US20060252563A1 - Water slide audio visual entertainment system - Google Patents

Water slide audio visual entertainment system Download PDF

Info

Publication number
US20060252563A1
US20060252563A1 US11/379,826 US37982606A US2006252563A1 US 20060252563 A1 US20060252563 A1 US 20060252563A1 US 37982606 A US37982606 A US 37982606A US 2006252563 A1 US2006252563 A1 US 2006252563A1
Authority
US
United States
Prior art keywords
slide
rider
water
ride
theme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/379,826
Inventor
Michael Werner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/379,826 priority Critical patent/US20060252563A1/en
Publication of US20060252563A1 publication Critical patent/US20060252563A1/en
Priority to US12/271,452 priority patent/US7967692B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63GMERRY-GO-ROUNDS; SWINGS; ROCKING-HORSES; CHUTES; SWITCHBACKS; SIMILAR DEVICES FOR PUBLIC AMUSEMENT
    • A63G21/00Chutes; Helter-skelters
    • A63G21/18Water-chutes

Definitions

  • the present invention relates generally to the field of amusement park rides and, more specifically, to water slides.
  • the present invention solves these shortcomings in the prior art by providing a water slide system which in one embodiment comprises a user interface which presents a menu to the operator.
  • the menu includes a number of ride theme options.
  • the system is also adapted to enable the operator (e.g., rider) to make a selection of a ride theme options.
  • a computing arrangement receives the selection and causes one or more special effects to be created on or about the waterslide (e.g. audio, video, water sprays, fog). These effects, in the preferred embodiment, are consistent with some kind of theme.
  • the rider makes no selection and the computer selects a random theme for them once a sliding rider reaches and then trips the first sensor at the top of the slide. This provides a random selection process with multiple theme possibilities.
  • the invention in another embodiment, relates to a water-spray device adapted to generate a spray of water into the slide path in combination with a projection arrangement.
  • the projection arrangement is adapted to project images into the spray of water for the purpose of creating a special effect which may be seen by said rider, and then the rider passes through the image.
  • the invention in another embodiment, relates to a computer controlled timing arrangement in which sensors detect a riders position on the slide and play audio/visual content at an appropriate time and location such that the rider is able to enjoy a choreographed, themed experience as he or she descends.
  • FIG. 1 is a schematic diagram of a water slide system in accordance with the present invention
  • FIG. 2 is a schematic flow diagram showing the processes of one embodiment of the system 100 illustrated in FIG. 1 ;
  • FIGS. 3 a - c show one embodiment of a lighting assembly for system 100 illustrated in FIG. 1 ;
  • FIGS. 4 a - c show one embodiment of a speaker assembly for system 100 illustrated in FIG. 1 ;
  • FIGS. 5 to 8 are schematic diagrams of one embodiment of an image projection system for system 100 illustrated in FIG. 1 ;
  • FIGS. 9-10 show an alternative embodiment for the image projection system.
  • FIG. 11 shows a touch screen displaying an effect selection menu which is presented to a user at the top of the slide.
  • System 100 includes audio/visual effects equipment.
  • Water slide system 100 has selectable themes, and includes an interactive water slide special effects control and playback system that will give the rider a choice of various themed experiences which will be accomplished through the use of electronically-controlled and synchronized sound effects, lighting and lighting patterns, water spraying from nozzles, and images projected from any number and variety of projection devices directly or remotely via fiber optic fed optical devices.
  • Water slide system 100 includes water slide 120 , a plurality of lighting assemblies 200 , a plurality of speaker assemblies 300 , and at least one projection system 400 .
  • Water slide 120 in one embodiment, is at least partially enclosed. In one embodiment, the entire slide is enclosed. In another embodiment, the water slide is open at the beginning and end of the slide, the remainder of the slide enclosed. In further alternative embodiments, all or portions of the slide are open, and others or the entire slide are closed. The broad aspects of the disclosed invention will work with any arrangement.
  • Water slide system 100 further includes a plurality of motion sensors spaced along the water slide. Water slide system 100 also includes hardware and software and combinations thereof for operating lighting assemblies 200 , speaker assemblies 300 , projection assemblies 400 and various other components of system 100 discussed in more detail below.
  • Control panel 110 provides a user interface for allowing the rider 105 to select a ride theme from a plurality of ride themes available.
  • Control panel 110 may include a push button, touch sensitive, or computer touch screen interface.
  • the rider 105 may choose from several different labeled themes such as, for example, an ocean theme, a jungle theme, an arctic theme and a space theme. Once the rider makes the choice the rider begins their voyage down the water slide. Upon entering the water slide, the rider notices that the color of the interior of the water slide has changed to represent the theme and the sounds inside the water slide also represent the chosen theme.
  • the rider can experience different sound effects and see different lighting than the effects for the chosen theme due to the theme selected by the preceding rider.
  • the lighting and sound change continuously in keeping with the chosen theme as the rider 105 continues along the water slide.
  • the light emanates from the plurality of lighting assemblies 200 (see FIGS. 3 a - c ) and the sounds emanate from the plurality of speaker assemblies 300 (see FIGS. 4 a - c ).
  • motion sensors 130 located along the water slide 120 detect the rider as the rider passes the sensor.
  • the motion sensor may then send a signal to a controller 140 which is connected to the motion sensor 130 .
  • the signal may be a signal to change the lighting or to begin playing a different audio file to correspond with the theme and the location of the rider along the water slide.
  • the progression of the theme from one phase to the next is triggered by the rider passing a particular motion sensor.
  • the progression of the theme as the rider travels along the water slide is coordinated with the detection of the rider passing the plurality of motion sensors. In this way, the ride can accommodate for the speed at which a rider traverses the ride and a choreographed, themed, ride experience can be enjoyed by the rider.
  • more than one raft and rider can occupy the slide at the same time and the theme that each has selected will be choreographed for that rider.
  • Water slide system 100 further includes at least one water spray unit 150 .
  • Water spray units 150 may be located at various places along the water slide 120 .
  • water spray unit 150 sprays water across the rider's path forming a screen of water the rider must pass through.
  • images are projected onto the water screen.
  • the image is projected from projector system 400 .
  • the projected image may be in keeping with the chosen theme. For example, where the theme is an ocean theme, the projected images may be that of a shark.
  • a myriad of images may be projected such as for example, tigers, polar bears, aliens, monsters etc, in order to provide the rider with a thrilling ride.
  • the number of water projection screens for projecting images may vary depending on the theme and the length of the water slide or the creative design.
  • FIG. 2 is a schematic diagram of one embodiment of the operating system and method 160 for operating water slide system 100 .
  • Computer arrangement/controller 140 includes software and hardware to control the various components of water slide 100 .
  • controller 140 is a server. It could instead be another kind of computing device, e.g., a personal computer, programmable logic controller (PLC), other computing device, or a plurality of like or dissimilar computing devices on a network and still fall within the scope of the invention.
  • PLC programmable logic controller
  • FIG. 1 representation of computing device 140 shows it as proximate the top of the slide for the sake of illustration. It should be noted, however, that in some embodiments this device would be located at a considerable distance from the top of the slide. It could alternatively be at another location in the theme park, or even off site and still would be within the scope of the broad contemplations of this invention.
  • step 162 At the beginning of the ride when the operator/rider selects the theme in a step 162 . If in a next step 162 a , no selection is made, the controller 140 will select a random theme once the first sensor at the top of the slide 131 is tripped. Regardless, the process will continue to a step 164 in which software on controller 140 identifies the requested selection, if one was made, and locates the associated files that will playback that theme.
  • the associated files may be stored on controller 140 .
  • the files are of different standard protocols, such as .AVI file for the video, a DMX protocol for the lighting, RS232 commands to turn on and adjust specific pieces of equipment, .WAV file to playback audio, PCM files to playback digital audio files, USB commands etc.
  • .AVI file for the video
  • DMX protocol for the lighting
  • RS232 commands to turn on and adjust specific pieces of equipment
  • .WAV file to playback audio
  • PCM files to playback digital audio files
  • the synchronized playback begins as the rider passes by the first motion sensor.
  • the playback files are produced to present all the effects in sync with where the riders are along their ride path. This is accomplished with the help of the sensor devices 130 . For example, just before the rider turns a corner they pass through a sensor that signals the software to begin to play a .WAV file, for example a file that says “Who Goes There.” These sensors are placed throughout the ride to keep the software and playback in sync with the riders speed (Block 163 ).
  • One skilled in the art will know how to prepare process which will be executed responsive to the tripping of the sensors to ensure the proper timing.
  • controller 140 sends command signals to laser projectors (in a step 165 ), video projectors (in a step 166 ), audio amplifiers/speakers (in a step 167 ), lighting systems (in a step 168 ) and water control systems (in a step 169 ) to cause their activation and deactivation.
  • Rider selections may be recorded to a data file in a step 170 .
  • the rider tries to repeat the same theme the software will select a variation of that theme for playback. In this way the rider can only make the theme selection and the software makes the selection for the exact files to be played back. This provides a different ride experience within the constraints of the number of options presented to the user/rider every time the water slide is used.
  • the rider is given a user code that is input into the control unit via the user interface 110 .
  • the themes and variations of the theme that the rider chooses may then be linked and stored to that user code.
  • the user codes and associated stored files may be stored for any length of time, for example a day week or season.
  • the user code may be reused/recycled as needed.
  • Data from a previous code user may then be deleted as the user code is recycled.
  • the data is recorded by the software located at controller 140 and provided in a spreadsheet format for review.
  • the data could be accessed remotely over the internet.
  • the data may include such things as, for example, which theme was selected by the user, the date and time the selection was made, the time it took for the rider to pass through each sensor as well as the total time the rider took to complete the ride. Data may be gathered for the purposes of managing high rider volume times, theme popularity, return on investment, and the total number of riders to date.
  • the software will also have an over ride feature that will allow the lifeguard that is monitoring the rider safety to press an emergency button that stops all the audio and video playback as well as turns all the lighting to white.
  • the software also is monitoring all the equipment via the many different interconnections.
  • a ride technician may monitor the ride.
  • the ride monitor monitors the status of the playback system as well as all the connected hardware remotely in a step 171 .
  • the ride technician is able to administer software and media upgrades remotely over the remote interface.
  • the ride system is monitored via the Internet.
  • the ride system is monitored via an intranet arrangement.
  • a sleep function is designed into the hardware and software of the playback system.
  • the system sends out commands to all the hardware to turn off. This feature will save electrical energy as well as extend the life of the hardware.
  • the system may be turned on or reawakened when a new rider begins to climb the stairs of the tower leading to the beginning of the water slide.
  • a motion or pressure sensor strategically placed on the stairs or elsewhere would send a signal to the control system and commands are issued to turn on all the hardware when a rider is approaching.
  • Water ride system 100 includes a plurality of spaced apart lighting assemblies 200 .
  • Lighting assemblies 200 are spaced along the length of the water slide 120 and are shown in the disclosed embodiment to be at the top of the slide.
  • Lighting assembly 200 located at the top of the water slide tube 122 .
  • Lighting assembly 200 includes at least one light source 224 and light enclosure 226 .
  • light enclosure 226 is weatherproof to protect light source 224 and associated components from damage due to such things as rain.
  • Light source 224 may be a fluorescent light source, LED light source, strobe or any other light source.
  • light source 224 is a neon light as is known in the art.
  • the lighting in the disclosed embodiment, is positioned on the upper most center of the perimeter of the tube. It should be mentioned, however, that the lights could be positioned off center as well and still fall within the scope of the claimed invention.
  • the lights are enclosed in a weather proof housing that can be opened from either the inside or outside of the slide for servicing. Servicing may be accomplished through the removal of an exterior lid 228 covering the enclosure 226 , or from inside the slide by removing an interior lid 229 . Because the interior lid is removable, technicians are able to access it from inside the slide as well.
  • the light emitted from light source 224 may point in any direction suitable for the chosen theme.
  • the light may be emitted to bathe the entire water chute with light or may be emitted in directed beams of light. In one embodiment, the lights are pointing downward to allow for the maximum foot candles desired.
  • Water ride system 100 includes a plurality of spaced apart speaker assemblies 300 .
  • Speaker assemblies 300 are spaced along the length of the water slide 120 .
  • Speaker assemblies 300 and lighting assemblies 200 may be positioned in an alternating manner along the length of the water slide 120 .
  • lighting fixtures 224 and speakers 320 are located in the same enclosure.
  • Speaker assembly 300 includes speaker 320 and speaker enclosure 322 .
  • the speakers 320 need to be of a waterproof nature and are positioned in the upper most center of the perimeter 122 of the water slide tube 120 . But alternatively, the speakers could be positioned anywhere off center as well and still fall within the scope of the present invention.
  • the speakers should be positioned in a manner making it hearable by a rider.
  • the speakers are disclosed as facing downward so the sound exits towards the riders and the bottom of the tube.
  • the speakers 320 are enclosed in a weather proof housing 322 that can be opened for servicing. Servicing may be accomplished through the removal of a lid 324 covering the enclosure 322 from outside the slide. Alternatively technicians will be able to service the speakers by removing an interior lid 325 .
  • FIGS. 5 to 8 illustrate one embodiment of a projection system 400 for use in water ride system 100 .
  • Water ride system 100 includes at least one projection assembly.
  • water ride system 100 includes a projection assembly for each water spray unit 150 .
  • FIG. 5 illustrates an enclosure 410 for a projection assembly in closed position.
  • Projection enclosure 410 may be a weatherproof enclosure for protecting projection assembly 420 located and mounted within enclosure 410 .
  • the projector could be mounted outside the enclosure and mounted to the slide itself.
  • projection enclosure 410 is curved to correspond with the curvature of the water slide tube.
  • projection enclosure 410 is located on the upper most center of the perimeter of the water slide tube 120 .
  • the projection enclosure 410 encloses the projector 430 for projecting images onto water spray 150 .
  • the projector 430 and associated components are housed in a weather proof enclosure 410 that can be opened from inside the tube for service.
  • gas shocks 600 may be operably attached to projection enclosure 410 to aid in the opening of the enclosure (see FIG. 6 ).
  • projection enclosure 410 is attached to water slide tube using a plurality of hinges 700 (see FIG. 7 ) about which the lid is openable.
  • the hinge arrangement makes the projection assembly easily accessible if maintenance or repair of the projector is necessary.
  • the projectors are located behind, i.e. further down hill from, the water nozzle/s, at a distance ratio of 2:1 (2 feet of distance for every 1 foot of projected image size).
  • the projected image passes through an opening in the perimeter of the water slide tube 120 .
  • the water slide tube includes an opening 460 located at the top perimeter of the tube (see FIG. 6 ). In this embodiment the nozzle opening 460 is located where it will be covered when the lid 410 is in closed position.
  • opening 460 Since the cover of opening 460 is transparent, the image is clearly projected without substantial interference.
  • the opening 460 that the projected images pass through must be covered with a clear flexible barrier 440 . This barrier must also prevent the rider from entering or encountering the projection enclosure.
  • nozzle 450 is the type having single or multiple flat fan shaped spray patterns. Nozzle 450 is received into a reciprocating aperture 451 so that it can spray into the enclosed slide. This makes it ideal for use as a projection screen.
  • FIGS. 9 and 10 illustrate an alternative embodiment for a projection system 900 for use in water ride system 100 .
  • a projector 930 is mounted inside the enclosure 910 in a waterproof projector housing 912 .
  • Box 912 is mounted directly onto the slide itself.
  • the projector housing 912 encloses projector 930 such that it is able to project images onto substantially flat water spray 950 .
  • the weather proof housing 912 has a hole 916 cut out of one side to enable the lens portion 918 to protrude slightly. Because only the lens is exposed, the other water-vulnerable components of the projector are protected by the housing 912 .
  • this embodiment there is no need for a transparent cover like cover 440 .
  • this embodiment includes a splash guard 914 which is secured directly underneath the lid 910 and raises to an open truncated end 916 .
  • End 916 opens up to the lens 918 of projector 930 so that projected images are allowed to pass through an open area 920 defined into the top perimeter of the water slide tube. The details of how opening 920 allows the passage of the projected image are shown in FIG. 10 .
  • the splashguard barrier 914 in addition to enabling the use of the protector, also prevents the rider from entering or encountering the projection enclosure. Because there is no need for a transparent protective cover like cover 440 in this embodiment, the projected image can be projected directly onto the water effect through a small optical window (opening 920 ). Thus, there is not interference by a cover. This enables better optical quality.
  • nozzle 950 is located in advance of the housing/lid 910 (see FIGS. 9 and 10 ). Again, it is preferred but not necessary that nozzle 950 is the type having single or multiple flat fan shaped spray patterns. Nozzle 950 is received into a reciprocating aperture in the top of the enclosed slide. The nozzle position outside of lid 910 makes the nozzle substantially tamper proof by a slider, because lid 910 is normally in closed position during operation and will not appear to be liftable to the average slider. It is, however, accessible to repair persons who are able to stand up from inside the enclosed slide, stand up through opening 920 , and access the nozzle.
  • Access to projector 930 for repairs can also be gained from inside the slide through opening 920 . This may be necessary to clean the lens, reposition the projector or correct projection angle errors or other reasons.
  • the projection arrangement gives the slider the thrill of passing through the water spray screen as moving images are being displayed.
  • the associated files are produced in advance and are copied on to a removable computer media which gets plugged into the playback hardware. This allows for easy future theme changes without technical personnel present.
  • the electronic media is transferred directly to the computer via an internet or intranet connection.
  • FIG. 11 shows a touch pad arrangement which might comprise control panel 110 in an embodiment.
  • the device displays a screen 1000 which has a plurality of menu options, 1002 , 1004 , 1006 , and 1008 .
  • panel 110 would be located at the top of the slide as shown in FIG. 1 , where it would be encountered by a rider.
  • the rider Upon approaching the device, the rider would select one of the menu options 1002 , 1004 , 1006 , or 1008 , depending on the ride theme desired. Assuming the rider depresses menu option 1004 (which depicts a shark), that rider would encounter amusements during the ride consistent with a shark theme.
  • menu option 1004 which depicts a shark
  • the touch pad interface 110 works together with the computer arrangement 140 to accomplish these objectives.
  • a signal relating to the selection made is transmitted to computing device 140 .
  • a process running on computing device 140 will recognize the signal and begin the process of cueing up the proper lighting, audio files, spray sequencing, and video is prepared for the ride.
  • Sensors 130 will indicate to the computing device 140 the position of the ride on the slide so that the lighting, sound, and other effects are automatically manipulated to occur at the time the rider reaches the proper position.
  • the sensor information will also enable the computing device 140 to begin play of the video file (e.g., an MPEG) and begin spray from nozzle 450 when the rider is approaching the projection assembly 400 .
  • a shark video is displayed which makes it appear to the rider that he or she is encountering a shark.
  • audio files could be played on speakers 300 all the way down the slide during the ride.
  • the rider is treated to a choreographed sequence of special effects during the course of the ride which all relate back to a common theme. And the next time down the slide, the rider is able to select a different theme. For example, upon completion of the shark ride, the rider could select the storm ride option 1002 (see FIG. 11 ) and be exposed to the sounds of high wind and thunder from speakers 300 , lightning imitating flashing lights from light assemblies 200 , and enter into a rotating tornado projected in assembly 400 .

Abstract

An interactive water slide includes a plurality of light and sound sources synchronized with a theme chosen by the rider, the lighting and sound changes as the rider travels down the slide. Images are projected onto a screens of water that block the path of the rider and as the rider travels down the slide the rider must go through these projected images.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application No. 60/674,560 filed Apr. 25, 2005.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • None. BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to the field of amusement park rides and, more specifically, to water slides.
  • 2. Description of the Related Art
  • Enclosed and other sorts of waterslides have been around for quite some time. They are usually found in water parks owned and operated by municipalities, resorts, amusement parks and private individuals. The basic premise for a water slide is that the rider enters a flume at the top, sometimes on a raft or other flotation device, and proceeds down a variable decline until exiting into a water-filled pool. The enjoyment comes from the speed and thrill of the decline, as well as the turns encountered before exiting. Conventionally some sound, lighting, and other effects have been used to add to the amusement of the rider. The rider of these conventional slides, however, must take the particular ride as it comes to him or her and has no control over the experience. Thus, there is a need in the art for a waterslide which affords the rider the opportunity to participate in the experience.
  • SUMMARY OF THE INVENTION
  • The present invention solves these shortcomings in the prior art by providing a water slide system which in one embodiment comprises a user interface which presents a menu to the operator. The menu includes a number of ride theme options. The system is also adapted to enable the operator (e.g., rider) to make a selection of a ride theme options. Once this has occurred, a computing arrangement receives the selection and causes one or more special effects to be created on or about the waterslide (e.g. audio, video, water sprays, fog). These effects, in the preferred embodiment, are consistent with some kind of theme.
  • In another embodiment, the rider makes no selection and the computer selects a random theme for them once a sliding rider reaches and then trips the first sensor at the top of the slide. This provides a random selection process with multiple theme possibilities.
  • In another embodiment, the invention relates to a water-spray device adapted to generate a spray of water into the slide path in combination with a projection arrangement. The projection arrangement is adapted to project images into the spray of water for the purpose of creating a special effect which may be seen by said rider, and then the rider passes through the image.
  • In another embodiment, the invention relates to a computer controlled timing arrangement in which sensors detect a riders position on the slide and play audio/visual content at an appropriate time and location such that the rider is able to enjoy a choreographed, themed experience as he or she descends.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram of a water slide system in accordance with the present invention;
  • FIG. 2 is a schematic flow diagram showing the processes of one embodiment of the system 100 illustrated in FIG. 1;
  • FIGS. 3 a-c show one embodiment of a lighting assembly for system 100 illustrated in FIG. 1;
  • FIGS. 4 a-c show one embodiment of a speaker assembly for system 100 illustrated in FIG. 1;
  • FIGS. 5 to 8 are schematic diagrams of one embodiment of an image projection system for system 100 illustrated in FIG. 1;
  • FIGS. 9-10 show an alternative embodiment for the image projection system; and
  • FIG. 11 shows a touch screen displaying an effect selection menu which is presented to a user at the top of the slide.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIGS. 1-9, a water slide system 100 is disclosed. System 100 includes audio/visual effects equipment. Water slide system 100 has selectable themes, and includes an interactive water slide special effects control and playback system that will give the rider a choice of various themed experiences which will be accomplished through the use of electronically-controlled and synchronized sound effects, lighting and lighting patterns, water spraying from nozzles, and images projected from any number and variety of projection devices directly or remotely via fiber optic fed optical devices.
  • Water slide system 100 includes water slide 120, a plurality of lighting assemblies 200, a plurality of speaker assemblies 300, and at least one projection system 400. Water slide 120, in one embodiment, is at least partially enclosed. In one embodiment, the entire slide is enclosed. In another embodiment, the water slide is open at the beginning and end of the slide, the remainder of the slide enclosed. In further alternative embodiments, all or portions of the slide are open, and others or the entire slide are closed. The broad aspects of the disclosed invention will work with any arrangement.
  • Water slide system 100 further includes a plurality of motion sensors spaced along the water slide. Water slide system 100 also includes hardware and software and combinations thereof for operating lighting assemblies 200, speaker assemblies 300, projection assemblies 400 and various other components of system 100 discussed in more detail below.
  • Referring to FIG. 1, at the top (beginning) of the waterslide the user/rider 105 is presented with a control panel 110. Control panel 110 provides a user interface for allowing the rider 105 to select a ride theme from a plurality of ride themes available. Control panel 110 may include a push button, touch sensitive, or computer touch screen interface. The rider 105 may choose from several different labeled themes such as, for example, an ocean theme, a jungle theme, an arctic theme and a space theme. Once the rider makes the choice the rider begins their voyage down the water slide. Upon entering the water slide, the rider notices that the color of the interior of the water slide has changed to represent the theme and the sounds inside the water slide also represent the chosen theme.
  • In one embodiment, the rider can experience different sound effects and see different lighting than the effects for the chosen theme due to the theme selected by the preceding rider. The lighting and sound change continuously in keeping with the chosen theme as the rider 105 continues along the water slide. The light emanates from the plurality of lighting assemblies 200 (see FIGS. 3 a-c) and the sounds emanate from the plurality of speaker assemblies 300 (see FIGS. 4 a-c).
  • In one embodiment, motion sensors 130 located along the water slide 120 detect the rider as the rider passes the sensor. The motion sensor may then send a signal to a controller 140 which is connected to the motion sensor 130. The signal may be a signal to change the lighting or to begin playing a different audio file to correspond with the theme and the location of the rider along the water slide. In one embodiment, the progression of the theme from one phase to the next is triggered by the rider passing a particular motion sensor. The progression of the theme as the rider travels along the water slide is coordinated with the detection of the rider passing the plurality of motion sensors. In this way, the ride can accommodate for the speed at which a rider traverses the ride and a choreographed, themed, ride experience can be enjoyed by the rider.
  • In another embodiment, more than one raft and rider can occupy the slide at the same time and the theme that each has selected will be choreographed for that rider.
  • Water slide system 100 further includes at least one water spray unit 150. Water spray units 150 may be located at various places along the water slide 120. In one embodiment, water spray unit 150 sprays water across the rider's path forming a screen of water the rider must pass through. In one embodiment, images are projected onto the water screen. The image is projected from projector system 400. The projected image may be in keeping with the chosen theme. For example, where the theme is an ocean theme, the projected images may be that of a shark. Those with skill in the art will readily recognize that a myriad of images may be projected such as for example, tigers, polar bears, aliens, monsters etc, in order to provide the rider with a thrilling ride. The number of water projection screens for projecting images may vary depending on the theme and the length of the water slide or the creative design.
  • Referring to FIG. 2, FIG. 2 is a schematic diagram of one embodiment of the operating system and method 160 for operating water slide system 100. Computer arrangement/controller 140 includes software and hardware to control the various components of water slide 100. In the preferred embodiment, controller 140 is a server. It could instead be another kind of computing device, e.g., a personal computer, programmable logic controller (PLC), other computing device, or a plurality of like or dissimilar computing devices on a network and still fall within the scope of the invention. Further, the FIG. 1 representation of computing device 140 shows it as proximate the top of the slide for the sake of illustration. It should be noted, however, that in some embodiments this device would be located at a considerable distance from the top of the slide. It could alternatively be at another location in the theme park, or even off site and still would be within the scope of the broad contemplations of this invention.
  • At the beginning of the ride when the operator/rider selects the theme in a step 162. If in a next step 162 a, no selection is made, the controller 140 will select a random theme once the first sensor at the top of the slide 131 is tripped. Regardless, the process will continue to a step 164 in which software on controller 140 identifies the requested selection, if one was made, and locates the associated files that will playback that theme. The associated files may be stored on controller 140. The files are of different standard protocols, such as .AVI file for the video, a DMX protocol for the lighting, RS232 commands to turn on and adjust specific pieces of equipment, .WAV file to playback audio, PCM files to playback digital audio files, USB commands etc. One skilled in the art will be familiar with these different file types as well as others which could be used to accomplish the objectives of the present invention.
  • The synchronized playback begins as the rider passes by the first motion sensor. The playback files are produced to present all the effects in sync with where the riders are along their ride path. This is accomplished with the help of the sensor devices 130. For example, just before the rider turns a corner they pass through a sensor that signals the software to begin to play a .WAV file, for example a file that says “Who Goes There.” These sensors are placed throughout the ride to keep the software and playback in sync with the riders speed (Block 163). One skilled in the art will know how to prepare process which will be executed responsive to the tripping of the sensors to ensure the proper timing.
  • In the preferred embodiment, controller 140 sends command signals to laser projectors (in a step 165), video projectors (in a step 166), audio amplifiers/speakers (in a step 167), lighting systems (in a step 168) and water control systems (in a step 169) to cause their activation and deactivation.
  • Rider selections may be recorded to a data file in a step 170. In one embodiment, if the rider tries to repeat the same theme the software will select a variation of that theme for playback. In this way the rider can only make the theme selection and the software makes the selection for the exact files to be played back. This provides a different ride experience within the constraints of the number of options presented to the user/rider every time the water slide is used. In one embodiment, the rider is given a user code that is input into the control unit via the user interface 110. The themes and variations of the theme that the rider chooses may then be linked and stored to that user code. The user codes and associated stored files may be stored for any length of time, for example a day week or season. In this way, the user code may be reused/recycled as needed. Data from a previous code user may then be deleted as the user code is recycled. In one embodiment, the data is recorded by the software located at controller 140 and provided in a spreadsheet format for review. Alternatively the data could be accessed remotely over the internet. The data may include such things as, for example, which theme was selected by the user, the date and time the selection was made, the time it took for the rider to pass through each sensor as well as the total time the rider took to complete the ride. Data may be gathered for the purposes of managing high rider volume times, theme popularity, return on investment, and the total number of riders to date.
  • In one embodiment, the software will also have an over ride feature that will allow the lifeguard that is monitoring the rider safety to press an emergency button that stops all the audio and video playback as well as turns all the lighting to white. The software also is monitoring all the equipment via the many different interconnections. A ride technician may monitor the ride. In this one embodiment the ride monitor monitors the status of the playback system as well as all the connected hardware remotely in a step 171. Further, and also a part of step 171, the ride technician is able to administer software and media upgrades remotely over the remote interface. As a practical matter, in one embodiment, the ride system is monitored via the Internet. In another embodiment, the ride system is monitored via an intranet arrangement. These kinds of remote arrangements are very beneficial in some circumstances. For example, ride staff (typically non technically-minded persons) are completely eliminated from the ride control system monitoring process. Therefore, they are more able to devote themselves to park safety and other concerns and are not distracted.
  • In one embodiment, a sleep function is designed into the hardware and software of the playback system. In one example, after 10 minutes of no selections from the control panel the system sends out commands to all the hardware to turn off. This feature will save electrical energy as well as extend the life of the hardware. In another or the same embodiment, the system may be turned on or reawakened when a new rider begins to climb the stairs of the tower leading to the beginning of the water slide. In this embodiment a motion or pressure sensor strategically placed on the stairs or elsewhere would send a signal to the control system and commands are issued to turn on all the hardware when a rider is approaching.
  • Referring to FIGS. 3 a-c, an embodiment of a lighting assembly for water ride system 100 is disclosed. Water ride system 100 includes a plurality of spaced apart lighting assemblies 200. Lighting assemblies 200 are spaced along the length of the water slide 120 and are shown in the disclosed embodiment to be at the top of the slide. Lighting assembly 200 located at the top of the water slide tube 122. Lighting assembly 200 includes at least one light source 224 and light enclosure 226. In one embodiment, light enclosure 226 is weatherproof to protect light source 224 and associated components from damage due to such things as rain. Light source 224 may be a fluorescent light source, LED light source, strobe or any other light source. In one embodiment, light source 224 is a neon light as is known in the art. The lighting, in the disclosed embodiment, is positioned on the upper most center of the perimeter of the tube. It should be mentioned, however, that the lights could be positioned off center as well and still fall within the scope of the claimed invention. The lights are enclosed in a weather proof housing that can be opened from either the inside or outside of the slide for servicing. Servicing may be accomplished through the removal of an exterior lid 228 covering the enclosure 226, or from inside the slide by removing an interior lid 229. Because the interior lid is removable, technicians are able to access it from inside the slide as well.
  • The light emitted from light source 224 may point in any direction suitable for the chosen theme. The light may be emitted to bathe the entire water chute with light or may be emitted in directed beams of light. In one embodiment, the lights are pointing downward to allow for the maximum foot candles desired.
  • Referring to FIGS. 4 a-c, a speaker assembly 300 for water ride system 100 is shown. Water ride system 100 includes a plurality of spaced apart speaker assemblies 300. Speaker assemblies 300 are spaced along the length of the water slide 120. Speaker assemblies 300 and lighting assemblies 200 may be positioned in an alternating manner along the length of the water slide 120. In another embodiment, lighting fixtures 224 and speakers 320 are located in the same enclosure. Speaker assembly 300 includes speaker 320 and speaker enclosure 322. The speakers 320 need to be of a waterproof nature and are positioned in the upper most center of the perimeter 122 of the water slide tube 120. But alternatively, the speakers could be positioned anywhere off center as well and still fall within the scope of the present invention. Regardless, the speakers should be positioned in a manner making it hearable by a rider. In the preferred embodiment the speakers are disclosed as facing downward so the sound exits towards the riders and the bottom of the tube. The speakers 320 are enclosed in a weather proof housing 322 that can be opened for servicing. Servicing may be accomplished through the removal of a lid 324 covering the enclosure 322 from outside the slide. Alternatively technicians will be able to service the speakers by removing an interior lid 325.
  • FIGS. 5 to 8 illustrate one embodiment of a projection system 400 for use in water ride system 100. Water ride system 100 includes at least one projection assembly. In one embodiment, water ride system 100 includes a projection assembly for each water spray unit 150.
  • FIG. 5 illustrates an enclosure 410 for a projection assembly in closed position. Projection enclosure 410 may be a weatherproof enclosure for protecting projection assembly 420 located and mounted within enclosure 410. Alternatively, the projector could be mounted outside the enclosure and mounted to the slide itself. In the disclosed embodiment, projection enclosure 410 is curved to correspond with the curvature of the water slide tube. In cross section, projection enclosure 410 is located on the upper most center of the perimeter of the water slide tube 120. The projection enclosure 410 encloses the projector 430 for projecting images onto water spray 150. The projector 430 and associated components are housed in a weather proof enclosure 410 that can be opened from inside the tube for service. In one embodiment, gas shocks 600 may be operably attached to projection enclosure 410 to aid in the opening of the enclosure (see FIG. 6). In one embodiment, projection enclosure 410 is attached to water slide tube using a plurality of hinges 700 (see FIG. 7) about which the lid is openable. The hinge arrangement makes the projection assembly easily accessible if maintenance or repair of the projector is necessary. In one embodiment, the projectors are located behind, i.e. further down hill from, the water nozzle/s, at a distance ratio of 2:1 (2 feet of distance for every 1 foot of projected image size). The projected image passes through an opening in the perimeter of the water slide tube 120. The water slide tube includes an opening 460 located at the top perimeter of the tube (see FIG. 6). In this embodiment the nozzle opening 460 is located where it will be covered when the lid 410 is in closed position.
  • Since the cover of opening 460 is transparent, the image is clearly projected without substantial interference. The opening 460 that the projected images pass through must be covered with a clear flexible barrier 440. This barrier must also prevent the rider from entering or encountering the projection enclosure.
  • In the preferred embodiment nozzle 450 is the type having single or multiple flat fan shaped spray patterns. Nozzle 450 is received into a reciprocating aperture 451 so that it can spray into the enclosed slide. This makes it ideal for use as a projection screen.
  • FIGS. 9 and 10 illustrate an alternative embodiment for a projection system 900 for use in water ride system 100. In this embodiment, a projector 930 is mounted inside the enclosure 910 in a waterproof projector housing 912. Box 912 is mounted directly onto the slide itself. The projector housing 912 encloses projector 930 such that it is able to project images onto substantially flat water spray 950. The weather proof housing 912 has a hole 916 cut out of one side to enable the lens portion 918 to protrude slightly. Because only the lens is exposed, the other water-vulnerable components of the projector are protected by the housing 912.
  • With this embodiment, there is no need for a transparent cover like cover 440. This is because this embodiment includes a splash guard 914 which is secured directly underneath the lid 910 and raises to an open truncated end 916. End 916 opens up to the lens 918 of projector 930 so that projected images are allowed to pass through an open area 920 defined into the top perimeter of the water slide tube. The details of how opening 920 allows the passage of the projected image are shown in FIG. 10.
  • The splashguard barrier 914, in addition to enabling the use of the protector, also prevents the rider from entering or encountering the projection enclosure. Because there is no need for a transparent protective cover like cover 440 in this embodiment, the projected image can be projected directly onto the water effect through a small optical window (opening 920). Thus, there is not interference by a cover. This enables better optical quality.
  • Another difference with the embodiment disclosed in FIGS. 9 and 10 regards the positioning of the nozzle. In this embodiment, nozzle 950 is located in advance of the housing/lid 910 (see FIGS. 9 and 10). Again, it is preferred but not necessary that nozzle 950 is the type having single or multiple flat fan shaped spray patterns. Nozzle 950 is received into a reciprocating aperture in the top of the enclosed slide. The nozzle position outside of lid 910 makes the nozzle substantially tamper proof by a slider, because lid 910 is normally in closed position during operation and will not appear to be liftable to the average slider. It is, however, accessible to repair persons who are able to stand up from inside the enclosed slide, stand up through opening 920, and access the nozzle.
  • Access to projector 930 for repairs can also be gained from inside the slide through opening 920. This may be necessary to clean the lens, reposition the projector or correct projection angle errors or other reasons.
  • Because the lights, speakers, projection devices nozzles, and other features are accessible from inside the enclosed slide, repair is made much easier. With conventional water slide arrangements, the access of any fixed equipment is difficult and dangerous where the equipment is located at high elevations. Thus, the accessibility offered here are a substantial improvement.
  • In all the embodiments, the projection arrangement gives the slider the thrill of passing through the water spray screen as moving images are being displayed.
  • All current and future protocols are supported by the software used. The associated files are produced in advance and are copied on to a removable computer media which gets plugged into the playback hardware. This allows for easy future theme changes without technical personnel present. In one embodiment, the electronic media is transferred directly to the computer via an internet or intranet connection.
  • FIG. 11 shows a touch pad arrangement which might comprise control panel 110 in an embodiment. Referring to the figure, it may be seen that the device displays a screen 1000 which has a plurality of menu options, 1002, 1004, 1006, and 1008. In the preferred embodiment, panel 110 would be located at the top of the slide as shown in FIG. 1, where it would be encountered by a rider. Upon approaching the device, the rider would select one of the menu options 1002, 1004, 1006, or 1008, depending on the ride theme desired. Assuming the rider depresses menu option 1004 (which depicts a shark), that rider would encounter amusements during the ride consistent with a shark theme. This might, e.g., involve the playing of dramatic music which corresponds to the shark images projected. It also might involve still or moving images being presented to the sliding rider once he or she reaches projection assembly 400. In one embodiment, the moving or still images are displayed continuously from the time the rider makes their selection.
  • The touch pad interface 110 works together with the computer arrangement 140 to accomplish these objectives. Once a selection is made on touch screen 900, a signal relating to the selection made is transmitted to computing device 140. Upon receipt, a process running on computing device 140 will recognize the signal and begin the process of cueing up the proper lighting, audio files, spray sequencing, and video is prepared for the ride. Sensors 130 will indicate to the computing device 140 the position of the ride on the slide so that the lighting, sound, and other effects are automatically manipulated to occur at the time the rider reaches the proper position. The sensor information will also enable the computing device 140 to begin play of the video file (e.g., an MPEG) and begin spray from nozzle 450 when the rider is approaching the projection assembly 400. As can be seen in FIG. 8, a shark video is displayed which makes it appear to the rider that he or she is encountering a shark. Similarly, audio files could be played on speakers 300 all the way down the slide during the ride.
  • Thus, the rider is treated to a choreographed sequence of special effects during the course of the ride which all relate back to a common theme. And the next time down the slide, the rider is able to select a different theme. For example, upon completion of the shark ride, the rider could select the storm ride option 1002 (see FIG. 11) and be exposed to the sounds of high wind and thunder from speakers 300, lightning imitating flashing lights from light assemblies 200, and enter into a rotating tornado projected in assembly 400.
  • As can be seen, the present invention and its equivalents are well-adapted to provide a new and useful waterslide system and method. Many different arrangements of the various components depicted, as well as components not shown, are possible without departing from the spirit and scope of the present invention.
  • The present invention has been described in relation to particular embodiments, which are intended in all respects to be illustrative rather than restrictive. Alternative embodiments will become apparent to those skilled in the art that do not depart from its scope. Many alternative embodiments exist but are not included because of the nature of this invention. A skilled artisan may develop alternative means of implementing the aforementioned improvements without departing from the scope of the present invention.
  • It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations and are contemplated within the scope of the claims. Not all steps listed in the various figures need be carried out in the order described.

Claims (20)

1. A water slide system comprising:
a water slide defining a slide path;
a user interface presenting a menu to a rider, said menu including a first ride theme option and a second ride theme option, said interface further adapted to enable said rider to make a selection of one of said first and second ride theme options; and
a computing arrangement adapted to receive said selection and then cause an effect to be created on or about said waterslide, said effect being consistent with said selection of said first and second ride theme options.
2. The system of claim 1 comprising:
a water nozzle adapted to generate a spray of water into said slide path; and
a projection device adapted to project an image into said spray of water for the purpose of creating a special effect which is related to said selection of one of said first and second ride theme options.
3. The system of claim 1 comprising:
a sensor for sensing the presence of a rider at a particular location on said slide, transmitting a signal; and
a process on said computing arrangement for receiving said signal and then creating said effect at a time and location at which said effect can be experienced by said rider.
4. The system of claim 3 wherein said effect is created using one or more of:
a nozzle to create a water spray;
an illumination device; and
a sound generating device.
5. The system of claim 4 wherein said effect is created at least using said sound generating device, and where said sound generating device is a speaker which is located in a protective speaker housing, said protective speaker housing being accessible from inside the slide which is enclosed.
6. The system of claim 4 wherein said effect is created at least using said illumination device, and where said illumination device is located in a protective light housing, said protective light housing being accessible from inside the slide which is enclosed.
7. The system of claim 1 comprising:
a sleep-mode process on said computing arrangement, said sleep-mode process adapted to turn off the power to the system when no riders are detected.
8. The system of claim 7 comprising:
a sensor for detecting when said rider is approaching said slide when said system has been in said sleep mode, said sensor transmitting a signal to said computing arrangement to return power to said system.
9. The system of claim 1 comprising:
a data storage component in said computing arrangement, said data storage component adapted to store an audio or a video file; and
a media player component in said computing arrangement, said media player arrangement adapted to play said audio or said video file.
10. The system of claim 9 comprising:
a speaker on said slide system, said speaker adapted to play said audio file.
11. The system of claim 9 comprising:
a sensor for sensing the presence of a rider at a particular location on said slide, transmitting a signal; and
a process on said computing arrangement for receiving said signal and then playing said one of said audio and said video file on a broadcasting device at a location proximate said rider.
12. A water slide system comprising:
a water slide defining a slide path;
a water-transmitting device adapted to generate a spray of water into said slide path; and
a projection arrangement, said arrangement adapted to project an image into said spray of water for the purpose of creating a special effect which may be seen by said rider.
13. The system of claim 12 wherein said slide is enclosed and said projection arrangement comprises:
a projector included in a water-shielded housing;
said enclosed slide defines one of a raised splash guard portion and a transparent portion; and
said projector is oriented such that it projects through said one of said raised splashguard portion and said transparent portion such that said image can be produced into said spray of water.
14. The system of claim 12 wherein said water-transmitting device is a nozzle, said nozzle adapted to project a pressurized substantially flat spray.
15. The system of claim 12 wherein said projection arrangement includes a projector which is accessible from inside the slide and is adapted to generate one of a still and a moving picture.
16. The system of claim 12 wherein said slide is enclosed and said projection arrangement comprises:
a projector included in a water-shielded housing, said housing being hinged such that a person is able to lift it in order to service one of said projector and another piece equipment.
17. A method of entertaining a rider on a water slide, said method comprising:
presenting a list of options to a rider, said list including a first ride theme option and a second ride theme option;
accepting a selection made by said rider, said selection being of one of said first and second ride theme options; and
creating an effect on or about said waterslide, said effect being consistent with said selection of said first and second ride theme options.
18. The method of claim 17 comprising:
saving information related to said selection made by said rider on a database so that it may be retrieved at a later time.
19. The method of claim 17 comprising:
providing a remote interface arrangement which enables a technician to remotely monitor a computing system, said computing system adapted to support said method.
20. The method of claim 17 comprising:
using a computer program to accomplish said method;
saving said computer program on to a removable computer media for the purpose of allowing theme changes to a location without having technical personnel present.
US11/379,826 2005-04-25 2006-04-24 Water slide audio visual entertainment system Abandoned US20060252563A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/379,826 US20060252563A1 (en) 2005-04-25 2006-04-24 Water slide audio visual entertainment system
US12/271,452 US7967692B2 (en) 2006-04-24 2008-11-14 Water slide audio visual entertainment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US67456005P 2005-04-25 2005-04-25
US11/379,826 US20060252563A1 (en) 2005-04-25 2006-04-24 Water slide audio visual entertainment system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/271,452 Continuation-In-Part US7967692B2 (en) 2006-04-24 2008-11-14 Water slide audio visual entertainment system

Publications (1)

Publication Number Publication Date
US20060252563A1 true US20060252563A1 (en) 2006-11-09

Family

ID=37215326

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/379,826 Abandoned US20060252563A1 (en) 2005-04-25 2006-04-24 Water slide audio visual entertainment system

Country Status (3)

Country Link
US (1) US20060252563A1 (en)
CA (1) CA2605614A1 (en)
WO (1) WO2006116176A2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070185601A1 (en) * 2006-02-07 2007-08-09 Apple Computer, Inc. Presentation of audible media in accommodation with external sound
US20080129530A1 (en) * 2006-08-04 2008-06-05 Moose Mountain Toymakers Ltd. Children's playland
US20080136236A1 (en) * 2005-11-03 2008-06-12 Graco Children's Products Inc. Operational Mode Control for a Child Device
US20090017927A1 (en) * 2007-07-11 2009-01-15 Paul Takeshi Shozi Amusement Ride With Mechanical Lift, Slides, Sequenced Ejections, And Show Systems
US20090149265A1 (en) * 2007-12-05 2009-06-11 Disney Enterprises, Inc. Method and system for customizing a theme park experience
US20100120323A1 (en) * 2008-11-12 2010-05-13 Boretskin Steven M Inflatable interactive amusement structure incorporating electronic audio and visual effects
US20130045804A1 (en) * 2011-08-18 2013-02-21 Game Nation, Inc. System and method for providing a multi-player game experience
US20150003636A1 (en) * 2013-06-26 2015-01-01 Disney Enterprises, Inc. Scalable and automatic distance-based audio adjustment
US20150339910A1 (en) * 2014-05-21 2015-11-26 Universal City Studios Llc Amusement park element tracking system
KR20170141801A (en) * 2015-05-05 2017-12-26 유니버셜 시티 스튜디오스 엘엘씨 Functional Matt Racer
WO2018080408A1 (en) 2016-10-25 2018-05-03 Polin Su Parklari Ve Havuz Sistemleri Anonim Sirketi A waterslide system
US20180170559A1 (en) * 2016-12-20 2018-06-21 Goodrich Corporation Audio evacuation system readiness indicator
WO2019059959A1 (en) * 2017-09-25 2019-03-28 Ballast Technologies, Inc. Coordination of water-related experiences with virtual reality content
USD876564S1 (en) * 2018-02-05 2020-02-25 Proslide Technology, Inc. Water ride
USD892960S1 (en) * 2018-04-16 2020-08-11 Proslide Technology Inc. Water ride
USD905188S1 (en) * 2019-02-13 2020-12-15 Proslide Technology Inc. Water ride
USD943043S1 (en) * 2019-05-24 2022-02-08 Proslide Technology Inc. Water ride
USD959586S1 (en) * 2019-09-12 2022-08-02 Proslide Technology Inc. Water ride
EP4183460A1 (en) * 2021-11-18 2023-05-24 Vortex Aquatic Structures International Inc. Experiential water tunnel and method thereof
US11714483B2 (en) 2020-09-15 2023-08-01 Ballast Technologies, Inc. Systems, methods, and devices for providing virtual-reality or mixed-reality experiences with special effects to a user in or under water

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2794747A1 (en) 2010-03-30 2011-10-13 Backyard Leisure Holdings, Inc. Play system accessory with sound modules
DK3183044T3 (en) 2014-08-21 2018-05-07 Klarer Freizeitanlagen Ag Water slides and methods of operation
DE102014111982B3 (en) * 2014-08-21 2015-07-02 Klarer Freizeitanlagen Ag Water slide system and operating procedures
CN106546765A (en) * 2016-10-28 2017-03-29 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) Digitized racing measurement apparatus based on water slide

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219315A (en) * 1991-06-28 1993-06-15 Mark Fuller Water effects enhanced motion base simulator ride
US5378197A (en) * 1989-11-20 1995-01-03 Briggs; Rick A. Waterslide play apparatus
US5453054A (en) * 1994-05-20 1995-09-26 Waterworld Products, Inc. Controllable waterslide weir
US5482510A (en) * 1992-10-23 1996-01-09 Ishii Iron Works Co., Ltd. Amusement device passing within tube
US5669821A (en) * 1994-04-12 1997-09-23 Prather; James G. Video augmented amusement rides
US5685778A (en) * 1996-06-07 1997-11-11 Universal Studios, Inc. Ride attraction having animated figures
US5716281A (en) * 1995-11-27 1998-02-10 Sega Enterprises, Ltd. Game apparatus using a vehicle with an optical image synthesizing system
US6007338A (en) * 1997-11-17 1999-12-28 Disney Enterprises, Inc. Roller coaster simulator
US6186902B1 (en) * 1997-05-01 2001-02-13 Koala Corp. Participatory water slide play structure
US6224491B1 (en) * 1996-06-28 2001-05-01 Kabushiki Kaisha Sega Enterprises Ride-type game machine
US6364490B1 (en) * 1996-11-15 2002-04-02 Vantage Lighting Incorporated Virtual image projection device
US6413165B1 (en) * 1997-11-18 2002-07-02 Bill A. Crandall Intermittenly wetted sliding amusement ride
US6428449B1 (en) * 2000-05-17 2002-08-06 Stanford Apseloff Interactive video system responsive to motion and voice command
US6443849B1 (en) * 2000-06-12 2002-09-03 Playcore, Inc. Recreation system with rain forest theme
US6488590B2 (en) * 2001-03-09 2002-12-03 Kabushiki Kaisha Piste Snow Industries Indoor skiing ground facilities having lighting fixtures
US6702687B1 (en) * 2000-06-23 2004-03-09 Nbgs International, Inc. Controller system for water amusement devices
US6819467B2 (en) * 1988-02-12 2004-11-16 Donnelly Corporation Reduced ultraviolet radiation transmitting, variable transmission, glazing assembly
US6834966B1 (en) * 2003-06-13 2004-12-28 Carole Moquin Passageway with virtual reality environment
US6847892B2 (en) * 2001-10-29 2005-01-25 Digital Angel Corporation System for localizing and sensing objects and providing alerts

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6819467B2 (en) * 1988-02-12 2004-11-16 Donnelly Corporation Reduced ultraviolet radiation transmitting, variable transmission, glazing assembly
US5378197A (en) * 1989-11-20 1995-01-03 Briggs; Rick A. Waterslide play apparatus
US5219315A (en) * 1991-06-28 1993-06-15 Mark Fuller Water effects enhanced motion base simulator ride
US5482510A (en) * 1992-10-23 1996-01-09 Ishii Iron Works Co., Ltd. Amusement device passing within tube
US5669821A (en) * 1994-04-12 1997-09-23 Prather; James G. Video augmented amusement rides
US5453054A (en) * 1994-05-20 1995-09-26 Waterworld Products, Inc. Controllable waterslide weir
US5716281A (en) * 1995-11-27 1998-02-10 Sega Enterprises, Ltd. Game apparatus using a vehicle with an optical image synthesizing system
US5685778A (en) * 1996-06-07 1997-11-11 Universal Studios, Inc. Ride attraction having animated figures
US6224491B1 (en) * 1996-06-28 2001-05-01 Kabushiki Kaisha Sega Enterprises Ride-type game machine
US6364490B1 (en) * 1996-11-15 2002-04-02 Vantage Lighting Incorporated Virtual image projection device
US6186902B1 (en) * 1997-05-01 2001-02-13 Koala Corp. Participatory water slide play structure
US6375578B1 (en) * 1997-05-01 2002-04-23 Koala Corporation Two-way interactive water slide
US6007338A (en) * 1997-11-17 1999-12-28 Disney Enterprises, Inc. Roller coaster simulator
US6413165B1 (en) * 1997-11-18 2002-07-02 Bill A. Crandall Intermittenly wetted sliding amusement ride
US6428449B1 (en) * 2000-05-17 2002-08-06 Stanford Apseloff Interactive video system responsive to motion and voice command
US6443849B1 (en) * 2000-06-12 2002-09-03 Playcore, Inc. Recreation system with rain forest theme
US6702687B1 (en) * 2000-06-23 2004-03-09 Nbgs International, Inc. Controller system for water amusement devices
US6488590B2 (en) * 2001-03-09 2002-12-03 Kabushiki Kaisha Piste Snow Industries Indoor skiing ground facilities having lighting fixtures
US6847892B2 (en) * 2001-10-29 2005-01-25 Digital Angel Corporation System for localizing and sensing objects and providing alerts
US6834966B1 (en) * 2003-06-13 2004-12-28 Carole Moquin Passageway with virtual reality environment

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080136236A1 (en) * 2005-11-03 2008-06-12 Graco Children's Products Inc. Operational Mode Control for a Child Device
US20080146360A1 (en) * 2005-11-03 2008-06-19 Graco Children's Products Inc. Capacitive Sensing in User Interface and Motion Control for a Child Motion Device
US7874927B2 (en) * 2005-11-03 2011-01-25 Graco Children's Products Inc. Capacitive sensing in user interface and motion control for a child motion device
US20070185601A1 (en) * 2006-02-07 2007-08-09 Apple Computer, Inc. Presentation of audible media in accommodation with external sound
US20080129530A1 (en) * 2006-08-04 2008-06-05 Moose Mountain Toymakers Ltd. Children's playland
US7931540B2 (en) * 2006-08-04 2011-04-26 Moose Mountain Toymakers Ltd. Children's playland
US20090017927A1 (en) * 2007-07-11 2009-01-15 Paul Takeshi Shozi Amusement Ride With Mechanical Lift, Slides, Sequenced Ejections, And Show Systems
US20090149265A1 (en) * 2007-12-05 2009-06-11 Disney Enterprises, Inc. Method and system for customizing a theme park experience
US7837567B2 (en) * 2007-12-05 2010-11-23 Disney Enterprises, Inc. Method and system for customizing a theme park experience
JP2011510688A (en) * 2007-12-05 2011-04-07 ディズニー エンタープライゼス インコーポレイテッド Method and system for customizing a theme park experience
US20100120323A1 (en) * 2008-11-12 2010-05-13 Boretskin Steven M Inflatable interactive amusement structure incorporating electronic audio and visual effects
US7976396B2 (en) * 2008-11-12 2011-07-12 Boretskin Steven M Inflatable interactive amusement structure incorporating electronic audio and visual effects
US20130045804A1 (en) * 2011-08-18 2013-02-21 Game Nation, Inc. System and method for providing a multi-player game experience
US9352225B2 (en) * 2011-08-18 2016-05-31 Game Nation, Inc. System and method for providing a multi-player game experience
US20150003636A1 (en) * 2013-06-26 2015-01-01 Disney Enterprises, Inc. Scalable and automatic distance-based audio adjustment
US20150339910A1 (en) * 2014-05-21 2015-11-26 Universal City Studios Llc Amusement park element tracking system
US9600999B2 (en) * 2014-05-21 2017-03-21 Universal City Studios Llc Amusement park element tracking system
US9839855B2 (en) 2014-05-21 2017-12-12 Universal City Studios Llc Amusement park element tracking system
US10661184B2 (en) 2014-05-21 2020-05-26 Universal City Studios Llc Amusement park element tracking system
KR102008084B1 (en) 2015-05-05 2019-08-06 유니버셜 시티 스튜디오스 엘엘씨 Functional mat racer
KR20170141801A (en) * 2015-05-05 2017-12-26 유니버셜 시티 스튜디오스 엘엘씨 Functional Matt Racer
WO2018080408A1 (en) 2016-10-25 2018-05-03 Polin Su Parklari Ve Havuz Sistemleri Anonim Sirketi A waterslide system
US10351251B2 (en) * 2016-12-20 2019-07-16 Goodrich Corporation Audio evacuation system readiness indicator
US20180170559A1 (en) * 2016-12-20 2018-06-21 Goodrich Corporation Audio evacuation system readiness indicator
WO2019059959A1 (en) * 2017-09-25 2019-03-28 Ballast Technologies, Inc. Coordination of water-related experiences with virtual reality content
US10782525B2 (en) 2017-09-25 2020-09-22 Ballast Technologies, Inc. Coordination of water-related experiences with virtual reality content
US11262583B2 (en) * 2017-09-25 2022-03-01 Ballast Technologies, Inc. Coordination of water-related experiences with virtual reality content
USD876564S1 (en) * 2018-02-05 2020-02-25 Proslide Technology, Inc. Water ride
USD903804S1 (en) * 2018-02-05 2020-12-01 Proslide Technology, Inc. Water ride
USD901613S1 (en) * 2018-02-05 2020-11-10 Proslide Technology, Inc. Water ride
USD951383S1 (en) * 2018-02-05 2022-05-10 Proslide Technology Inc. Water ride
USD993346S1 (en) * 2018-02-05 2023-07-25 Proslide Technology Inc. Water ride
USD980372S1 (en) * 2018-04-16 2023-03-07 Proslide Technology Inc. Water ride
USD919732S1 (en) * 2018-04-16 2021-05-18 Proslide Technology Inc. Water ride
USD892960S1 (en) * 2018-04-16 2020-08-11 Proslide Technology Inc. Water ride
USD945550S1 (en) * 2018-04-16 2022-03-08 Proslide Technology Inc. Water ride
USD958924S1 (en) * 2018-04-16 2022-07-26 Proslide Technology Inc. Water ride
USD905188S1 (en) * 2019-02-13 2020-12-15 Proslide Technology Inc. Water ride
USD941417S1 (en) * 2019-02-13 2022-01-18 Proslide Technology Inc. Water ride
USD1004732S1 (en) * 2019-05-24 2023-11-14 Proslide Technology Inc. Water ride
USD943043S1 (en) * 2019-05-24 2022-02-08 Proslide Technology Inc. Water ride
USD1004731S1 (en) * 2019-05-24 2023-11-14 Proslide Technology Inc. Water ride
USD1004729S1 (en) * 2019-05-24 2023-11-14 Proslide Technology Inc. Water ride
USD1004728S1 (en) * 2019-05-24 2023-11-14 Proslide Technology Inc. Water ride
USD1004730S1 (en) * 2019-05-24 2023-11-14 Proslide Technology Inc. Water ride
USD959586S1 (en) * 2019-09-12 2022-08-02 Proslide Technology Inc. Water ride
USD1009204S1 (en) * 2019-09-12 2023-12-26 Proslide Technology Inc. Water ride
US11714483B2 (en) 2020-09-15 2023-08-01 Ballast Technologies, Inc. Systems, methods, and devices for providing virtual-reality or mixed-reality experiences with special effects to a user in or under water
EP4183460A1 (en) * 2021-11-18 2023-05-24 Vortex Aquatic Structures International Inc. Experiential water tunnel and method thereof

Also Published As

Publication number Publication date
WO2006116176A2 (en) 2006-11-02
CA2605614A1 (en) 2006-11-02
WO2006116176A3 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
US20060252563A1 (en) Water slide audio visual entertainment system
US7967692B2 (en) Water slide audio visual entertainment system
JP6614214B2 (en) Game machine
US6386985B1 (en) Virtual Staging apparatus and method
JP5846149B2 (en) Game machine
US9794533B2 (en) Robotically controlled entertainment elements
JP6229750B2 (en) Game machine
JP2016165628A (en) Game machine
JP5958587B2 (en) Game machine
US20140017050A1 (en) Apparatus and method for performing a timed and controlled movement and positioning of an object
US20220088469A1 (en) Interaction of audio, video, effects and architectural lighting with bowling scoring system and methods of use
JP2022189951A (en) game machine
JP2003280568A (en) Multi-purpose in-air and on-water level balloon image device
JPH08332256A (en) Method of producing athletic sports, and its device
JP5725072B2 (en) Game machine
JP2018149384A (en) Game machine
JP5910563B2 (en) Game machine
JP6424803B2 (en) Gaming machine
JP2014198217A (en) Game machine
JP2019150690A (en) Game machine
JP2018008135A (en) Game machine
JP2020022874A (en) Game machine
Hazard A Lighting Design Process for a Production OF Eurydice Directed by Dr. Beth Kattelman

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION