method and computer program product providing priority setting for multi-rat interworking
US20080233869A1 (en) * 2007-03-19 2008-09-25 Thomas Baker Method and system for a single-chip fm tuning system for transmit and receive antennas
US8731622B2 (en) 2008-05-23 2014-05-20 Qualcomm Incorporated Method and apparatus for system acquisition while maintaining a defined battery life span
US8200217B2 (en) * 2008-05-23 2012-06-12 Qualcomm Incorporated Method and apparatus for channel scanning that improves acquisition probability and power consumption
US9148831B2 (en) 2008-11-14 2015-09-29 Qualcomm Incorporated GPS-assisted cell selection for mobile devices
US8073441B1 (en) 2010-08-24 2011-12-06 Metropcs Wireless, Inc. Location-based network selection method for a mobile device
US9037132B1 (en) * 2010-10-13 2015-05-19 Sprint Spectrum L.P. Method and apparatus for origination based on distance and duration
JP2013055442A (en) * 2011-09-02 2013-03-21 Fujitsu Mobile Communications Ltd Mobile wireless terminal device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4750123A (en) * 1985-08-30 1988-06-07 Texas Instruments Incorporated Method for predicting tracking cameras for free-roaming mobile robots
US5369681A (en) * 1992-05-12 1994-11-29 Telefonaktiebolaget L M Ericsson Cellular communications system utilizing paging areas
US5873041A (en) * 1994-11-15 1999-02-16 Nec Corporation Mobile telephone location system
US5926761A (en) * 1996-06-11 1999-07-20 Motorola, Inc. Method and apparatus for mitigating the effects of interference in a wireless communication system
US5930699A (en) * 1996-11-12 1999-07-27 Ericsson Inc. Address retrieval system
US5948040A (en) * 1994-06-24 1999-09-07 Delorme Publishing Co. Travel reservation information and planning system
US6061561A (en) * 1996-10-11 2000-05-09 Nokia Mobile Phones Limited Cellular communication system providing cell transmitter location information
US6363255B1 (en) * 1998-10-26 2002-03-26 Fujitsu Limited Mobile communications system and mobile station therefor
US6377804B1 (en) * 1997-06-24 2002-04-23 Nokia Mobile Phones Ltd. Mobile communication systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5586338A (en) * 1994-12-22 1996-12-17 Bell Atlantic Mobile Systems, Inc. System identification (SID) list for selecting operating frequencies
US6208857B1 (en) * 1996-11-04 2001-03-27 Qualcomm Incorporated Method and apparatus for performing position-and preference-based service selection in a mobile telephone system
US5974328A (en) * 1997-01-13 1999-10-26 Airtouch Communications, Inc. Rapid system access and registration in mobile phone systems
EP1014742B1 (en) * 1998-12-22 2005-02-09 Alcatel Location indication means and method for service availability in a radio telephone network

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4750123A (en) * 1985-08-30 1988-06-07 Texas Instruments Incorporated Method for predicting tracking cameras for free-roaming mobile robots
US5369681A (en) * 1992-05-12 1994-11-29 Telefonaktiebolaget L M Ericsson Cellular communications system utilizing paging areas
US5948040A (en) * 1994-06-24 1999-09-07 Delorme Publishing Co. Travel reservation information and planning system
US5873041A (en) * 1994-11-15 1999-02-16 Nec Corporation Mobile telephone location system
US5926761A (en) * 1996-06-11 1999-07-20 Motorola, Inc. Method and apparatus for mitigating the effects of interference in a wireless communication system
US6061561A (en) * 1996-10-11 2000-05-09 Nokia Mobile Phones Limited Cellular communication system providing cell transmitter location information
US5930699A (en) * 1996-11-12 1999-07-27 Ericsson Inc. Address retrieval system
US6377804B1 (en) * 1997-06-24 2002-04-23 Nokia Mobile Phones Ltd. Mobile communication systems
US6363255B1 (en) * 1998-10-26 2002-03-26 Fujitsu Limited Mobile communications system and mobile station therefor

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9584604B2 (en) * 1999-08-31 2017-02-28 Nokia Technologies Oy Utilization of subscriber data in a telecommunication system
US20020116384A1 (en) * 1999-08-31 2002-08-22 Pasi Laurila Utilization of subscriber data in a telecommunication system
US20050124351A1 (en) * 2003-12-03 2005-06-09 Black Greg R. Method and apparatus for establishing direct mobile to mobile communication between cellular mobile terminals
WO2005060503A3 (en) * 2003-12-03 2006-06-29 Motorola Inc Method and apparatus for establishing direct mobile to mobile communication between cellular mobile terminals
US7809379B2 (en) 2004-06-21 2010-10-05 Lg Electronics Inc. Multi-mode mobile terminal and method of triggering communication service using position information thereof
US20060223525A1 (en) * 2005-04-01 2006-10-05 Ram Satish N System for providing dynamic group and service assignments
WO2006107717A2 (en) * 2005-04-01 2006-10-12 Qualcomm Incorporated System for providing dynamic group and service assignments
US8706095B2 (en) * 2005-04-01 2014-04-22 Omnitracs, Llc System for providing dynamic group and service assignments
WO2006107717A3 (en) * 2005-04-01 2008-12-11 Qualcomm Inc System for providing dynamic group and service assignments
US8818449B2 (en) 2005-04-28 2014-08-26 Blackberry Limited Method and device for network selection in multiple access technologies
GB2427326A (en) * 2005-06-15 2006-12-20 Toshiba Res Europ Ltd Method and Apparatus for Wireless Communication.
US9155033B2 (en) 2005-07-01 2015-10-06 Blackberry Limited System and method for accelerating network selection by a wireless user equipment (UE) device
US20070004404A1 (en) * 2005-07-01 2007-01-04 Research In Motion Limited System and method for accelerating network selection by a wireless user equipment (UE) device using satellite-based positioning system
US8428584B2 (en) 2005-07-01 2013-04-23 Research In Motion Limited System and method for accelerating network selection by a wireless user equipment (UE) device
US20070004405A1 (en) * 2005-07-01 2007-01-04 Research In Motion Limited System and method for accelerating network selection by a wireless user equipment (UE) device
US20070207815A1 (en) * 2006-03-02 2007-09-06 Research In Motion Limited Cross-technology coverage mapping system and method for modulating scanning behavior of a wireless user equipment (UE) device
EP1830596A1 (en) * 2006-03-02 2007-09-05 Research In Motion Limited Method and wireless user equipment for position assisted network scanning
US7953410B2 (en) 2006-03-02 2011-05-31 Research In Motion Limited Cross-technology coverage mapping system and method for modulating scanning behavior of a wireless user equipment (UE) device
US20110223935A1 (en) * 2006-03-02 2011-09-15 Research In Motion Limited Cross-Technology Coverage Mapping System and Method for Modulating Scanning Behaviour of a Wireless User Equipment (UE) Device
US8185103B2 (en) 2006-03-02 2012-05-22 Research In Motion Limited Cross-technology coverage mapping system and method for modulating scanning behaviour of a wireless user equipment (UE) device
US20120208515A1 (en) * 2006-03-02 2012-08-16 Research In Motion Limited Cross-Technology Coverage Mapping System and Method for Modulating Scanning Behaviour of a Wireless User Equipment (UE) Device
US8849299B2 (en) * 2006-03-02 2014-09-30 Blackberry Limited Cross-technology coverage mapping system and method for modulating scanning behaviour of a wireless user equipment (UE) device
US8428586B2 (en) 2006-05-19 2013-04-23 Research In Motion Limited System and method for facilitating accelerated network selection in a radio network environment
US8744443B2 (en) 2006-05-19 2014-06-03 Blackberry Limited System and method for facilitating accelerated network selection using a weighted network list
US9119139B2 (en) 2006-05-19 2015-08-25 Blackberry Limited System and method for facilitating accelerated network selection in a radio network environment
US20070270142A1 (en) * 2006-05-19 2007-11-22 Research In Motion Limited System and method for facilitating accelerated network selection in a radio network environment
US20090156206A1 (en) * 2007-12-18 2009-06-18 Telefonaktiebolaget L M Ericsson (Publ) Frequency Band Selection Methods and Apparatus

Also Published As

Publication number Publication date
JP2003519997A (en) 2003-06-24
US6748217B1 (en) 2004-06-08
WO2001050788A1 (en) 2001-07-12

Similar Documents

Publication Publication Date Title
US6748217B1 (en) Rapid acquisition and system selection of mobile wireless devices using a system map
US20020168976A1 (en) Accelerating acquisition of a preferred cellular system by a portable communication device using position location
US6957076B2 (en) Location specific reminders for wireless mobiles
US6327471B1 (en) Method and an apparatus for positioning system assisted cellular radiotelephone handoff and dropoff
US7366492B1 (en) Method and system for mobile location detection using handoff information
US5724660A (en) Method and apparatus for locating a mobile station by comparing calculated location area with GPS coordinates
US8559982B2 (en) Systems and methods for location positioning within radio access systems
US7519372B2 (en) Methods and apparatus for mobile station location estimation
US7113782B2 (en) Method and device for selecting parameters for a cellular radio communication network based on occurrence frequencies
US7209753B2 (en) Method to control the update frequency of a positioning device by a mobile terminal
US6654609B2 (en) Method for measuring location of mobile station and for performing handoff using the same in mobile communication system
US7839814B2 (en) Method and system for adjusting inter-scan period of a mobile station
US6799046B1 (en) Method and system for locating a mobile telephone within a mobile telephone communication network
KR101135019B1 (en) Facilitating mobile station location using a ground-based cellular network
US6654362B1 (en) Use of location in handoff in wireless communication systems
US7406318B2 (en) Apparatus and method for positioning mobile station
AU5360200A (en) System for determining wireless coverage using location information for a wireless unit
MXPA02006816A (en) Location of a mobile station in a telecommunications system.
US20020025822A1 (en) Resolving ambiguous sector-level location and determining mobile location
CA2297049A1 (en) System and method using elliptical search area coverage in determining the location of a mobile terminal
WO2002096125A1 (en) Passive gsm-based self-locating device
KR20040077931A (en) Method and apparatus for efficient selection and acquisition of a wireless communications system
WO2008019011A2 (en) Determining movement context of a mobile user terminal in a wireless telecommunications network
EP1235451A1 (en) Optimisation of cellular communications network performance
GB2362297A (en) Location based consideration for cellular telephone handoff

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION