US20060274743A1 - System and method for a mobile device to learn information about the access networks within its neighborhood - Google Patents

System and method for a mobile device to learn information about the access networks within its neighborhood Download PDF

Info

Publication number
US20060274743A1
US20060274743A1 US11/342,326 US34232606A US2006274743A1 US 20060274743 A1 US20060274743 A1 US 20060274743A1 US 34232606 A US34232606 A US 34232606A US 2006274743 A1 US2006274743 A1 US 2006274743A1
Authority
US
United States
Prior art keywords
network
information
networks
capability
database
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/342,326
Inventor
Alper Yegin
Youn-Hee Han
JinHyeock Choi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to US11/342,326 priority Critical patent/US20060274743A1/en
Assigned to SAMSUNG ELECTRONICS CO., LTD. reassignment SAMSUNG ELECTRONICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAN, YOUN-HEE, CHOI, JINHYEOCK, YEGIN, ALPER
Priority to KR1020060049467A priority patent/KR101191723B1/en
Priority to US11/921,665 priority patent/US8619729B2/en
Priority to PCT/KR2006/002158 priority patent/WO2006132487A1/en
Priority to EP06768764A priority patent/EP1889402B1/en
Priority to JP2008515622A priority patent/JP4650959B2/en
Priority to DE602006019419T priority patent/DE602006019419D1/en
Priority to CN2006800199752A priority patent/CN101189829B/en
Priority to AT06768764T priority patent/ATE494698T1/en
Publication of US20060274743A1 publication Critical patent/US20060274743A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/45Network directories; Name-to-address mapping
    • H04L61/4541Directories for service discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/246Connectivity information discovery

Definitions

  • This invention relates to wireless networks, and particularly to configuration and capability discovery in Internet Protocol (IP) based wireless networks.
  • IP Internet Protocol
  • Such network systems include a local area network (LAN), a wide area network (WAN), a metropolitan area network (MAN), a wireless local area network (WLAN), a wireless personal area network (WPAN), a general packet radio service (GPRS) network and other wireless network systems, such as wireless fidelity (WiFi), worldwide interoperability for microwave access (WiMAX) and code division multiple access 2000 (CDMA2000).
  • WiFi is a term for certain types of WLANs that use specifications in the IEEE 802.11 family.
  • WiMAX is a form of broadband wireless access based on the IEEE 802.16 standard for MANs.
  • CDMA is also known as IMT-CDMA Multi Carrier or 1 ⁇ RTT, and is a third generation mobile wireless technology.
  • the network systems allow communication between various end terminals or mobile stations such as a personal computer (desktop, laptop, palmtop or handheld), a mobile phone, or other portable communication devices. It is typical that the above network systems include at least one bridge element such as an access node or access point where user traffic enters and exits a communications network.
  • a bridge element such as an access node or access point where user traffic enters and exits a communications network.
  • DHCP Dynamic Host Configuration Protocol
  • a host a computing device such as an end terminal or a mobile station
  • the DHCP does not provide this information for any of the other networks (target networks) that the host may connect to.
  • Neighbor networks are wireless networks in the vicinity or neighborhood of a mobile station.
  • MAC Media Access Control
  • Level 2-specific (of the seven layer open system interconnection model) mechanisms they lack universal applicability (for example, an IEEE 802.11k solution works only on IEEE 802.11 links, and on nothing else).
  • Such designs also cannot be easily applied to legacy networks that are already deployed.
  • Proxy Router Discovery used in Mobile IPv6 Fast Handovers [ 3 ] (e.g., prefix information of the candidate access router). Again, this has very limited applicability and cannot solve the general problem.
  • Embodiments of a method and system for proactively discovering a capability and configuration of candidate wireless networks in the neighborhood of a mobile station are described.
  • the DHCP enables a mobile station to discover the capabilities and configurations of a currently serving network.
  • the mobile station can discover the wireless networks in its vicinity and the respective capability and configurations. This enables the mobile station to make better handover decisions in selecting target networks, take preparatory actions prior to the handover, and expedite the connection setup once the mobile station connects to the target.
  • a network having a dynamic host configuration protocol server, comprising a dynamic host configuration protocol (DHCP) server embedded in a network being in a neighborhood of identified wireless networks; a database, in data communication with the DHCP server, configured to store at least media access control (MAC) address of each identified network; and an access point, in communication with the DHCP server, configured to send beacons to at least one mobile station, wherein each beacon has at least a MAC address of the access point; wherein the DHCP server receives a request for configuration and capability information of one or more of the identified networks, obtains the requested information from the database, and provides the requested information to a mobile station that requested the information.
  • DHCP dynamic host configuration protocol
  • a network discovery method comprising maintaining a database of network identifiers associated with a plurality of networks in a neighborhood of a particular network, sending beacons from an access point of at least one network identified in the database, receiving a request for capability and/or configuration information of at least one network identified in the database, and providing the requested capability and/or configuration information to a mobile station.
  • a network discovery system comprising means for storing information about identified networks in a neighborhood of a particular network, means for sending beacons from an access point of at least one network identified in the storing means,
  • a network discovery method comprising storing information about a plurality of networks in a neighborhood of a particular network, sending beacons from an access point of at least one of the neighborhood networks, requesting capability and configuration information of at least one network, and providing the requested capability and configuration information to a mobile station.
  • a network discovery method comprising learning information about one or more access networks within a neighborhood of a mobile host via dynamic host configuration protocol (DHCP).
  • DHCP dynamic host configuration protocol
  • a network discovery method comprising learning a configuration and capability of a given access network via dynamic host configuration protocol (DHCP) by a mobile station.
  • DHCP dynamic host configuration protocol
  • FIG. 1 is a diagram illustrating an exemplary configuration of components and related operations of an embodiment of the invention.
  • FIG. 2 is a flowchart of an exemplary process operating on the configuration shown in FIG. 1 .
  • FIG. 3 is a diagram of an exemplary DHCP request option format as used by the process of FIG. 2 .
  • FIG. 4 is a diagram of an exemplary DHCP reply option format as used by the process of FIG. 2 .
  • FIG. 1 illustrates an exemplary configuration of an embodiment of a wireless network system 100 that proactively discovers a capability and configuration of candidate wireless networks in the neighborhood of an exemplary mobile station (MS) 130 .
  • the network system 100 may be implemented with one or more of an IEEE 802.11 a/11b/11g (WiFi) network, a wireless local area network (WLAN), a metropolitan area network (MAN) (e.g., WiMAX), a wireless personal area network (WPAN), a general packet radio service (GPRS) network, a global system for mobile communication (GSM) network, a code division multiple access (CDMA) network (e.g., CDMA200), a Bluetooth network or other wireless networks.
  • WiFi wireless local area network
  • MAN metropolitan area network
  • WPAN wireless personal area network
  • GPRS general packet radio service
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • CDMA200 Code division multiple access
  • the system 100 includes a plurality of networks operated by multiple network operators. These networks include a WiFi network 110 operated by Operator A, a CDMA2000 network 140 operated by Operator A, WiFi network 150 operated by Operator B, a WiMAX network operated by Operator A, and a CDMA2000 network operated by Operator C.
  • WiFi network 110 includes a first access point (AP 1 ) 112 , a second access point (AP 2 ) 114 , and a DHCP server 116 for performing the DHCP.
  • the DHCP server 116 is connected to a neighborhood database 120 , which will be further described below.
  • CDMA2000 network 140 includes a first base station (BS 1 ) 142 .
  • WiFi network 150 includes a third access point (AP 3 ) 152 and a fourth access point (AP 4 ) 154 .
  • WiMAX network 160 includes a second base station (BS 2 ) 162 and a third base station (BS 3 ) 164 .
  • CDMA2000 network 170 includes a fourth base station (BS 4 ) 172 and a fifth base station (BS 5 ) 174 .
  • the DHCP server 116 may be hosted by an access point, an access router, or a dedicated server of an access network, for example. In other embodiments, some or all of the other networks 140 , 150 , 160 and 170 also have their own DHCP server, similar to DHCP server 116 .
  • the exemplary mobile station 130 e.g., a mobile telephone, is in communication with the network 110 as shown by paths 180 , 181 and 184 of FIG. 1 .
  • the DHCP server 116 is in data communication with the neighborhood database 120 as shown by paths 182 and 183 . This communication will be further described in conjunction with FIG. 2 below.
  • the neighborhood database 120 includes a plurality of fields for each access point or base station in the networks of the system 100 . These fields include a media access control (MAC) address, an operator identifier, a network access server (NAS) identifier, and an Internet protocol identifier (e.g., IPv4, IPv6). Naturally, in other embodiments, the database 120 can contain other fields.
  • MAC media access control
  • NAS network access server
  • IPv4 Internet protocol identifier
  • an access point is generally a station that transmits and receives data to connect users to other users within the network and also can serve as the point of interconnection between the wireless network and a fixed wire network.
  • an example of one or more of the access points 112 , 114 , 152 and 154 can be an Airespace 1200, available from Airespace Inc., an IronPoint, available from Foundry Networks, or an Altitude 300, available from Extreme Networks.
  • the mobile station 130 can be referred to as an end terminal or a user device.
  • the mobile station 130 can include, for example, a personal computer (laptop, palm-top), a mobile phone, or other portable communication devices such as a hand-held PC, a wallet PC and a personal digital assistant (PDA).
  • a personal computer laptop, palm-top
  • PDA personal digital assistant
  • Process 200 begins at a start state 202 and proceeds to state 204 where the DHCP server 116 of the current network 110 maintains the database 120 of other networks in its neighborhood.
  • the database 120 can be created and updated manually.
  • the neighborhood coverage of the database 120 depends on local policy. For example, the list can contain:
  • the MS hears or receives periodic beacons from one or more networks in the system, such as from the access points or base stations of the networks.
  • an access point is to be considered as including both access points and base stations.
  • beacon frames are described as part of the IEEE 802.11 wireless network protocol.
  • Each beacon transmission identifies the presence of an access point and includes information regarding the access point for the mobile stations that are within range.
  • the beacon interval is a variable parameter. For example, path 180 shown in FIG. 1 represents a beacon from AP 1 112 .
  • the mobile station identifies the neighbor networks by their MAC addresses, such as the base station identifier (BSSID) used by IEEE 802.11 access points.
  • BSSID base station identifier
  • the MAC addresses are readily available (e.g., they are used in beacons) once the MS is within the network coverage region. In one embodiment, this identifier is the best one suited for rapid recognition.
  • the MS can either request:
  • the DHCP server in the currently serving network responds to the MS request by requesting data from the neighborhood database 120 . For example, this request is sent via path 182 to the database 120 as shown in FIG. 1 .
  • the database 120 provides the requested data about the neighbor networks or target network to the DHCP server 116 .
  • the database 120 sends the requested information via path 183 to the server 116 as shown in FIG. 1 .
  • the DHCP server responds to the MS through the access point (or base station, depending on the particular network) with the requested information.
  • the server 116 sends the requested information via path 184 to the MS 130 as shown in FIG. 1 .
  • the MS connects to a selected network based on the response from the DHCP server.
  • the MS includes a network selection mechanism to select the network.
  • the MS displays the requested information about the neighbor networks or target networks, and a user selects one of the networks.
  • Process 200 completes at an end state 220 .
  • This request option 300 can be the request made by the MS in state 210 of process 200 ( FIG. 2 ) and sent across path 181 ( FIG. 1 ).
  • the request option 300 includes a neighborhood request 310 and an option length 312 .
  • the neighborhood request 310 indicates the type of DHCP request and the option length 312 is the size (in Bytes) of the option, and both are compliant with the standard DHCP option formats as specified in the DHCP references.
  • a target MAC address(es) section 320 is optionally included. If one or more specific targets are not provided, the information of all neighbors is requested.
  • the section 320 includes a MAC type portion and a target network MAC address portion. The MAC type determines the length and format of the MAC address.
  • This reply option 400 can be the reply sent to the MS in state 216 of process 200 ( FIG. 2 ) via path 184 ( FIG. 1 ).
  • the reply option 400 includes a neighborhood request 410 and an option length 412 .
  • information sets are provided for two networks, which is associated with the situation when two target networks are specified in the request or there are only two networks in the system.
  • An information set 420 for network 1 and an information set 430 for network 2 are shown.
  • Each information set includes an information length portion and multiple information portions or fields, e.g., five information fields in one embodiment.
  • Each information field has an information type portion 432 , a length portion 434 and a value portion 436 .
  • the information fields are populated with data from the neighborhood database 120 ( FIG. 1 ).
  • Each access point in the neighborhood is entered as a separate “access network” in the neighborhood database 120 ( FIG. 1 ).
  • multiple access points may be part of the same “administrated network,” but from a discovery point of view, this does not matter.
  • some aggregation can be used in order to prevent repeating the same information for multiple elements of the database.
  • the database 120 may contain both static and dynamic (e.g., network load) information. While static information can be entered manually, there is a separate mechanism to keep the dynamic information up-to-date.
  • static information can be entered manually, there is a separate mechanism to keep the dynamic information up-to-date.
  • the following are the information items retained in the neighborhood database 120 ( FIG. 1 ). Note that these items can be supplemented or replaced by other items according to the desired embodiment.
  • WiBro Wireless Broadband
  • Certain embodiments of the new DHCP process option provide features and advantages not described in prior DHCP options. These features are as follows:

Abstract

A system and method for a mobile device to learn information about the access networks within its neighborhood is disclosed. In certain embodiments, information about networks in a neighborhood of a particular network is stored in a database associated with a dynamic host configuration protocol server. Periodic beacons of an access point of at least one network identified in the database are received by mobile stations. One of the mobile stations requests capability and configuration information of one or multiple target networks or all networks in the database. The requested capability and configuration information is provided to the mobile station.

Description

    RELATED APPLICATIONS
  • This application claims the benefit under 35 U.S.C. §119(e) of U.S. Patent Application No. 60/687,833 filed Jun. 6, 2005, for “MOBILE AND WIRELESS NEIGHBORHOOD DISCOVERY USING DHCP”, which is hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to wireless networks, and particularly to configuration and capability discovery in Internet Protocol (IP) based wireless networks.
  • 2. Description of Related Technology
  • Recently a variety of computer network systems have been widely used. Such network systems include a local area network (LAN), a wide area network (WAN), a metropolitan area network (MAN), a wireless local area network (WLAN), a wireless personal area network (WPAN), a general packet radio service (GPRS) network and other wireless network systems, such as wireless fidelity (WiFi), worldwide interoperability for microwave access (WiMAX) and code division multiple access 2000 (CDMA2000). WiFi is a term for certain types of WLANs that use specifications in the IEEE 802.11 family. WiMAX is a form of broadband wireless access based on the IEEE 802.16 standard for MANs. CDMA is also known as IMT-CDMA Multi Carrier or 1×RTT, and is a third generation mobile wireless technology. The network systems allow communication between various end terminals or mobile stations such as a personal computer (desktop, laptop, palmtop or handheld), a mobile phone, or other portable communication devices. It is typical that the above network systems include at least one bridge element such as an access node or access point where user traffic enters and exits a communications network.
  • Dynamic Host Configuration Protocol (DHCP) [1] [2] allows a host (a computing device such as an end terminal or a mobile station) to discover the capabilities and configurations associated with a currently serving access network. The DHCP, however, does not provide this information for any of the other networks (target networks) that the host may connect to. Neighbor networks are wireless networks in the vicinity or neighborhood of a mobile station.
  • There is some ongoing work to achieve this goal over Media Access Control (MAC) layer designs [2]. Such designs can provide only a subset of the information that is needed for a full discovery. In addition, as Level 2-specific (of the seven layer open system interconnection model) mechanisms, they lack universal applicability (for example, an IEEE 802.11k solution works only on IEEE 802.11 links, and on nothing else). Such designs also cannot be easily applied to legacy networks that are already deployed.
  • A very small subset of the target information is incorporated in some specific protocol work, such as Proxy Router Discovery used in Mobile IPv6 Fast Handovers [3] (e.g., prefix information of the candidate access router). Again, this has very limited applicability and cannot solve the general problem.
  • Current solutions lack the fundamental needs of wireless networks:
  • Applicability to any IP networks (All-IP)
  • Discovering the presence of neighbor networks
  • Learning the extensive list of capability and configurations of neighbor networks.
  • SUMMARY OF CERTAIN INVENTIVE ASPECTS OF THE INVENTION
  • Embodiments of a method and system for proactively discovering a capability and configuration of candidate wireless networks in the neighborhood of a mobile station are described. The DHCP enables a mobile station to discover the capabilities and configurations of a currently serving network. Using the method, the mobile station can discover the wireless networks in its vicinity and the respective capability and configurations. This enables the mobile station to make better handover decisions in selecting target networks, take preparatory actions prior to the handover, and expedite the connection setup once the mobile station connects to the target.
  • In one embodiment, there is a network having a dynamic host configuration protocol server, comprising a dynamic host configuration protocol (DHCP) server embedded in a network being in a neighborhood of identified wireless networks; a database, in data communication with the DHCP server, configured to store at least media access control (MAC) address of each identified network; and an access point, in communication with the DHCP server, configured to send beacons to at least one mobile station, wherein each beacon has at least a MAC address of the access point; wherein the DHCP server receives a request for configuration and capability information of one or more of the identified networks, obtains the requested information from the database, and provides the requested information to a mobile station that requested the information.
  • In another embodiment, there is a network discovery method, comprising maintaining a database of network identifiers associated with a plurality of networks in a neighborhood of a particular network, sending beacons from an access point of at least one network identified in the database, receiving a request for capability and/or configuration information of at least one network identified in the database, and providing the requested capability and/or configuration information to a mobile station.
  • In another embodiment, there is a network discovery system, comprising means for storing information about identified networks in a neighborhood of a particular network, means for sending beacons from an access point of at least one network identified in the storing means,
  • means for receiving a request for capability and/or configuration information of at least one network identified in the storing means, and means for providing the requested capability and/or configuration information to a mobile station.
  • In another embodiment, there is a network discovery method, comprising storing information about a plurality of networks in a neighborhood of a particular network, sending beacons from an access point of at least one of the neighborhood networks, requesting capability and configuration information of at least one network, and providing the requested capability and configuration information to a mobile station.
  • In another embodiment, there is a network discovery method, comprising learning information about one or more access networks within a neighborhood of a mobile host via dynamic host configuration protocol (DHCP).
  • In yet another embodiment, there is a network discovery method, comprising learning a configuration and capability of a given access network via dynamic host configuration protocol (DHCP) by a mobile station.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other features of the invention will become more fully apparent from the following description and appended claims taken in conjunction with the following drawings, in which like reference numerals indicate identical or functionally similar elements.
  • FIG. 1 is a diagram illustrating an exemplary configuration of components and related operations of an embodiment of the invention.
  • FIG. 2 is a flowchart of an exemplary process operating on the configuration shown in FIG. 1.
  • FIG. 3 is a diagram of an exemplary DHCP request option format as used by the process of FIG. 2.
  • FIG. 4 is a diagram of an exemplary DHCP reply option format as used by the process of FIG. 2.
  • DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS OF THE INVENTION
  • FIG. 1 illustrates an exemplary configuration of an embodiment of a wireless network system 100 that proactively discovers a capability and configuration of candidate wireless networks in the neighborhood of an exemplary mobile station (MS) 130. The network system 100 may be implemented with one or more of an IEEE 802.11 a/11b/11g (WiFi) network, a wireless local area network (WLAN), a metropolitan area network (MAN) (e.g., WiMAX), a wireless personal area network (WPAN), a general packet radio service (GPRS) network, a global system for mobile communication (GSM) network, a code division multiple access (CDMA) network (e.g., CDMA200), a Bluetooth network or other wireless networks. As shown in FIG. 1, the system 100 includes a plurality of networks operated by multiple network operators. These networks include a WiFi network 110 operated by Operator A, a CDMA2000 network 140 operated by Operator A, WiFi network 150 operated by Operator B, a WiMAX network operated by Operator A, and a CDMA2000 network operated by Operator C. In the exemplary configuration of FIG. 1, WiFi network 110 includes a first access point (AP1) 112, a second access point (AP2) 114, and a DHCP server 116 for performing the DHCP. The DHCP server 116 is connected to a neighborhood database 120, which will be further described below. CDMA2000 network 140 includes a first base station (BS1) 142. WiFi network 150 includes a third access point (AP3) 152 and a fourth access point (AP4) 154. WiMAX network 160 includes a second base station (BS2) 162 and a third base station (BS3) 164. CDMA2000 network 170 includes a fourth base station (BS4) 172 and a fifth base station (BS5) 174. The DHCP server 116 may be hosted by an access point, an access router, or a dedicated server of an access network, for example. In other embodiments, some or all of the other networks 140, 150, 160 and 170 also have their own DHCP server, similar to DHCP server 116.
  • The exemplary mobile station 130, e.g., a mobile telephone, is in communication with the network 110 as shown by paths 180, 181 and 184 of FIG. 1. The DHCP server 116 is in data communication with the neighborhood database 120 as shown by paths 182 and 183. This communication will be further described in conjunction with FIG. 2 below.
  • In one embodiment, the neighborhood database 120 includes a plurality of fields for each access point or base station in the networks of the system 100. These fields include a media access control (MAC) address, an operator identifier, a network access server (NAS) identifier, and an Internet protocol identifier (e.g., IPv4, IPv6). Naturally, in other embodiments, the database 120 can contain other fields.
  • In a wireless network, an access point is generally a station that transmits and receives data to connect users to other users within the network and also can serve as the point of interconnection between the wireless network and a fixed wire network. In a WiFi network embodiment, an example of one or more of the access points 112, 114, 152 and 154 can be an Airespace 1200, available from Airespace Inc., an IronPoint, available from Foundry Networks, or an Altitude 300, available from Extreme Networks.
  • The mobile station 130 can be referred to as an end terminal or a user device. The mobile station 130 can include, for example, a personal computer (laptop, palm-top), a mobile phone, or other portable communication devices such as a hand-held PC, a wallet PC and a personal digital assistant (PDA).
  • Referring to FIG. 2 (in conjunction with FIG. 1), a flowchart of an exemplary process 200 for operating on the exemplary configuration 100 shown in FIG. 1 will be described. Process 200 begins at a start state 202 and proceeds to state 204 where the DHCP server 116 of the current network 110 maintains the database 120 of other networks in its neighborhood. In certain embodiments, the database 120 can be created and updated manually. The neighborhood coverage of the database 120 depends on local policy. For example, the list can contain:
      • All networks from the same operator
        • The list may be compartmentalized based on geographic locations (e.g., all WiFi APs in the San Francisco Bay area)
        • Or, all networks within the same IP subnet of the operator;
      • All networks of the operators that are affiliated or have roaming agreements.
  • Proceeding to state 206, the MS hears or receives periodic beacons from one or more networks in the system, such as from the access points or base stations of the networks. For the sake of simplicity, an access point is to be considered as including both access points and base stations. In certain embodiments, beacon frames are described as part of the IEEE 802.11 wireless network protocol. Each beacon transmission identifies the presence of an access point and includes information regarding the access point for the mobile stations that are within range. The beacon interval is a variable parameter. For example, path 180 shown in FIG. 1 represents a beacon from AP1 112. Advancing to state 208, in certain embodiments, the mobile station (MS) identifies the neighbor networks by their MAC addresses, such as the base station identifier (BSSID) used by IEEE 802.11 access points. The MAC addresses are readily available (e.g., they are used in beacons) once the MS is within the network coverage region. In one embodiment, this identifier is the best one suited for rapid recognition.
  • At any given time, but shown as state 210 of process 200, the MS can either request:
      • Detailed capability/configuration information on all possible networks in its neighborhood (e.g., get all), or
      • Detailed capability/configuration information on a selected target network (e.g., get one)
        • It is assumed that the MS has already identified the MAC address of the target network (e.g., by hearing periodic beacons).
          The MS can do one of the previous requests depending on usage. For example, if the MS knows it is only interested in one target network, it can “get one”, but if the MS has not decided yet, it may “get all” and make a decision based on the information it gets. For example, the mobile station requests detailed information via path 181 to the DHCP server 116 as shown in FIG. 1. In certain embodiments, the MS requests information about more than one target network. The DHCP server provides both configuration and capability information. For example, a MS can configure an IP address by getting one from the DHCP server, or learn that there is a “Mobile IP home agent” capability in the access network by learning the IP address of one.
  • Continuing at state 212, the DHCP server in the currently serving network responds to the MS request by requesting data from the neighborhood database 120. For example, this request is sent via path 182 to the database 120 as shown in FIG. 1. Moving to state 214, the database 120 provides the requested data about the neighbor networks or target network to the DHCP server 116. For example, the database 120 sends the requested information via path 183 to the server 116 as shown in FIG. 1. Advancing to state 216, the DHCP server responds to the MS through the access point (or base station, depending on the particular network) with the requested information. For example, the server 116 sends the requested information via path 184 to the MS 130 as shown in FIG. 1. Proceeding to optional state 218, the MS connects to a selected network based on the response from the DHCP server. In certain embodiments, the MS includes a network selection mechanism to select the network. In another embodiment, the MS displays the requested information about the neighbor networks or target networks, and a user selects one of the networks. Process 200 completes at an end state 220.
  • Referring to FIG. 3, the protocol details for an exemplary DHCP request option 300 will be described. This request option 300 can be the request made by the MS in state 210 of process 200 (FIG. 2) and sent across path 181 (FIG. 1). The request option 300 includes a neighborhood request 310 and an option length 312. The neighborhood request 310 indicates the type of DHCP request and the option length 312 is the size (in Bytes) of the option, and both are compliant with the standard DHCP option formats as specified in the DHCP references. A target MAC address(es) section 320 is optionally included. If one or more specific targets are not provided, the information of all neighbors is requested. The section 320 includes a MAC type portion and a target network MAC address portion. The MAC type determines the length and format of the MAC address.
  • Referring to FIG. 4, the protocol details for an exemplary DHCP reply option 400 will be described. This reply option 400 can be the reply sent to the MS in state 216 of process 200 (FIG. 2) via path 184 (FIG. 1). The reply option 400 includes a neighborhood request 410 and an option length 412. In this example, information sets are provided for two networks, which is associated with the situation when two target networks are specified in the request or there are only two networks in the system. An information set 420 for network 1 and an information set 430 for network 2 are shown. Each information set includes an information length portion and multiple information portions or fields, e.g., five information fields in one embodiment. Each information field has an information type portion 432, a length portion 434 and a value portion 436. The information fields are populated with data from the neighborhood database 120 (FIG. 1).
  • Neighborhood Database
  • Each access point in the neighborhood is entered as a separate “access network” in the neighborhood database 120 (FIG. 1). In reality, from a management or configuration perspective, multiple access points may be part of the same “administrated network,” but from a discovery point of view, this does not matter. In certain embodiments, for performance optimizations, some aggregation can be used in order to prevent repeating the same information for multiple elements of the database.
  • The database 120 may contain both static and dynamic (e.g., network load) information. While static information can be entered manually, there is a separate mechanism to keep the dynamic information up-to-date.
  • In certain embodiments, the following are the information items retained in the neighborhood database 120 (FIG. 1). Note that these items can be supplemented or replaced by other items according to the desired embodiment.
      • Network ID: The MAC address of the BS/AP (this is the Key of the database)
      • Associated NAS id, NAS address
      • Radio type
      • In the same IP subnet as the current network
      • IP subnet configuration (prefix, gateway addresses)
      • Operator name/id
      • List of roaming partners
      • IPv4 and/or IPv6 supported
      • Channel identifier
      • Supports fast MIPv4 and/or MIPv6 handovers
      • Network address translations (NATs) present
      • MIPv4 and/or MIPv6 home address (HA) present
      • Current network load
      • Geographic location
      • Quality of service (QoS) characteristics
      • Pre-authentication capability
      • Security capabilities
      • Pricing plan
      • IP multimedia subsystems (IMS) support present
      • List of location based services
      • Virtual private network (VPN) (IPsec passthrough) support
        Exemplary Applications
  • Various applications can take advantage of this network neighborhood discovery capability. A few exemplary applications are listed as follows.
  • Key scoping in 2.3 GHz Wireless Broadband (WiBro) fast handoffs: (WiBro is a Korean standard, Telecommunications Technology Association Project Group 302, and is part of the IEEE 802.16 family of wireless Internet specifications.)
      • In order to use the same pairwise master key (PMK), a WiBro MS needs to know if a given BS is managed by a given network access server (NAS). This discovery needs to happen even before the 3-way handshake with the target BS. The NAS ID delivered via DHCP allows a MS to discover the NAS scope.
  • Pre-authentication WiBro/WiFi:
      • The NAS identifier discovered by the MS is used to run pre-authentication with the target NAS even before the MS is handed over to the target network.
  • Pro-active detection of network attachment (DNA):
      • The MS can discover which BSs are connected to the same IP subnet as the currently serving one. That way, as soon as it is attached to one of those, it can readily know that its current IP configuration is still valid.
  • Reduced scan time:
      • By learning the channel information of the target APs, the MS can avoid sequential radio scanning.
  • Advanced network selection:
      • The rich information gathered about the target networks can be used in an advanced network selection scheme. In the absence of process 200, most of the network information cannot be gathered without fully connecting to the target networks.
  • Pro-active fast mobile IP handovers:
      • By knowing the target foreign agent (FA) or access router in advance, the MS can request bi-casting before it handovers to the target network. Bi-casting is associated with a semi-soft handoff where there is communication with both an old and new point of attachment.
    Features of Certain Embodiments
  • Certain embodiments of the new DHCP process option provide features and advantages not described in prior DHCP options. These features are as follows:
      • Currently defined DHCP options provide limited information about only the serving network. Detailed information about the candidate networks is not defined. The new DHCP process option provides detailed information about the candidate networks.
      • There is no candidate other than DHCP to provide neighborhood information in a link-layer agnostic way (i.e., All-IP way).
      • The new DHCP process option uses a type-length-value (TLV) structure, which allows addition of new attributes as needed.
      • New information can be added to the described system design as it become available or needed for a particular application.
        Conclusion
  • While specific blocks, sections, devices, functions and modules may have been set forth above, a skilled technologist will realize that there are many ways to partition the system, and that there are many parts, components, modules or functions that may be substituted for those listed above.
  • While the above description has pointed out novel features of the invention as applied to various embodiments, the skilled person will understand that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made without departing from the scope of the invention. Therefore, the scope of the invention is defined by the appended claims rather than by the foregoing description. All variations coming within the meaning and range of equivalency of the claims are embraced within their scope.
  • REFERENCES
  • [1] Droms, R., “Dynamic Host Configuration Protocol,” RFC 2131, March 1997.
  • [2] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., Carney, M., “Dynamic Host Configuration Protocol for IPv6 (DHCPv6),” RFC 3315, July 2003.
  • [3] IEEE 802.11k Working Group Draft
  • [4] Koodli, R. (ed), “Fast Handovers for Mobile IPv6,” work in progress, October 2004.

Claims (25)

1. A network having a dynamic host configuration protocol server, comprising:
a dynamic host configuration protocol (DHCP) server embedded in a network being in a neighborhood of identified wireless networks;
a database, in data communication with the DHCP server, configured to store at least media access control (MAC) address of each identified network; and
an access point, in communication with the DHCP server, configured to send beacons to at least one mobile station, wherein each beacon has at least a MAC address of the access point;
wherein the DHCP server receives a request for configuration and capability information of one or more of the identified networks, obtains the requested information from the database, and provides the requested information to a mobile station that requested the information.
2. The network of claim 1, wherein request for configuration and capability information is for all the identified networks in the database.
3. A network discovery method, comprising:
maintaining a database of network identifiers associated with a plurality of networks in a neighborhood of a particular network;
sending beacons from an access point of at least one network identified in the database;
receiving a request for capability and/or configuration information of at least one network identified in the database; and
providing the requested capability and/or configuration information to a mobile station.
4. The method of claim 3, additionally comprising connecting the mobile station to a selected network based on the provided information.
5. The method of claim 4, wherein the connection is with the mobile station via an access point to the selected network.
6. The method of claim 3, wherein the database is maintained by a dynamic host configuration protocol (DHCP) server.
7. The method of claim 6, wherein the providing is performed by the DHCP server.
8. The method of claim 6, wherein the DHCP server is associated with the particular network.
9. The method of claim 6, wherein the DHCP server is associated with the particular network, and wherein at least one of the networks in the neighborhood of the particular network includes its own DHCP server and database.
10. The method of claim 3, wherein the request for capability and/or configuration information comprises a request for capability and/or configuration information of all the networks in the database.
11. The method of claim 3, wherein the beacons are received by the mobile station.
12. The method of claim 11, wherein the mobile station identifies networks by their media access control addresses.
13. The method of claim 3, additionally comprising displaying the provided capability and configuration information to a user of the mobile station.
14. The method of claim 3, wherein the beacons are periodically sent by the access point.
15. A network discovery system, comprising:
means for storing information about identified networks in a neighborhood of a particular network;
means for sending beacons from an access point of at least one network identified in the storing means;
means for receiving a request for capability and/or configuration information of at least one network identified in the storing means; and
means for providing the requested capability and/or configuration information to a mobile station.
16. The system of claim 15, wherein the means for storing information comprises a database.
17. The system of claim 15, wherein the means for storing information comprises a dynamic host configuration protocol (DHCP) server.
18. The system of claim 15, wherein the means for sending beacons additionally comprises means for identifying networks by their media access control addresses.
19. The system of claim 15, wherein the information includes a media access control address.
20. The system of claim 15, wherein the information includes a network operator identifier, a network access server identifier and an Internet protocol identifier.
21. The system of claim 15, wherein the beacons are periodically sent by the access point.
22. A network discovery method, comprising:
storing information about a plurality of networks in a neighborhood of a particular network;
sending beacons from an access point of at least one of the neighborhood networks;
requesting capability and configuration information of at least one network; and
providing the requested capability and configuration information to a mobile station.
23. A network discovery method, comprising:
learning information about one or more access networks within a neighborhood of a mobile host via dynamic host configuration protocol (DHCP).
24. The method of claim 23, additionally comprising learning a configuration and capability of the identified networks by the mobile host.
25. A network discovery method, comprising:
learning a configuration and capability of a given access network via dynamic host configuration protocol (DHCP) by a mobile station.
US11/342,326 2005-06-06 2006-01-27 System and method for a mobile device to learn information about the access networks within its neighborhood Abandoned US20060274743A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US11/342,326 US20060274743A1 (en) 2005-06-06 2006-01-27 System and method for a mobile device to learn information about the access networks within its neighborhood
KR1020060049467A KR101191723B1 (en) 2005-06-06 2006-06-01 Method for discovering neighbor networks in mobile station and network system for enabling the method
AT06768764T ATE494698T1 (en) 2005-06-06 2006-06-05 SERVER, METHOD AND COMPUTER READABLE MEDIA FOR DETECTING ADJACENT NETWORKS IN A MOBILE STATION
EP06768764A EP1889402B1 (en) 2005-06-06 2006-06-05 Server, methods and computer-readable media for discovering neighbor networks in a mobile station
PCT/KR2006/002158 WO2006132487A1 (en) 2005-06-06 2006-06-05 Method for discovering neighbor networks in mobile station and network system for enabling the method
US11/921,665 US8619729B2 (en) 2005-06-06 2006-06-05 Method for discovering neighbor networks in mobile station and network system for enabling the method
JP2008515622A JP4650959B2 (en) 2005-06-06 2006-06-05 Mobile station neighboring network search method and network management server therefor
DE602006019419T DE602006019419D1 (en) 2005-06-06 2006-06-05 A server, method and computer readable media for recognizing adjacent networks in a mobile station
CN2006800199752A CN101189829B (en) 2005-06-06 2006-06-05 Method for discovering neighbor networks and network management server for network system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US68783305P 2005-06-06 2005-06-06
US11/342,326 US20060274743A1 (en) 2005-06-06 2006-01-27 System and method for a mobile device to learn information about the access networks within its neighborhood

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/921,665 Continuation US8619729B2 (en) 2005-06-06 2006-06-05 Method for discovering neighbor networks in mobile station and network system for enabling the method

Publications (1)

Publication Number Publication Date
US20060274743A1 true US20060274743A1 (en) 2006-12-07

Family

ID=37494021

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/342,326 Abandoned US20060274743A1 (en) 2005-06-06 2006-01-27 System and method for a mobile device to learn information about the access networks within its neighborhood
US11/921,665 Active 2026-10-29 US8619729B2 (en) 2005-06-06 2006-06-05 Method for discovering neighbor networks in mobile station and network system for enabling the method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/921,665 Active 2026-10-29 US8619729B2 (en) 2005-06-06 2006-06-05 Method for discovering neighbor networks in mobile station and network system for enabling the method

Country Status (1)

Country Link
US (2) US20060274743A1 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070249348A1 (en) * 2006-04-21 2007-10-25 Samsung Electronics Co., Ltd. Apparatus and method of handover for mobile node
US20080144590A1 (en) * 2006-12-14 2008-06-19 Nokia Corporation Enabling settings provisioning process in WIMAX networks
US20080285520A1 (en) * 2005-11-22 2008-11-20 Forte Andrea G Methods, media, and devices for moving a connection from one point of access to another point of access
US20080304458A1 (en) * 2007-06-09 2008-12-11 Abdol Hamid Aghvami Inter-Working of Networks
US20090011707A1 (en) * 2007-07-04 2009-01-08 Samsung Electronics Co., Ltd. Method and apparatus for identifying neighboring device
US20090022076A1 (en) * 2007-07-17 2009-01-22 Necati Canpolat Network type assisted wlan network selection
US20090046682A1 (en) * 2006-02-01 2009-02-19 Yong Ho Kim Method for transmitting information in wireless local area network system
US20090082010A1 (en) * 2007-09-26 2009-03-26 Via Telecom, Inc. Femtocell base station with mobile station capability
US20090092078A1 (en) * 2007-10-05 2009-04-09 Via Telecom, Inc. Automatic provisioning of admission policy for femtocell
US20090092096A1 (en) * 2007-10-05 2009-04-09 Via Telecom Inc. Automatic provisioning of femtocell
US20090092122A1 (en) * 2007-10-05 2009-04-09 Via Telecom Inc. Time synchronization of femtocell
US20090093246A1 (en) * 2007-10-05 2009-04-09 Via Telecom Inc. Automatic provisioning of power parameters for femtocell
US20090290518A1 (en) * 2008-05-22 2009-11-26 Motorola, Inc. Method for facilitating sharing of channel information in a wireless communication network
US20090298475A1 (en) * 2008-05-28 2009-12-03 Ipcomm Localized silence area for mobile devices
US20090298515A1 (en) * 2007-10-05 2009-12-03 Ipcomm Acquiring time synchronization and location information with a femtocell
US20100070600A1 (en) * 2007-03-26 2010-03-18 Henning G Schulzrinne Methods and media for exchanging data between nodes of disconnected networks
US20110214161A1 (en) * 2005-10-31 2011-09-01 The Trustees Of Columbia University In The City Of New York Methods, media, and systems for securing communications between a first node and a second node
US8060097B1 (en) * 2008-06-05 2011-11-15 Sprint Spectrum L.P. Method and apparatus for intelligent mobile-assisted hard handoff
US8249932B1 (en) 2007-02-02 2012-08-21 Resource Consortium Limited Targeted advertising in a situational network
WO2012122995A1 (en) * 2011-03-12 2012-09-20 Puregger Alexander Method and system for providing a distributed wireless network service
US8532658B2 (en) * 2006-12-19 2013-09-10 Airvana Network Solutions, Inc. Neighbor list provision in a communication network
WO2013166196A1 (en) * 2012-05-01 2013-11-07 Qualcomm Incorporated Systems and methods for configuring connectivity in a wireless network
US8634423B1 (en) * 2007-04-13 2014-01-21 Clearwire Ip Holdings Llc Determining a quality-of-service prior to registering a wireless device
CN103546926A (en) * 2012-07-09 2014-01-29 中兴通讯股份有限公司 Method and device for determining neighbor user equipment in WLAN
US20140254390A1 (en) * 2013-03-07 2014-09-11 Arris Solutions, Inc. Qualification of wireless network environments
EP2824870A4 (en) * 2012-04-10 2015-04-29 Huawei Tech Co Ltd Wireless local area network discovery and selection method, device and system, and terminal
US9088955B2 (en) 2006-04-12 2015-07-21 Fon Wireless Limited System and method for linking existing Wi-Fi access points into a single unified network
CN105409280A (en) * 2013-12-30 2016-03-16 华为技术有限公司 Method, apparatus and device for accessing wireless local area network
US9826102B2 (en) 2006-04-12 2017-11-21 Fon Wireless Limited Linking existing Wi-Fi access points into unified network for VoIP
US20180041873A1 (en) * 2016-08-08 2018-02-08 Fuji Xerox Co., Ltd. Information processing apparatus and non-transitory computer readable medium
US11012884B2 (en) 2011-12-08 2021-05-18 Huawei Technologies Co., Ltd. Access method and system, user equipment, and network side device
US20240039761A1 (en) * 2022-07-26 2024-02-01 Nokia Solutions And Networks Oy Separate pfcp session model for network access by residential gateways

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8149843B2 (en) * 2006-06-28 2012-04-03 Cisco Technology, Inc. Capability exchange between network entities in WiMAX
CN101309500B (en) * 2007-05-15 2011-07-20 华为技术有限公司 Security negotiation method and apparatus when switching between different wireless access technologies
US9232448B2 (en) * 2007-06-18 2016-01-05 Qualcomm Incorporated Methods and apparatus for neighbor discovery of base stations in a communication system
US20090061892A1 (en) * 2007-08-27 2009-03-05 Via Telecom, Inc. Location assisted connection to femtocell
EP2048829A1 (en) * 2007-10-01 2009-04-15 Alcatel Lucent Beacon and mobile terminal synchronization and method thereof
KR100970549B1 (en) * 2008-06-19 2010-07-16 주식회사 팬택 Dual mode terminal supporting wcdma and gsm and controlling method for restriction of cell reselection
US8463276B2 (en) * 2009-04-13 2013-06-11 Industrial Technology Research Femtocell self organization and configuration process
JP5389259B2 (en) * 2009-06-04 2014-01-15 ブラックベリー リミテッド Method and apparatus for use in facilitating communication of neighboring network information to a mobile terminal using a RADIUS compatible protocol
WO2011053663A1 (en) * 2009-10-28 2011-05-05 Zte Usa Inc. Wimax femto network support for wimax femto configuration management
EP2372971A1 (en) 2010-03-30 2011-10-05 British Telecommunications Public Limited Company Method and system for authenticating a point of access
KR101622169B1 (en) * 2010-06-14 2016-05-18 삼성전자주식회사 Method of communication for mobile terminal, femto base station and macro base station, and method of offering advertisement to mobile terminal connected to femto base station
US10194314B2 (en) * 2010-10-22 2019-01-29 Blackberry Limited Method and system for identifying an entity in a mobile device ecosystem
US8472952B1 (en) 2010-11-30 2013-06-25 Sprint Spectrum L.P. Discovering a frequency of a wireless access point
US8619674B1 (en) * 2010-11-30 2013-12-31 Sprint Spectrum L.P. Delivery of wireless access point information
US9137742B1 (en) * 2011-02-23 2015-09-15 Sprint Communications Company L.P. Selective authentication of user devices in wireless communication networks
CN108541044B (en) 2013-08-13 2019-12-24 华为终端有限公司 Method and device for joining proximity-aware network device group
US9730157B2 (en) * 2013-11-08 2017-08-08 Qualcomm Incorporated Wireless local area network assisted network detection for user equipment
EP3226521B1 (en) * 2014-02-25 2020-05-27 Telefonaktiebolaget LM Ericsson (publ) Network address resolution for interworking between cellular network domain and wireless local area network domain
US10075906B2 (en) 2014-11-19 2018-09-11 At&T Intellectual Property I, L.P. Facilitating dynamic private communication networks
US10785700B2 (en) * 2016-03-14 2020-09-22 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and method for transmitting beacon messages in a mesh network
US10206115B2 (en) 2016-05-31 2019-02-12 At&T Intellectual Property I, L.P. Wi-Fi virtualized network operator
US11089625B2 (en) * 2018-05-25 2021-08-10 Futurewei Technologies, Inc. Protection for mode-3 V2X UEs in the ITS band
EP3942766A1 (en) * 2019-03-21 2022-01-26 Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen Method and devices for a load allocation and for monitoring a supply reliability-critical resource to be allocated in a network

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324577B1 (en) * 1997-10-15 2001-11-27 Kabushiki Kaisha Toshiba Network management system for managing states of nodes
US20020057657A1 (en) * 1998-12-11 2002-05-16 Thomas F. La Porta Packet tunneling optimization to wireless devices accessing packet-based wired networks
US20030227911A1 (en) * 2002-04-26 2003-12-11 Dirk Trossen Candidate access router discovery
US20040166857A1 (en) * 2003-02-20 2004-08-26 Nec Laboratories America, Inc. Secure candidate access router discovery method and system
US6801528B2 (en) * 2002-07-03 2004-10-05 Ericsson Inc. System and method for dynamic simultaneous connection to multiple service providers
US20050174998A1 (en) * 2004-02-10 2005-08-11 Nokia Corporation Configuring addresses in a communication network
US20050232209A1 (en) * 2003-11-19 2005-10-20 Research In Motion Limited Methods and apparatus for providing network broadcast information to WLAN enabled wireless communication devices
US20060092890A1 (en) * 2004-11-01 2006-05-04 Gupta Vivek G Global network neighborhood: scheme for providing information about available networks in a geographical location
US20060135150A1 (en) * 2002-12-25 2006-06-22 Waho Oh Wireless communications ystem, wireless communications method, wireless communications program and program recording medium
US7103648B1 (en) * 2001-07-31 2006-09-05 Gateway Inc. Method and system for assigning an IP address to a host based on features of the host

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094424A (en) * 1997-02-11 2000-07-25 At&T Corp. Mobile host roaming ATM virtual circuit rerouting method and apparatus
US6801507B1 (en) 1999-07-27 2004-10-05 Samsung Electronics Co., Ltd. Device discovery and configuration in a home network
WO2001031472A1 (en) 1999-10-22 2001-05-03 Telcordia Technologies, Inc. Method and system for host mobility management protocol
JP2001211180A (en) 2000-01-26 2001-08-03 Nec Commun Syst Ltd Dhcp server with client authenticating function and authenticating method thereof
US6654607B1 (en) 2000-02-14 2003-11-25 Toshiba America Research, Inc. Method and apparatus for enabling and monitoring mobile communication across platforms
CA2405044C (en) * 2000-05-02 2007-01-23 At&T Corp. System and method for inter-domain mobility management
US7143171B2 (en) * 2000-11-13 2006-11-28 Telefonaktiebolaget Lm Ericsson (Publ) Access point discovery and selection
US7117264B2 (en) 2002-01-10 2006-10-03 International Business Machines Corporation Method and system for peer to peer communication in a network environment
KR20040097296A (en) 2002-04-09 2004-11-17 톰슨 라이센싱 소시에떼 아노님 Methods for communication in a multi-cluster network, device for connection to a network of clusters and bridge for connecting clusters
US6930988B2 (en) * 2002-10-28 2005-08-16 Nokia Corporation Method and system for fast IP connectivity in a mobile network
US7376097B2 (en) * 2002-11-27 2008-05-20 Ntt Docomo Inc. Method of associating an IP address with a plurality of link layer addresses in a wireless communication network
FI114065B (en) 2003-01-30 2004-07-30 Teliasonera Finland Oyj Method and apparatus for controlling the mobility of a terminal
ATE376306T1 (en) * 2003-03-20 2007-11-15 Nokia Siemens Networks Gmbh METHOD AND TRANSMITTER FOR TRANSMITTING DATA PACKETS
KR100605896B1 (en) * 2003-10-07 2006-08-01 삼성전자주식회사 Route path setting method for mobile ad hoc network using partial route discovery and mobile terminal teerof
KR100962647B1 (en) 2003-10-27 2010-06-11 삼성전자주식회사 Method for supporting mobility of mobile terminal and system thereof
KR100803590B1 (en) 2003-10-31 2008-02-19 삼성전자주식회사 System for providing tunnel service capable of data communication between different type of networks
US20050097087A1 (en) * 2003-11-03 2005-05-05 Punaganti Venkata Murali K. System and method for providing a unified framework for service discovery
US20050125550A1 (en) * 2003-12-09 2005-06-09 Bajikar Sundeep M. Location information via DHCP
US7461248B2 (en) * 2004-01-23 2008-12-02 Nokia Corporation Authentication and authorization in heterogeneous networks
KR101119372B1 (en) * 2004-05-10 2012-06-12 엘지전자 주식회사 Method for ip connectivity establishment procedures
KR100703175B1 (en) 2004-05-17 2007-04-05 에스케이 텔레콤주식회사 System and Method for Minimizing of Handoff Interruption Time By Optimizing IP Address Assignment Procedure during Handoff for use in High-Speed Portable Internet Network
US7738871B2 (en) * 2004-11-05 2010-06-15 Interdigital Technology Corporation Wireless communication method and system for implementing media independent handover between technologically diversified access networks
US7702309B2 (en) * 2005-05-04 2010-04-20 Nokia Corporation Using MAC address of a WLAN access point as location information

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324577B1 (en) * 1997-10-15 2001-11-27 Kabushiki Kaisha Toshiba Network management system for managing states of nodes
US20020057657A1 (en) * 1998-12-11 2002-05-16 Thomas F. La Porta Packet tunneling optimization to wireless devices accessing packet-based wired networks
US7103648B1 (en) * 2001-07-31 2006-09-05 Gateway Inc. Method and system for assigning an IP address to a host based on features of the host
US20030227911A1 (en) * 2002-04-26 2003-12-11 Dirk Trossen Candidate access router discovery
US6801528B2 (en) * 2002-07-03 2004-10-05 Ericsson Inc. System and method for dynamic simultaneous connection to multiple service providers
US20060135150A1 (en) * 2002-12-25 2006-06-22 Waho Oh Wireless communications ystem, wireless communications method, wireless communications program and program recording medium
US20040166857A1 (en) * 2003-02-20 2004-08-26 Nec Laboratories America, Inc. Secure candidate access router discovery method and system
US20050232209A1 (en) * 2003-11-19 2005-10-20 Research In Motion Limited Methods and apparatus for providing network broadcast information to WLAN enabled wireless communication devices
US20050174998A1 (en) * 2004-02-10 2005-08-11 Nokia Corporation Configuring addresses in a communication network
US20060092890A1 (en) * 2004-11-01 2006-05-04 Gupta Vivek G Global network neighborhood: scheme for providing information about available networks in a geographical location

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110214161A1 (en) * 2005-10-31 2011-09-01 The Trustees Of Columbia University In The City Of New York Methods, media, and systems for securing communications between a first node and a second node
US9419981B2 (en) 2005-10-31 2016-08-16 The Trustees Of Columbia University In The City Of New York Methods, media, and systems for securing communications between a first node and a second node
US9654478B2 (en) 2005-10-31 2017-05-16 The Trustees Of Columbia University In The City Of New York Methods, media, and systems for securing communications between a first node and a second node
US10178104B2 (en) 2005-10-31 2019-01-08 The Trustees Of Columbia University In The City Of New York Methods, media, and systems for securing communications between a first node and a second node
US8750242B2 (en) * 2005-11-22 2014-06-10 The Trustees Of Columbia University In The City Of New York Methods, media, and devices for moving a connection from one point of access to another point of access
US9036605B2 (en) 2005-11-22 2015-05-19 The Trustees Of Columbia University In The City Of New York Methods, media, and devices for moving a connection from one point of access to another point of access
US9402216B2 (en) 2005-11-22 2016-07-26 The Trustees Of Columbia University In The City Of New York Methods, media, and devices for moving a connection from one point of access to another point of access
US20080285520A1 (en) * 2005-11-22 2008-11-20 Forte Andrea G Methods, media, and devices for moving a connection from one point of access to another point of access
US8660100B2 (en) * 2006-02-01 2014-02-25 Lg Electronics Inc. Method for transmitting information in wireless local area network system
US20090046682A1 (en) * 2006-02-01 2009-02-19 Yong Ho Kim Method for transmitting information in wireless local area network system
US10291787B2 (en) 2006-04-12 2019-05-14 Fon Wireless Limited Unified network of Wi-Fi access points
US9125170B2 (en) 2006-04-12 2015-09-01 Fon Wireless Limited Linking existing Wi-Fi access points into unified network
US9826102B2 (en) 2006-04-12 2017-11-21 Fon Wireless Limited Linking existing Wi-Fi access points into unified network for VoIP
US10728396B2 (en) 2006-04-12 2020-07-28 Fon Wireless Limited Unified network of Wi-Fi access points
US9088955B2 (en) 2006-04-12 2015-07-21 Fon Wireless Limited System and method for linking existing Wi-Fi access points into a single unified network
US8391235B2 (en) * 2006-04-21 2013-03-05 Samsung Electronics Co., Ltd. Apparatus and method of handover for mobile node
US20070249349A1 (en) * 2006-04-21 2007-10-25 Samsung Electronics Co., Ltd. Apparatus and method of handover for mobile node
US20070249348A1 (en) * 2006-04-21 2007-10-25 Samsung Electronics Co., Ltd. Apparatus and method of handover for mobile node
US8345625B2 (en) * 2006-04-21 2013-01-01 Samsung Electronics Co., Ltd. Apparatus and method of handover for mobile node
US9877345B2 (en) 2006-12-05 2018-01-23 Resource Consortium Limited Method and system for using a situational network
US8989696B1 (en) 2006-12-05 2015-03-24 Resource Consortium Limited Access of information using a situational network
US9143535B1 (en) 2006-12-05 2015-09-22 Resource Consortium Limited Method and system for using a situational network
US20080144590A1 (en) * 2006-12-14 2008-06-19 Nokia Corporation Enabling settings provisioning process in WIMAX networks
US8498265B2 (en) 2006-12-14 2013-07-30 Nokia Corporation Enabling settings provisioning process in WiMAX networks
WO2008071656A1 (en) * 2006-12-14 2008-06-19 Nokia Corporation Enabling settings provisioning process in wimax networks
US8532658B2 (en) * 2006-12-19 2013-09-10 Airvana Network Solutions, Inc. Neighbor list provision in a communication network
US8249932B1 (en) 2007-02-02 2012-08-21 Resource Consortium Limited Targeted advertising in a situational network
US8542599B1 (en) 2007-02-02 2013-09-24 Resource Consortium Limited Location based services in a situational network
US8769013B1 (en) 2007-02-02 2014-07-01 Resource Consortium Limited Notifications using a situational network
US8274897B1 (en) * 2007-02-02 2012-09-25 Resource Consortium Limited Location based services in a situational network
US8332454B1 (en) 2007-02-02 2012-12-11 Resource Consortium Limited Creating a projection of a situational network
US8826139B1 (en) 2007-02-02 2014-09-02 Resource Consortium Limited Searchable message board
US8358609B1 (en) 2007-02-02 2013-01-22 Resource Consortium Limited Location based services in a situational network
US10117290B1 (en) 2007-02-02 2018-10-30 Resource Consortium Limited Method and system for using a situational network
US20100070600A1 (en) * 2007-03-26 2010-03-18 Henning G Schulzrinne Methods and media for exchanging data between nodes of disconnected networks
US8626844B2 (en) 2007-03-26 2014-01-07 The Trustees Of Columbia University In The City Of New York Methods and media for exchanging data between nodes of disconnected networks
US8634423B1 (en) * 2007-04-13 2014-01-21 Clearwire Ip Holdings Llc Determining a quality-of-service prior to registering a wireless device
EP2001194A3 (en) * 2007-06-09 2012-12-19 King's College London Inter-working of networks
US20080304458A1 (en) * 2007-06-09 2008-12-11 Abdol Hamid Aghvami Inter-Working of Networks
GB2449923B (en) * 2007-06-09 2011-09-28 King's College London Inter-working of networks
US9002382B2 (en) * 2007-07-04 2015-04-07 Samsung Electronics Co., Ltd. Method and apparatus for identifying neighboring device
US9479893B2 (en) * 2007-07-04 2016-10-25 Samsung Electronics Co., Ltd. Method and apparatus for identifying neighboring device
US20090011707A1 (en) * 2007-07-04 2009-01-08 Samsung Electronics Co., Ltd. Method and apparatus for identifying neighboring device
US20090022076A1 (en) * 2007-07-17 2009-01-22 Necati Canpolat Network type assisted wlan network selection
US8103267B2 (en) 2007-09-26 2012-01-24 Via Telecom, Inc. Femtocell base station with mobile station capability
US20090082010A1 (en) * 2007-09-26 2009-03-26 Via Telecom, Inc. Femtocell base station with mobile station capability
US9363770B2 (en) 2007-10-05 2016-06-07 Ipcomm Automatic provisioning of handoff parameters for femtocell
US20090093252A1 (en) * 2007-10-05 2009-04-09 Via Telecom, Inc. Automatic provisioning of handoff parameters for femtocell
US20090092078A1 (en) * 2007-10-05 2009-04-09 Via Telecom, Inc. Automatic provisioning of admission policy for femtocell
US20090092096A1 (en) * 2007-10-05 2009-04-09 Via Telecom Inc. Automatic provisioning of femtocell
US8937936B2 (en) 2007-10-05 2015-01-20 Via Telecom Inc. Acquiring time synchronization and location information with a femtocell
US20090092122A1 (en) * 2007-10-05 2009-04-09 Via Telecom Inc. Time synchronization of femtocell
US20090093246A1 (en) * 2007-10-05 2009-04-09 Via Telecom Inc. Automatic provisioning of power parameters for femtocell
US8213391B2 (en) 2007-10-05 2012-07-03 Via Telecom, Inc. Time synchronization of femtocell
US9313752B2 (en) 2007-10-05 2016-04-12 Via Telecom, Inc. Automatic provisioning of power parameters for femtocell
US20090298515A1 (en) * 2007-10-05 2009-12-03 Ipcomm Acquiring time synchronization and location information with a femtocell
US8248923B2 (en) 2007-10-05 2012-08-21 Via Telecom, Inc. Automatic provisioning of admission policy for femtocell
US8223683B2 (en) * 2007-10-05 2012-07-17 VIA Telecom, Inc Automatic provisioning of femtocell
US20090290518A1 (en) * 2008-05-22 2009-11-26 Motorola, Inc. Method for facilitating sharing of channel information in a wireless communication network
CN102037776A (en) * 2008-05-22 2011-04-27 摩托罗拉公司 Method for facilitating sharing of channel information in a wireless communication network
US8477716B2 (en) * 2008-05-22 2013-07-02 Motorola Solutions, Inc. Method for facilitating sharing of channel information in a wireless communication network
US8744493B2 (en) 2008-05-28 2014-06-03 Via Telecom, Inc. Localized silence area for mobile devices
US20090298475A1 (en) * 2008-05-28 2009-12-03 Ipcomm Localized silence area for mobile devices
US8060097B1 (en) * 2008-06-05 2011-11-15 Sprint Spectrum L.P. Method and apparatus for intelligent mobile-assisted hard handoff
WO2012122995A1 (en) * 2011-03-12 2012-09-20 Puregger Alexander Method and system for providing a distributed wireless network service
US20140010225A1 (en) * 2011-03-12 2014-01-09 Alexander Puregger Method and system for providing a distributed wireless network service
US9288675B2 (en) * 2011-03-12 2016-03-15 Fon Wireless Limited Method and system for providing a distributed wireless network service
US11012884B2 (en) 2011-12-08 2021-05-18 Huawei Technologies Co., Ltd. Access method and system, user equipment, and network side device
US9648550B2 (en) 2012-04-10 2017-05-09 Huawei Technologies Co., Ltd. Wireless local area network discovery and selection method, device, and system, and terminal
EP2824870A4 (en) * 2012-04-10 2015-04-29 Huawei Tech Co Ltd Wireless local area network discovery and selection method, device and system, and terminal
US9801124B2 (en) 2012-05-01 2017-10-24 Qualcomm Incorporated Systems and methods for configuring connectivity in a wireless network
WO2013166196A1 (en) * 2012-05-01 2013-11-07 Qualcomm Incorporated Systems and methods for configuring connectivity in a wireless network
CN103546926A (en) * 2012-07-09 2014-01-29 中兴通讯股份有限公司 Method and device for determining neighbor user equipment in WLAN
US20140254390A1 (en) * 2013-03-07 2014-09-11 Arris Solutions, Inc. Qualification of wireless network environments
US9386474B2 (en) * 2013-03-07 2016-07-05 Arris Enterprises, Inc. Qualification of wireless network environments
CN105409280A (en) * 2013-12-30 2016-03-16 华为技术有限公司 Method, apparatus and device for accessing wireless local area network
US20180041873A1 (en) * 2016-08-08 2018-02-08 Fuji Xerox Co., Ltd. Information processing apparatus and non-transitory computer readable medium
US10779121B2 (en) * 2016-08-08 2020-09-15 Fuji Xerox Co., Ltd. Information processing apparatus and non-transitory computer readable medium for receiving beacon signals and position information
US20240039761A1 (en) * 2022-07-26 2024-02-01 Nokia Solutions And Networks Oy Separate pfcp session model for network access by residential gateways
US11902052B1 (en) * 2022-07-26 2024-02-13 Nokia Solutions And Networks Oy Separate PFCP session model for network access by residential gateways

Also Published As

Publication number Publication date
US8619729B2 (en) 2013-12-31
US20090135758A1 (en) 2009-05-28

Similar Documents

Publication Publication Date Title
US20060274743A1 (en) System and method for a mobile device to learn information about the access networks within its neighborhood
Liu et al. Distributed Mobility Management: Current practices and gap analysis
EP1889402B1 (en) Server, methods and computer-readable media for discovering neighbor networks in a mobile station
JP4650959B2 (en) Mobile station neighboring network search method and network management server therefor
Al-Surmi et al. Mobility management for IP-based next generation mobile networks: Review, challenge and perspective
EP2030462B1 (en) Automated selection of access interface and source address
US10111159B2 (en) Access point detection
KR101221610B1 (en) Apparatus and Method for Supporting Fast Mobility IP with Link Identifier Prefix in Wireless Communication System
KR100842624B1 (en) System and method for interworking between cellular network and wireless lan
EP1486080B1 (en) Method and apparatus for alerting mobile nodes of desirable access characteristics
KR101235712B1 (en) Wireless communication method and system for implementing media independent handover between technologically diversified access networks
EP2210387B1 (en) Technique for providing support for a plurality of mobility management protocols
US8068833B2 (en) Candidate access router discovery
EP1645157B1 (en) Enhanced fast handover procedures
US20150078359A1 (en) Access point detection
TW200950413A (en) Method and system for system discovery and user selection
Mussabbir et al. Optimized FMIPv6 handover using IEEE802. 21 MIH services
Melia et al. Logical-interface support for IP hosts with multi-access support
Wozniak Mobility management solutions for current IP and future networks
Andersson Interworking techniques and architectures for heterogeneous wireless networks
WO2005043839A1 (en) Communication handover method, communication handover program, and communication system
KR200411873Y1 (en) Wireless communication system for implementing media independent handover between technologically diversified access networks
EP1763203A1 (en) Method for obtaining IP address allocation information in a mobile node.
Salleh et al. Handoff techniques for 4G mobile wireless internet
Seite et al. RFC 7429: Distributed Mobility Management: Current Practices and Gap Analysis

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YEGIN, ALPER;HAN, YOUN-HEE;CHOI, JINHYEOCK;REEL/FRAME:017860/0333;SIGNING DATES FROM 20060218 TO 20060406

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION