US20080254833A1 - Private Access Point Containing a Sim Card - Google Patents

Private Access Point Containing a Sim Card Download PDF

Info

Publication number
US20080254833A1
US20080254833A1 US11/664,426 US66442606A US2008254833A1 US 20080254833 A1 US20080254833 A1 US 20080254833A1 US 66442606 A US66442606 A US 66442606A US 2008254833 A1 US2008254833 A1 US 2008254833A1
Authority
US
United States
Prior art keywords
access point
base station
network
user
access
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/664,426
Inventor
Peter Keevill
Andrea Giustina
Richard Byrne
Cristavao da Silva
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cisco Technology Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34983951&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20080254833(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority claimed from PCT/GB2006/002838 external-priority patent/WO2007015075A1/en
Assigned to NOBLE VENTURE FINANCE II S.A. reassignment NOBLE VENTURE FINANCE II S.A. SECURITY AGREEMENT Assignors: UBIQUISYS LIMITED
Publication of US20080254833A1 publication Critical patent/US20080254833A1/en
Assigned to TRIPLEPOINT CAPITAL LLC reassignment TRIPLEPOINT CAPITAL LLC SECURITY AGREEMENT Assignors: UBIQUISYS LIMITED
Assigned to UBIQUISYS LIMITED reassignment UBIQUISYS LIMITED RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: NOBLE VENTURE FINANCE II S.A.
Assigned to UBIQUISYS LIMITED reassignment UBIQUISYS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DA SILVA, CRISTAVAO
Assigned to UBIQUISYS LIMITED reassignment UBIQUISYS LIMITED RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: TRIPLEPOINT CAPITAL LLC
Assigned to CISCO TECHNOLOGY, INC. reassignment CISCO TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UBIQUISYS LIMTED
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5691Access to open networks; Ingress point selection, e.g. ISP selection
    • H04L12/5692Selection among different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
    • H04L63/0471Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload applying encryption by an intermediary, e.g. receiving clear information at the intermediary and encrypting the received information at the intermediary before forwarding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1045Proxies, e.g. for session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/18Service support devices; Network management devices
    • H04W88/182Network node acting on behalf of an other network entity, e.g. proxy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • H04W84/22Self-organising networks, e.g. ad-hoc networks or sensor networks with access to wired networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/02Inter-networking arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/045Interfaces between hierarchically different network devices between access point and backbone network device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers

Definitions

  • FIG. 2 is a block schematic diagram illustrating the hardware architecture of a base station in accordance with the present invention.
  • FIG. 13 illustrates a further signalling procedure in accordance with an aspect of the invention.
  • FIG. 1 is a block schematic diagram, illustrating a system architecture.
  • a mobile network operator owns and operates a wireless communications network, including a radio network 10 , including a network of cellular basestations (not shown), and a core network 20 , having a connection into the fixed telephone network.
  • MNO mobile network operator
  • a radio network 10 including a network of cellular basestations (not shown), and a core network 20 , having a connection into the fixed telephone network.
  • the access point 50 is designed to provide cellular service over a distance of less than 50 m to stationary or pedestrian (for example, no more than 10 km/h) users within a building, and hence the transmit power required is dramatically reduced compared to a conventional macrocell basestation.
  • the functionality described herein can be provided in any basestation, operating at any power level, and handling any type of mobile user.
  • FIG. 3 provides a conceptual overview of the architecture of the software running on the protocol engine 86 of the access point 50 , together with the encryption accelerator 88 and the packet processing accelerator 90 , with an emphasis on the Services Environment and its control paths into the lower stack layers.
  • FIG. 4 is a block schematic diagram of a mobile communications network, in which the access point (AP) 50 is connected into the core network using a modified version of the existing standard UMA interface to support backhaul. This is referred to herein as 3G Licensed UMA (L-UMA) or 3G L-UMA.
  • the access point (AP) 50 also includes the functionality of the IP Gateway 60 shown in FIG. 1 .
  • NAS 3GPP standard Uu
  • the Uu interface 250 is the usual GSM/UMTS air interface between the UE and the access point.
  • the tunnel management framework can be described as follows:
  • the access point uses CK and IK for encryption and integrity protection over the air interface.
  • the UE-specific tunnel establishment follows the same procedure as that shown in FIG. 13 , up to the point at which the access point receives the IKE_AUTH Response carrying the EAP Success message, which signals to the access point that the AAA server has successfully performed the EAP authentication for the UE.
  • the access point needs to retrieve the UE-specific keying material from the AAA server so as to authenticate itself towards the PDG and start using ciphering and integrity protection over the air interface.
  • This material is part of the authentication vector used by the AAA server during the successful EAP-based mutual authentication between the access point (by querying the UE with the GSM/UMTS Authentication Procedure) and the AAA server that just took place.
  • the access point 50 sends an Authentication Request to the AAA server, having the format:

Abstract

An access point, or base station, for a mobile communications network, such as a cellular communications network, can be installed by a user, for use within or close to their own home or office. The base station has a SIM card, and can establish secure communications with the core network of the mobile communications network over the user's existing broadband internet connection. The base station is also able to obtain the necessary ciphering keys, in order to allow the mobile device to communicate securely with the base station, and hence with the core network.

Description

  • This invention relates to an access point, and in particular to an access point for a mobile communications network.
  • It is proposed that, in order to allow an operator of a mobile communications network, such as a cellular communications network, to increase the coverage area of the network, users should be able to install access points, or base stations, for use within or close to their own homes or offices. Such base stations can establish communications with the core network of the mobile communications network over the user's existing broadband internet connection.
  • In order to achieve this, it is necessary for the base station to be able to communicate securely with the core network of the mobile communications network, and to allow a mobile device communicating with the base station to communicate securely with the core network.
  • According to a first aspect of the present invention, there is provided a base station for a cellular communications system, comprising an interface for a SIM card.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a block schematic diagram of a system incorporating a base station in accordance with the present invention.
  • FIG. 2 is a block schematic diagram illustrating the hardware architecture of a base station in accordance with the present invention.
  • FIG. 3 is a block schematic diagram illustrating the software architecture of a base station in accordance with the present invention.
  • FIG. 4 is a block schematic diagram of a further system incorporating a base station in accordance with the present invention.
  • FIG. 5 illustrates a conventional network architecture.
  • FIG. 6 illustrates a network architecture in accordance with an aspect of the present invention.
  • FIG. 7 illustrates a signalling procedure in accordance with an aspect of the invention.
  • FIG. 8 is a block schematic diagram of a part of the further system of FIG. 4 in use.
  • FIG. 9 illustrates a further signalling procedure in accordance with an aspect of the invention.
  • FIG. 10 illustrates a further network architecture in accordance with an aspect of the present invention.
  • FIG. 11 illustrates a further network architecture in accordance with an aspect of the present invention.
  • FIG. 12 illustrates the further network architecture of claim 10, in use.
  • FIG. 13 illustrates a further signalling procedure in accordance with an aspect of the invention.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • FIG. 1 is a block schematic diagram, illustrating a system architecture. A mobile network operator (MNO) owns and operates a wireless communications network, including a radio network 10, including a network of cellular basestations (not shown), and a core network 20, having a connection into the fixed telephone network. These are generally conventional, except as described below.
  • A mobile phone 30, when roaming in the territory covered by the wireless communications network, is able to establish a wireless connection with one of the cellular basestations, in order to communicate with other telephones in the fixed telephone network, or with other mobile phones, which have established their own wireless connections with a cellular basestation, and hence with the fixed telephone network.
  • In accordance with the present invention, there is provided, for example within a home or office 40 or in another location where additional wireless coverage is required, a further basestation, or access point, 50. This access point 50 is provided for use by the owner of the premises where it is located, but is integrated into the wireless communications network. That is, the access point shares the part of the radio frequency spectrum allocated to that wireless communications network, by having allocated to it, either permanently or temporarily, some of the group of channels. This group of channels is thus shared with other basestations, which may serve macrocells, microcells, picocells, or even “femtocells”, in the public, wide area network. As a result, the mobile phone 30 can roam from the access point 50 to another basestation when leaving the immediate vicinity of the access point 50, or can roam to the access point 50 from another basestation when returning to the immediate vicinity of the access point 50.
  • The access point 50 therefore acts as a basestation within the relevant wireless communications network. For example, it can allow an entirely conventional and unmodified mobile phone 30 or other user device to establish a connection for voice and/or data services using GSM/GPRS and/or UMTS air interfaces. Of course, the access point 50 can be enabled to establish connections with the mobile phone 30 using the standard air interface of any suitable cellular wireless communications system.
  • The access point 50 has a connection for an Ethernet Local Area Network (LAN) 42, within the home or office 40. As shown in FIG. 1, the access point 50 can connect over the Ethernet LAN 42 to one or more local PCs or servers 44.
  • The access point 50 can connect over the Ethernet LAN 42 to an IP gateway device 60. The IP gateway device 60 provides an IP connection over an IP network 70, for example the internet, to the MNO network either via a Digital Subscriber Line (DSL) or via other IP transport methods such as a digital multimedia Cable network. Thus, the existing IP connection from the home or office can be used to provide backhaul from the access point 50. Flexible interfacing to the operator's core network 20 can be provided via connections to either the MNO Core Network or Radio Access Network, using the UMA standard through a UMA gateway 22. This approach enables low-cost transport of data and voice using Voice-over-Internet Protocol (VoIP) techniques.
  • The connection from the IP gateway 60 over the IP network 70 into the MNO Radio Access Network 10 is provided by a UMA Unlicensed Network Controller (UNC) 12, which has been standardised by 3GPP as a Generic Access Network Controller (GANC). Other non-standardised solutions to interface to the Radio Access Network 10 could also be employed as an alternative approach. Direct connection to the operator's Core Network can be achieved through use of a SIP Interface between the access point and a suitable gateway such as a SIP Gateway or an IP Multimedia Subsystem.
  • In this illustrated embodiment, the DSL or cable IP gateway device 60 includes provision for connection of a POTS telephone or fax device 62, and audio/video connections for providing IPTV services to a TV 64. The access point 50 includes a services environment which allows these facilities to be integrated into the MNO network, enabling sophisticated new services for users.
  • In an alternative implementation of the invention, the access point 50 can be integrated as a component within the IP gateway device 60; an internal IP connection then links the embedded access point component to the router functions within the IP gateway device. This configuration can potentially provide a lower overall cost and is convenient for operators looking to provide gateway units which unify data, fixed voice, multimedia and mobile services.
  • Thus, while the mobile phone 30 is within the home or office 40, or otherwise within the coverage area of the access point 50, it can connect into the MNO network in the same way as via any other basestation in the cellular wireless communications network.
  • FIG. 1 also shows a network server 72 connected to the IP network 70. As will be appreciated, where the IP network 70 is the internet, a very large number of servers and other devices are connected to the network. As will be described in more detail below, the user of the mobile phone 30 can access such devices by means of the access point 50.
  • FIG. 1 also shows a management system 74, connected to the IP network 70. The management system 74 is provided by the mobile network operator for managing the operation of the access point 50, including controlling the available services.
  • For example, as mentioned above, and as described in more detail below, a user of the mobile phone 30 can establish a connection through the access point 50 over the Ethernet LAN 42 to one or more local PCs or servers 44, or through the IP gateway device 60 to another device connected thereto, or through the IP gateway device 60 to a network server 72 connected to the IP network 70. These connections can be established without passing traffic over the core network 20 of the wireless communications network. The management system 74 is able to define the devices, or the IP addresses, with which such connections can be established. Then, these connections can be established with only a restricted number of devices or IP addresses, if desired by the mobile network operator.
  • Also, the management system 74 is able to specify the channels (which may be defined by frequencies, time slots, and/or spreading codes, depending on the particular cellular wireless communications system) allocated to the access point 50. These channels may be allocated semi-permanently, or may be changed regularly, depending on the requirements of the network as a whole.
  • FIG. 2 is a block schematic diagram, showing the hardware architecture of the access point 50. The architecture consists of a number of functional blocks interconnected by a processor bus 80 such as the ARM AMBA bus.
  • The access point 50 includes various external wired interfaces, including an RJ45 Ethernet 10/100 interface 82, which provides a connection to a local LAN for connection to the IP gateway device 60 and thence to the MNO network and the Internet, and also provides access to other devices attached to the Ethernet network, such as one or more PC 44, or such as an IPTV 64 for advanced service provision. The access point 50 can therefore have an IP-based interface to the Radio Access Network 10 through adaptation of the standard UMA UNC, or Core Network via SIP as opposed to the usual lub (UMTS) or Abis (GSM) interfaces.
  • The access point 50 also includes a Subscriber Identification Module (SIM) card interface 84 to allow use of a standard SIM card to provide a unique identifier for the access point 50, in order to identify the unit to the management system 74 and the operator's radio network 10 and core network 20, and thereby enable various services to be provided.
  • The access point 50 also includes a Protocol Engine 86, implemented as a small embedded CPU such as an ARM926 (with appropriate peripherals) supported by a dedicated co-processor 88 for encryption and a dedicated co-processor 90 for packet processing, which will offload the main CPU for specific intensive tasks. For example, encryption of the IPSec packet payload is handled by the encryption accelerator 88, which supports AES and 3DES encryption protocols. The VPN connection of the access point 50 to the UNC 12 and the management system 74 will make use of the internal encryption processing; user VPN encryption processing may be handled outside the access point 50.
  • The main CPU is also responsible for the configuration and control, via the main CPU bus 80, of all functional blocks in the system including a baseband modem 92 and the Ethernet port 82. The system software image, including configuration data for all system functional blocks is stored in FLASH memory 94 within the access point 50; two complete system images are stored so that updated system images can be downloaded to the access point 50 from the management system 74, whilst the previous image is retained as a fall back option in case of corrupted download access point 50
  • The main CPU peripherals include: watchdog timers for software sanity checking, JTAG and serial ports for in-system debug, and a GPIO for system control including LED status indication, system power management and system alarm gathering.
  • The access point 50 has a first RF Interface 94 for GSM at either 900 MHz or 1800 MHz and a second RF Interface 96 for UMTS at 2100 MHz. It therefore supports simultaneous operation of GSM and UMTS. For the GSM and UMTS receive paths both uplink (basestation receive) and downlink (terminal receive) frequencies are accessible; for the transmit paths only downlink (basestation transmit) frequencies are available. At installation, the access point 50 selects a downlink RF carrier frequency with the lowest noise/interference for both GSM and UMTS from permitted lists of GSM and UMTS carrier frequencies provided by the management system 74; permitted downlink frequencies will be scanned by the access point 50 with its receive path configured in UE mode and its transmit path disabled.
  • The access point 50 is designed to provide cellular service over a distance of less than 50 m to stationary or pedestrian (for example, no more than 10 km/h) users within a building, and hence the transmit power required is dramatically reduced compared to a conventional macrocell basestation. However, the functionality described herein can be provided in any basestation, operating at any power level, and handling any type of mobile user.
  • The RF interfaces 94, 96 are connected through a modem analog interface 98 to the baseband modem 92, which supports sample rate processing, chip-rate processing (UMTS only) and symbol rate processing for the GSM and UMTS basestation modems.
  • The access point 50 will have limited GSM Mobile Station (MS) and UMTS User Equipment (UE) modem functionality, in order to allow the access point 50 to recover the Broadcast Channel (BCH) from local GSM/UMTS basestations and other nearby access points. UE modem mode will be entered during initial installation to survey the local RF environment and at regular intervals after the initial installation to monitor the RF environment and, if necessary, modify the access point configuration.
  • The baseband modem 92 is implemented using a software-based architecture to ensure high adaptability over a field life of up to 5 years, for example, being upgradeable to allow future enhancement to HSDPA or EDGE service to be delivered in the field without the need to replace the unit.
  • The access point 50 includes timing and frequency references 100 which provide sufficient accuracy for GSM and UMTS basestation operation over a 5 year lifetime.
  • This embodiment of the access point 50 therefore provides various operational features. For example, it is user installable, self-configuring, and adaptive to the surrounding RF environment. Access can be restricted to specified users using standard GSM/UMTS protocols. Further, multiple access point units installed in a large indoor area connected to a common Ethernet LAN can manage handoffs between themselves without the intervention of other systems in the radio network 10 or the core network 20 of the operator's cellular network.
  • FIG. 3 provides a conceptual overview of the architecture of the software running on the protocol engine 86 of the access point 50, together with the encryption accelerator 88 and the packet processing accelerator 90, with an emphasis on the Services Environment and its control paths into the lower stack layers.
  • The access point 50 includes a services platform, which can exploit the potential of the union of four data networks, namely the external MNO core network 20, the external internet 70, mobile devices such as the mobile phone 30 (via GSM/UMTS), and the home network (via Ethernet).
  • The access point stack architecture includes a powerful services environment 120. The services environment is Java-based and includes a Java Virtual Machine 122, and an access point library 124, in the form of an API interface which allows applications 126 to interact with the lower layers of the stack to control calls/data sessions, traffic routing and many other functions. The services environment 120 also includes a web server 128, which provides a convenient interface to the user for configuration and monitoring and also for selection and purchase of desired applications, with security protected options for debug and maintenance via a local PC. The services environment 120 also includes a management system (MS) client 130, which configures the access point 50 and monitors various aspects of its operation. The MS client 130 controls the provisioning system so that any component of the software in the system, as shown in FIG. 3, can be replaced and restarted.
  • As mentioned above, the services environment 120 also includes various applications 126, for example created by the mobile network operator or the IP gateway 60 provider, which can be pre-installed in the access point 50, or can be delivered via download from the operator's network at the operator's initiation or at user request, for example as part of a chargeable service.
  • A network (ZN) layer 132 of the software provides session control functions to manage and implement the service flows and policies that determine how the access point 50 is configured and operates for any particular Mobile Network Operator (MNO) configuration and end-user settings. Configuration parameters are loaded to the ZN database 134 via the management system (MS) client 130, Java applications or via the Web Server 128. These parameters provide the “rules” for the session control operation within the access point. Session control functions include: implementation of the policies for registration, call control and traffic flow/routing for the access point 50 on the MNO core network; control of the UMA client (to be described further below) for registration, call control and traffic flow; and efficient management of access point access point resources in delivering GSM/UMTS services and interacting with other services via the IP gateway 60.
  • Below the network (ZN) layer 132 of the software, there is the Non Access Stratum (NAS) functionality 136, which is required in order for services to be provided to the UE when the MNO GSM/UMTS core network 20 is not connected to the access point 50. This functionality enables the access point 50 to offer the usual GSM/UMTS services, such as SMS and MMS which mobile users are accustomed to, whilst not being connected to the GSM/UMTS core network in the conventional manner. In order for such services to be offered, the access point 50 contains a condensed subset of the core network functions usually contained in the Mobile Switching Centre (MSC), Serving GPRS Service Node (SGSN), GSM Basestation Subsystem (BSS), and UMTS Radio Network Subsystem (RNS).
  • The Non-Access Stratum layer 136, as implemented in the access point 50, therefore provides various functions which are typically included in MSC and SGSN nodes within a conventional GSM/UMTS network. One such feature is call control (CC). This supports call establishment between two peer entities, mainly for circuit-switched connections.
  • The NAS layer 136 also provides session management (SM), for control of packet data sessions; Short Message Service (SMS) function, for transmission of SMS messages between the access point 50 and the network SMS service centre; supplementary services (SS), such as call waiting, call holding, and multi-party calling; Mobility Management/GPRS Mobility Management (MM/GMM), for management of UE mobility elements, such as location registration, authentication, and ciphering; and control functions associated with the SIM card which may be fitted to the access point 50. The access point 50 also provides packet routing capability, which is essentially GGSN functionality in a conventional network.
  • Below the NAS functionality, there is the Access Stratum functionality, specifically the UMTS Access Stratum functions 138 and the GERAN Access Stratum functions 140. The UMTS Access Stratum functionality 138 comprises some SGSN functionality, Radio Network Controller (RNC) functionality and an interface to the UMTS physical layer implemented on the baseband modem 92. The RNC and physical layer interface functionality is required for all access point services supporting UMTS, regardless of the core network interface used.
  • In more detail, the Access Stratum functionality comprises the following elements:
  • Packet Data Convergence Protocol (PDCP)
  • Header compression and decompression of IP data streams (optional), transfer of user data, maintenance of PDCP sequence numbers (typically part of an SGSN function).
  • Radio Resources Control (RRC)
  • Broadcast of information related to the NAS and AS; establishment, maintenance and release of RRC connections; establishment, reconfiguration and release of Radio Bearers and radio resources; RRC connection mobility functions; control of requested QoS; UE measurement reporting and control; outer loop power control; ciphering control.
  • Radio Link Control (RLC)
  • Transmission and reception of signaling and data packets, including buffering, segmentation and concatenation of packets. Comprises three entity types, for acknowledged mode, unacknowledged mode, and transparent modes.
  • Medium Access Control (MAC)
  • Mapping between logical channels and transport channels, selection of the appropriate Transport Formats for each Transport Channel, priority handling between UEs, multiplexing/demultiplexing of upper layer PDUs to/from transport block (sets) on common and dedicated transport channels.
  • UMTS Layer 1
  • Interface to the UMTS modem functions implemented on the Baseband Modem.
  • The GERAN access stratum functionality 140 comprises BSS and some limited SGSN functionality. The BSS functionality is required for support of all GSM/GPRS(EDGE services, regardless of the interface used between the access point 50 and the MNO core network 20.
  • The SGSN functionality of the GERAN access stratum functionality 140 comprises the following elements:
  • Sub-Network Dependent Convergence Protocol (SNDCP)
  • Multiplexing of several packet data protocols; data compression/decompression (optional); header compression/decompression (optional); segmentation and re-assembly.
  • Logical Link Control (LLC)
  • LLC provides peer-to-peer unacknowledged and acknowledged data transfer, and the GPRS ciphering functionality.
  • The BSS functionality of the GERAN access stratum functionality 140 comprises the following elements:
  • Radio Link Control/Medium Access Control (RLC /MAC)
  • RLC/MAC supports acknowledged and unacknowledged modes; segmentation and reassembly of LLC PDUs; multiplexing to several physical channels; broadcast of system information.
  • Radio Resource Management (RR)
  • RR connection establishment, maintenance, and releases; system information broadcast; packet data resource management.
  • GSM/GPRS Layer 1
  • Interface to the GSM/GPRS/EDGE modem functions implemented in the Baseband Modem.
  • Thus, as described above, the access point 50 includes some functionality typically located in the higher levels of the Radio Access Network for UMTS and GSM standards. This is partly because, in order to be able to route data traffic to the MNO core network, or to the internet or to devices on the local area network, the access point 50 must have access to the data packets flowing to and from the remote devices. However it is highly desirable that the air interface to the cellular devices is secured by the same ciphering mechanisms used in the rest of the cellular network. Therefore, if it is required to maintain this, then, in order to enable the service and routing capabilities described above, the access point 50 should contain the termination function for the air interface ciphering (namely, the RLC/MAC layer in UMTS).
  • The software running in the access point 50 also includes a UMA client 142, allowing the access point 50 to use the UMA protocol in a non-standard configuration. Specifically, the standard UMA protocol is designed to enable a GSM MS or UMTS UE, which includes a UMA client and an unlicensed spectrum air interface such as IEEE802.11b/g or Bluetooth, to communicate with the GSM/UMTS core network using unlicensed spectrum. However, the implementation in the access point 50 uses the UMA client as part of the network interface of a GSM/UMTS base station, so that the UMA protocols, developed to communicate with a GSM/UMTS core network via an Unlicensed Network Controller (UNC), can be adapted to manage calls handled by that base station, including handover to/from the macro network. As noted previously, a SIP Interface can be used as an alternative approach.
  • The access point 50 also includes one or more IP device clients 144, to enable the transfer of calls, control information or data between the “mobile domain” (mobile phones camped onto the access point 50 and traffic paths into the MNO core network 20) and other IP devices, such as a VoIP/POTS port within the IP gateway 60 for fixed-line phone/fax services, an AV port within the IP gateway 60 for IPTV and/or video services, PC's or Servers 44 on the local Ethernet LAN, or remote webpages and/or servers 72 accessible over the internet 70 via the IP gateway 60.
  • Each IP device client 144 has access to the traffic path within the access point 50 and can be controlled by the session controller in the ZN layer 132, which can initiate and terminate calls/data sessions with the accessible IP devices. The inclusion within the access point 50 software architecture of IP device clients which are specific to a particular device or service enables traffic from that particular device or service to be routed within the access point 50, such that it can be connected to the GSM/UMTS mobile devices accessed via the GSM or UMTS Access Strata or the MNO Core Network accessed via the UMA client.
  • Further, each IP device client 144 has access to the other devices on the LAN, and also has access to other devices accessible over the internet 70. For example, by using the appropriate IP device client 144, a POTS phone connected to the access point 50 can be connected over the internet 70 to another POTS phone, in order to make a voice call.
  • Moreover, each IP device client 144 also has access to the mobile network of the MNO. Specifically, any device connected to the LAN 42, or any device connected to the IP gateway 60, can have an IP device client 144 that can associate itself with the SIM card connected to the USIM interface 84. From the point of view of the MNO network, any such device then appears to be a mobile, and will be allowed access to providing a device with appropriate desired functionality, and then using the SIM card to allow the device to connect over the MNO core network to one or more other devices.
  • A further use of the SIM card, connected to the USIM interface 84, is to allow the mobile phones camped onto the access point to work in a similar way to a multi-extension cordless telephone system. In this particular service configuration, the SIM card within the access point 50 carries an IMSI identifier which in fact identifies a phone line the home or office within which the access point 50 is installed, although it appears within the mobile network operator's system as a mobile number. When the IMSI of the SIM card in the access point 50 is called, all mobile phones camped onto the access point 50 are rung until one of them is answered. In this way, incoming calls to an individual person would be directed to the IMSI of that individual's mobile phone, and can therefore be differentiated from calls which are intended for any of the users in that home or office by the IMSI identifier which is called. The call handling functionality of the access point 50 then changes when the IMSI identifier of the access point itself is called.
  • Thus, in general terms, the access point 50 includes a UMTS SIM card which is issued by the operator whose spectrum is used by the access point, that is, the operator of the relevant mobile network. The USIM card carries standard identification information for a Mobile Terminal, most significantly an IMSI identifier and an MSISDN number which is the telephone number associated with the SIM. The IMSI identifier is used to identify the access point, authenticate it and establish secure communications with the MNO network via the IP interconnection using exactly the same mechanisms as are used for Mobile Terminals containing SIM cards which access the MNO network via IP interfaces. A number of standard interfaces are defined for IP connection of terminal devices into a MNO Network, most commonly for Wireless LAN, or WiFi, devices where the UMA and WLAN/IMS standard interfaces predominate. (So called “Pre-IMS” systems which supported IP devices including SIM cards can also be interfaced to using this principle.) Procedures for these interfaces are described in more detail below but the principle extends to any interface designed to support a remote device containing a SIM into an MNO network.
  • Another capability that is enabled by the inclusion of a SIM within the access point 50 is that it is possible for the access point to communicate with the MNO network as a Mobile Terminal can do. Specifically, the access point is able to make and receive calls to/from other mobile terminals or fixed line devices, to initiate and terminate data sessions with other devices and to send and receive SMS and MMS messages. This allows a number of useful functions to be supported by the access point which include:
      • Reception of keyworded SMS messages from one of the users pre-registered on the access point which can instruct the access point to perform a specific function such as adding a new user to the list of “permitted users” stored within the access point (optionally the access point can update the management system 74 with this change to permitted users to maintain synchronism between databases). This capability might be combined with an application function and appropriate IP Device client within the access point so that actions can be initiated on the user's home network, such as programming a PC-based video recorder or activating a burglar alarm or heating control.
      • Transmission of a SMS or MMS message to the user to alert them to important information such as a new permitted user successfully added to a access point, or a specific user becoming camped on the access point (i.e. has arrived home) or error conditions such as inability to provide service at installation due to high levels of interference. This facility could be combined with a access point application and appropriate IP Device client 144 so that activity within the user's home network can be relayed to the user when outside the home; for example a photograph of a caller at the door of the user's home taken by a security webcam could be forwarded to the user as an MMS message.
      • Reception of a call/data session initiated by a user in wide area network such that the user can access information on the user's home network, for example live video from a security webcam or browsing of information stored in the users home PC server.
      • Initiation of calls/data sessions so that the access point can “push” information to the user when triggered by an event or at a predetermined time. For example, with a suitable IP Device client 144 in the access point 50 and appropriate application software in the access point and home PC server, multimedia news clips downloaded onto the user's home PC can be forwarded to the user's phone, or alerts generated by stock-tracking software or internet auction sites can initiate a call to the user to invite a response to the triggering event.
  • Messages, calls and data sessions initiated by the access point 50 are directed into the MNO network so that they could be received by a user in the wide-area macrocell network; optionally, logic can be included in the access point to identify if the recipient of the message/call/data session is already camped on the cell so that the transaction can be initiated directly over the air interface of the access point 50 without tying up unnecessary core network resources. In a similar way, messages, calls and data sessions terminated by the access point 50 will be received direct from the core network; optionally the access point can screen outgoing transactions to identify if its own MSISDN is the intended recipient for the transaction and thereby make a decision as to whether to intercept the call to avoid unnecessary use of core network resources.
  • FIG. 4 is a block schematic diagram of a mobile communications network, in which the access point (AP) 50 is connected into the core network using a modified version of the existing standard UMA interface to support backhaul. This is referred to herein as 3G Licensed UMA (L-UMA) or 3G L-UMA. In FIG. 4, the access point (AP) 50 also includes the functionality of the IP Gateway 60 shown in FIG. 1.
  • The UMA or 3GPP GAN standard defines an interface between the GANC controller and the UE, the Up interface. The access point 50 uses the standardised messaging to register and authenticate itself as a Mobile device and set up a secure IPSec tunnel to the core network.
  • FIG. 4 shows a single UE 30, although multiple UEs can camp on a single access point 50. The UEs are 3GPP standard UMTS UEs with no additional client. They can be handsets, PDAs, PC cards or any other form factor.
  • The POTS or SIP phone 62 is used to make home number calls via the access point 50.
  • The PC client 44 controls local services preferences, contacts and dynamic calls/sessions behaviour. A softphone functionality can be included in the PC client.
  • The access point 50 provides the following functions:—
  • It provides local UMTS coverage at 3GPP standards.
  • It includes a USIM 160 dedicated to the access point 50 provisioning, configuration, authentication with the core network and to support UMTS services for the home number service.
  • It interfaces with multiple UEs 30 over the 3GPP standard Uu interfaces, terminating locally AS and NAS layers.
  • It interfaces with local POTS or SIP phone 62 over a POTS interface or home network/Ethernet interface to a standalone VoIP (SIP) phone.
  • It interfaces with local PC client 44 and softphone over IP via an Ethernet interface 82.
  • It interfaces with other local or remote access points 162 via the Itf-Zz interface.
  • It delivers local services without CN network signalling involvement, including local calls treatment and local Internet offload.
  • It interfaces with the L-GANC 164 over the Up′ interface, via the Generic IP Access Network 70, for RRC-equivalent signalling and keying material exchange.
  • It interfaces with the CN legacy NEs (MSC 166, SGSN 168) on the 3GPP standard Uu (NAS) interface, via the Up′ interface, for the NAS layers signalling (MM, CC/SS/SMS, GMM, SM).
  • It interfaces with the management system (ZMS) 74 over the Itf-Z interface, via the Generic IP Access Network 70 and L-GANC Security Gateway 170, for network management, services management, software upgrades, fault reporting, activity monitoring and troubleshooting. The Itf-Z is connected via the L-GANC Security Gateway 170.
  • It interfaces with the public data network and the Internet 172 over the Gi-L (local Gi) interface, to provide direct access to local data and local Internet offload service without core network involvement.
  • The Generic IP Access Network 70 provides IP connectivity between the access points 50, 162 and the L-GANCs 164 and between the access points 50, 162 and the Internet 172. The Generic IP Access Network may apply NAT/PAT, and is generally conventional.
  • The 3G L-GANC 164 is the UMTS Licensed Generic Access Network Controller. The L-GANC 164 provides the following functions:—
  • It provides functionality equivalent to that of the RNC in the UMTS architecture.
  • It provides secure access over the Generic IP Access Network 70 to the core network.
  • It includes a standard Security Gateway 170 for authentication and IPsec tunneling.
  • It interfaces with the core network AAA 174 over the 3GPP standard Wm interface, for the support of authentication, authorisation and accounting procedures.
  • It interfaces with multiple access points 50, 162 over the Up′ interface, via the Generic IP Access Network 70, for RRC-equivalent signalling and keying material exchange.
  • It provides a secure transport for the Itf-Z between the access point 50 and the ZMS 74.
  • It interfaces with the core network MSC 166 over the 3GPP standard Iu-CS interface, for the support of circuit switched services.
  • It interfaces with the core network SGSN 168 over the 3GPP standard Iu-PS interface, for the support of packet switched services.
  • It provides a secure transport for the 3GPP standards Uu (NAS) interface between the access point 50 and the core network MSC 166 and SGSN 168.
  • It interfaces with the core network SMLC 176 over the 3GPP standards Lb interface, for the support of location information for the UEs roaming in the access point network
  • It interfaces with the core network CBC 178 over the 3GPP standards CBC-RNC interface for supporting cell broadcast services.
  • The management system (ZMS) 74 provides OAM&P function for the access point 50. More specifically:
  • It manages the access point 50 using the procedures and methods described in the DSL Forum TR-069 specifications.
  • It is responsible for the provisioning of the access point 50 during the installation process.
  • It monitors for faults reported by the managed access points.
  • It provides a means for the operator to manage the configuration of each access point 50.
  • It provides user interface with security to restrict the functions to which the user has access.
  • It interfaces with the access point 50 over the Itf-Z using a secure IP connection.
  • It provides the means to manage the upgrade of the software for the access points.
  • It collects the performance metrics reported by the access points.
  • It interfaces Customer Care, and network operations centre.
  • The UMTS core network elements MSC 166, SGSN 168, AAA 174, and HLR/HSS 180 are 3GPP standards elements, and will not be described further.
  • The access point 50 uses standard UE mechanisms to authenticate itself. This is illustrated using the IMS/SIP case as an example. The 3GPP IMS standard includes a definition for an interface to support Wireless LAN UEs containing SIM cards, referred to here as the WLAN/IMS interface. As the access point 50 includes a SIM card 160, it can appear as a Wireless LAN UE containing a SIM card, so that this mechanism can be reused to authenticate the access point 50 with the MNO core network. Very similar mechanisms are included in non-standard so-called “Pre-IMS” solutions many of which are expressly designed to support incorporation of Wireless LAN devices within a conventional 3GPP network.
  • Thus, FIG. 5 is a diagram illustrating the standard WLAN/IMS interface, whereby a WLAN UE 190 authenticates itself with the Packet Data Gateway (PDG) 192 in a 3GPP network 194.
  • FIG. 6 is a diagram illustrating the adapted version of the authentication mechanism used here. In essence the access point 50 uses the same authentication mechanisms as are specified in the 3GPP standards to authenticate itself with the AAA server and create a secure IPSec tunnel terminated at the Packet Data Gateway (PDG) 200.
  • The access point establishes an IPsec tunnel, specific to itself, to the Home Network. Thus, after the access point 50 is initialised it acquires a local IP address from the ISP associated with the DSL access. The access point 50 then needs a secure dedicated IP connection to the Home Network for several purposes, such as remote configuration, providing VoIP support for a POTS phone, and secure delivery of UE-specific keying material when setting up a UE-specific IPsec tunnel on behalf of each UE that attaches to the access point. This is achieved by setting up a VPN-like IPsec ESP tunnel towards the PDG 200 in the Home Network.
  • The access point leverages the fact that it contains a Home MNO Network provisioned USIM to establish this tunnel using IKEv2 with EAP/AKA authentication in exactly the same way as a WLAN UE would in accordance with R6 TS 23.234.
  • The following steps are performed at tunnel establishment:
  • 1. The access point obtains the IP address of the PDG 200 in the Home MNO Network.
    2. The access point uses IKEv2 with EAP-AKA authentication to setup the IPsec tunnel to the PDG 200 acquiring a Remote IP address in the process.
  • The access point is locally configured with a Fully Qualified Domain Name (FQDN) pointing to the PDG 200, in similar fashion to a W-APN in the WLAN 3GPP interworking framework. The access point 50 resolves the IP address of the PDG 200 via DNS procedures on the FQDN. It is assumed that, as in the case of WLAN 3GPP interworking, the FQDN of the PDG 200 exists in the public DNS.
  • The access point uses an IMSI-based Network Access Identifier, NAI, to identify itself towards the Home MNO Network, e.g. 0.<IMSI_ZAP>@.zap.mnc<MNC>.mcc<MCC>.3gppnetwork.org or IMSI_ZAP@.zap.home_network_domain.
  • Where:
  • IMSI_ZAP is the IMSI of the USIM located in the access point
  • MNC is the Home MNO Network Mobile Network Code and MCC is the Mobile Country Code
  • The prefix 0 can be used to indicated that AKA instead of SIM authentication is requested
  • For the IKE-based tunnel setup procedure the access point will leverage IKEv2's native NAT transversal support, namely IETF RFC 3948“UDP Encapsulation of IPsec ESP Packets”, to deal with the (likely) fact that the access point is located behind a NAT device.
  • FIG. 7 shows the signalling involved in setting the IPsec tunnel between the access point 50 and the PDG 200 in the Home MNO Network. This assumes a Home MNO Network architecture similar to that considered for 3GPP-WLAN interworking. However, the solution does not strictly depend on the assumptions regarding network architecture, it suffices that the architecture supports the access point to PDG signalling as described below. Although the tunnel establishment procedure between the access point/USIM and the Home MNO Network is exactly as per R6 TS 23.234, it is described here in some detail so that the changes that are required (for delivery of UE-specific keying material to the access point) when the access point establishes UE-specific tunnels on behalf of each UE can be described.
  • After the access point has resolved the PDG's FQDN into an IP address it initiates the tunnel establishment procedure.
  • At step 701, the access point 50 sends the IKE_SA_INIT message from its UDP port 500 to the UDP port 500 in the PDG 200. This message initiates the setup of the IKE SA between access point and PDG and it contains:
  • an SAi payload carrying the supported cryptographic suite(s), e.g. suite #2 in TS 33.234:
      • Encryption: AES with fixed key length in CBC mode;
      • Integrity: AES-XCBC-MAC-96;
      • Pseudo-random function: AES-XCBC-PRF-128;
      • Diffie-Hellman group 2
        the access point's Diffie-Hellman (DH) public key, Kei, and a nonce Ni;
        the NAT_DETECTION_SOURCE_IP payload carrying the hash of the source IP address (the access point's local IP address) and source port (500);
        an NAT_DETECTION_DESTINATION_IP payload carrying the hash of the destination IP address (the PDG's IP address) and destination port (500).
  • At step 702, the PDG 200 receives the IKE_SA_INIT message and proceeds to compute the hash of the source IP address and source port number of the packet carrying it. If it differs from the value in the NAT_DETECTION_DESTINATION_IP payload then the PDG knows that the access point is behind a NAT. The PDG also computes the hash of its IP address and port with that in the NAT_DETECTION_DESTINATION_IP payload. If this differs then the PDG knows that it is itself behind a NAT and in this case it should start sending keep-alive packets to keep the NAT bindings unchanged. The PDG generates its own NAT_DETECTION_SOURCE_IP and NAT_DETECTION_DESTINATION_IP payloads in the same way as the access point did, in order to allow the access point to determine whether it and/or the PDG are behind NATs.
  • The PDG uses the received KEi and Ni together with its private DH key and its own generated nonce Nr to generate seven secret shared keys:
      • SK_ai/SK_ar, to be used by the integrity protection algorithm (AES-XCBC-MAC-96) to protect the IKE signalling
      • SK_ei/SK_er, to be used by the encryption algorithm (AES in CBC mode) to protect the IKE signalling
      • SK_d, SK_pi/SK_pr
  • The PDG completes the negotiation of the IKE SA by sending the IKE_SA_INIT response. This is sent (from port 500 to port 500) to the source IP address in the IP packet carrying the IKE_SA_INIT so as to make sure it travels back to the access point irrespective of the presence of NATs. This contains:
      • SAi payload carrying the access point-proposed cryptographic suite thus acknowledging its acceptance
      • The PDG's Diffie-Hellman (DH) public key, KEr, and nonce Nr
      • The NAT_DETECTION_SOURCE_IP payload carrying the hash of the source IP address (PDG's local IP address) and source port (500)
      • NAT_DETECTION_DESTINATION_IP payload carrying the hash of the destination IP address (access point's IP address) and destination port (500)
  • At step 703, when the access point receives the IKE_SA_INIT response it checks the NAT_DETECTION_SOURCE_IP and NAT_DETECTION_DESTINATION_IP payloads in the same way as the PDG did to detect whether or not it and/or the PDG are behind NATs. If a NAT is detected then the access point will switch to sending all future IKE signalling from port 4500 to port 4500.
  • The PDG uses the received KEr and Nr together with its private DH key and its own generated nonce Ni to generate the same seven secret shared keys: as the PDG did before and starts protecting all future IKE signalling with SK_ai/SK_ar and SK_ei/SK_er.
  • At this point the IKE SA has been setup and the access point and PDG can communicate securely but there has been no authentication. This is started by the access point by sending the first IKE_AUTH Request message. The access point asserts its IMSI-derived identity through the IDi payload. It also declares its intention to use EAP for its authentication instead of the default IKEv2 authentication methods (pre-shared secret key-based or certificate-based) by not including an AUTH payload generated though one of these two methods.
  • The IKE_AUTH Request message also initiates the setup of the IPsec ESP SA (CHILD_SA) that will protect all the traffic to be carried over the tunnel. The message contains:
      • IDi payload with the access point's identity IMSI_ZAP@.zap.mnc<MNC>.mcc<MCC>.3gppnetwork.org
      • IDr payload with the PDG FQDN
      • CP payload requiring a remote IP address at the PDG (to terminate the IPsec tunnel) and potentially the IP address of DNS servers located inside the Home MNO Network (e.g. for P-CSCF discovery)
      • SAi2 which the initiator's (i.e. the access point's) Security Association payload containing the cryptographic suite(s) supported for protection of the traffic carried in the tunnel (i.e through the IPsec ESP SAs), e.g. suite #2 in TS 33.234:
      • Encryption: AES with 128-bit keys in CBC mode.
      • Integrity: AES-XCBC-MAC-96;
      • Tunnel mode
      • TSi, TSr contain the proposed traffic selectors identifying the IP flows (source range-destination range) to be carried over the tunnel.
  • At step 704, the PDG asks the AAA server to authenticate the access point by sending an EAP-Authentication Request message containing the asserted identity IMSI_ZAP@.zap.mnc<MNC>.mcc<MCC>.3gppnetwork.org
  • At step 705, if the AAA does not have a valid AKA authentication vector (RAND, AUTN, RES, CK, IK), it communicates with the HSS to obtain one. The HSS will run the AKA algorithm for the IMSI_ZAP for authentication vector generation.
  • At step 706, the AAA server uses CK and IK to generate a Master Session Key for that IMSI, (MSK_ZAP) and additional keys (TEKs) for protecting the EAP-AKA packets
  • At step 707, the AAA server uses the AUTN and RAND in the vector to authenticate itself and challenge the access point to AKA-authenticate itself by sending an EAP-Request/AKA-Challenge message carrying (RAND, AUTN) to the access point via the PDG. It also carries a MAC to allow the access point to be sure that the EAP packet was not tampered with on the way.
  • At step 708, the PDG forwards the EAP-Request/AKA-Challenge (RAND, AUTN, MAC) to the access point inside the IKE_AUTH Response message and includes a certificate to authenticate itself towards the access point (in addition to the EAP-AKA based authentication to take place in step 718).
  • At step 709, the access point uses its USIM to run the AKA algorithm i.e it:
      • Computes MAC to check that EAP message was not tampered with
      • Checks AUTN validity
      • Generates (RES, CK, IK)
  • In addition the access point computes MSK_ZAP point from CK, IK & IMSI_ZAP.
  • At step 710, the access point authenticates itself by sending the RES value in the EAP-Request/AKA-Challenge encapsulated in a new IKE_AUTH Request message. It may also check the validity of the PDG's certificate.
  • At step 711, the PDG forwards the EAP-Request/AKA-Challenge (RES) to the AAA server, which compares it with the RES value received from the HSS to authenticate the access point.
  • At step 712, if the authentication is successful then the AAA server forwards the MSK_ZAP to the PDG in a EAP-Success payload encapsulated on the successful Authentication Answer.
  • At step 713, the PDG asks the AAA server to authorize the access point to enjoy the services associated with its FQDN (W-APN like).
  • At step 714, the AAA server checks the profile associated with the IMSI_ZAP to determine whether the tunnel can be set up.
  • At step 715, the AAA server confirms authorisation for tunnel setup.
  • At step 716, the PDG informs the access point that the authentication with the AAA server was successful by sending the EAP-Success payload in the IKE_AUTH Response.
  • At step 717, the access point authenticates itself towards the PDG by signing the IKE_SA_INIT message of step 701 with the MSK_ZAP key and including the result in the AUTH payload of a new IKE_AUTH Request message.
  • At step 718, the PDG uses its knowledge of MSK_ZAP point to check the AUTH payload thus authenticating the access point. Then the PDG uses the MSK_ZAP to generate its own AUTH payload by signing the IKE_SA_INIT response of step 702 so as to authenticate its identity towards the access point. The PDG sends this in the IKE_AUTH Response message. In addition the PDG sends the assigned Remote IP address of the tunnel in the configuration payload (CFG_REPLY), and the negotiated cryptographic suite (the same as the proposed one), SAr2 and traffic selectors TSi, TSr, thus completing the negotiation of the IPsec ESP SAs that will protect all the traffic in the tunnel. Finally, the access point uses its knowledge of MSK_ZAP to check the AUTH payload thus authenticating the PDG.
  • The access point 50 includes client software functions for the UMA and WLAN/IMS interfaces (client software specific to particular non-standard Pre-IMS solutions can also be included within the access point). The client functions allow the access point to appear to the MNO Network as a Terminal device as described above, but they also include interworking functions to allow a standard GSM/UMTS terminal which is camped onto the access point 50 to appear as a UMA device or as a WLAN UE to the UMA or IMS interfaces respectively. (Again, the same principle can be extended to proprietary Pre-IMS solutions based around SIP, which have a high degree of commonality with SIP/IMS approaches). SIP and UMA clients developed for Mobile devices can be used as the basis of these client functions—the great benefit to a mobile operator is that the clients which enable access over an IP network are supported in the access point 50 and not in the phone, so that legacy phones can continue to be used with an IP-based access network reducing the operator's investment and improving services for customers.
  • The air interface from the access point 50 to the Mobile Terminal should be ciphered using standard GSM/UMTS procedures. To enable ciphering, the access point 50 needs access to cipher key information distributed from the MNO core network directly to the UE. To facilitate access to the cipher key information, small modifications have been made to the standard mechanisms to allow the access point to use UE identification to access the keys normally provided only to the UE. This process is initiated only after the access point 50 has been authenticated by the core network so that it is a “trusted element”. Furthermore, the keys obtained are temporary keys which must be refreshed for each call—master keys are not exchanged with the access point.
  • The implementation of this interworking principle for the UMA and SIP/IMS interfaces is described in more detail below.
  • One use of an interworking function is to support UE access and cipher key exchange using UMA. As described above, the access point 50 connects to the core network over a generic IP access network. There are two options for this connection, and the mobile network operators must be able to choose at the time of deployment between:
  • Secure IP access, where secure IPsec tunnels are applied for all access point to core network communication, including access point specific IPsec tunnels and UE specific IPsec tunnels; and
  • Private IP access, where the MNO owns or has direct control of the IP access network, which is not going through any public PDNs, and, in this case, the MNO may want not to have the IPsec management and overheads and may rely instead on the intrinsic security of the private IP access.
  • If the MNO requires secure IP access of the generic IP access network, the following applies. At power-on, the access point sets-up an IPsec tunnel with the SeGW, using USIM-based authentication. The access point IPsec tunnel is used to:
      • Support access point signalling and Network Management functions;
      • Support the home number service, for non-UE calls (like POTS) and fixed-line replacement
  • For each UE that roves-in the access point coverage, the access point sets-up the UE-specific IPsec tunnel(s) with the SeGW, with USIM-based authentication (with the access point as the proxy). FIG. 8 shows an example, showing the relevant part of the system of FIG. 4, where there are a first UE (UE1) 210, and a second UE (UE2) 220. In this case, UE 1 is a UE that offers CS services, connected with a high-QoS PDP context 230 to the MNO data services (e.g. MMS), and connected with a best-effort PDP context 232 to the Internet via the GGSN, while UE 2 is a CS-only UE, e.g. a UE for which the end-user has not activated data connectivity.
  • In this example, the access point 50 sets up a respective tunnel for each of the two UEs, namely a first tunnel 222 for the first UE 210, and a second tunnel 224 for the second UE 220. These tunnels carry the CS traffic and optionally the first PDP context. In this example, the access point 50 also sets up additional IPsec tunnels 226, 228 with the SeGW, for example for QoS differentiation of multiple/secondary PDP contexts.
  • The access point 50 also instantiates a UE NAS and L-UMA client for CN signalling, transparently to the legacy UE. Optionally, the access point supports local Internet offload.
  • In other examples, there may be one tunnel per access point and one tunnel per UE, or one tunnel per access point grooming all traffic (QoS differentiation on outer IP header), or no IPsec tunnels, but PPP or equivalent from the access point to the core network.
  • The high-level security architecture is specified in the following.
  • IP Networking Security
  • There is a firewall at the home router. Also, in the case of the Secure IP access option, but not the Private IP access option, all communications are secured via IPsec tunnels between the access point and the CN Security GW, and there is one IPsec tunnel per access point and at least one per UE, all with USIM-based authentication.
  • Access Point-Level Security
  • The access point authenticates with the management system 74 for service; the access point registers with L-GANC, and the access point authenticates with CN MSC/SGSN for call/data services, using USIM-based MM-layer authentication. Also, in the case of the Secure IP access option, but not the Private IP access option, the access point authenticates with the CN Security GW and sets up a USIM-based IPsec tunnel.
  • UE-Level Security
  • Each UE is screened for access locally by the access point (by IMSI), the UE registers with L-GANC, the UE authenticates with CN MSC/SGSN for call/data services, with the access point acting as a proxy, using USIM-based MM-layer authentication with MSC/SGSN, and there is ciphering on the radio interface between the UE and the access point, using IK, CK captured during MM authentication procedure. The MSC sends these to the L-GANC in the RANAP Security Mode Command, and the L-GANC forwards them to the access point on extensions of current GA-CSR (URR) messages or on a new dedicated message. Also, in the case of the Secure IP access option, but not the Private IP access option, the initial UE signalling with the core network may be carried over access point-specific IPsec tunnels, and the UE authenticates with the core network Security GW, with the access point (based on the USIM) acting as a proxy and setting up a UE-specific IPsec tunnel and optionally setting up additional IPsec tunnels for secondary/multiple PDP context establishment, for QoS differentiation, unless only one IPsec tunnel per access point is used.
  • In the case of an access point IPsec tunnel establishment, when the Secure IP access option is used, the IPsec tunnel for the access point uses a USIM-based authentication. No changes are required to the standard IKEv2 and EAP-AKA procedure.
  • The access point IPsec tunnel establishment is followed by the access point registration with the L-GANC, according to the standard procedure, and the access point MM authentication, again according to the standard procedure.
  • In the case of the Secure IP access option, and provided there is not just a single IPsec tunnel per access point, a UE IPsec tunnel is established. No radio ciphering is started at this stage, and the procedure must be UE USIM-based.
  • After and IPsec tunnel has been set up, the access point L-UMA client registers the UE with the L-GANC following the standard procedure.
  • The radio ciphering is synchronised with the MM LAU procedure with the MSC. The ciphering keys (IK, CK) are stored in the access point at this stage, using the ciphering material that the MSC has sent to the L-GANC in the IuCS RANAP Security Mode Command. The L-GANC forwards them to the access point on extensions of current GA-CSR (URR) messages or on a new dedicated message.
  • FIG. 9 illustrates in detail the procedure for performing an MM Location Area Update and ciphering, in the case of a circuit-switched registration, where authentication and ciphering is enabled in the MSC.
  • In step 901, the UE 30 may perform a PLMN and/or cell selection /reselection in idle mode by sending a LOCATION UPDATING REQUEST message to the access point 50. The message may contain the UE's IMSI or TMSI.
  • In step 902, the identification procedure may be initiated by the access point in order to obtain the IMSI from the UE if only a TMSI was received in the LOCATION UPDATING REQUEST message.
  • Step 903 is applicable only to the Secure IP access option (and not applicable to the single IPsec tunnel per access point option), otherwise the procedure continues directly with step 904. The IKEv2 and EAP-AKA procedures are performed in order to set up the secure IPsec tunnel between the access point and the UNC. During EAP-AKA the Authentication and Security procedures will be performed. In this case, the SECURITY MODE messages are sent to the UE during the EAP-AKA procedure.
  • In step 904, on successful establishment of the IPsec tunnel, the access point generates and sends the URR REGISTER REQUEST message to the UNC in order to register the UE on to the UNC. We assume that the serving UNC has already been discovered by the access point and, in step 905, the URR REGISTER ACCEPT message is received from the UNC indicating that the UE has successfully registered onto the UNC.
  • In step 906, the original LOCATION UPDATING REQUEST message received from the UE is transferred to the UNC in the URR UL DIRECT TRANSFER wrapper and, in step 907, the UNC transfers the LOCATION UPDATING REQUEST to the MM sub-layer in the MSC.
  • Assuming that authentication and ciphering are enabled in the 3G MSC, then, in step 908, the MM sub-layer generates the AUTHENTICATION REQUEST message containing the 3G RAND and AUTN parameters and, in step 909, the UNC generates and sends the URR DL DIRECT TRANSFER message containing the AUTHENTICATION REQUEST to the access point.
  • In step 910, the access point receives the URR DL DIRECT TRANSFER and sends the AUTHENTICATION REQUEST message to the UE.
  • In step 911, the UE performs the 3G authentication procedure, and generates the RES, which is sent to the access point in the AUTHENTICATION RESPONSE message. In step 912, the access point sends the AUTHENTICATION RESPONSE message in the URR UL DIRECT TRANSFER to the UNC and, in step 913, the UNC receives the URR UL DIRECT TRANSFER and sends the AUTHENTICATION RESPONSE message to the MSC.
  • In step 914, the RES contained in the AUTHENTICATION RESPONSE is validated in the MSC. The ciphering is enabled by sending the Security Mode command to the UNC, which should contain the CK and IK Ciphering and Integrity keys. In step 915, the UNC sends the ciphering and integrity information in a modified URR CIPHERING MODE COMMAND (or a new message URR SECURITY MODE COMMAND) to the access point.
  • In response, in step 916, the access point generates the SECURITY MODE COMMAND message containing the UEA (ciphering algorithm), UIA (integrity algorithm), FRESH and MAC-I information. Note that the UEA, UIA, FRESH, and MAC-I could be sourced from the access point.
  • In step 917, the SECURITY MODE COMPLETE message is sent from the UE to the access point and, in step 918, the access point generates the modified URR CIPHERING MODE COMPLETE message (or new URR SECURITY MODE COMPLETE message). In step 919, the UNC sends the CIPHER MODE COMPLETE message to the MSC.
  • In step 920, the MSC sends the LOCATION UPDATING ACCEPT message to the UNC and, in step 921, the UNC sends the URR DL DIRECT TRANSFER message to the access point containing the LOCATION UPDATING ACCEPT and, in step 922, the access point sends the LOCATION UPDATING ACCEPT to the UE to complete the registration procedure.
  • Thus, the L-GANC 164 forwards the ciphering keys to the access point 50 for the radio encryption. The IuCS messages are the standard ones, the L-UMA messages are evolutions of the standard UMA ones.
  • As an alternative to the above, or in addition, an interworking function can be provided within the access point to support UE access and cipher key exchange using the 3GPP WLAN/IMS interface. The access point-SIP framework re-uses those aspects of the 3GPP-WLAN interworking framework that are valid for a generic IP access to 3GPP services and are not WLAN access specific.
  • The fundamental concepts which are re-used are:
      • the use of an IKEv2-generated IPsec ESP tunnel as the IP connectivity bearer to an access/security gateway in the Home MNO Network, (in similar fashion as the PDP context when the access NW is GPRS); and
      • the use of EAP-AKA/SIM based mutual authentication of the IPsec tunnels.
  • For simplicity, the term PDG is re-used to denote the access/security gateway in the Home MNO Network that terminates the tunnels, but of course the gateway functionality does not have to be strictly the same as that of 3GPP-WLAN PDG.
  • The access point will establish two kinds of IPsec tunnels to the PDG: one access point-specific tunnel (to handle all access point-related signalling) and one or more UE-specific tunnels for each UE that is GSM/UMTS attached to the access point. Thus the illustrated access point-SIP solution relies on the access point creating UE-specific IPsec tunnels on behalf of the UE through which all UE-related traffic is exchanged with the Home MNO Network, such that the UE has seamless access to the usual 3GPP CS and PS based services when it is GSM/UMTS attached to the access point.
  • The key issue to be handled in the establishment of these EAP AKA/SIM authenticated UE-specific tunnels is that, while the access point terminates the EAP signalling, it does not have direct access to the (U)SIM residing in the UE. While the access point can trigger the UE/(U)SIM to run the AKA/SIM algorithm by initiating a UMTS/GSM authentication procedure (thus coupling the UE-access point GSM/UMTS authentication procedure with access point-PDG tunnel authentication procedure) it will not have direct access to the keying material generated in the UE/(U)SIM when the AKA/SIM is run. As such the access point must obtain this keying material directly from the Home MNO Network. Two alternative methods are described to achieve this, and each method requires a slightly different interface structure between the access point and the Home MNO Network.
  • FIG. 10 illustrates a first architecture, which applies to the case where the “in-band” method of obtaining the UE-specific keying material at tunnel establishment is used.
  • Thus, in the architecture shown in FIG. 10, there is a Uu interface 240 between the UE 30 and the access point 50, a Wu′ interface 242 between the access point 50 and the PDG 200, and a Wm interface 244 between the PDG 200 and the AAA server 174.
  • The Uu interface 240 is the usual GSM/UMTS air interface between the UE and the access point.
  • The Wu′ interface 242 is an enhanced version of the Wu interface defined in R6 TS 23.234. When used by the access point to establish an EAP-AKA authenticated IPsec tunnel on behalf of itself (using the local access point USIM) it is indistinguishable from the standard Wu interface. However, it can also be used by the access point to establish an EAP-AKA/SIM authenticated IPsec tunnel on behalf of a UE, in which case additional functionality is supported in order to allow the access point to request the Home MNO Network to deliver the UE-specific AKA/SIM generated keying material.
  • This translates into defining three new proprietary attribute types for the IKEv2 CFG_REQUEST payload type, two to carry the ciphering key (CK) and Integrity Protection key (IK) in case of AKA authentication and the third one to carry the stand-alone ciphering key (Kc) in case of SIM authentication.
  • The Wm′ interface is an enhanced version of the Wm interface defined in R6 TS 23.234. When used during the authentication and authorisation of a access point-specific tunnel it is indistinguishable from the standard Wm interface. However, when used during the authentication and authorisation of a UE-specific tunnel, additional functionality is supported in order to allow the AAA server to forward (to the PDG) the ciphering key (CK) and Integrity Protection key (IK) in the case of AKA authentication or the stand-alone ciphering key (Kc) in the case of SIM authentication.
  • FIG. 11 illustrates a second architecture, which applies to the case where the “out-of-band” method of obtaining the UE-specific keying material at tunnel establishment is used. In this case, the access point 50 needs a direct interface to the AAA server 174 in the Home MNO Network in order to retrieve the UE-specific keying material at the time of UE-specific tunnel establishment. Thus, in the architecture shown in FIG. 11, there is a Uu interface 250 between the UE 30 and the access point 50, a Wu interface 252 between the access point 50 and the PDG 200, a Wm interface 254 between the PDG 200 and the AAA server 174, and a Wax interface 256 between the access point 50 and the AAA server 174.
  • The Uu interface 250 is the usual GSM/UMTS air interface between the UE and the access point.
  • The Wu interface 252 is basically the same as the Wu interface defined in R6 TS 23.234, the only differences being regarding the format of the identities used. The NAI used as the access point identity contains a specific prefix in order to differentiate it from a WLAN UE. The NAI used as the UE identity is decorated with the identity (IMSI) of the access point, so as to make clear to the Home MNO Network that the UE is attached to that specific access point.
  • The Wm interface 254 is basically the same as the Wm defined in R6 TS 23.234, the only differences being regarding the format of the identities used to identify the access point and the UE attached to the access point as discussed in the previous section.
  • The Wax interface 256 is used by the access point to retrieve (from the AAA server) the UE-specific keying material that is generated when the AKA/SIM algorithm is run during the authentication of UE-specific tunnels. The protocol used is RADIUS or DIAMETER according to AAA server support. The Wax interface is a combination of the Wa and Wx interfaces defined in R6 TS 23.234 for 3GPP WLAN Interworking. It is akin to the Wa interface in that it connects the access network (access point) to the AAA server in the Home MNO Network via an MA protocol. However its purpose (to retrieve Authenticating Vector material CK and IK or Kc), is similar to that of the Wx interface between the AAA server and the HSS.
  • The ultimate goal of the access point-SIP solution is to provide seamless support for the same services when the UE is GSM/UMTS attached to the access point-SIP as those enjoyed when GSM/UMTS attached to the Home MNO Network via the macro cellular GSM/UMTS access network.
  • Since the UE is not able to access the Home MNO Network's 3GPP services over a generic IP access network, the access point performs this task on behalf of the UE. For that purpose, the access point needs to establish IP bearers on behalf of the UE between itself and the Home MNO Network for carrying the UE-related traffic. The best way to achieve this is to establish VPN-like IPsec ESP tunnels on behalf of the UE in much the same way as defined for a WLAN UE in the WLAN-3GPP Interworking framework for WLAN-3GPP IP Access (scenario 3) in 3GPP R6 TS 23.234. This is because, in this way, the access point makes each UE look like a WLAN UE to the Home MNO Network and so the Home MNO Network's infrastructure for WLAN-3GPP interworking can be re-used for the access point-SIP access solution.
  • The tunnel management framework can be described as follows:
  • 1. The access point will contain a database mapping GPRS APNs to PDG FQDNs on a 1-1 basis, i.e.:
    If GPRS APN x is mapped to FQDN x then FQDN x gives access to the same set of 3GPP PS based services as would be available to the UE through GPRS APN x, if it were located in the macro cellular GSM/UMTS access network.
    2. During the UE-initiated GSM/UMTS attach to the access point, this establishes a default IPsec tunnel to the PDG on behalf of the UE. The authentication and key generation procedures in the UE-access point and access point-PDG interfaces are coupled together by the access point. This tunnel is established towards a default (locally configured) Fully Qualified Domain Name, FQDN_0, which identifies both the PDG and a set of services to be provided. The set of services supported by FQDN_0 includes all the 3GPP CS based services normally available to the UE when camped on the macro cellular GSM/UMTS access network ,i.e., CS voice calls, SMS etc. FQDN_0 may also support the 3GPP PS based services associated with a specific GPRS APN.
    3. Subsequently, if the UE requests the activation of a PDP context towards a GPRS APN:
      • If there is no PDP context already active for that GPRS APN (Primary PDP Context Activation Procedure) then the access point checks the internal database of associations between GPRS APNs and PDG FQDNs to see if that APN is associated with FQDN_0. If that is the case then the existing IPsec tunnel is re-used. The access point assigns the Remote IP address and internal DNS server address associated with the existing tunnel to the PDP context (i.e. it sends them in the ACTIVATE PDP CONTEXT ACCEPT). If that is not the case, then the access point establishes a new tunnel towards the FQDN associated with the GPRS APN and assigns the Remote IP address and internal DNS server address associated with that new tunnel to the PDP context (i.e. it sends them in the ACTIVATE PDP CONTEXT ACCEPT)
      • If there is a PDP context already active for that GPRS APN (Secondary PDP Context Activation Procedure) then the existing tunnel is reused.
  • The access point automatically establishes a default UE-specific IPsec tunnel towards FQDN_0 when the UE GSM/UMTS attaches to the access point. FQDN_0 provides at a minimum access to CS-SIP interworking for 3GPP CS based services and may also provide access to the 3GPP PS based services supported for a specific GPRS APN.
  • The access point re-uses the IP address obtained from the resolution of the PDG's FQDN at the time of the establishment of the access point-specific tunnel. In this way, the same PDG is used to terminate all the tunnels originating from the access point, i.e both the access point specific tunnel and all UE-specific tunnels.
  • When the access point requests the establishment of the tunnel on behalf of the UE, the asserted identity used is composed by decorating the UE's IMSI-based NAI with the access point's IMSI. In this way, both the identity of the UE on behalf of which the tunnel is being requested and the identity of the access point making the request are clear to the Home Network. In a similar fashion to that employed in the WLAN 3GPP IP access [See 3GPP R6 TS 23.003 “Numbering, addressing and identification for 3GPP System to WLAN Interworking”], the asserted identity is also decorated with a flag that indicates whether EAP AKA or EAP SIM authentication should be used, e.g. 0<IMSI_UE>@<IMSI_ZAP>.zap.mnc<MNC>.mcc<MCC>.3gppnetwork.org for EAP-AKA, or 1<IMSI_UE>@<IMSI_ZAP>.zap.mnc<MNC>.mcc<MCC>.3gppnetwork.org for EAP-SIM.
  • For the IKE-based tunnel setup procedure, the access point will leverage IKEv2's native NAT transversal support to deal with the (likely) fact that the access point is located behind a NAT device. Once the IPsec ESP tunnel is setup, the access point uses IETF RFC 3948 “UDP Encapsulation of IPsec ESP Packets” to deal with the fact that the access point is located behind a NAT device.
  • The access point-SIP solution for setting up IPsec tunnels to the Home MNO Network on behalf of the UE relies on two inter-locked security procedures for providing end-to-end security at the access network level.
  • Firstly, in the case of a UE performing a UMTS attach to the access point, the access point performs mutual UMTS access authentication with the UE/USIM on behalf of the Home MNO Network (HSS/HLR), as per R99 TS 33.102 “3G Security; Security architecture”, and the access point performs mutual tunnel authentication with the Home MNO Network (with both AAA server/HSS and PDG) on behalf of the UE/USIM, (as per IKEv2 using EAP-AKA).
  • Secondly, in the case of a UE performing a GSM attach to the access point, the access point performs GSM access authentication of the UE/SIM on behalf of the Home MNO Network (HSS/HLR), as per ETSI GSM 03.20: “Digital cellular telecommunications system (Phase 2+); Security related network functions”, and the access point performs mutual tunnel authentication with the Home MNO Network (with both AAA server/HSS and PDG) on behalf of the UE/SIM, (as per IKEv2 using EAP-SIM).
  • In both cases the two procedures can be coupled because they both rely on running the SIM/AKA algorithms for authentication and generation of keying material for access layer encryption and integrity protection. However, the access point does not have direct access to any of the entities where the SIM/AKA algorithm is run, i.e., the (U)SIM of the UE or the HSS/HLR.
  • While the access point can perform mutual authentication with the AAA server in the Home MNO Network on behalf of the UE/(U)SIM by mapping the EAP Request/Response exchange to the MM: Authenticate Request/Response exchange, it still needs to obtain the keying material generated when the AKA/SIM algorithm is run, in order to perform authentication towards the PDG on behalf of the UE, as per IKEv2/EAP and in order to secure the GSM/UMTS air interface.
  • Considering performing authentication towards the PDG, it is generally the case that, when EAP-AKA (encapsulated in IKEv2) is used for authentication between two IKEv2 peers at (IPsec tunnel establishment), the mutual authentication is based on both peers proving to have obtained the same shared secret as a result of the EAP AKA exchange. This shared secret is the Master Session Key, MSK, which is obtained from the common CK and IK keys that were generated when the AKA algorithm was run at both ends during the EAP AKA exchange.
  • In the current case, the PDG receives the Master Session Key from the AAA server. However since the access point cannot itself run the AKA algorithm and has no way to obtain CK and IK from the UE/USIM itself, there must be an external way by which the access point obtains CK and IK necessary to authenticate itself towards the PDG on behalf of the UE.
  • The same applies in the case of EAP SIM authentication, substituting CK and IK with Kc.
  • Considering securing the GSM/UMTS air interface, when the UE performs UMTS registration to the access point, the access point must obtain the same set of keys (CK, IK) for the UMTS ciphering and integrity protection algorithms (between the UE and RNC) as that generated at the UE/USIM. A similar problem occurs in the case of GSM registration regarding the ciphering key, Kc.
  • Thus, the access point requires access to CK and IK every time the AKA algorithm is run between the UE/USIM and the HSS/HLR, and Kc every time the “SIM” algorithm is run between the UE/SIM and the HSS/HLR.
  • As described here, the access point obtains those keys from the Home MNO Network. The access point can obtain the keys from the Home MNO Network during the establishment of the IPsec tunnel on behalf of the UE, either “Out of band”; via the pre-existing connection between the access point and the Home MNO Network based on the USIM located in the access point itself, or “In band”, by piggybacking on the EAP signalling used to set up the tunnel on behalf of the UE.
  • In any of the solutions it is critical that these keys are transported securely. This can be achieved by relying on the fact that there is a pre-shared secret between the access point and the Home MNO Network, i.e., the MSK_ZAP which was generated at both ends when the access point previously setup the IPsec tunnel with the Home MNO Network, based on its own USIM.
  • FIG. 12 illustrates the “In band” solution, where the keys are sent from the AAA server in the Home MNO Network to the access point (via the gateway) during the signalling to set up the UE-related IPsec tunnel itself. This requires some modification to the payloads of the IKEv2/EAP exchanges from those defined for the Wu and Wm interfaces in TS 23.234, in order to carry the keys.
  • The keys can be securely transmitted between the PDG and the access point because there is a pre-shared secret between them, MSK_ZAP, generated at the time the pre-existing IPsec tunnel was established between the access point/USIM and the Home MNO Network.
  • When the access point requests the establishment of an IPsec tunnel on behalf of the UE it asserts its identity as 0<IMSI_UE>@<IMSI_ZAP>.zap.mnc<MNC>.mcc<MCC>.3gppnetwork.org in the case of a UMTS attach, or 1<IMSI_UE>©<IMSI_ZAP>.zap.mnc<MNC>.mcc<MCC>.3gppnetwork.org in the case of a GSM attach.
  • In the case of a GSM attach, the access point requests the PDG to deliver the UE-specific ciphering key, Kc, by including an additional (proprietary) attribute, Kc_AT, in the CFG_REQUEST payload of the initial IKE_AUTH Req message.
  • In the case of a UMTS attach, the access point requests the PDG to deliver the UE-specific ciphering and integrity keys (CK, IK), by including two additional (proprietary) attributes CK_AT and IK_AT, in the CFG_REQUEST payload of the initial IKE_AUTH Req message.
  • The PDG then sends the Authentication request to the AAA server, quoting the identity received in the IDi payload (and the FQDN_0 which identifies the access point for CS-SIP interworking).
  • From the fact that the IDi payload contains an IMSI (UE) decorated with another IMSI (access point) the AAA server becomes aware that this is request for a UE-specific tunnel and not an access point-specific tunnel. As such, it knows that it must send the UE-specific keying material to the PDG in addition to the “usual” UE-specific MSK. Assuming that the AAA protocol used between the PDG and the AAA server is DIAMETER (as required by 3GPP WLAN interworking) then, in the case of AKA authentication, the AAA server may use the: “Confidentiality Key AKA” AVP and “Integrity Key AKA” AVP.
  • In the case of SIM authentication, the AAA server may use the “Confidentiality Key AKA” AVP.
  • From the fact that the IDi payload associates the IMSI of the UE with the IMSI of the access point, the PDG knows to retrieve the MSK_ZAP key, which it shares with the access point from the time of the establishment of the access point-specific tunnel, to encrypt the UE-specific keying material received from the AAA server.
  • The PDG includes this material in the CFG_REPLY payload of the IKE_AUTH Response that carries the EAP Success payload.
  • Since the access point also knows MSK_ZAP, it can decrypt the payload(s) and access the UE-specific keying material.
  • FIG. 13 shows the IPsec tunnel establishment signalling needed in order to allow for the transport of the UE/USIM-related keys (CK, IK) to the access point in case of EAP-AKA authentication. This is based on the standard IPsec tunnel establishment signalling (TS 23.234). A similar mechanism applies to EAP-SIM authentication.
  • Specifically, FIG. 13 shows how CK and IK can be carried from the Home MNO Network to the access point at the time the UE-related IPsec tunnel is being established by the access point (on behalf of the UE). In step 1301, as described above, every time the access point is powered on it establishes an IPsec tunnel to a PDG in the Home MNO Network. This procedure exactly follows the procedures defined in R6 TS 23.234 section 6.1.5 “Mechanisms for the setup of UE-initiated tunnels (WLAN 3GPP IP access)”. As a consequence of this procedure, the access point, the PDG and the AAA server all share a secret key, the MSK_ZAP.
  • In steps 1302 and 1303, the access point and the PDG establish a new IKE_SA and agree on the IPsec protocols/algorithms used to secure the IKE signalling used to setup the UE-related IPsec tunnel.
  • The IKEv2 protocol provides a generic mechanism for one of the IKE peers to request the other peer for configuration information. This consists in including a CFG_REQUEST payload in an IKE request listing the requested attribute. IKEv2 defines several default attributes, including INTERNAL_IP4_ADDRESS, which is already used to obtain a remote IP address in the PDG necessary for the establishment of the IPsec tunnel. However IKEv2 allows the extension to new proprietary attribute types. In this solution, we define two additional attributes CK_AT and IK_AT to be used by the access point in step 1304 to request the PDG to supply the necessary CK and IK associated with the UE. Additionally, in order to allow the Home MNO Network to understand that this tunnel establishment procedure is associated with this specific access point, the access point decorates the UE's NAI with its own IMSI, i.e, 0<IMSI_UE>@<IMSI_ZAP>.zap.mnc<MNC>.mcc<MCC>.3gppnetwork.org.
  • Thus, if the IMSI of the USIM in the access point is 234150999999999 and the IMSI of the UE's USIM is 234150888888888, then the access point asserts the following identity on behalf of the UE: IDi=0234150888888888@234150999999999.zap.mnc234.mcc15.3gppnetwork.org
  • Following the 3GPP-WLAN convention (R6 TS 23.003), the 0 prefix signals that EAP_AKA is to be used. A prefix 1 would signal EAP-SIM.
  • Since IDi contains the access point's IMSI the PDG can retrieve the pre-shared secret between the access point and the GW, i.e., MSK_ZAP and thus use it to encrypt the UE-related CK and IK when these are received from the AAA server later in the signaling.
  • In step 1306, the AAA server checks whether it has a stored AKA authentication vector (RAND, AUTN, XRES, CK, IK) associated with the UE's IMSI. If not, it queries the HSS for new ones.
  • When the AAA server reads this special form of IDi it knows that for this case it must send the CK and IK associated with the UE's IMSI to the PDG so that is eventually sent to the access point. This in addition to the MSK_UE that is generated by the AAA as usual from the CK and IK.
  • In step 1308, the access point maps the EAP-Request/AKA-challenge (RAND, MAC, AUTN) into MM: Authenticate Request (RAND, MAC, AUTN) and sends it to the UE so as to trigger the running of the AKA algorithm.
  • In step 1309, the access point receives MM: Authenticate Request (RES, MAC) from the UE and maps it to the EAP-Response/AKA-challenge (RES, MAC) which will authenticate the UE vis a vis the AAA server.
  • In the standard signalling (TS 23.234 section 6.1.5), the AAA server would only deliver the Master Session Key associated with the UE's IMSI. However, in this case, in step 1311, the AAA server adds two extra AVPs, namely the Confidentiality Key AKA, and the Integrity Key AKA to the Authentication Answer, so as to make CK and IK available in the PDG.
  • If the tunnel is authorized in steps 1312-1314, in step 1315 the PDG delivers the CK and IK to the access point via the CFG_REPLY payload, which will now carry the CK and IK attributes in addition to the remote IP address.
  • In order to make sure that only the access point can access the CK and IK, the PDG encrypts the keys with the pre-shared secret, MSK_ZAP. This can be achieved in a number of ways but the specific way needs to be agreed with the Home MNO Network provider.
  • In step 1316, the access point uses the shared secret MSK_ZAP to decrypt the CK and IK payloads. The access point can then generate MSK_UE (as defined in [EAP-AKA] section 6.4 “Key generation”), which is used to generate the correct AUTH payload (as defined in [IKEv2] section 2.16 “Extensible Authentication Protocol Methods”).
  • On the other hand the access point uses CK and IK for encryption and integrity protection over the air interface.
  • In step 1317, the PDG checks the AUTH thus authenticating the tunnel and generates its own AUTH payload. The access point uses the MSK_UE to check the validity of the AUTH thus authenticating the PDG.
  • As shown in FIG. 11, and described with reference thereto, a different architecture apples in the case of the “Out of band” solution. In this solution, during the UE-specific tunnel establishment, the access point obtains the UE-specific keying material by directly querying the AAA server in the Home MNO Network for the necessary UE-specific keying material, i.e. CK and IK in case of UMTS attach and Kc in case of GSM attach. This query is performed via RADIUS or DIAMETER via the Wax interface described above, and introduced to support the access point-SIP solution.
  • In this solution the UE-specific tunnel establishment follows the same procedure as that shown in FIG. 13, up to the point at which the access point receives the IKE_AUTH Response carrying the EAP Success message, which signals to the access point that the AAA server has successfully performed the EAP authentication for the UE. At this point, the access point needs to retrieve the UE-specific keying material from the AAA server so as to authenticate itself towards the PDG and start using ciphering and integrity protection over the air interface. This material is part of the authentication vector used by the AAA server during the successful EAP-based mutual authentication between the access point (by querying the UE with the GSM/UMTS Authentication Procedure) and the AAA server that just took place.
  • Where DIAMETER is used, then the application defined in TS 29.234 for the Wx interface of the 3GPP WLAN interworking framework, for AAA server retrieval of authentication vectors from HSS, can be re-used.
  • The access point 50 sends an Authentication Request to the AAA server, having the format:
  • Information element name Mapping to Diameter AVP Value
    Permanent User Identity User-Name IMSI_UE
    Visited Network Identifier Visited-Network-Identifier IMSI_ZAP
    Number Authentication SIP-Number-Auth-Items 1
    Items
    Authentication Data SIP-Auth-Data-Item See table below
  • The Authentication Data content in the request has the format:
  • Information element name Mapping to Diameter AVP Description
    Authentication Method Authentication Method EAP/SIM or
    EAP/AKA
  • The AAA server sends an Authentication Answer to the access point 50, having the format:
  • Information element name Mapping to Diameter AVP Value
    Permanent User Identity User-Name IMSI_UE
    Visited Network Identifier Visited-Network-Identifier IMSI_ZAP
    Result Result-Code/Experimental- Success
    Result
    Authentication Data SIP-Auth-Data-Item See tables
    below
  • The Authentication Data content in the answer, in the EAP-AKA case, has the format:
  • Information element name Mapping to Diameter AVP Description
    Authentication Method Authentication Method EAP/AKA
    Confidentiality Key AKA Confidentiality -Key CK
    Integrity Key AKA Integrity-Key IK
  • The Authentication Data content in the answer, in the EAP-SIM case, has the format:
  • Information element name Mapping to Diameter AVP Description
    Authentication Method Authentication Method EAP/AKA
    Authentication Information Authentication Information concatenation
    SIM SIM of authentica-
    tion challenge
    RAND and the
    ciphering key
    Kc
  • There are therefore described methods whereby a base station provided with a SIM card can authenticate itself to a network,

Claims (22)

1. A base station for a cellular communications system, comprising an interface for a SIM card.
2. A base station as claimed in claim 1, including SIP client software, such that communications in accordance with a GSM/UMTS protocol can be mapped onto corresponding SIP services.
3. A base station as claimed in claim 1, including UMA client software, such that the base station can communicate over a broadband IP network with a UMA UNC in the core network of the cellular communications system.
4. A base station as claimed in a claim 3, wherein software in the base station is adapted to map communications in accordance with a GSM/UMTS protocol to the UMA protocol.
5. A base station as claimed in claim 1, including IPSec software, whereby the base station is able to provide an encrypted and secure transmission medium between the base station and a core network of the cellular communications systems.
6. A base station as claimed in claim 5, wherein the base station is adapted to receive ciphering keys from the core network of the cellular communications system.
7. A base station as claimed in claim 6, wherein the base station is adapted to cipher and decipher messages transmitted between the base station and a mobile station, using at least one ciphering key received from the core network of the cellular communications system.
8. A base station as claimed in claim 1, wherein the base station is adapted to use identifying data stored on the SIM card to identify itself to a core network of the cellular communications system, such that it is recognized as a mobile device and is enabled to originate and terminate messages and cells.
9. A base station as claimed in claim 8, wherein the base station is adapted to use the identifying data stored on the SIM card to set up an IPSec tunnel with the core network of the cellular communications system.
10. A base station as claimed in any preceding claim, wherein the base station is adapted to act as a proxy for any communications device connected thereto over a wireless communications protocol, such that the communications device is enabled to communicate with a core network of the cellular communications system.
11. A base station as claimed in claim 1, wherein the base station is adapted to receive and act upon an SMS message from a pre-registered user, instructing the base station to perform a specific function.
12. A base station as claimed in claim 11, wherein the specific function comprises maintaining a database.
13. A base station as claimed in claim 12, wherein the base station is further adapted to update an associated management system with any changes to said database.
14. A base station as claimed in claim 11, wherein the specific function comprises controlling a device connected to a user's Local Area Network.
15. A base station as claimed in claim 1, wherein the base station is adapted to send an SMS or MMS message to a user, in response to a predefined condition.
16. A base station as claimed in claim 15, wherein the predefined condition relates to operation of the base station.
17. A base station as claimed in claim 15, wherein the predefined condition relates to a device connected to a user's Local Area Network.
18. A base station as claimed in one of claims 15 to 17, wherein, if a mobile communications device of the user is camped on the base station, said SMS or MMS message is sent to said user directly, without passing through a core network of the cellular communications system.
19. A base station as claimed in claim 1, wherein the base station is adapted to receive and act upon a call or data session initiated by a user in a wide are network, such that the user can access information on the user's Local Area Network.
20. A base station as claimed in claim 1, wherein the base station is adapted to initiate a call or data session to a user, in response to a predefined condition.
21. A base station as claimed in claim 20, wherein the predefined condition relates to a device connected to a user's Local Area Network.
22. A base station as claimed in one of claims 20 to 21, wherein, if a mobile communications device of the user is camped on the base station, said call or data session is initiated with said user directly, without passing through a core network of the cellular communications system.
US11/664,426 2005-08-01 2006-07-28 Private Access Point Containing a Sim Card Abandoned US20080254833A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB0515888A GB2428937B (en) 2005-08-01 2005-08-01 Self-configuring cellular basestation
GB051888.6 2005-08-01
GB0610650A GB2428942B (en) 2005-08-01 2006-05-30 Local area cellular basestation
GB0610650.4 2006-05-30
PCT/GB2006/002838 WO2007015075A1 (en) 2005-08-01 2006-07-28 Private access point containing a sim card

Publications (1)

Publication Number Publication Date
US20080254833A1 true US20080254833A1 (en) 2008-10-16

Family

ID=34983951

Family Applications (13)

Application Number Title Priority Date Filing Date
US11/664,362 Active 2027-01-14 US8639248B2 (en) 2005-08-01 2006-07-28 Handover information sent over a public wide area network (e.g. internet)
US11/664,360 Abandoned US20080304439A1 (en) 2005-08-01 2006-07-28 Automatic Base Station Configuration
US11/664,426 Abandoned US20080254833A1 (en) 2005-08-01 2006-07-28 Private Access Point Containing a Sim Card
US11/664,425 Active 2027-10-05 US8204543B2 (en) 2005-08-01 2006-07-28 Local area cellular basestation
US11/664,361 Expired - Fee Related US8655408B2 (en) 2005-08-01 2006-07-28 Self-configuring cellular basestation
US12/752,908 Abandoned US20100227645A1 (en) 2005-08-01 2010-04-01 Automatic base station configuration
US12/752,900 Abandoned US20100190495A1 (en) 2005-08-01 2010-04-01 Automatic base station configuration
US12/862,523 Active US8676262B2 (en) 2005-08-01 2010-08-24 Self-configuring cellular basestation
US12/872,970 Active US8660610B2 (en) 2005-08-01 2010-08-31 Self-configuring cellular basestation
US13/481,643 Active US8676265B2 (en) 2005-08-01 2012-05-25 Local area cellular basestation
US13/691,653 Active 2026-12-03 US9144111B2 (en) 2005-08-01 2012-11-30 Self-configuring cellular basestation
US13/719,117 Active US8738084B2 (en) 2005-08-01 2012-12-18 Local area cellular basestation
US14/251,302 Active US8909294B2 (en) 2005-08-01 2014-04-11 Local area cellular basestation

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/664,362 Active 2027-01-14 US8639248B2 (en) 2005-08-01 2006-07-28 Handover information sent over a public wide area network (e.g. internet)
US11/664,360 Abandoned US20080304439A1 (en) 2005-08-01 2006-07-28 Automatic Base Station Configuration

Family Applications After (10)

Application Number Title Priority Date Filing Date
US11/664,425 Active 2027-10-05 US8204543B2 (en) 2005-08-01 2006-07-28 Local area cellular basestation
US11/664,361 Expired - Fee Related US8655408B2 (en) 2005-08-01 2006-07-28 Self-configuring cellular basestation
US12/752,908 Abandoned US20100227645A1 (en) 2005-08-01 2010-04-01 Automatic base station configuration
US12/752,900 Abandoned US20100190495A1 (en) 2005-08-01 2010-04-01 Automatic base station configuration
US12/862,523 Active US8676262B2 (en) 2005-08-01 2010-08-24 Self-configuring cellular basestation
US12/872,970 Active US8660610B2 (en) 2005-08-01 2010-08-31 Self-configuring cellular basestation
US13/481,643 Active US8676265B2 (en) 2005-08-01 2012-05-25 Local area cellular basestation
US13/691,653 Active 2026-12-03 US9144111B2 (en) 2005-08-01 2012-11-30 Self-configuring cellular basestation
US13/719,117 Active US8738084B2 (en) 2005-08-01 2012-12-18 Local area cellular basestation
US14/251,302 Active US8909294B2 (en) 2005-08-01 2014-04-11 Local area cellular basestation

Country Status (9)

Country Link
US (13) US8639248B2 (en)
EP (9) EP2288198B1 (en)
JP (9) JP5259401B2 (en)
CN (8) CN103260271B (en)
DE (5) DE202005021930U1 (en)
ES (2) ES2405682T3 (en)
GB (10) GB2428937B (en)
PL (2) PL2288198T3 (en)
WO (1) WO2007015066A2 (en)

Cited By (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070268855A1 (en) * 2006-05-22 2007-11-22 Cisco Technology, Inc. Enhanced unlicensed mobile access network architecture
US20080020704A1 (en) * 2006-03-13 2008-01-24 Mauro Costa Method of Providing Access to an IP Multimedia Subsystem
US20080031214A1 (en) * 2006-08-07 2008-02-07 Mark Grayson GSM access point realization using a UMA proxy
US20080031196A1 (en) * 2006-07-28 2008-02-07 Tekelec Methods, systems, and computer program products for offloading call control services from a first network of a first type to a second network of a second type
US20080076419A1 (en) * 2006-09-22 2008-03-27 Amit Khetawat Method and apparatus for discovery
US20080076420A1 (en) * 2006-09-22 2008-03-27 Amit Khetawat Method and apparatus for user equipment registration
US20080076393A1 (en) * 2006-09-22 2008-03-27 Amit Khetawat Method and apparatus for securing communication between an access point and a network controller
US20080076412A1 (en) * 2006-09-22 2008-03-27 Amit Khetawat Method and apparatus for registering an access point
US20080102794A1 (en) * 2005-08-01 2008-05-01 Ubiquisys Limited Self-Configuring Cellular Basestation
US20080144494A1 (en) * 2006-12-14 2008-06-19 Nortel Networks Limited Serving gateway proxies for non-sip speakers in a next generation network
US20080188266A1 (en) * 2007-02-02 2008-08-07 Ubiquisys Limited Basestation measurement modes
US20080198996A1 (en) * 2007-02-21 2008-08-21 Tekelec Methods, systems, and computer program products for using a location routing number based query and response mechanism to effect advanced routing
US20080198999A1 (en) * 2007-02-21 2008-08-21 Tekelec Methods, systems, and computer program products for using a location routing number based query and response mechanism to effect subscriber cutover
US20080235778A1 (en) * 2007-03-21 2008-09-25 Motorola, Inc. Communication network, an access network element and a method of operation therefor
US20080253550A1 (en) * 2007-04-13 2008-10-16 Ch Ng Shi Baw Activating Private Access Points For Wireless Networking
US20080260119A1 (en) * 2007-04-20 2008-10-23 Rohini Marathe Systems, methods, and computer program products for providing service interaction and mediation in a communications network
US20080261563A1 (en) * 2007-04-17 2008-10-23 Alcatel Lucent Method for interfacing a femto-cell equipment with a mobile core network
US20080305792A1 (en) * 2006-09-22 2008-12-11 Amit Khetawat Method and Apparatus for Performing Network Based Service Access Control for Femtocells
US20090019212A1 (en) * 2007-07-12 2009-01-15 Color City Enterprise Co., Ltd. Flash disk of phone book
US20090082046A1 (en) * 2007-09-25 2009-03-26 Teppei Shoji Radiocommunication equipment
US20090094683A1 (en) * 2007-10-04 2009-04-09 Morgan Todd C Method for authenticating mobile units attached to a femtocell that operates according to code division multiple access
US20090141671A1 (en) * 2007-11-29 2009-06-04 Morihito Miyagi Packet communication network and subscriber-associated-information delivery controller
US20090183205A1 (en) * 2008-01-16 2009-07-16 Qualcomm Incorporated Intelligent client: multiple channel switching over a digital broadcast network
US20090191844A1 (en) * 2007-10-04 2009-07-30 Morgan Todd C Method for authenticating a mobile unit attached to a femtocell that operates according to code division multiple access
US20090310622A1 (en) * 2008-06-12 2009-12-17 Alcatel Lucent Minimal GAN RTP packet length via multi-level header compression
US20100014506A1 (en) * 2008-07-17 2010-01-21 Linkola Janne P System and method for selectively provisioning telecommunications services between an access point and a telecommunications network based on landline telephone detection
US20100017861A1 (en) * 2008-07-17 2010-01-21 Qualcomm Incorporated Apparatus and method for mobile virtual network operator (mvno) hosting and pricing
US20100014507A1 (en) * 2008-07-17 2010-01-21 Linkola Janne P System and method for selectively provisioning telecommunications services between an access point and a telecommunications network using a subscriber identifier
US20100058336A1 (en) * 2008-08-28 2010-03-04 Intel Corporation Assignment, at least in part, of at least one virtual machine to at least one packet
US20100054201A1 (en) * 2006-12-28 2010-03-04 Christian Gotare Method In A Network Node For Separating Circuit Switched And Packet Switched Traffic
EP2197223A2 (en) * 2008-12-15 2010-06-16 Fujitsu Limited Communication apparatus and mobile terminal
US20100184454A1 (en) * 2009-01-22 2010-07-22 Infineon Technologies Ag Mobile radio communication devices and methods for operating the same
US7769009B1 (en) * 2006-12-11 2010-08-03 Sprint Communications Company L.P. Automatic peer to peer mobile device data replication
US20100214956A1 (en) * 2006-10-19 2010-08-26 Alan Law Controlling the use of access points in a telecommunications networks
US20100226346A1 (en) * 2008-07-17 2010-09-09 Caldwell Christopher E System and method for selectively provisioning telecommunications services between an access point and a telecommunications network using a subscriber identifier
US20100235621A1 (en) * 2009-03-10 2010-09-16 Winkler david b Method of securely pairing devices with an access point for an ip-based wireless network
US20100235634A1 (en) * 2006-03-22 2010-09-16 Patrick Fischer Security considerations for the lte of umts
US20100246488A1 (en) * 2009-03-27 2010-09-30 Mstar Semiconductor, Inc. Wwan to ethernet converter and communication system thereof
US20100311416A1 (en) * 2009-06-04 2010-12-09 United States Cellular Corporation System and method for landline replacement
US20110038304A1 (en) * 2009-08-11 2011-02-17 Yi-Neng Lin Telecommunication network broadband off-loading system and method
US7929977B2 (en) 2003-10-17 2011-04-19 Kineto Wireless, Inc. Method and system for determining the location of an unlicensed mobile access subscriber
US20110092205A1 (en) * 2008-04-09 2011-04-21 Ntt Docomo, Inc. Position registering method, radio control station, and exchange
US20110110354A1 (en) * 2008-08-05 2011-05-12 Huawei Technologies Co., Ltd. Node, method, and system for high-rate access to public network from mobile network
US7949326B2 (en) 2002-10-18 2011-05-24 Kineto Wireless, Inc. Apparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system
US7974624B2 (en) 2002-10-18 2011-07-05 Kineto Wireless, Inc. Registration messaging in an unlicensed mobile access telecommunications system
EP2352259A1 (en) * 2008-10-22 2011-08-03 Huawei Technologies Co., Ltd. Method, device and system for transmitting packet switching services
US8005076B2 (en) 2006-07-14 2011-08-23 Kineto Wireless, Inc. Method and apparatus for activating transport channels in a packet switched communication system
US8036664B2 (en) 2006-09-22 2011-10-11 Kineto Wireless, Inc. Method and apparatus for determining rove-out
US8041335B2 (en) 2008-04-18 2011-10-18 Kineto Wireless, Inc. Method and apparatus for routing of emergency services for unauthorized user equipment in a home Node B system
US20110258447A1 (en) * 2006-01-24 2011-10-20 Huawei Technologies Co., Ltd. Method, system and authentication centre for authenticating in end-to-end communications based on a mobile network
US20110276798A1 (en) * 2009-01-16 2011-11-10 Liang Jiehui Security management method and system for wapi terminal accessing ims network
US20120020260A1 (en) * 2010-07-23 2012-01-26 Verizon Patent And Licensing, Inc. Data offloading with distributed ip management and routing
US20120077545A1 (en) * 2010-09-29 2012-03-29 Pantech Co., Ltd. Mobile terminal and control method
US8160588B2 (en) 2001-02-26 2012-04-17 Kineto Wireless, Inc. Method and apparatus for supporting the handover of a telecommunication session between a licensed wireless system and an unlicensed wireless system
US20120099578A1 (en) * 2009-06-23 2012-04-26 Sharp Kabushiki Kaisha Mobile station, position management apparatus, subscriber information management apparatus, mobile communication system, access control apparatus, home base station and communication method
US20120144477A1 (en) * 2010-12-02 2012-06-07 Kabushiki Kaisha Toshiba Processor and semiconductor device
US20120151030A1 (en) * 2009-08-21 2012-06-14 Samsung Electronics Co. Ltd. Network elements, integrated circuits and methods for routing control
US8213440B2 (en) 2007-02-21 2012-07-03 Tekelec Global, Inc. Methods, systems, and computer program products for using a location routing number based query and response mechanism to route calls to IP multimedia subsystem (IMS) subscribers
US8249553B2 (en) * 2008-03-04 2012-08-21 Alcatel Lucent System and method for securing a base station using SIM cards
US20120295664A1 (en) * 2009-10-19 2012-11-22 Ubiquisys Limited Wireless access point
US20120315898A1 (en) * 2010-11-05 2012-12-13 Research In Motion Limited Mobile Communication Device with Subscriber Identity Module
US8335299B1 (en) * 2007-08-03 2012-12-18 Computer Telephony Solutions, Inc. System and method for capturing, sharing, annotating, archiving, and reviewing phone calls with related computer video in a computer document format
US20130028420A1 (en) * 2011-07-27 2013-01-31 Vikberg Jari Circuit switched mobile telephony in fixed wireless access
US20130182693A1 (en) * 2012-01-16 2013-07-18 Smith Micro Software, Inc. Enabling a Mobile Broadband Hotspot by an Auxiliary Radio
US20130195268A1 (en) * 2012-01-30 2013-08-01 Telefonaktiebolaget L M Ericsson (Publ) Call Handover Between Cellular Communication System Nodes That Support Different Security Contexts
US8532092B2 (en) 2008-06-02 2013-09-10 Tekelec, Inc. Methods, systems, and computer readable media for providing next generation network (NGN)-based end user services to legacy subscribers in a communications network
US20140146806A1 (en) * 2011-08-03 2014-05-29 Huawei Technologies Co., Ltd. Method, device, and system for user equipment to access evolved packet core network
US20140167929A1 (en) * 2012-12-13 2014-06-19 Samsung Electronics Co., Ltd. Method and apparatus for controlling devices in home network system
US8774148B2 (en) 2009-02-27 2014-07-08 T-Mobile Usa, Inc. System and method for provisioning telecommunications services between an access point and a telecommunications network and providing missing information notification
US20150029973A1 (en) * 2012-02-21 2015-01-29 Seppo Ilmari Vesterinen Signalling Interfaces in Communications
US20150074769A1 (en) * 2013-09-06 2015-03-12 Fujitsu Limited Method of accessing a network securely from a personal device, a personal device, a network server and an access point
US20150181467A1 (en) * 2013-12-20 2015-06-25 Cisco Technology, Inc. Telecommunications Networks
US20150222602A1 (en) * 2013-09-25 2015-08-06 Intel Corporation Authenticated time-of-flight indoor positioning systems and methods
US9301155B2 (en) 2006-10-23 2016-03-29 T-Mobile Usa, Inc. System and method for managing access point functionality and configuration
US20160192288A1 (en) * 2013-02-15 2016-06-30 Blackberry Limited Public land mobile network ("plmn") discovery communications in a wireless network
US20160241571A1 (en) * 2007-03-20 2016-08-18 At&T Intellectual Property I, Lp System and method for authentication of a communication device
EP2428059A4 (en) * 2009-05-05 2017-04-19 LG Electronics Inc. Server for control plane at mobile communication network and method for controlling establishment of connection thereof
US9648644B2 (en) 2004-08-24 2017-05-09 Comcast Cable Communications, Llc Determining a location of a device for calling via an access point
US20170164194A1 (en) * 2014-06-26 2017-06-08 Nokia Solutions And Networks Oy Offloading of a wireless node authentication with core network
WO2017141268A1 (en) * 2016-02-16 2017-08-24 Rajah Vijay Kumar Private system for mobile communication (psm) and apparatus therefor
US9763046B2 (en) 2015-08-27 2017-09-12 Intel IP Corporation Apparatus, system and method of Fine Timing Measurement (FTM)
US9807766B1 (en) 2015-01-30 2017-10-31 Sprint Spectrum L.P. Method and system for component carrier selection based on content type
US9820289B1 (en) 2014-12-18 2017-11-14 Sprint Spectrum L.P. Method and system for managing quantity of carriers in air interface connection based on type of content
US20180124597A1 (en) * 2016-10-28 2018-05-03 Apple Inc. Protection of the UE Identity During 802.1x Carrier Hotspot and Wi-Fi Calling Authentication
US9967881B1 (en) 2014-12-18 2018-05-08 Sprint Spectrum L.P. Management of data transmission over radio-link encompassing multiple component carriers
US9998970B2 (en) * 2016-04-28 2018-06-12 Samsung Electronics Co., Ltd. Fast VoWiFi handoff using IKE v2 optimization
US10009430B2 (en) 2015-08-27 2018-06-26 Intel IP Corporation Apparatus, system and method of fine timing measurement (FTM)
US10045359B1 (en) 2016-03-08 2018-08-07 Sprint Spectrum L.P. Method and system for managing carriers based on simultaneous voice and data communication
US10051525B1 (en) 2016-06-28 2018-08-14 Sprint Spectrum L.P. Controlling relay-UE operation based on bearer content type
WO2018163206A3 (en) * 2017-03-07 2018-10-18 Quantum Creo Technology Llp An integrated smart energy monitoring and control device
US20190097968A1 (en) * 2017-09-28 2019-03-28 Unisys Corporation Scip and ipsec over nat/pat routers
CN110475242A (en) * 2019-07-03 2019-11-19 深圳市广和通无线通信软件有限公司 A kind of LTE network register method, device, storage medium and computer equipment
EP3672315A1 (en) * 2018-12-21 2020-06-24 Air Lynx Installation for private mobile radio communication network, method for forming such an installation and associated computer program
EP3672298A1 (en) * 2018-12-21 2020-06-24 Air Lynx Method for federation of two systems, each comprising a private mobile radio communication network infrastructure, associated computer program and federation of two systems, each comprising a private mobile radio communication network infrastructure
EP3672355A1 (en) * 2018-12-21 2020-06-24 Air Lynx Portable device implementing a private mobile radio communication network infrastructure
US11134418B2 (en) * 2017-10-12 2021-09-28 Telefonaktiebolaget Lm Ericsson (Publ) Communication device, network node, radio network node and methods performed therein for handling communication in a communication network
US11178287B1 (en) 2015-09-30 2021-11-16 Sprint Spectrum L.P. Use of a single channel for voice communications and multiple channels for non-voice communications
US11297502B2 (en) * 2017-09-08 2022-04-05 Futurewei Technologies, Inc. Method and device for negotiating security and integrity algorithms
US11324022B1 (en) * 2014-10-06 2022-05-03 Sprint Spectrum L.P. Method and system for selecting a carrier on which to schedule communications of a type of bearer traffic
US20220167160A1 (en) * 2020-11-23 2022-05-26 Cisco Technology, Inc. Openroaming for private communication systems
US11405783B2 (en) * 2016-12-21 2022-08-02 Datang Mobile Communications Equipment Co., Ltd. Access control method and device
US11418962B2 (en) 2017-10-30 2022-08-16 Huawei Technologies Co., Ltd. Method and Device for Obtaining UE Security Capabilities
US11553561B2 (en) * 2016-10-28 2023-01-10 Apple Inc. Protection of the UE identity during 802.1x carrier hotspot and wi-fi calling authentication
US11956852B2 (en) 2022-02-11 2024-04-09 Comcast Cable Communications, Llc Physical location management for voice over packet communication

Families Citing this family (296)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097548A1 (en) * 2000-06-14 2001-12-20 Nokia Corporation Method and system for performing a location registration
CN101715193A (en) * 2002-10-18 2010-05-26 卡耐特无线有限公司 Apparatus and method for extending the coverage area of a licensed wireless communication system
US7885644B2 (en) 2002-10-18 2011-02-08 Kineto Wireless, Inc. Method and system of providing landline equivalent location information over an integrated communication system
US7606190B2 (en) 2002-10-18 2009-10-20 Kineto Wireless, Inc. Apparatus and messages for interworking between unlicensed access network and GPRS network for data services
WO2004075582A1 (en) * 2003-02-21 2004-09-02 Nortel Networks Limited Data communication apparatus and method for establishing a codec-bypass connection
US8027265B2 (en) 2004-03-19 2011-09-27 Genband Us Llc Providing a capability list of a predefined format in a communications network
WO2005089055A2 (en) * 2004-03-19 2005-09-29 Nortel Networks Limited Communicating processing capabilites along a communications path
US8437307B2 (en) * 2007-09-03 2013-05-07 Damaka, Inc. Device and method for maintaining a communication session during a network transition
CN1898972B (en) * 2004-12-17 2010-05-05 华为技术有限公司 Method and system for maintaining conversation continuity
WO2006114628A2 (en) * 2005-04-26 2006-11-02 Vodafone Group Plc Sae/lte telecommunications networks
US8483173B2 (en) 2005-05-31 2013-07-09 Genband Us Llc Methods and systems for unlicensed mobile access realization in a media gateway
US20090067417A1 (en) * 2007-07-14 2009-03-12 Tatara Systems, Inc. Method and apparatus for supporting SIP/IMS-based femtocells
US7792150B2 (en) 2005-08-19 2010-09-07 Genband Us Llc Methods, systems, and computer program products for supporting transcoder-free operation in media gateway
US20070097939A1 (en) 2005-10-04 2007-05-03 Telefonaktiebolaget Lm Ericsson (Publ) Automatic configuration of pico radio base station
ES2396309T3 (en) 2005-12-14 2013-02-20 Research In Motion Limited Method and apparatus for radio resource control aimed at a user equipment
US7835346B2 (en) * 2006-01-17 2010-11-16 Genband Us Llc Methods, systems, and computer program products for providing transcoder free operation (TrFO) and interworking between unlicensed mobile access (UMA) and universal mobile telecommunications system (UMTS) call legs using a media gateway
US8165086B2 (en) 2006-04-18 2012-04-24 Kineto Wireless, Inc. Method of providing improved integrated communication system data service
US7613444B2 (en) 2006-04-28 2009-11-03 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic building of monitored set
ES2353609T3 (en) 2006-05-17 2011-03-03 Research In Motion Limited METHOD AND SYSTEM FOR INDICATION OF SIGNALING CONNECTION RELEASE IN A UMTS NETWORK.
US7852817B2 (en) 2006-07-14 2010-12-14 Kineto Wireless, Inc. Generic access to the Iu interface
US7912004B2 (en) 2006-07-14 2011-03-22 Kineto Wireless, Inc. Generic access to the Iu interface
US20080039141A1 (en) * 2006-08-10 2008-02-14 Holger Claussen Changing the scrambling code of a base station for wireless telecommunications
GB2441375B (en) 2006-08-29 2011-03-02 Ubiquisys Ltd Basestation for cellular communication system
US7995994B2 (en) 2006-09-22 2011-08-09 Kineto Wireless, Inc. Method and apparatus for preventing theft of service in a communication system
US8301780B2 (en) * 2006-09-26 2012-10-30 Nextel Communications, Inc. Client-based solution for seamless access to applications across networks
US8301734B1 (en) * 2006-09-26 2012-10-30 Nextel Communications, Inc. Client-based solution for seamless access to applications across networks
WO2008042414A2 (en) * 2006-10-03 2008-04-10 Interdigital Technology Corporation Enhanced node b configuration with a universal integrated circuit card
JP4819638B2 (en) * 2006-10-03 2011-11-24 株式会社エヌ・ティ・ティ・ドコモ Communication control system
US8887235B2 (en) * 2006-10-17 2014-11-11 Mavenir Systems, Inc. Authentication interworking
US7813730B2 (en) * 2006-10-17 2010-10-12 Mavenir Systems, Inc. Providing mobile core services independent of a mobile device
US8977839B2 (en) * 2006-10-20 2015-03-10 Interdigital Technology Corporation Method and apparatus for self configuration of LTE E-Node Bs
CN100591043C (en) 2006-10-25 2010-02-17 华为技术有限公司 System, access point, and gateway for network access from different devices and method thereof
PL2087634T3 (en) * 2006-11-01 2017-01-31 ERICSSON TELEFON AB L M (publ) Telecommunication systems and encryption of control messages in such systems
FR2909822B1 (en) * 2006-12-06 2010-04-30 Radiotelephone Sfr METHOD AND SYSTEM FOR CONTROLLING THE ESTABLISHMENT OF COMMUNICATION CHANNELS TO ENABLE THE TRANSMISSION OF MULTIMEDIA INFORMATION.
KR101315304B1 (en) * 2006-12-08 2013-10-04 삼성전자주식회사 Automatic setup system and method of UbiCell base station
US9131526B2 (en) 2012-05-31 2015-09-08 Telefonaktiebolaget L M Ericsson (Publ) Pooled transport and control functions in a 3GPP LTE network
US8688986B2 (en) 2006-12-27 2014-04-01 Intel Corporation Method for exchanging strong encryption keys between devices using alternate input methods in wireless personal area networks (WPAN)
TWI493952B (en) 2006-12-27 2015-07-21 Signal Trust For Wireless Innovation Method and apparatus for base station self-configuration
US8346239B2 (en) 2006-12-28 2013-01-01 Genband Us Llc Methods, systems, and computer program products for silence insertion descriptor (SID) conversion
GB2447439B (en) 2007-02-02 2012-01-25 Ubiquisys Ltd Access point power control
CN101606415B (en) * 2007-02-12 2014-05-07 交互数字技术公司 Method and apparatus for supporting handoff from GPRS/GERAN to LTE EUTRAN
JP4364248B2 (en) 2007-02-14 2009-11-11 株式会社東芝 Communication system, gateway device and adapter device
GB2449533B (en) * 2007-02-23 2009-06-03 Ubiquisys Ltd Basestation for cellular communications system
US8019331B2 (en) 2007-02-26 2011-09-13 Kineto Wireless, Inc. Femtocell integration into the macro network
US7899024B2 (en) * 2007-02-28 2011-03-01 Intel Corporation Method and apparatus to support VoIP calls in an IEEE 802.16 interface
US8498654B2 (en) 2007-03-23 2013-07-30 At&T Intellectual Property I, L.P. Method and system for location-based communication
CN101309500B (en) * 2007-05-15 2011-07-20 华为技术有限公司 Security negotiation method and apparatus when switching between different wireless access technologies
US8483719B2 (en) * 2007-06-01 2013-07-09 Qualcomm Incorporated Methods and apparatus for determining FEMTO base station location
CN101321383B (en) * 2007-06-05 2012-07-11 华为技术有限公司 Communication system and method, household base station gateway and home subscriber server
US20090016246A1 (en) * 2007-07-12 2009-01-15 Motorola, Inc. Method and apparatus for data transmission in an unlicensed mobile access network
CN101836474B (en) * 2007-08-17 2015-04-29 美国博通公司 Self-configuring small scale base station
US9838911B1 (en) 2007-08-20 2017-12-05 Fortinet, Inc. Multitier wireless data distribution
WO2009025596A1 (en) * 2007-08-21 2009-02-26 Telefonaktiebolaget Lm Ericsson (Publ) A multi carrier frequency assignment method
PT3598690T (en) * 2007-09-17 2021-12-24 Ericsson Telefon Ab L M Method and arrangement in a telecommunication system
CN101394662B (en) * 2007-09-21 2012-06-06 中兴通讯股份有限公司 Customer authentication and access control method and system
DE102007045408A1 (en) * 2007-09-21 2009-05-20 T-Mobile International Ag A method for the terminal-based detection of home base stations in a cellular mobile radio system by means of support by the mobile radio network
CN101400091B (en) * 2007-09-30 2012-02-15 华为技术有限公司 Method, system and device for conversion of session control signaling
EP2234445B1 (en) 2007-10-01 2018-11-21 NEC Corporation Wireless communication system, wireless communication method, base station and mobile station
US8391241B2 (en) 2007-10-04 2013-03-05 Telefonaktiebolaget L M Ericsson (Publ) Inter-system handoff using circuit switched bearers for serving general packet radio service support nodes
EP2200360A4 (en) 2007-10-09 2015-05-20 Nec Corp Wireless communication system, wireless communication method, base station, method for controlling base station, and control program of base station
US7902691B2 (en) * 2007-10-10 2011-03-08 Tomtom International B.V. Enhanced cigarette lighter adapter
WO2009054205A1 (en) 2007-10-22 2009-04-30 Nec Corporation Wireless communication system, base station, wireless resource management method and base station control program
EP2204066B1 (en) * 2007-10-25 2017-06-28 Cisco Technology, Inc. Interworking gateway for mobile nodes
GB2454649B (en) * 2007-10-26 2012-05-30 Ubiquisys Ltd Cellular basestation
ATE553628T1 (en) 2007-11-13 2012-04-15 Research In Motion Ltd METHOD AND APPARATUS FOR STATUS/MODE TRANSITIONS
US8938244B2 (en) * 2007-11-15 2015-01-20 Ubeeairwalk, Inc. System, method, and computer-readable medium for user equipment acquisition of an IP-femtocell system
US8902867B2 (en) 2007-11-16 2014-12-02 Qualcomm Incorporated Favoring access points in wireless communications
US8848656B2 (en) 2007-11-16 2014-09-30 Qualcomm Incorporated Utilizing broadcast signals to convey restricted association information
US9603062B2 (en) 2007-11-16 2017-03-21 Qualcomm Incorporated Classifying access points using pilot identifiers
US8737295B2 (en) 2007-11-16 2014-05-27 Qualcomm Incorporated Sector identification using sector parameters signatures
US9648493B2 (en) * 2007-11-16 2017-05-09 Qualcomm Incorporated Using identifiers to establish communication
US9014155B2 (en) 2007-11-19 2015-04-21 Rajarshi Gupta Access point configuration schemes
KR100909105B1 (en) * 2007-11-30 2009-07-30 한국전자통신연구원 Method for session control in radio communication system
JP2009159352A (en) * 2007-12-27 2009-07-16 Hitachi Communication Technologies Ltd Mobile object communication network
US20090207812A1 (en) * 2008-01-07 2009-08-20 Vivek Gupta Dual radio handovers beween wimax and 3gpp
EP2079273A1 (en) * 2008-01-11 2009-07-15 British Telecommunications public limited company Mobile communication access point
JP4717898B2 (en) * 2008-01-24 2011-07-06 株式会社エヌ・ティ・ティ・ドコモ Radio base station apparatus and radio base station apparatus network incorporation method
GB2457029A (en) * 2008-01-30 2009-08-05 Ip Access Ltd Network element and method for routing data in a data communication system
FR2928236B1 (en) * 2008-02-28 2010-02-19 Neuf Cegetel METHOD FOR MANAGING THE OPERATION OF A LOCAL EQUIPMENT CONNECTED TO A FIXED NETWORK AND ASSOCIATED WITH A CELLULAR NETWORK
US8971888B2 (en) 2008-03-21 2015-03-03 Qualcomm Incorporated Cell selection and reselection in deployments with home nodeBs
WO2009120689A2 (en) * 2008-03-25 2009-10-01 Nortel Networks Limited Method for controlling interference in femto cell deployments
JP5212466B2 (en) 2008-03-26 2013-06-19 日本電気株式会社 Radio resource control method, radio station apparatus, radio station control program, and radio communication system
EP2259638B1 (en) 2008-03-26 2017-04-05 NEC Corporation Wireless station device, method of controlling wireless resource, recording medium containing wireless station control program, and wireless communication system
GB2459434A (en) * 2008-03-31 2009-10-28 Vodafone Plc Configuration of access points in a telecommunications network
WO2009122778A1 (en) 2008-03-31 2009-10-08 日本電気株式会社 Radio station device, radio resource control method, recording medium containing radio station control program, and radio communication system
JP2009253431A (en) * 2008-04-02 2009-10-29 Alcatel-Lucent Usa Inc METHOD FOR OFF-LOADING PS TRAFFIC IN UMTS FEMTO CELL SOLUTION HAVING Iu INTERFACE
GB2459107B (en) * 2008-04-09 2012-11-14 Ubiquisys Ltd Access point
CN101562834B (en) * 2008-04-16 2014-04-09 三星电子株式会社 Method and system supporting macro base station to be switched over to household base station
WO2009132246A2 (en) 2008-04-25 2009-10-29 Interdigital Patent Holdings, Inc. Multi-cell wtrus configured to perform mobility procedures and methods
EP3226601B1 (en) 2008-04-29 2019-12-11 Apple Inc. Ubiquitous access to femto-connected network
CN101478795B (en) 2008-04-30 2011-07-06 华为技术有限公司 Method, communication system for resource processing and mobile management network element
US8719420B2 (en) 2008-05-13 2014-05-06 At&T Mobility Ii Llc Administration of access lists for femtocell service
US8179847B2 (en) * 2008-05-13 2012-05-15 At&T Mobility Ii Llc Interactive white list prompting to share content and services associated with a femtocell
GB2461845B (en) * 2008-06-27 2012-05-16 Ubiquisys Ltd Scrambling code selection
US20110237251A1 (en) * 2008-07-14 2011-09-29 Zte (Usa) Inc. Idle and paging support for wireless communication systems with private cells
US8989172B2 (en) * 2008-07-22 2015-03-24 Kyocera Corporation Data routing through local network connected to a base station
KR101596828B1 (en) * 2008-07-23 2016-02-23 엘지전자 주식회사 Method of self organizing an arbitary network
US9237598B2 (en) * 2008-07-23 2016-01-12 Lg Electronics Inc. Method for self-configuring a cellular infrastructure as desired, and a device therefor
GB2462803B (en) * 2008-07-31 2012-10-24 Ubiquisys Ltd Establishing colocated second cell
US8363665B2 (en) * 2008-08-04 2013-01-29 Stoke, Inc. Method and system for bypassing 3GPP packet switched core network when accessing internet from 3GPP UEs using IP-BTS, femto cell, or LTE access network
US8462770B2 (en) * 2008-08-04 2013-06-11 Stoke, Inc. Method and system for bypassing 3GPP packet switched core network when accessing internet from 3GPP UES using 3GPP radio access network
US8588773B2 (en) 2008-08-04 2013-11-19 Qualcomm Incorporated System and method for cell search and selection in a wireless communication system
US20100027510A1 (en) * 2008-08-04 2010-02-04 Qualcomm Incorporated Enhanced idle handoff to support femto cells
JP5077133B2 (en) 2008-08-07 2012-11-21 富士通株式会社 Base station and data transfer method
CN101645824B (en) * 2008-08-08 2012-04-18 华为技术有限公司 Data transmission method, user terminal and network equipment
CA2734041A1 (en) * 2008-08-12 2010-02-18 Ntt Docomo, Inc. Communication control system, communication system and communication control method
GB2463708B (en) * 2008-09-23 2012-11-14 Ubiquisys Ltd Basestation able to make measurements in additional networks
JP5245692B2 (en) * 2008-09-29 2013-07-24 富士通株式会社 Communication apparatus and connection method
EP2332355A4 (en) * 2008-10-01 2014-07-09 Ericsson Telefon Ab L M Handling of local breakout traffic in a home base station
EP2332370B1 (en) 2008-10-01 2016-11-16 Telefonaktiebolaget LM Ericsson (publ) Method for enabling a home base station to choose between local and remote transportation of uplink data packets
US9398472B2 (en) * 2008-10-02 2016-07-19 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for replacing an area identifier in a wireless communication network
US8634795B2 (en) * 2008-10-21 2014-01-21 Spidercloud Wireless, Inc. Packet routing methods and apparatus for use in a communication system
US8188955B2 (en) * 2008-10-27 2012-05-29 Himax Technologies Limited Source driving circuit with output buffer
AU2009308623B2 (en) * 2008-10-30 2013-02-07 Sun Patent Trust Base station device, gateway device, call connecting method, and wireless communication system
US9401855B2 (en) * 2008-10-31 2016-07-26 At&T Intellectual Property I, L.P. Methods and apparatus to deliver media content across foreign networks
CN102210190B (en) 2008-11-10 2015-05-06 黑莓有限公司 Method and apparatus of selecting if it is transmitted that the indication information of asking for more energy-saving state or mode aiming at bearing model
GB2465402B8 (en) * 2008-11-18 2014-07-23 Ip Access Ltd Method and apparatus for providing access to a packet data network
US8886164B2 (en) * 2008-11-26 2014-11-11 Qualcomm Incorporated Method and apparatus to perform secure registration of femto access points
EP2352324B1 (en) 2008-11-28 2017-09-27 NEC Corporation Base station device, method for controlling base station device, communication system, and storage medium having program stored therein
JP5366975B2 (en) * 2008-11-28 2013-12-11 パナソニック株式会社 Radio communication base station apparatus and total transmission power control method
EP2355568B1 (en) 2008-12-03 2018-06-27 NEC Corporation Base station apparatus, method for controlling base station apparatus, processor unit, storage medium, and wireless communication system
US8848594B2 (en) * 2008-12-10 2014-09-30 Blackberry Limited Method and apparatus for discovery of relay nodes
US8311061B2 (en) 2008-12-17 2012-11-13 Research In Motion Limited System and method for multi-user multiplexing
US8040904B2 (en) * 2008-12-17 2011-10-18 Research In Motion Limited System and method for autonomous combining
US20100150022A1 (en) * 2008-12-17 2010-06-17 Research In Motion Corporation System and Method for a Relay Protocol Stack
JP2010147682A (en) * 2008-12-17 2010-07-01 Sharp Corp Radio communication system and indoor base station
US8402334B2 (en) 2008-12-17 2013-03-19 Research In Motion Limited System and method for hybrid automatic repeat request (HARQ) functionality in a relay node
JP2010147681A (en) * 2008-12-17 2010-07-01 Sharp Corp Radio communication system and indoor base station
US8265128B2 (en) 2008-12-19 2012-09-11 Research In Motion Limited Multiple-input multiple-output (MIMO) with relay nodes
US8335466B2 (en) 2008-12-19 2012-12-18 Research In Motion Limited System and method for resource allocation
US8446856B2 (en) 2008-12-19 2013-05-21 Research In Motion Limited System and method for relay node selection
CN101772036B (en) * 2008-12-31 2012-07-18 中兴通讯股份有限公司 Physical area automatic identifier configuration method and device
JP5375836B2 (en) 2009-01-09 2013-12-25 日本電気株式会社 BASE STATION DEVICE, MOBILE STATION DEVICE, NOTIFICATION SYSTEM, BASE STATION DEVICE CONTROL METHOD, MOBILE STATION DEVICE CONTROL METHOD, AND PROGRAM
US8213401B2 (en) * 2009-01-13 2012-07-03 Adc Telecommunications, Inc. Systems and methods for IP communication over a distributed antenna system transport
USRE47466E1 (en) * 2009-01-13 2019-06-25 Commscope Technologies Llc Systems and methods for IP communication over a distributed antenna system transport
CN101784055B (en) * 2009-01-16 2015-06-10 中兴通讯股份有限公司 Peripheral component interconnect (PCI) automatic distribution method and device
US8548455B2 (en) * 2009-01-16 2013-10-01 Broadcom Corporation Method and system for installation and configuration of a femtocell
FR2941585B1 (en) * 2009-01-28 2013-04-12 Plugnsurf PORTABLE MULTI-NETWORK COMMUNICATION DEVICE
EP2398266B1 (en) * 2009-02-12 2018-06-06 LG Electronics Inc. Communication technique using change of type of femto base station
JP2010187275A (en) * 2009-02-13 2010-08-26 Nec Corp Data transfer radio base station system, terminal device, terminal device with video photographing function, femto base station, video data processing method, and program
JP5422223B2 (en) * 2009-02-23 2014-02-19 株式会社Nttドコモ Mobile communication system and terminal user management method
JP5517187B2 (en) * 2009-04-10 2014-06-11 日本電気株式会社 Femtocell base station, authentication device, communication system, control method, and program
US20100267386A1 (en) * 2009-04-17 2010-10-21 Qualcomm Incorporated Methods and apparatus for facilitating handoff between a femtocell base station and a cellular base station
JP5780574B2 (en) 2009-04-17 2015-09-16 日本電気株式会社 COMMUNICATION CONTROL DEVICE, COMMUNICATION SYSTEM, CONTROL METHOD, AND PROGRAM
US8804520B2 (en) 2009-04-30 2014-08-12 Telefonaktiebolaget L M Ericsson (Publ) Core network node selection in a mobile communication network
JP5383307B2 (en) * 2009-05-08 2014-01-08 ソフトバンクBb株式会社 Small base station, setting method
JP4648469B2 (en) 2009-06-26 2011-03-09 株式会社エヌ・ティ・ティ・ドコモ Mobile communication method, mobile station and radio base station
JP5535536B2 (en) 2009-07-02 2014-07-02 日本電気株式会社 Femtocell base station, gateway system, MAP-GW apparatus, communication system, control method and program
JP5392830B2 (en) 2009-07-02 2014-01-22 日本電気株式会社 Femtocell base station, communication system, method and apparatus program
GB2471681B (en) 2009-07-07 2011-11-02 Ubiquisys Ltd Interference mitigation in a femtocell access point
JP5424314B2 (en) 2009-07-21 2014-02-26 日本電気株式会社 Femtocell base station, gateway system, MAPGW apparatus, communication system, method and apparatus program
CN101964975B (en) * 2009-07-23 2015-07-22 中兴通讯股份有限公司 Method and system for optimizing home NodeB (HNB) position area configuration
CN101990210B (en) * 2009-07-31 2013-06-05 中兴通讯股份有限公司 Distribution method of PCIs (Physical Cell Identities) in long-term evolution network
US8908541B2 (en) 2009-08-04 2014-12-09 Genband Us Llc Methods, systems, and computer readable media for intelligent optimization of digital signal processor (DSP) resource utilization in a media gateway
US8743696B2 (en) 2009-08-07 2014-06-03 Cisco Technology, Inc. Mobile transport solution for offloading to an alternate network
US8638711B2 (en) * 2009-08-11 2014-01-28 Qualcomm Incorporated Systems and methods of maintaining core network status during serving radio network subsystem relocation
GB2472597B (en) 2009-08-11 2012-05-16 Ubiquisys Ltd Power setting
US9210622B2 (en) * 2009-08-12 2015-12-08 Qualcomm Incorporated Method and apparatus for relay backhaul design in a wireless communication system
US9125133B2 (en) 2009-08-12 2015-09-01 Qualcomm Incorporated Method and apparatus for relay backhaul design in a wireless communication system
CN101998353A (en) 2009-08-20 2011-03-30 中兴通讯股份有限公司 Bearer type indicating method, base station and system
JP5580014B2 (en) * 2009-09-18 2014-08-27 ソフトバンクモバイル株式会社 Communication service provision system
JP5343796B2 (en) * 2009-09-30 2013-11-13 日本電気株式会社 Authentication apparatus, femtocell system, and accounting method used therefor
US8224233B2 (en) 2009-10-09 2012-07-17 At&T Mobility Ii Llc Regulation of service in restricted telecommunication service area
US8510801B2 (en) 2009-10-15 2013-08-13 At&T Intellectual Property I, L.P. Management of access to service in an access point
CN102045732B (en) * 2009-10-19 2015-03-25 中兴通讯股份有限公司 Physical cell identity planning method and device
GB2487176B (en) * 2009-10-21 2014-04-23 Toshiba Res Europ Ltd Apparatus and method for use in a femto cell
US8498651B2 (en) * 2009-11-06 2013-07-30 Alcatel Lucent Method of call admission control for home femtocells
CN102056272B (en) * 2009-11-11 2013-09-11 中兴通讯股份有限公司 Frequency search method and device
JP4927154B2 (en) * 2009-11-11 2012-05-09 株式会社エヌ・ティ・ティ・ドコモ Mobile communication system, home radio base station, and operating frequency determination method
US9009293B2 (en) 2009-11-18 2015-04-14 Cisco Technology, Inc. System and method for reporting packet characteristics in a network environment
US9015318B1 (en) 2009-11-18 2015-04-21 Cisco Technology, Inc. System and method for inspecting domain name system flows in a network environment
CN102783242A (en) 2009-11-23 2012-11-14 捷讯研究有限公司 State or mode transition triggering based on SRI message transmission
EP2505036B1 (en) 2009-11-23 2018-08-22 BlackBerry Limited Method and apparatus for state/mode transitioning
CA2781630C (en) 2009-11-23 2019-05-21 Research In Motion Limited Method and apparatus for state/mode transitioning
US9148380B2 (en) * 2009-11-23 2015-09-29 Cisco Technology, Inc. System and method for providing a sequence numbering mechanism in a network environment
CN102763485A (en) * 2009-11-24 2012-10-31 捷讯研究有限公司 Method and apparatus for state/mode transitioning
JP5441158B2 (en) * 2009-11-25 2014-03-12 日本電気株式会社 Management device, control device, communication system, control method, and program
CN102088749B (en) * 2009-12-04 2013-05-15 中国移动通信集团公司 Method and system for updating and switching terminal position
US8792495B1 (en) 2009-12-19 2014-07-29 Cisco Technology, Inc. System and method for managing out of order packets in a network environment
US8983532B2 (en) 2009-12-30 2015-03-17 Blackberry Limited Method and system for a wireless communication device to adopt varied functionalities based on different communication systems by specific protocol messages
US20130051280A1 (en) * 2010-01-04 2013-02-28 Qingshan Zhang Method and apparatus for providing inter-domain service
JP5517199B2 (en) 2010-01-19 2014-06-11 日本電気株式会社 Broadcast distribution control apparatus, call state control apparatus, femtocell base station, communication system, method and apparatus program
CN102149190B (en) * 2010-02-09 2014-01-22 华为技术有限公司 Registration method and system of machine type communications (MTC) equipment
US8958838B2 (en) * 2010-02-12 2015-02-17 Qualcomm Incorporated Multi-stage transmit power control scheme for access point
JP5288561B2 (en) * 2010-02-26 2013-09-11 Kddi株式会社 Femtocell handoff method and system
CN102196438A (en) 2010-03-16 2011-09-21 高通股份有限公司 Communication terminal identifier management methods and device
US8885536B2 (en) * 2010-04-13 2014-11-11 Qualcomm Incorporated Method and apparatus for managing local internet protocol offload
US9049684B2 (en) 2010-05-13 2015-06-02 Nec Corporation Gateway device, base station, mobile management server, and communication method
US9265073B2 (en) * 2010-05-21 2016-02-16 Kineto Wireless, Llc System and method for dual mode communication
CN102291820B (en) * 2010-06-17 2015-04-01 电信科学技术研究院 Paging method, system and device
WO2012016688A1 (en) * 2010-08-04 2012-02-09 Deutsche Telekom Ag Method, public land mobile network and user equipment
JP5697134B2 (en) 2010-08-16 2015-04-08 日本電気株式会社 COMMUNICATION SYSTEM, GATEWAY DEVICE, FEMTO CELL BASE STATION, COMMUNICATION METHOD AND DEVICE PROGRAM
WO2012025490A1 (en) * 2010-08-24 2012-03-01 Nokia Siemens Networks Oy Methods, apparatuses, system, related computer program product for handover procedures
US8737325B2 (en) * 2010-09-01 2014-05-27 ARGELA Yazilim be Bilişim Teknolojlleri San. ve Tic. A.Ş Method and system for automatically managing operations of an IPTV located in a femtocell network
US20120108226A1 (en) 2010-09-21 2012-05-03 Htc Corporation Method and apparatus for controlling timing of network performance logging in a wireless communication system
US8971814B2 (en) 2010-09-28 2015-03-03 Nec Corporation Radio communication system, radio resource determination method therefor, communication management device, and control method and control program for communication management device
US8787303B2 (en) 2010-10-05 2014-07-22 Cisco Technology, Inc. Methods and apparatus for data traffic offloading at a router
US9344483B2 (en) * 2010-10-13 2016-05-17 Fujitsu Limited System and method for facilitating remote downloading
US9112905B2 (en) * 2010-10-22 2015-08-18 Qualcomm Incorporated Authentication of access terminal identities in roaming networks
JP5896177B2 (en) 2010-10-22 2016-03-30 日本電気株式会社 Wireless communication system, base station, management server, and wireless communication method
US20130223395A1 (en) * 2010-11-03 2013-08-29 Nokia Siemens Networks Oy Apparatus and Method for Communication
EP2451214B1 (en) * 2010-11-05 2012-11-28 Alcatel Lucent Method for deciding on a potential load balancing operation in a wireless network and corresponding network element
US8687727B2 (en) * 2010-11-05 2014-04-01 Intel Corporation Coordinated multi-point transmission using interference feedback
WO2012062427A1 (en) * 2010-11-12 2012-05-18 Alcatel Lucent Reduction of interference in mobile telecommunications systems
US9179303B2 (en) 2010-11-17 2015-11-03 Qualcomm Incorporated Methods and apparatus for transmitting and receiving secure and non-secure data
US8649359B2 (en) 2010-11-19 2014-02-11 Nokia Corporation Apparatus and method for selection of a gateway of a local area network
US20120314692A1 (en) * 2010-12-10 2012-12-13 Qualcomm Incorporated Method and apparatus for prioritizing femto node communications
GB2486716A (en) * 2010-12-23 2012-06-27 Ubiquisys Ltd Short range wireless access device
US9003057B2 (en) 2011-01-04 2015-04-07 Cisco Technology, Inc. System and method for exchanging information in a mobile wireless network environment
US8819757B2 (en) * 2011-01-11 2014-08-26 Manolo Fabio Rivera Advanced wireless IPTV set top box
US9413395B2 (en) * 2011-01-13 2016-08-09 Google Technology Holdings LLC Inter-modulation distortion reduction in multi-mode wireless communication terminal
JP2012186701A (en) * 2011-03-07 2012-09-27 Ricoh Co Ltd Radio communication terminal
US9668128B2 (en) 2011-03-09 2017-05-30 Qualcomm Incorporated Method for authentication of a remote station using a secure element
CN102111794A (en) * 2011-03-15 2011-06-29 西安新邮通信设备有限公司 Concurrent processing method for on-hook process and changing-over across AN
CN103477668A (en) * 2011-04-15 2013-12-25 诺基亚西门子网络公司 Apparatus and method for communication
JP2012244477A (en) 2011-05-20 2012-12-10 Sony Corp Communication controller, communication control method, program, and communication system
US8743690B1 (en) 2011-06-14 2014-06-03 Cisco Technology, Inc. Selective packet sequence acceleration in a network environment
US8948013B1 (en) 2011-06-14 2015-02-03 Cisco Technology, Inc. Selective packet sequence acceleration in a network environment
US8792353B1 (en) 2011-06-14 2014-07-29 Cisco Technology, Inc. Preserving sequencing during selective packet acceleration in a network environment
US8737221B1 (en) 2011-06-14 2014-05-27 Cisco Technology, Inc. Accelerated processing of aggregate data flows in a network environment
US9130743B2 (en) * 2011-06-21 2015-09-08 Pyxim Wireless, Inc. Method and apparatus for communicating between low message rate wireless devices and users via monitoring, control and information systems
JP5743206B2 (en) 2011-06-23 2015-07-01 日本電気株式会社 Service control apparatus, relay apparatus, femtocell base station, communication system, control method, and program
JP5589983B2 (en) * 2011-07-21 2014-09-17 三菱電機株式会社 access point
EP2557870B1 (en) * 2011-08-10 2020-07-08 Alcatel Lucent Configuring transmissions
PL2557855T3 (en) 2011-08-10 2018-06-29 Alcatel Lucent A sensor, a mobile user terminal and a method of a sensor sensing a mobile user terminal
JP5948762B2 (en) * 2011-08-26 2016-07-06 ソニー株式会社 Information processing apparatus, communication system, and information processing apparatus control method
US9510256B2 (en) * 2011-09-20 2016-11-29 Wildfire.Exchange, Inc. Seamless handoff, offload, and load balancing in integrated Wi-Fi/small cell systems
CN103096288B (en) * 2011-11-02 2016-03-02 中磊电子(苏州)有限公司 Use femto cell as the method for exchange
JP5345195B2 (en) * 2011-11-07 2013-11-20 株式会社エヌ・ティ・ティ・ドコモ Mobile station
CN103096521A (en) * 2011-11-07 2013-05-08 中怡(苏州)科技有限公司 Method of integration of user equipment functions by using miniature base station
US9883441B2 (en) * 2011-11-10 2018-01-30 Nokia Technologies Oy Method and apparatus to route packet flows over two transport radios
EP2777358B1 (en) 2011-11-11 2018-01-10 BlackBerry Limited Method and apparatus for user equipment state transition
GB2497125A (en) 2011-12-01 2013-06-05 Nec Corp Partial Network Monitor Mode Scanning for Multimode Home Node Bs
EP2795882A4 (en) 2011-12-23 2015-08-19 Nokia Technologies Oy Method and apparatus for selectively activating multiple subscriber identity modules
GB2498192A (en) 2012-01-04 2013-07-10 Ibm Moving OSI layer 4 connections for UMTS network with data offload at celltower
WO2013147735A1 (en) * 2012-03-26 2013-10-03 Nokia Siemens Networks Oy Mobile switching center acting as a short message service gateway
KR101405678B1 (en) 2012-04-16 2014-06-10 에스케이텔레시스 주식회사 Handover system between heterogeneous networks
US20130310000A1 (en) * 2012-05-15 2013-11-21 Sunil Prasad Communication systems and methods
US20130326131A1 (en) * 2012-05-29 2013-12-05 Texas Instruments Incorporated Method for Security Context Switching and Management in a High Performance Security Accelerator System
JP6007604B2 (en) * 2012-06-13 2016-10-12 日本電気株式会社 Small wireless base station, charging system and charging method
US9265071B2 (en) * 2012-07-10 2016-02-16 Electronics And Telecommunications Research Institute Signalling method for direct communication between terminals
CN103596254B (en) * 2012-08-16 2017-02-22 京信通信系统(广州)有限公司 Method for base-station self-configuration and base station
ES2877822T3 (en) * 2012-09-26 2021-11-17 Alcatel Lucent Resilient packet data connectivity in a cellular network
CN103812723B (en) * 2012-11-01 2017-03-01 财团法人工业技术研究院 System, server and method for metering network access
TWI504291B (en) * 2012-11-01 2015-10-11 Ind Tech Res Inst System, server and method for calculating data volume of network access
WO2014070198A1 (en) * 2012-11-02 2014-05-08 Nokia Corporation Transferring an calls to an active device within a home cloud
US9992021B1 (en) 2013-03-14 2018-06-05 GoTenna, Inc. System and method for private and point-to-point communication between computing devices
CN105165058B (en) 2013-04-22 2019-09-03 瑞典爱立信有限公司 Control of the cellular network to the channel distribution for vehicle-to-vehicle communication
MX354833B (en) 2013-04-29 2018-03-21 Hughes Network Systems Llc Data encryption protocols for mobile satellite communications.
JP2013158059A (en) * 2013-05-20 2013-08-15 Nec Corp Communication system, femto cell base station, authentication device, communication method, and communication program
BR112015024563A2 (en) * 2013-05-22 2017-07-18 Ericsson Telefon Ab L M method and apparatus for controlling radio communication signal path
EP3022973A4 (en) * 2013-07-19 2017-06-21 Appcard, Inc. Methods and apparatus for cellular-based identification of individuals within a vicinity
CN103476144B (en) * 2013-08-23 2016-08-10 北京创毅讯联科技股份有限公司 Intranet and user equipment registration method based on Intranet
US9532398B2 (en) * 2013-09-11 2016-12-27 Star Solutions International Inc. Portable cellular network system
JP5892991B2 (en) * 2013-11-05 2016-03-23 株式会社東芝 Apparatus and method used in femtocells
WO2015088264A1 (en) * 2013-12-11 2015-06-18 엘지전자 주식회사 Method for performing, by terminal, random access procedure over network in which multiple communication systems interwork, and apparatus therefor
ES2689805T3 (en) * 2013-12-17 2018-11-15 Telefonica, S.A. Method, system and software product for interworking between different wireless technologies
US9693373B1 (en) 2014-03-20 2017-06-27 Sprint Communications Company L.P. Media session transfer between communication networks
CN105309003A (en) * 2014-05-09 2016-02-03 华为技术有限公司 Method for managing base station and base station
US9805201B2 (en) 2014-06-23 2017-10-31 Google Inc. Trust agents
JP2016012881A (en) * 2014-06-30 2016-01-21 ソニー株式会社 Apparatus, method and program
DE102014011082A1 (en) * 2014-07-30 2016-02-04 Airbus Ds Gmbh Protective device for an elongate hollow body
US9578567B1 (en) 2014-08-26 2017-02-21 Luminate Wireless, Inc. Data center relocation methods and apparatus
CN106688276A (en) 2014-10-16 2017-05-17 英特尔公司 Method, apparatus and system for using user equipment as small evolved NodeB for small cell
US9338133B1 (en) * 2014-11-10 2016-05-10 Sprint Communications Company L.P. Locating optimum security gateway
WO2016074741A1 (en) * 2014-11-14 2016-05-19 Huawei Technologies Co., Ltd. Network node, user device and methods thereof
CN105830529A (en) * 2014-11-24 2016-08-03 华为技术有限公司 Communication system, base station and communication method
EP3228059B1 (en) * 2014-12-04 2018-05-23 Telefonaktiebolaget LM Ericsson (publ) Secure connections establishment
US10069738B2 (en) 2015-04-01 2018-09-04 At&T Intellectual Property I, L.P. One cellular radio to support multiple phone lines and data at a location
US9930641B2 (en) * 2015-07-09 2018-03-27 Honeywell International Inc. Automated and adaptive channel selection algorithm based on least noise and least density of wireless sensors network in neighborhood
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10742243B2 (en) 2015-07-14 2020-08-11 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10129057B2 (en) 2015-07-14 2018-11-13 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on a cable
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
CN105208599A (en) * 2015-08-27 2015-12-30 北京邮电大学 Method of load balancing between cellular network and wireless local area network
WO2017061948A1 (en) * 2015-10-08 2017-04-13 Telefonaktiebolaget Lm Ericsson (Publ) Transparent per-bearer switching between wwan and wlan
CN108476415B (en) 2016-02-03 2022-03-22 康普技术有限责任公司 System and method for priority-based reconfiguration of communication system elements
USD771569S1 (en) 2016-02-12 2016-11-15 Bridgeport Fittings, Inc. Electrical connector with cable armor stop
USD815604S1 (en) 2016-02-12 2018-04-17 Bridgeport Fittings, Inc. Cable armor stop
EP3424245B1 (en) * 2016-02-29 2020-12-30 CommScope Technologies LLC Automatic power configuration for a point-to-multipoint distributed radio access network
US10367344B2 (en) 2016-03-02 2019-07-30 Bridgeport Fittings, Incorporated Cable armor stop
US10623951B2 (en) 2016-03-09 2020-04-14 Qualcomm Incorporated WWAN-WLAN aggregation security
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
WO2018094726A1 (en) 2016-11-28 2018-05-31 华为技术有限公司 Method and device for automatic configuration, and base station
CN107888403B (en) * 2017-06-07 2020-05-29 大唐移动通信设备有限公司 Data transmission method and device
US10355745B2 (en) * 2017-11-09 2019-07-16 At&T Intellectual Property I, L.P. Guided wave communication system with interference mitigation and methods for use therewith
US10736114B2 (en) * 2018-01-10 2020-08-04 Charter Communications Operating, Llc RF channel analysis and improved usage of wireless channels in a wireless network
US11716694B2 (en) 2019-01-31 2023-08-01 Commscope Technologies Llc Estimating and controlling transmit power of user equipment by a base station
US11223666B2 (en) * 2019-04-08 2022-01-11 Hughes Network Systems, Llc Method and system of providing second generation (2G) voice services over Internet protocol
DE102019118733B3 (en) 2019-07-10 2020-06-18 Md Elektronik Gmbh Connection connection with a hybrid cable arrangement and a circuit board arrangement
US20210410025A1 (en) * 2020-06-24 2021-12-30 Cable Television Laboratories, Inc. Dynamic triggering of minimum periodic search timer
CN113252293B (en) * 2021-06-08 2021-10-01 中国空气动力研究与发展中心低速空气动力研究所 Gas rectification structure inside box body
US20230319589A1 (en) * 2022-03-31 2023-10-05 Rakuten Symphony Singapore Pte. Ltd. Method of changing antenna configuration, apparatus, and computer readable medium
WO2024031063A1 (en) * 2022-08-05 2024-02-08 Aviat U.S., Inc. Distributed adaptive radio configuration

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438608A (en) * 1991-04-24 1995-08-01 Nec Corporation Mobile radio communication system having base stations and radio terminals each having tenant identification data storage for storing tenant ID data
US5778322A (en) * 1993-07-16 1998-07-07 Ericsson Inc. Method and apparatus for controlling transceiver operations in a radio communications system to reduce same channel frequency interference
US5794157A (en) * 1996-08-28 1998-08-11 Telefonaktiebolaget Lm Ericsson Method and system for autonomously allocating transmit power levels for communication between a cellular terminal and a telephone base station
US6014563A (en) * 1994-11-29 2000-01-11 Alcatel N.V. Radio system for a closed user group
US6236859B1 (en) * 1996-10-23 2001-05-22 Siemens Aktiengesellschaft Method for the location registration of a mobile terminal
JP2001197557A (en) * 2000-01-07 2001-07-19 Sharp Corp Wireless communication system
US20010044305A1 (en) * 2000-05-22 2001-11-22 Reddy Joseph Soma Mobility management in wireless internet protocol networks
US20020131387A1 (en) * 2001-03-19 2002-09-19 Pitcher Gary J. Cellular system with cybercells
US20020191561A1 (en) * 2001-04-04 2002-12-19 Jyh-Cheng Chen Packet distribution and selection in soft handoff for IP-based base stations among multiple subnets
US20030119489A1 (en) * 2001-02-26 2003-06-26 Jahangir Mohammed Unlicensed wireless communications base station to facilitate unlicensed and licensed wireless communications with a subscriber device, and method of operation
US6615035B1 (en) * 1997-11-24 2003-09-02 Nortel Matra Cellular Public mobile communication system compatible wireless communication system
US6684067B2 (en) * 1997-09-23 2004-01-27 Alcatel Method of initializing a link between a mobile terminal and a domestic base station
US20040017786A1 (en) * 2002-07-24 2004-01-29 Shively David Grant System and method for providing dual mode communication to a wireless device
US20040081159A1 (en) * 2002-10-28 2004-04-29 Pan Shaowei Method and apparatus for multi-media communication over multiple networks
US20040204097A1 (en) * 2002-10-25 2004-10-14 Ibis Telecom, Inc. Internet base station
US20050037766A1 (en) * 1999-12-01 2005-02-17 Martin Hans Method of assigning transmission channels in a telecommunications network and user station
US20050088999A1 (en) * 2002-01-31 2005-04-28 Waylett Nicholas S. Communication system having a community wireless local area network for voice and high speed data communication
US6901061B1 (en) * 2000-09-05 2005-05-31 Cisco Technology, Inc. Handoff control in an enterprise division multiple access wireless system
US6925074B1 (en) * 2000-11-17 2005-08-02 Telefonaktiebolaget Lm Ericsson (Publ) Mobile communication network
US20060052085A1 (en) * 2002-05-01 2006-03-09 Gregrio Rodriguez Jesus A System, apparatus and method for sim-based authentication and encryption in wireless local area network access
US20060293038A1 (en) * 2005-06-23 2006-12-28 Sbc Knowledge Ventures L.P. Home cellular system
US7266393B2 (en) * 2000-04-07 2007-09-04 Nokia Corporation Connecting access points in wireless telecommunications systems
US20080102794A1 (en) * 2005-08-01 2008-05-01 Ubiquisys Limited Self-Configuring Cellular Basestation

Family Cites Families (203)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8702208D0 (en) 1987-05-26 1987-05-26 Nira Automotive Ab THE NIRA TURBO CONTROL SYSTEM
GB2254971B (en) 1991-03-07 1994-12-21 Ericsson Telefon Ab L M Mobile radio communications stations
US5343512A (en) * 1992-03-27 1994-08-30 Motorola, Inc. Call setup method for use with a network having mobile end users
US5915219A (en) * 1992-09-10 1999-06-22 Nokia Telecommunications Oy Cellular radio network divided into a primary network covering a selected operating area and at least one subsystem covering possibly overlapping area, with possibility of handoff and registration between primary network and subsystem
US5410754A (en) * 1993-07-22 1995-04-25 Minute Makers, Inc. Bi-directional wire-line to local area network interface and method
SE514018C2 (en) 1993-09-23 2000-12-11 Ericsson Telefon Ab L M Method of registration in a cellular cellular radio system
JP3086256B2 (en) 1994-05-06 2000-09-11 モトローラ・インコーポレーテッド System for selecting a communication channel
AUPM593694A0 (en) * 1994-05-27 1994-06-23 Curtin University Of Technology Underground microcellular communications network
JP3014275B2 (en) 1994-07-05 2000-02-28 エヌ・ティ・ティ移動通信網株式会社 Mobile communication system
US5551064A (en) * 1994-07-27 1996-08-27 Motorola, Inc. Method and apparatus for communication unit frequency assignment
JP3063822B2 (en) 1994-12-28 2000-07-12 エヌ・ティ・ティ移動通信網株式会社 Adjacent zone information automatic generation method
US5911120A (en) * 1995-09-08 1999-06-08 At&T Wireless Services Wireless communication system having mobile stations establish a communication link through the base station without using a landline or regional cellular network and without a call in progress
US5675629A (en) 1995-09-08 1997-10-07 At&T Cordless cellular system base station
FI105740B (en) * 1995-09-29 2000-09-29 Nokia Mobile Phones Ltd office communication
US6473623B1 (en) * 1996-04-18 2002-10-29 At&T Wireless Services, Inc. Method for self-calibration of a wireless communication system
GB2313260A (en) * 1996-05-17 1997-11-19 Motorola Ltd Accessing a plurality of communication systems
FI103556B (en) * 1996-06-26 1999-07-15 Nokia Telecommunications Oy Procedure for position management and searching in a cellular row io system
DE19633925C2 (en) * 1996-08-22 2000-11-23 Siemens Ag Mobile radio system and base transceiver station with integrated telephone device
US5884145A (en) * 1996-08-28 1999-03-16 Telefon Akmebolget Lm Ericsson Method and system for autonomously allocating a cellular communications channel for communication between a cellular terminal and a telephone base station
JP3585333B2 (en) * 1996-12-26 2004-11-04 松下電器産業株式会社 CDMA base station device
US5910946A (en) * 1997-01-13 1999-06-08 Samsung Electronics Co., Ltd. Wireless internet network architecture for voice and data communications
DE19708189C2 (en) 1997-02-28 2000-02-17 Deutsche Telekom Mobil Cordless non-public communication system compatible with a public mobile communication system
US6384940B1 (en) * 1997-04-21 2002-05-07 Murata Kikai Kabushiki Kaisha Facsimile device utilizing process unit for electrophotographic device
US6101388A (en) * 1997-07-24 2000-08-08 Intel Corporation Method for reducing registration traffic in a GSM system
US6414952B2 (en) * 1997-08-28 2002-07-02 Broadcom Homenetworking, Inc. Virtual gateway system and method
US6421328B1 (en) 1997-09-04 2002-07-16 Northern Telecom Limited Neighborhood list assimilation for cell-based microsystem
US6141565A (en) * 1997-11-13 2000-10-31 Metawave Communications Corporation Dynamic mobile parameter optimization
JP3634610B2 (en) * 1998-01-27 2005-03-30 富士通株式会社 Automatic call system
US6125280A (en) * 1998-03-19 2000-09-26 Lucent Technologies Inc. Automatic neighbor identification in a cellular system
JP3116893B2 (en) * 1998-03-26 2000-12-11 日本電気株式会社 Cellular system
FI111204B (en) * 1998-06-29 2003-06-13 Nokia Corp Procedure and mobile phone for configuring a base station
JP3241672B2 (en) 1998-07-31 2001-12-25 三菱電機株式会社 Interference wave detection device and interference wave detection method
KR100268679B1 (en) * 1998-07-31 2000-10-16 윤종용 Method for prioritizing handoff requests in mobile communication system
FI107861B (en) 1998-08-28 2001-10-15 Nokia Mobile Phones Ltd Neighbor cell measurements for cell reselection
US7596378B1 (en) * 1999-09-30 2009-09-29 Qualcomm Incorporated Idle mode handling in a hybrid GSM/CDMA network
US6539237B1 (en) 1998-11-09 2003-03-25 Cisco Technology, Inc. Method and apparatus for integrated wireless communications in private and public network environments
US6842462B1 (en) * 1998-12-18 2005-01-11 Lucent Technologies Inc. Wireless access of packet based networks
US6311059B1 (en) 1999-02-05 2001-10-30 Nec Corporation Mobile radio station
SE519347C2 (en) * 1999-02-18 2003-02-18 Ericsson Telefon Ab L M Procedure and node for updating information of a subscriber belonging to a localized service area
US6856612B1 (en) 1999-02-24 2005-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for call routing and codec negotiation in hybrid voice/data/internet/wireless systems
AU2804300A (en) 1999-02-24 2000-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for call routing and codec negotiation in hybrid voice/data/internet/wireless systems
EP1032236A1 (en) * 1999-02-24 2000-08-30 ICO Services Ltd. Improved congestion control using access classes
US6729929B1 (en) 1999-03-17 2004-05-04 Cisco Systems, Inc. Method and apparatus for controlling wireless networks
US7003297B2 (en) 1999-04-06 2006-02-21 Telefonaktiebolaget Lm Ericsson (Publ) Partial support of mobility between radio access networks
GB2350521B (en) 1999-04-30 2001-07-11 Nokia Corp A gateway arrangement
US6466793B1 (en) * 1999-05-28 2002-10-15 Ericsson Inc. Automatic frequency allocation (AFA) for wireless office systems sharing the spectrum with public systems
EP1104977A4 (en) 1999-06-15 2005-12-21 Ntt Docomo Inc Peripheral base station information updating method, information control method for cell search in mobile communication system, cell search method in mobile station, mobile communication system, base station and control station
US6473413B1 (en) 1999-06-22 2002-10-29 Institute For Information Industry Method for inter-IP-domain roaming across wireless networks
US6542741B2 (en) 1999-07-01 2003-04-01 Ericsson, Inc. Method of establishing an adaptive public neighbor cell list for mobile stations of a private cellular system
US6751207B1 (en) 1999-07-27 2004-06-15 Cellco Partnership Tunnelling voice over the internet protocol in a cellular network
GB2355885A (en) * 1999-07-30 2001-05-02 Nokia Telecommunications Oy Network access control
US6356690B1 (en) 1999-10-20 2002-03-12 Corning Cable Systems Llc Self-supporting fiber optic cable
US6256438B1 (en) 1999-10-29 2001-07-03 Siecor Operations, Llc Fiber optic drop cable
GB0000528D0 (en) 2000-01-11 2000-03-01 Nokia Networks Oy Location of a station in a telecommunications system
US6668167B2 (en) * 2000-01-26 2003-12-23 Mcdowell Mark Method and apparatus for sharing mobile user event information between wireless networks and fixed IP networks
US6310294B1 (en) * 2000-04-03 2001-10-30 At&T Corp. Vertical separation rack for cable management
WO2001076276A2 (en) * 2000-04-05 2001-10-11 Telefonaktiebolaget Lm Ericsson (Publ) Telecommunications network integrating cellular, packet-switched, and voice-over-ip infrastructures
WO2001078430A1 (en) 2000-04-11 2001-10-18 Nokia Corporation Application of rtp and rtcp in the amr transport in voice over ip networks
US6993359B1 (en) * 2000-04-28 2006-01-31 Cisco Technology, Inc. Method and apparatus for inter-cell handover in wireless networks using multiple protocols
KR100342512B1 (en) * 2000-05-24 2002-06-28 윤종용 A method for public call service when call manager has down state in a private wireless network
KR100334558B1 (en) * 2000-05-24 2002-05-03 윤종용 Wire·wireless unified in-building communication method and system
US6546175B1 (en) 2000-05-26 2003-04-08 Corning Cable Systems Llc Self-supporting fiber optic cable
US6648520B2 (en) 2001-09-28 2003-11-18 Corning Cable Systems Llc Fiber optic plug
US6542674B1 (en) 2000-08-25 2003-04-01 Corning Cable Systems Llc Fiber optic cables with strength members
ITTS20000003A1 (en) * 2000-05-31 2001-12-01 Telit Networks Spa SELF PLANNER: AUTOMATIC FREQUENTIAL PLANNING FOR RADIO MOBILE SYSTEMS
FI111208B (en) 2000-06-30 2003-06-13 Nokia Corp Arrangement of data encryption in a wireless telecommunication system
US6711417B1 (en) * 2000-08-16 2004-03-23 Sprint Spectrum, L.P. Interface using an ISH and a service manager
US7085260B2 (en) * 2000-08-22 2006-08-01 Lucent Technologies Inc. Internet protocol based wireless call processing
US8996698B1 (en) 2000-11-03 2015-03-31 Truphone Limited Cooperative network for mobile internet access
US6850763B1 (en) * 2000-11-22 2005-02-01 Winphoria Networks, Inc. System and method of servicing mobile communications with a proxy switch
US20050239453A1 (en) * 2000-11-22 2005-10-27 Vikberg Jari T Mobile communication network
US6954790B2 (en) * 2000-12-05 2005-10-11 Interactive People Unplugged Ab Network-based mobile workgroup system
US7039027B2 (en) * 2000-12-28 2006-05-02 Symbol Technologies, Inc. Automatic and seamless vertical roaming between wireless local area network (WLAN) and wireless wide area network (WWAN) while maintaining an active voice or streaming data connection: systems, methods and program products
US7046652B2 (en) * 2001-01-09 2006-05-16 Cisco Technology, Inc. System and method of a stackable wireless internet protocol base station
JP2002218528A (en) * 2001-01-15 2002-08-02 Matsushita Electric Ind Co Ltd Base station unit and base station unit synchronization method
DE60131572T2 (en) 2001-02-06 2008-10-23 Nokia Corp. ACCESS SYSTEM FOR A CELLULAR NETWORK
US6965584B2 (en) 2001-02-27 2005-11-15 Telcordia Technologies, Inc. Dynamic forward assignment of internet protocol addresses in wireless networks
US6473030B1 (en) 2001-02-28 2002-10-29 Seiko Epson Corporation Infrastructure-aiding for satellite navigation receiver and method
US7483989B2 (en) * 2001-03-13 2009-01-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for establishing a protocol proxy for a mobile host terminal in a multimedia session
FR2823053B1 (en) * 2001-03-30 2003-08-29 Evolium Sas METHOD FOR ESTABLISHING A LIST OF NEIGHBORING CELLS IN A MOBILE RADIO COMMUNICATION SYSTEM
US8315651B2 (en) * 2001-05-03 2012-11-20 Kyocera Corporation Instant messaging to a mobile device
WO2002093811A2 (en) * 2001-05-16 2002-11-21 Adjungo Networks Ltd. Access to plmn networks for non-plmn devices
US6621964B2 (en) 2001-05-21 2003-09-16 Corning Cable Systems Llc Non-stranded high strength fiber optic cable
JP3699013B2 (en) 2001-05-31 2005-09-28 Necアクセステクニカ株式会社 Mobile radio base station system
US7483411B2 (en) * 2001-06-04 2009-01-27 Nec Corporation Apparatus for public access mobility LAN and method of operation thereof
US7002995B2 (en) 2001-06-14 2006-02-21 At&T Corp. Broadband network with enterprise wireless communication system for residential and business environment
US7193985B1 (en) * 2001-06-14 2007-03-20 Utstarcom, Inc. System and method for managing foreign agent selections in a mobile internet protocol network
CA2389047C (en) * 2001-06-14 2009-02-03 At&T Corp. Broadband network with enterprise wireless communication system and method for residential and business environment
US6771934B2 (en) * 2001-06-19 2004-08-03 Telcordia Technologies, Inc. Methods and systems for reducing interference across coverage cells
US7272121B2 (en) * 2001-06-19 2007-09-18 Telcordia Technologies, Inc. Methods and apparatus for a modular wireless system
US20040148279A1 (en) * 2001-06-20 2004-07-29 Nir Peleg Scalable distributed hierarchical cache
US6670234B2 (en) * 2001-06-22 2003-12-30 International Business Machines Corporation Method of integrating volatile and non-volatile memory cells on the same substrate and a semiconductor memory device thereof
US20030021260A1 (en) 2001-07-25 2003-01-30 Daley Robert S. System and method for frame selection in IP-based CDMA network
US20030032451A1 (en) 2001-08-10 2003-02-13 Jianhong Hu Architecture for converged broadband wireless communications
US7181212B2 (en) 2001-08-21 2007-02-20 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for location area updating in cellular communications
JPWO2003019970A1 (en) * 2001-08-23 2005-07-21 株式会社鷹山 Wireless communication system
US20030147383A1 (en) * 2001-09-26 2003-08-07 Karen Capers Object communication services software development system and methods
US6618526B2 (en) 2001-09-27 2003-09-09 Corning Cable Systems Llc Fiber optic cables
US7103040B2 (en) 2001-11-19 2006-09-05 Telefonaktieboaget Lm Ericsson (Publ) Method and apparatus for identifying a node for data communications using its geographical location
JP3870081B2 (en) * 2001-12-19 2007-01-17 キヤノン株式会社 COMMUNICATION SYSTEM AND SERVER DEVICE, CONTROL METHOD, COMPUTER PROGRAM FOR IMPLEMENTING THE SAME, AND STORAGE MEDIUM CONTAINING THE COMPUTER PROGRAM
US7626932B2 (en) 2001-12-21 2009-12-01 Nokia Corporation Traffic control in an IP based network
CN1613268A (en) * 2002-01-02 2005-05-04 温福瑞阿网络有限公司 Method, system and apparatus for providing WWAN services to a mobile station serviced by a WLAN
US20030134650A1 (en) 2002-01-17 2003-07-17 Rangamani Sundar Method, system and apparatus for internetworking a mobile station to operate in a WWAN environment and in a WLAN environment with PBX services
CN1643816A (en) 2002-01-24 2005-07-20 因特威夫通讯有限公司 Communication system having a community wireless local area network for voice and high speed data communication
US20040087308A1 (en) * 2002-01-29 2004-05-06 Olav Tirkkonen Data transfer method in radio system
JP3957539B2 (en) 2002-03-19 2007-08-15 日本電信電話株式会社 Wireless communication base station equipment
US8432893B2 (en) * 2002-03-26 2013-04-30 Interdigital Technology Corporation RLAN wireless telecommunication system with RAN IP gateway and methods
AU2003217416A1 (en) * 2002-04-02 2003-10-20 Kineto Wireless, Inc. Method for extending the coverage area of a wireless communication
FR2838279B1 (en) 2002-04-05 2004-09-24 Nortel Networks Ltd METHOD OF CONTROL OF RADIO RESOURCES ASSIGNED TO A COMMUNICATION BETWEEN A MOBILE TERMINAL AND A CELLULAR INFRASTRUCTURE, AND EQUIPMENT FOR IMPLEMENTING THIS PROCESS
AU2003221923A1 (en) * 2002-04-17 2003-11-03 Thomson Licensing S.A. Wireless local area network (wlan) as a public land mobile network for wlan/telecommunications system interworking
US6625169B1 (en) * 2002-06-14 2003-09-23 Telesys Technologies, Inc. Integrated communication systems for exchanging data and information between networks
JP2004064655A (en) * 2002-07-31 2004-02-26 Vodafone Kk Mobile communication network and microcell apparatus
CN100553239C (en) 2002-08-14 2009-10-21 高通股份有限公司 Core network interoperability equipment and method in the pico-cell system
FR2843666B1 (en) * 2002-08-14 2005-03-18 Cit Alcatel METHOD FOR OPTIMIZING ESTABLISHED COMMUNICATIONS IN A PRIVATE TELECOMMUNICATION NETWORK COMPRISING TWO SUB-NETWORKS USING RESPECTIVELY THE QSIG AND SIP PROTOCOLS
US7190321B2 (en) * 2003-07-31 2007-03-13 Microsoft Corporation Directional enhancement/range extending devices
CN101715193A (en) 2002-10-18 2010-05-26 卡耐特无线有限公司 Apparatus and method for extending the coverage area of a licensed wireless communication system
US7953423B2 (en) * 2002-10-18 2011-05-31 Kineto Wireless, Inc. Messaging in an unlicensed mobile access telecommunications system
US7606190B2 (en) * 2002-10-18 2009-10-20 Kineto Wireless, Inc. Apparatus and messages for interworking between unlicensed access network and GPRS network for data services
US7471655B2 (en) * 2003-10-17 2008-12-30 Kineto Wireless, Inc. Channel activation messaging in an unlicensed mobile access telecommunications system
US7640008B2 (en) 2002-10-18 2009-12-29 Kineto Wireless, Inc. Apparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system
US7477920B2 (en) * 2002-10-25 2009-01-13 Intel Corporation System and method for automatically configuring and integrating a radio base station into an existing wireless cellular communication network with full bi-directional roaming and handover capability
US7729697B2 (en) * 2002-10-25 2010-06-01 Intel Corporation Private base station with exclusivity
KR100810332B1 (en) * 2002-12-05 2008-03-04 삼성전자주식회사 Hand-over apparatus and method between mobile communication systems
KR100550525B1 (en) * 2002-12-10 2006-02-10 엘지전자 주식회사 Phone Controllable Home Appliance System and Controlling Method for the Same
US7308255B2 (en) * 2003-02-10 2007-12-11 Microsoft Corporation Extending mobile phone networks
US7167707B1 (en) * 2003-02-12 2007-01-23 Cingular Wireless Ii, L.L.C. Systems and methods for GSM selection
US7369858B2 (en) 2003-02-24 2008-05-06 Autocell Laboratories, Inc. Apparatus for self-adjusting power at a wireless station to reduce inter-channel interference
WO2004082219A2 (en) 2003-03-12 2004-09-23 Persona Software, Inc. Extension of a local area phone system to a wide area network with handoff
DE10314144B4 (en) 2003-03-25 2005-06-09 Teles Ag Informationstechnologien Method and telecommunication device for providing plug-in cards provided with an identification
US7269174B2 (en) 2003-03-28 2007-09-11 Modular Mining Systems, Inc. Dynamic wireless network
EP1618720B1 (en) * 2003-04-28 2016-05-18 Chantry Networks Inc. System and method for mobile unit session management across a wireless communication network
US20040224684A1 (en) * 2003-05-07 2004-11-11 Dorsey Donald A. Method for a radiotelephone to search for higher priority networks
KR100512373B1 (en) * 2003-05-10 2005-09-05 삼성전자주식회사 Extended Neighbor Cell Management Method for Reducing Battery Consumption and Time Saving during Camping on VPLMN
US7058415B2 (en) * 2003-05-12 2006-06-06 Lucent Technologies Inc. System for providing unified cellular and wire-line service to a dual mode handset
US20040240430A1 (en) 2003-05-27 2004-12-02 Innomedia Pte Ltd. IP gateway for hybrid circuit switched and IP based mobile wireless telephone system
US20050005174A1 (en) * 2003-06-18 2005-01-06 Xerox Corporation Configurable password authentication policies
BRPI0411554A (en) * 2003-06-18 2006-08-01 Qualcomm Inc system and method for hard handoff gsm
EP1489867A1 (en) * 2003-06-20 2004-12-22 Nortel Networks Limited Method and device for selecting parameters for a cellular radio communication network based on occurrence frequencies
CA2532650C (en) * 2003-07-17 2013-10-29 Interdigital Technology Corporation Method and system for delivery of assistance data
US8666034B2 (en) 2003-07-28 2014-03-04 Apple Inc. Audio call screening for hosted voicemail systems
US7330732B2 (en) 2003-08-07 2008-02-12 Qualcomm Incorporated Scheduling neighbor cell measurements for multiple wireless communication systems
US7885208B2 (en) 2003-09-11 2011-02-08 Nokia Corporation IP-based services for circuit-switched networks
CA2693755C (en) 2003-09-23 2014-05-20 International Business Machines Corporation Wireless telephone system including voice over ip and pots
JP4318520B2 (en) * 2003-09-26 2009-08-26 富士通株式会社 Terminal status control system
US7974268B2 (en) * 2003-09-29 2011-07-05 Genband Us Llc Internet trunking protocol
US8687607B2 (en) 2003-10-08 2014-04-01 Qualcomm Incorporated Method and apparatus for feedback reporting in a wireless communications system
WO2005041612A1 (en) 2003-10-24 2005-05-06 Qualcomm Incorporated Handoff between a wireless local area network and a cellular communication system
US7577427B2 (en) 2003-11-05 2009-08-18 At&T Intellectual Property I, L.P. System and method of transitioning between cellular and voice over internet protocol communication
US7920869B2 (en) * 2003-11-19 2011-04-05 Motorola Mobility, Inc. Home network searching when roaming in wireless communications networks
US20050114853A1 (en) * 2003-11-26 2005-05-26 Glider Joseph S. Software upgrade and downgrade in systems with persistent data
ATE350871T1 (en) 2003-11-28 2007-01-15 Siemens Spa Italiana METHOD FOR OPTIMIZING THE USE OF RADIO RESOURCES DURING ACCESS PROCEDURES IN CELLULAR COMMUNICATION SYSTEMS, AND CORRESPONDING SYSTEM
WO2005057968A1 (en) * 2003-12-05 2005-06-23 Kineto Wireless, Inc. Apparatus and method for extending the coverage area of a wireless communication system using another wireless communication system
US7200400B2 (en) 2003-12-15 2007-04-03 International Business Machines Corporation Mobile to 802.11 voice multi-network roaming utilizing SIP signaling with SIP proxy or redirect server
US7215959B2 (en) * 2003-12-15 2007-05-08 International Business Machines Corporation Cellular to 802.11 voice roaming utilizing SIP signaling
KR100735242B1 (en) 2003-12-16 2007-07-03 삼성전자주식회사 Method for providing/notifying interworking information of mobile telecommunication network and wireless local area network and therefor system
CN101422065B (en) * 2003-12-22 2012-07-18 英特尔公司 Private base station with exclusivity
ES2287647T3 (en) 2004-01-09 2007-12-16 M-Stack Limited APPARATUS AND METHOD FOR PRACTICE THE DETECTION OF SYSTEM INFORMATION CHANGES IN UNIVERSAL MOBILE TELECOMMUNICATION SYSTEMS (UMTS).
CN1973561B (en) 2004-02-18 2010-05-26 艾利森电话股份有限公司 Unlicensed-radio access networks in a mobile communication system
US20050193015A1 (en) * 2004-02-19 2005-09-01 Sandraic Logic, Llc A California Limited Liability Company Method and apparatus for organizing, sorting and navigating multimedia content
US7940796B2 (en) * 2004-02-27 2011-05-10 Research In Motion Limited System and method for delivery of packets
DE602004017276D1 (en) 2004-04-14 2008-12-04 Motorola Inc Neighbor cell measurements during packet switching operation in wireless communication networks
US20050249152A1 (en) * 2004-05-04 2005-11-10 Krisztian Kiss Method for processing messages
WO2005112410A2 (en) * 2004-05-07 2005-11-24 Alcatel Wireless, Inc. Providing voice and data service for wireless cellular subscribers operating in a wireless local area network
US8041385B2 (en) 2004-05-14 2011-10-18 Kineto Wireless, Inc. Power management mechanism for unlicensed wireless communication systems
CN1954630A (en) * 2004-05-21 2007-04-25 三菱电机株式会社 Mobile packet communication system
JP2005341432A (en) * 2004-05-28 2005-12-08 Ntt Docomo Inc Frequency selecting apparatus, mobile communication system and multi-band control method
JP4447963B2 (en) 2004-05-31 2010-04-07 キヤノン株式会社 Optical deflector control device
US7349695B2 (en) * 2004-06-02 2008-03-25 Nokia Corporation Multimode roaming mobile devices
US7554960B2 (en) * 2004-06-09 2009-06-30 Vanu, Inc. Reducing cost of cellular backhaul
US20060019635A1 (en) * 2004-06-29 2006-01-26 Nokia Corporation Enhanced use of a network access identifier in wlan
US7286848B2 (en) * 2004-06-30 2007-10-23 Richard P Vireday Method and apparatus to provide tiered wireless network access
JP2008507217A (en) * 2004-07-16 2008-03-06 ブリッジポート ネットワークス, インコーポレイテッド Presence detection and handoff for cellular and Internet protocol telephony
EP1779625B1 (en) * 2004-07-30 2018-10-17 CommScope Technologies LLC A local network node
MXPA06012750A (en) 2004-08-05 2007-01-16 Lg Electronics Inc Interrupting use of frequency layer convergence scheme.
US7463887B2 (en) * 2004-08-18 2008-12-09 M-Stack Limited Apparatus and method for making measurements in mobile telecommunications system user equipment
DE602004021806D1 (en) 2004-09-27 2009-08-13 Panasonic Corp Anonymous uplink measurement report in a wireless communication system
JP4499526B2 (en) * 2004-10-19 2010-07-07 富士通株式会社 Data transmission path establishment system between mobile phone terminals
US7483702B2 (en) * 2004-10-20 2009-01-27 Nokia Corporation Cell reselection for improving network interconnection
GB2419774A (en) * 2004-10-27 2006-05-03 Ericsson Telefon Ab L M Accessing IP multimedia subsystem (IMS) services
US7565144B2 (en) 2004-11-01 2009-07-21 Nokia Corporation Method, system and mobile station for handing off communications from a cellular radio access network to an unlicensed mobile access network
US8843995B2 (en) * 2004-11-02 2014-09-23 Blackberry Limited Generic access network (GAN) controller selection in PLMN environment
US20060114883A1 (en) * 2004-12-01 2006-06-01 Mehta Pratik M System and method for wireless cellular enabled information handling system router
US7430420B2 (en) 2004-12-23 2008-09-30 Lucent Technologies Inc. Cell selection and inter-frequency handover
DE602005006227T2 (en) 2005-01-14 2009-07-16 Research In Motion Ltd., Waterloo Network selection in a multiple system environment in a visited PLMN
US20060211448A1 (en) * 2005-01-26 2006-09-21 Onecell Ltd. Method and apparatus of conveying information over a mobile and fixed networks
US7506156B2 (en) 2005-02-01 2009-03-17 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for prioritizing encrypted traffic at an intermediate node in a communications network
US20060172752A1 (en) 2005-02-03 2006-08-03 Harris John M Method and apparatus for providing talk permit notification for a PTT call
CN101116319A (en) 2005-02-07 2008-01-30 艾利森电话股份有限公司 Plain old telephony equivalent services supported via unlicensed mobile access
US20060251051A1 (en) * 2005-03-22 2006-11-09 Bhatt Yogesh B Adapter for accessing cellular services from a non-cellular device
JP4886997B2 (en) 2005-04-06 2012-02-29 株式会社エンプラス Socket for electrical parts
WO2006114628A2 (en) * 2005-04-26 2006-11-02 Vodafone Group Plc Sae/lte telecommunications networks
US7864673B2 (en) 2005-05-24 2011-01-04 At&T Mobility Ii Llc Dynamic dual-mode service access control, location-based billing, and E911 mechanisms
US7466991B2 (en) 2005-05-26 2008-12-16 Sprint Spectrum L.P. Method and system using a conference bridge for handoff of a multi-mode mobile station
US8694008B2 (en) 2005-06-16 2014-04-08 At&T Mobility Ii Llc Multi-mode handset services
US7596124B2 (en) 2005-07-29 2009-09-29 Cisco Technology, Inc. Integration of an analog phone with unlicensed mobile access/global system for mobile communications functionality
US7603124B2 (en) * 2006-03-09 2009-10-13 Alcatel-Lucent Usa Inc. Automatically configuring a neighbor set for a base station
CN101529854B (en) * 2006-10-17 2012-12-26 法国电信公司 System for controlling access to a service, and corresponding method, control device, and computer programme
US8433316B2 (en) 2006-11-03 2013-04-30 Qualcomm Incorporated Efficient search for wireless networks in connected mode
JP4410236B2 (en) * 2006-11-28 2010-02-03 株式会社東芝 Telephone system and call control method thereof
GB2446738C (en) 2007-02-02 2014-10-01 Ubiquisys Ltd Basestation measurement modes
GB2449533B (en) * 2007-02-23 2009-06-03 Ubiquisys Ltd Basestation for cellular communications system
DE102008041893A1 (en) 2008-09-09 2010-03-11 Robert Bosch Gmbh Device and method for controlling an electric motor
US8127666B2 (en) 2009-05-24 2012-03-06 G.E.W. Corporation Limited Toaster with mechanism for raising carriage above an ejection position

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438608A (en) * 1991-04-24 1995-08-01 Nec Corporation Mobile radio communication system having base stations and radio terminals each having tenant identification data storage for storing tenant ID data
US5778322A (en) * 1993-07-16 1998-07-07 Ericsson Inc. Method and apparatus for controlling transceiver operations in a radio communications system to reduce same channel frequency interference
US6014563A (en) * 1994-11-29 2000-01-11 Alcatel N.V. Radio system for a closed user group
US5794157A (en) * 1996-08-28 1998-08-11 Telefonaktiebolaget Lm Ericsson Method and system for autonomously allocating transmit power levels for communication between a cellular terminal and a telephone base station
US6236859B1 (en) * 1996-10-23 2001-05-22 Siemens Aktiengesellschaft Method for the location registration of a mobile terminal
US6684067B2 (en) * 1997-09-23 2004-01-27 Alcatel Method of initializing a link between a mobile terminal and a domestic base station
US6615035B1 (en) * 1997-11-24 2003-09-02 Nortel Matra Cellular Public mobile communication system compatible wireless communication system
US20050037766A1 (en) * 1999-12-01 2005-02-17 Martin Hans Method of assigning transmission channels in a telecommunications network and user station
JP2001197557A (en) * 2000-01-07 2001-07-19 Sharp Corp Wireless communication system
US7266393B2 (en) * 2000-04-07 2007-09-04 Nokia Corporation Connecting access points in wireless telecommunications systems
US20010044305A1 (en) * 2000-05-22 2001-11-22 Reddy Joseph Soma Mobility management in wireless internet protocol networks
US6901061B1 (en) * 2000-09-05 2005-05-31 Cisco Technology, Inc. Handoff control in an enterprise division multiple access wireless system
US6925074B1 (en) * 2000-11-17 2005-08-02 Telefonaktiebolaget Lm Ericsson (Publ) Mobile communication network
US20030119489A1 (en) * 2001-02-26 2003-06-26 Jahangir Mohammed Unlicensed wireless communications base station to facilitate unlicensed and licensed wireless communications with a subscriber device, and method of operation
US20020131387A1 (en) * 2001-03-19 2002-09-19 Pitcher Gary J. Cellular system with cybercells
US20020191561A1 (en) * 2001-04-04 2002-12-19 Jyh-Cheng Chen Packet distribution and selection in soft handoff for IP-based base stations among multiple subnets
US20050088999A1 (en) * 2002-01-31 2005-04-28 Waylett Nicholas S. Communication system having a community wireless local area network for voice and high speed data communication
US20060052085A1 (en) * 2002-05-01 2006-03-09 Gregrio Rodriguez Jesus A System, apparatus and method for sim-based authentication and encryption in wireless local area network access
US20040017786A1 (en) * 2002-07-24 2004-01-29 Shively David Grant System and method for providing dual mode communication to a wireless device
US20040204097A1 (en) * 2002-10-25 2004-10-14 Ibis Telecom, Inc. Internet base station
US20040081159A1 (en) * 2002-10-28 2004-04-29 Pan Shaowei Method and apparatus for multi-media communication over multiple networks
US20060293038A1 (en) * 2005-06-23 2006-12-28 Sbc Knowledge Ventures L.P. Home cellular system
US20080102794A1 (en) * 2005-08-01 2008-05-01 Ubiquisys Limited Self-Configuring Cellular Basestation
US20090017864A1 (en) * 2005-08-01 2009-01-15 Peter Keevill Local area cellular basestation
US20100317405A1 (en) * 2005-08-01 2010-12-16 Ubiquisys Limited Self-configuring cellular basestation

Cited By (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8160588B2 (en) 2001-02-26 2012-04-17 Kineto Wireless, Inc. Method and apparatus for supporting the handover of a telecommunication session between a licensed wireless system and an unlicensed wireless system
US7974624B2 (en) 2002-10-18 2011-07-05 Kineto Wireless, Inc. Registration messaging in an unlicensed mobile access telecommunications system
US7949326B2 (en) 2002-10-18 2011-05-24 Kineto Wireless, Inc. Apparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system
US7929977B2 (en) 2003-10-17 2011-04-19 Kineto Wireless, Inc. Method and system for determining the location of an unlicensed mobile access subscriber
US11252779B2 (en) 2004-08-24 2022-02-15 Comcast Cable Communications, Llc Physical location management for voice over packet communication
US10517140B2 (en) 2004-08-24 2019-12-24 Comcast Cable Communications, Llc Determining a location of a device for calling via an access point
US9648644B2 (en) 2004-08-24 2017-05-09 Comcast Cable Communications, Llc Determining a location of a device for calling via an access point
US10070466B2 (en) 2004-08-24 2018-09-04 Comcast Cable Communications, Llc Determining a location of a device for calling via an access point
US8655408B2 (en) 2005-08-01 2014-02-18 Ubiquisys Limited Self-configuring cellular basestation
US20100322426A1 (en) * 2005-08-01 2010-12-23 Ubiquisys Limited Self-configuring cellular basestation
US20100317405A1 (en) * 2005-08-01 2010-12-16 Ubiquisys Limited Self-configuring cellular basestation
US20080102794A1 (en) * 2005-08-01 2008-05-01 Ubiquisys Limited Self-Configuring Cellular Basestation
US9144111B2 (en) 2005-08-01 2015-09-22 Ubiquisys Limited Self-configuring cellular basestation
US8676262B2 (en) * 2005-08-01 2014-03-18 Ubiquisys Limited Self-configuring cellular basestation
US8660610B2 (en) 2005-08-01 2014-02-25 Ubiquisys Limited Self-configuring cellular basestation
US20110258447A1 (en) * 2006-01-24 2011-10-20 Huawei Technologies Co., Ltd. Method, system and authentication centre for authenticating in end-to-end communications based on a mobile network
US8468353B2 (en) * 2006-01-24 2013-06-18 Huawei Technologies Co., Ltd. Method, system and authentication centre for authenticating in end-to-end communications based on a mobile network
US8588771B2 (en) * 2006-03-13 2013-11-19 Vodafone Group Plc Method of providing access to an IP multimedia subsystem
US20080020704A1 (en) * 2006-03-13 2008-01-24 Mauro Costa Method of Providing Access to an IP Multimedia Subsystem
US20100235634A1 (en) * 2006-03-22 2010-09-16 Patrick Fischer Security considerations for the lte of umts
US8832449B2 (en) * 2006-03-22 2014-09-09 Lg Electronics Inc. Security considerations for the LTE of UMTS
US20070268855A1 (en) * 2006-05-22 2007-11-22 Cisco Technology, Inc. Enhanced unlicensed mobile access network architecture
US8817696B2 (en) 2006-05-22 2014-08-26 Cisco Technology, Inc. Enhanced unlicensed mobile access network architecture
US8005076B2 (en) 2006-07-14 2011-08-23 Kineto Wireless, Inc. Method and apparatus for activating transport channels in a packet switched communication system
US20080031196A1 (en) * 2006-07-28 2008-02-07 Tekelec Methods, systems, and computer program products for offloading call control services from a first network of a first type to a second network of a second type
US7606202B2 (en) * 2006-07-28 2009-10-20 Tekelec Methods, systems, and computer program products for offloading call control services from a first network of a first type to a second network of a second type
US20080031214A1 (en) * 2006-08-07 2008-02-07 Mark Grayson GSM access point realization using a UMA proxy
US20080305792A1 (en) * 2006-09-22 2008-12-11 Amit Khetawat Method and Apparatus for Performing Network Based Service Access Control for Femtocells
US20080076419A1 (en) * 2006-09-22 2008-03-27 Amit Khetawat Method and apparatus for discovery
US20080076393A1 (en) * 2006-09-22 2008-03-27 Amit Khetawat Method and apparatus for securing communication between an access point and a network controller
US8204502B2 (en) * 2006-09-22 2012-06-19 Kineto Wireless, Inc. Method and apparatus for user equipment registration
US20080076420A1 (en) * 2006-09-22 2008-03-27 Amit Khetawat Method and apparatus for user equipment registration
US8036664B2 (en) 2006-09-22 2011-10-11 Kineto Wireless, Inc. Method and apparatus for determining rove-out
US20080076412A1 (en) * 2006-09-22 2008-03-27 Amit Khetawat Method and apparatus for registering an access point
US8073428B2 (en) 2006-09-22 2011-12-06 Kineto Wireless, Inc. Method and apparatus for securing communication between an access point and a network controller
US8085715B2 (en) * 2006-10-19 2011-12-27 Vodafone Group, Plc Controlling the use of access points in a telecommunications networks
US20100214956A1 (en) * 2006-10-19 2010-08-26 Alan Law Controlling the use of access points in a telecommunications networks
US9843480B2 (en) 2006-10-23 2017-12-12 T-Mobile Usa, Inc. System and method for managing access point functionality and configuration
US9301155B2 (en) 2006-10-23 2016-03-29 T-Mobile Usa, Inc. System and method for managing access point functionality and configuration
US10447533B2 (en) 2006-10-23 2019-10-15 T-Mobile Usa, Inc. System and method for managing access point functionality and configuration
US7769009B1 (en) * 2006-12-11 2010-08-03 Sprint Communications Company L.P. Automatic peer to peer mobile device data replication
US9008081B2 (en) * 2006-12-14 2015-04-14 Rpx Clearinghouse Llc Serving gateway proxies for non-SIP speakers in a next generation network
US20080144494A1 (en) * 2006-12-14 2008-06-19 Nortel Networks Limited Serving gateway proxies for non-sip speakers in a next generation network
US20100054201A1 (en) * 2006-12-28 2010-03-04 Christian Gotare Method In A Network Node For Separating Circuit Switched And Packet Switched Traffic
US8744452B2 (en) 2007-02-02 2014-06-03 Ubiquisys Limited Receiving signals from surrounding basestations
US20080188266A1 (en) * 2007-02-02 2008-08-07 Ubiquisys Limited Basestation measurement modes
US8073127B2 (en) 2007-02-21 2011-12-06 Tekelec Methods, systems, and computer program products for using a location routing number based query and response mechanism to effect subscriber cutover
US8213440B2 (en) 2007-02-21 2012-07-03 Tekelec Global, Inc. Methods, systems, and computer program products for using a location routing number based query and response mechanism to route calls to IP multimedia subsystem (IMS) subscribers
US20080198999A1 (en) * 2007-02-21 2008-08-21 Tekelec Methods, systems, and computer program products for using a location routing number based query and response mechanism to effect subscriber cutover
US20080198996A1 (en) * 2007-02-21 2008-08-21 Tekelec Methods, systems, and computer program products for using a location routing number based query and response mechanism to effect advanced routing
US9930609B2 (en) 2007-03-20 2018-03-27 At&T Intellectual Property I, L.P. System and method for authentication of a communication device
US10470103B2 (en) 2007-03-20 2019-11-05 At&T Intellectual Property I, L.P. System and method for authentication of a communication device
US20160241571A1 (en) * 2007-03-20 2016-08-18 At&T Intellectual Property I, Lp System and method for authentication of a communication device
US9565199B2 (en) * 2007-03-20 2017-02-07 At&T Intellectual Property I, L.P. System and method for authentication of a communication device
US20080235778A1 (en) * 2007-03-21 2008-09-25 Motorola, Inc. Communication network, an access network element and a method of operation therefor
US8400989B2 (en) * 2007-04-13 2013-03-19 Airvana Llc Activating private access points for wireless networking
US20080253550A1 (en) * 2007-04-13 2008-10-16 Ch Ng Shi Baw Activating Private Access Points For Wireless Networking
US20080261563A1 (en) * 2007-04-17 2008-10-23 Alcatel Lucent Method for interfacing a femto-cell equipment with a mobile core network
KR101515651B1 (en) 2007-04-17 2015-04-27 알까뗄 루슨트 A method for interfacing a femto-cell equipment with a mobile core network
US8750829B2 (en) * 2007-04-17 2014-06-10 Alcatel Lucent Method for interfacing a femto-cell equipment with a mobile core network
US20080260119A1 (en) * 2007-04-20 2008-10-23 Rohini Marathe Systems, methods, and computer program products for providing service interaction and mediation in a communications network
US20090019212A1 (en) * 2007-07-12 2009-01-15 Color City Enterprise Co., Ltd. Flash disk of phone book
US8335299B1 (en) * 2007-08-03 2012-12-18 Computer Telephony Solutions, Inc. System and method for capturing, sharing, annotating, archiving, and reviewing phone calls with related computer video in a computer document format
US20090082046A1 (en) * 2007-09-25 2009-03-26 Teppei Shoji Radiocommunication equipment
US20110269428A1 (en) * 2007-10-04 2011-11-03 Lucent Technologies, Inc. Method for authenticating mobile units attached to a femtocell that operates according to code division multiple access
US20090094683A1 (en) * 2007-10-04 2009-04-09 Morgan Todd C Method for authenticating mobile units attached to a femtocell that operates according to code division multiple access
US8230035B2 (en) * 2007-10-04 2012-07-24 Alcatel Lucent Method for authenticating mobile units attached to a femtocell that operates according to code division multiple access
US8224921B2 (en) * 2007-10-04 2012-07-17 Alcatel Lucent Method for authenticating mobile units attached to a femtocell that operates according to code division multiple access
US20090191844A1 (en) * 2007-10-04 2009-07-30 Morgan Todd C Method for authenticating a mobile unit attached to a femtocell that operates according to code division multiple access
US8428554B2 (en) * 2007-10-04 2013-04-23 Alcatel Lucent Method for authenticating a mobile unit attached to a femtocell that operates according to code division multiple access
US20090141671A1 (en) * 2007-11-29 2009-06-04 Morihito Miyagi Packet communication network and subscriber-associated-information delivery controller
US8184575B2 (en) * 2007-11-29 2012-05-22 Hitachi, Ltd. Packet communication network and subscriber-associated-information delivery controller
US9462020B2 (en) * 2008-01-16 2016-10-04 Qualcomm Incorporated Intelligent client: multiple channel switching over a digital broadcast network
US20090183205A1 (en) * 2008-01-16 2009-07-16 Qualcomm Incorporated Intelligent client: multiple channel switching over a digital broadcast network
US20120184249A1 (en) * 2008-01-25 2012-07-19 Morgan Todd C Method for authenticating a mobile unit attached to a femtocell that operates according to code division multiple access
US8457597B2 (en) * 2008-01-25 2013-06-04 Alcatel Lucent Method for authenticating a mobile unit attached to a femtocell that operates according to code division multiple access
US20120225640A1 (en) * 2008-03-04 2012-09-06 Alcatel-Lucent Usa Inc. System and method for securing a base station using sim cards
US8249553B2 (en) * 2008-03-04 2012-08-21 Alcatel Lucent System and method for securing a base station using SIM cards
US8626123B2 (en) * 2008-03-04 2014-01-07 Alcatel Lucent System and method for securing a base station using SIM cards
US8923813B2 (en) * 2008-03-04 2014-12-30 Alcatel Lucent System and method for securing a base station using SIM cards
US8229429B2 (en) 2008-04-09 2012-07-24 Ntt Docomo, Inc. Position registering method, radio control station, and exchange
US20110092205A1 (en) * 2008-04-09 2011-04-21 Ntt Docomo, Inc. Position registering method, radio control station, and exchange
US8041335B2 (en) 2008-04-18 2011-10-18 Kineto Wireless, Inc. Method and apparatus for routing of emergency services for unauthorized user equipment in a home Node B system
US8532092B2 (en) 2008-06-02 2013-09-10 Tekelec, Inc. Methods, systems, and computer readable media for providing next generation network (NGN)-based end user services to legacy subscribers in a communications network
US8488582B2 (en) * 2008-06-12 2013-07-16 Alcatel Lucent Minimal GAN RTP packet length via multi-level header compression
US20090310622A1 (en) * 2008-06-12 2009-12-17 Alcatel Lucent Minimal GAN RTP packet length via multi-level header compression
US8953620B2 (en) * 2008-07-17 2015-02-10 T-Mobile Usa, Inc. System and method for selectively provisioning telecommunications services between an access point and a telecommunications network using a subscriber identifier
US20100014506A1 (en) * 2008-07-17 2010-01-21 Linkola Janne P System and method for selectively provisioning telecommunications services between an access point and a telecommunications network based on landline telephone detection
US20100017861A1 (en) * 2008-07-17 2010-01-21 Qualcomm Incorporated Apparatus and method for mobile virtual network operator (mvno) hosting and pricing
US20100226346A1 (en) * 2008-07-17 2010-09-09 Caldwell Christopher E System and method for selectively provisioning telecommunications services between an access point and a telecommunications network using a subscriber identifier
US20100014507A1 (en) * 2008-07-17 2010-01-21 Linkola Janne P System and method for selectively provisioning telecommunications services between an access point and a telecommunications network using a subscriber identifier
US9363740B2 (en) 2008-07-17 2016-06-07 T-Mobile Usa, Inc. System and method for selectively provisioning telecommunications services between an access point and a telecommunications network using a subscriber identifier
US8825876B2 (en) * 2008-07-17 2014-09-02 Qualcomm Incorporated Apparatus and method for mobile virtual network operator (MVNO) hosting and pricing
US8619545B2 (en) * 2008-07-17 2013-12-31 T-Mobile Usa, Inc. System and method for selectively provisioning telecommunications services between an access point and a telecommunications network based on landline telephone detection
US8885635B2 (en) * 2008-07-17 2014-11-11 T-Mobile Usa, Inc. System and method for selectively provisioning telecommunications services between an access point and a telecommunications network using a subscriber identifier
US20110110354A1 (en) * 2008-08-05 2011-05-12 Huawei Technologies Co., Ltd. Node, method, and system for high-rate access to public network from mobile network
US8924960B2 (en) * 2008-08-28 2014-12-30 Intel Corporation Assignment, at least in part, of at least one virtual machine to at least one packet
US20100058336A1 (en) * 2008-08-28 2010-03-04 Intel Corporation Assignment, at least in part, of at least one virtual machine to at least one packet
US9066281B2 (en) 2008-10-22 2015-06-23 Huawei Technologies Co., Ltd. Method, device, and system for transmitting packet switched services
US9357572B2 (en) 2008-10-22 2016-05-31 Huawei Technologies Co., Ltd. Method, device, and system for transmitting packet switched services
EP2352259A4 (en) * 2008-10-22 2012-03-14 Huawei Tech Co Ltd Method, device and system for transmitting packet switching services
US20110194498A1 (en) * 2008-10-22 2011-08-11 Yali Qin Method, device, and system for transmitting packet switched services
EP2352259A1 (en) * 2008-10-22 2011-08-03 Huawei Technologies Co., Ltd. Method, device and system for transmitting packet switching services
US20100151868A1 (en) * 2008-12-15 2010-06-17 Fujitsu Limited Communication apparatus and mobile terminal
EP2197223A2 (en) * 2008-12-15 2010-06-16 Fujitsu Limited Communication apparatus and mobile terminal
EP2197223A3 (en) * 2008-12-15 2010-08-25 Fujitsu Limited Communication apparatus and mobile terminal
US8595485B2 (en) * 2009-01-16 2013-11-26 Zte Corporation Security management method and system for WAPI terminal accessing IMS network
US20110276798A1 (en) * 2009-01-16 2011-11-10 Liang Jiehui Security management method and system for wapi terminal accessing ims network
US20100184454A1 (en) * 2009-01-22 2010-07-22 Infineon Technologies Ag Mobile radio communication devices and methods for operating the same
US8615258B2 (en) 2009-01-22 2013-12-24 Intel Mobile Communications GmbH Home base station communication with a mobile radio communication device using a home base station group member identifier
US8774148B2 (en) 2009-02-27 2014-07-08 T-Mobile Usa, Inc. System and method for provisioning telecommunications services between an access point and a telecommunications network and providing missing information notification
US8484457B2 (en) 2009-03-10 2013-07-09 T-Mobile Usa, Inc. Method of securely pairing devices with an access point for an IP-based wireless network
US20100235621A1 (en) * 2009-03-10 2010-09-16 Winkler david b Method of securely pairing devices with an access point for an ip-based wireless network
US20100246488A1 (en) * 2009-03-27 2010-09-30 Mstar Semiconductor, Inc. Wwan to ethernet converter and communication system thereof
US8532138B2 (en) * 2009-03-27 2013-09-10 Mstar Semiconductor, Inc. WWAN to ethernet converter and communication system thereof
TWI415424B (en) * 2009-03-27 2013-11-11 Mstar Semiconductor Inc Wwan to ethernet converter and communication system thereof
EP2428059A4 (en) * 2009-05-05 2017-04-19 LG Electronics Inc. Server for control plane at mobile communication network and method for controlling establishment of connection thereof
US20100311416A1 (en) * 2009-06-04 2010-12-09 United States Cellular Corporation System and method for landline replacement
US8249604B2 (en) 2009-06-04 2012-08-21 United States Cellular Corporation System and method for landline replacement
US11317271B2 (en) 2009-06-23 2022-04-26 Sharp Kabushiki Kaisha Mobile station, position management apparatus, subscriber information management apparatus, mobile communication system, access control apparatus, home base station and communication method
US20120099578A1 (en) * 2009-06-23 2012-04-26 Sharp Kabushiki Kaisha Mobile station, position management apparatus, subscriber information management apparatus, mobile communication system, access control apparatus, home base station and communication method
US9867030B2 (en) * 2009-06-23 2018-01-09 Sharp Kabushiki Kaisha Mobile station, position management apparatus, subscriber information management apparatus, mobile communication system, access control apparatus, home base station and communication method
US20110038304A1 (en) * 2009-08-11 2011-02-17 Yi-Neng Lin Telecommunication network broadband off-loading system and method
US20120151030A1 (en) * 2009-08-21 2012-06-14 Samsung Electronics Co. Ltd. Network elements, integrated circuits and methods for routing control
US9887909B2 (en) * 2009-08-21 2018-02-06 Samsung Electronics Co., Ltd. Network elements, integrated circuits and methods for routing control
US9686370B2 (en) * 2009-10-19 2017-06-20 Ubiquisys Limited Wireless access point
US20120295664A1 (en) * 2009-10-19 2012-11-22 Ubiquisys Limited Wireless access point
US8824433B2 (en) * 2010-07-23 2014-09-02 Verizon Patent And Licensing Inc. Data offloading with distributed IP management and routing
US20120020260A1 (en) * 2010-07-23 2012-01-26 Verizon Patent And Licensing, Inc. Data offloading with distributed ip management and routing
US20120077545A1 (en) * 2010-09-29 2012-03-29 Pantech Co., Ltd. Mobile terminal and control method
US9124704B2 (en) 2010-11-05 2015-09-01 Blackberry Limited Mobile communication device with subscriber identity module
US9055154B2 (en) 2010-11-05 2015-06-09 Blackberry Limited Mobile communication device with subscriber identity module
US20120315898A1 (en) * 2010-11-05 2012-12-13 Research In Motion Limited Mobile Communication Device with Subscriber Identity Module
US8731607B2 (en) 2010-11-05 2014-05-20 Blackberry Limited Mobile communication device with subscriber identity module
US8831676B2 (en) 2010-11-05 2014-09-09 Blackberry Limited Mobile communication device with subscriber identity module
US8718706B2 (en) * 2010-11-05 2014-05-06 Blackberry Limited Mobile communication device with subscriber identity module
US8561170B2 (en) * 2010-12-02 2013-10-15 Kabushiki Kaisha Toshiba Processor and semiconductor device
US20120144477A1 (en) * 2010-12-02 2012-06-07 Kabushiki Kaisha Toshiba Processor and semiconductor device
US20130028420A1 (en) * 2011-07-27 2013-01-31 Vikberg Jari Circuit switched mobile telephony in fixed wireless access
US8953803B2 (en) * 2011-07-27 2015-02-10 Telefonaktiebolaget Lm Ericsson (Publ) Circuit switched mobile telephony in fixed wireless access
US20140146806A1 (en) * 2011-08-03 2014-05-29 Huawei Technologies Co., Ltd. Method, device, and system for user equipment to access evolved packet core network
US9503881B2 (en) * 2011-08-03 2016-11-22 Huawei Technologies Co., Ltd. Method, device, and system for user equipment to access evolved packet core network
US20130182693A1 (en) * 2012-01-16 2013-07-18 Smith Micro Software, Inc. Enabling a Mobile Broadband Hotspot by an Auxiliary Radio
US9220065B2 (en) * 2012-01-16 2015-12-22 Smith Micro Software, Inc. Enabling a mobile broadband hotspot by an auxiliary radio
US20130195268A1 (en) * 2012-01-30 2013-08-01 Telefonaktiebolaget L M Ericsson (Publ) Call Handover Between Cellular Communication System Nodes That Support Different Security Contexts
US10433161B2 (en) * 2012-01-30 2019-10-01 Telefonaktiebolaget Lm Ericsson (Publ) Call handover between cellular communication system nodes that support different security contexts
US20150029973A1 (en) * 2012-02-21 2015-01-29 Seppo Ilmari Vesterinen Signalling Interfaces in Communications
US20140167929A1 (en) * 2012-12-13 2014-06-19 Samsung Electronics Co., Ltd. Method and apparatus for controlling devices in home network system
US10002524B2 (en) * 2012-12-13 2018-06-19 Samsung Electronics Co., Ltd. Method and apparatus for controlling devices in home network system
US9930614B2 (en) * 2013-02-15 2018-03-27 Blackberry Limited Public land mobile network (“PLMN”) discovery communications in a wireless network
US20160192288A1 (en) * 2013-02-15 2016-06-30 Blackberry Limited Public land mobile network ("plmn") discovery communications in a wireless network
US9769172B2 (en) * 2013-09-06 2017-09-19 Fujitsu Limited Method of accessing a network securely from a personal device, a personal device, a network server and an access point
US20150074769A1 (en) * 2013-09-06 2015-03-12 Fujitsu Limited Method of accessing a network securely from a personal device, a personal device, a network server and an access point
US20150222602A1 (en) * 2013-09-25 2015-08-06 Intel Corporation Authenticated time-of-flight indoor positioning systems and methods
US9742737B2 (en) * 2013-09-25 2017-08-22 Intel Corporation Authenticated time-of-flight indoor positioning systems and methods
US9680737B2 (en) * 2013-12-20 2017-06-13 Vodafone Ip Licensing Limited Telecommunications networks
US20150181467A1 (en) * 2013-12-20 2015-06-25 Cisco Technology, Inc. Telecommunications Networks
US20170164194A1 (en) * 2014-06-26 2017-06-08 Nokia Solutions And Networks Oy Offloading of a wireless node authentication with core network
US11324022B1 (en) * 2014-10-06 2022-05-03 Sprint Spectrum L.P. Method and system for selecting a carrier on which to schedule communications of a type of bearer traffic
US9967881B1 (en) 2014-12-18 2018-05-08 Sprint Spectrum L.P. Management of data transmission over radio-link encompassing multiple component carriers
US9820289B1 (en) 2014-12-18 2017-11-14 Sprint Spectrum L.P. Method and system for managing quantity of carriers in air interface connection based on type of content
US9807766B1 (en) 2015-01-30 2017-10-31 Sprint Spectrum L.P. Method and system for component carrier selection based on content type
US10009430B2 (en) 2015-08-27 2018-06-26 Intel IP Corporation Apparatus, system and method of fine timing measurement (FTM)
US9763046B2 (en) 2015-08-27 2017-09-12 Intel IP Corporation Apparatus, system and method of Fine Timing Measurement (FTM)
US11178287B1 (en) 2015-09-30 2021-11-16 Sprint Spectrum L.P. Use of a single channel for voice communications and multiple channels for non-voice communications
WO2017141268A1 (en) * 2016-02-16 2017-08-24 Rajah Vijay Kumar Private system for mobile communication (psm) and apparatus therefor
US10045359B1 (en) 2016-03-08 2018-08-07 Sprint Spectrum L.P. Method and system for managing carriers based on simultaneous voice and data communication
US9998970B2 (en) * 2016-04-28 2018-06-12 Samsung Electronics Co., Ltd. Fast VoWiFi handoff using IKE v2 optimization
US10051525B1 (en) 2016-06-28 2018-08-14 Sprint Spectrum L.P. Controlling relay-UE operation based on bearer content type
US11553561B2 (en) * 2016-10-28 2023-01-10 Apple Inc. Protection of the UE identity during 802.1x carrier hotspot and wi-fi calling authentication
US20180124597A1 (en) * 2016-10-28 2018-05-03 Apple Inc. Protection of the UE Identity During 802.1x Carrier Hotspot and Wi-Fi Calling Authentication
US10833876B2 (en) * 2016-10-28 2020-11-10 Apple Inc. Protection of the UE identity during 802.1x carrier hotspot and Wi-Fi calling authentication
US11405783B2 (en) * 2016-12-21 2022-08-02 Datang Mobile Communications Equipment Co., Ltd. Access control method and device
WO2018163206A3 (en) * 2017-03-07 2018-10-18 Quantum Creo Technology Llp An integrated smart energy monitoring and control device
US20220232384A1 (en) * 2017-09-08 2022-07-21 Futurewei Technologies, Inc. Method and Device for Negotiating Security and Integrity Algorithms
US20220225100A1 (en) * 2017-09-08 2022-07-14 Futurewei Technologies, Inc. Method and Device for Negotiating Security and Integrity Algorithms
US11895498B2 (en) * 2017-09-08 2024-02-06 Futurewei Technologies, Inc. Method and device for negotiating security and integrity algorithms
US11297502B2 (en) * 2017-09-08 2022-04-05 Futurewei Technologies, Inc. Method and device for negotiating security and integrity algorithms
US20190097968A1 (en) * 2017-09-28 2019-03-28 Unisys Corporation Scip and ipsec over nat/pat routers
US11134418B2 (en) * 2017-10-12 2021-09-28 Telefonaktiebolaget Lm Ericsson (Publ) Communication device, network node, radio network node and methods performed therein for handling communication in a communication network
US11418962B2 (en) 2017-10-30 2022-08-16 Huawei Technologies Co., Ltd. Method and Device for Obtaining UE Security Capabilities
EP3672355A1 (en) * 2018-12-21 2020-06-24 Air Lynx Portable device implementing a private mobile radio communication network infrastructure
FR3091133A1 (en) * 2018-12-21 2020-06-26 Air-Lynx Installation of a private mobile radiocommunication network, method of training such an installation and associated computer program
FR3091132A1 (en) * 2018-12-21 2020-06-26 Air-Lynx Transportable device implementing a private mobile radio network infrastructure
FR3091130A1 (en) * 2018-12-21 2020-06-26 Air-Lynx Method for federating two systems each comprising a private mobile radio network infrastructure, associated computer program and federating two systems each comprising a private mobile radio network infrastructure
EP3672298A1 (en) * 2018-12-21 2020-06-24 Air Lynx Method for federation of two systems, each comprising a private mobile radio communication network infrastructure, associated computer program and federation of two systems, each comprising a private mobile radio communication network infrastructure
US11297485B2 (en) 2018-12-21 2022-04-05 Bull Sas Installation of a private mobile radiocommunication network, method for forming such an installation and associated computer program
EP3672315A1 (en) * 2018-12-21 2020-06-24 Air Lynx Installation for private mobile radio communication network, method for forming such an installation and associated computer program
CN110475242A (en) * 2019-07-03 2019-11-19 深圳市广和通无线通信软件有限公司 A kind of LTE network register method, device, storage medium and computer equipment
US20220167160A1 (en) * 2020-11-23 2022-05-26 Cisco Technology, Inc. Openroaming for private communication systems
US11956628B2 (en) * 2021-10-01 2024-04-09 Cisco Technology, Inc. Openroaming for private communication systems
US11956852B2 (en) 2022-02-11 2024-04-09 Comcast Cable Communications, Llc Physical location management for voice over packet communication

Also Published As

Publication number Publication date
GB2430839B (en) 2007-10-17
JP2011019247A (en) 2011-01-27
JP2012213163A (en) 2012-11-01
GB2432082A (en) 2007-05-09
EP2506656A2 (en) 2012-10-03
US20090017864A1 (en) 2009-01-15
JP5140590B2 (en) 2013-02-06
GB0625662D0 (en) 2007-01-31
EP2506657A3 (en) 2016-07-13
JP2012151887A (en) 2012-08-09
EP2506657B1 (en) 2019-09-11
GB2458041A (en) 2009-09-09
DE202005021930U1 (en) 2011-08-08
JP2009504049A (en) 2009-01-29
JP2009504050A (en) 2009-01-29
US20100227645A1 (en) 2010-09-09
EP2506657A2 (en) 2012-10-03
CN101278586B (en) 2013-01-23
US8660610B2 (en) 2014-02-25
US20130178217A1 (en) 2013-07-11
EP2375798A2 (en) 2011-10-12
GB0625660D0 (en) 2007-01-31
GB0610650D0 (en) 2006-07-05
CN101278576A (en) 2008-10-01
US8676265B2 (en) 2014-03-18
CN101278590A (en) 2008-10-01
ES2405682T3 (en) 2013-06-03
GB2428937A (en) 2007-02-07
JP4965568B2 (en) 2012-07-04
US8909294B2 (en) 2014-12-09
EP2288198A2 (en) 2011-02-23
US20100190495A1 (en) 2010-07-29
JP2013093894A (en) 2013-05-16
JP2009504048A (en) 2009-01-29
GB2428942A (en) 2007-02-07
CN101278586A (en) 2008-10-01
WO2007015066A2 (en) 2007-02-08
EP2506658B1 (en) 2018-09-05
JP5457488B2 (en) 2014-04-02
JP5043998B2 (en) 2012-10-10
GB2447159A (en) 2008-09-03
GB2428942B (en) 2009-08-12
EP2375798B1 (en) 2019-11-20
US8676262B2 (en) 2014-03-18
EP2337394A3 (en) 2013-06-19
CN103152842B (en) 2016-04-20
JP2009504047A (en) 2009-01-29
US20130089055A1 (en) 2013-04-11
JP5530537B2 (en) 2014-06-25
US8655408B2 (en) 2014-02-18
EP2288198B1 (en) 2013-03-06
GB0807816D0 (en) 2008-06-04
EP2337393A2 (en) 2011-06-22
US20080102794A1 (en) 2008-05-01
GB0515888D0 (en) 2005-09-07
GB2430120B (en) 2007-10-17
JP5576900B2 (en) 2014-08-20
US8738084B2 (en) 2014-05-27
EP1911310A2 (en) 2008-04-16
GB2447365A (en) 2008-09-10
GB0625661D0 (en) 2007-01-31
GB0807815D0 (en) 2008-06-04
EP2506658A2 (en) 2012-10-03
US20090190550A1 (en) 2009-07-30
DE202006020958U1 (en) 2011-09-02
JP2009504051A (en) 2009-01-29
US20120238324A1 (en) 2012-09-20
US8204543B2 (en) 2012-06-19
PL2337393T3 (en) 2014-01-31
US8639248B2 (en) 2014-01-28
DE202006020957U1 (en) 2011-09-02
GB2432082B (en) 2007-10-17
CN103260271B (en) 2016-08-24
GB2447159B (en) 2009-03-25
GB0807818D0 (en) 2008-06-04
GB2449531A (en) 2008-11-26
GB2430839A (en) 2007-04-04
CN101278577B (en) 2014-02-12
US20140243000A1 (en) 2014-08-28
US20100317405A1 (en) 2010-12-16
CN103260271A (en) 2013-08-21
EP2506655A2 (en) 2012-10-03
CN103152842A (en) 2013-06-12
US20080304439A1 (en) 2008-12-11
GB2430120A (en) 2007-03-14
EP2337394A2 (en) 2011-06-22
DE202006020961U1 (en) 2011-08-08
EP2375798A3 (en) 2017-04-19
US9144111B2 (en) 2015-09-22
EP2337393B1 (en) 2013-04-17
EP1911310B1 (en) 2013-02-27
EP2506656B1 (en) 2020-09-23
GB2449531B (en) 2009-05-27
EP2337393A3 (en) 2012-03-07
GB0909125D0 (en) 2009-07-01
GB2458041B (en) 2010-02-10
EP2288198A3 (en) 2011-12-07
PL2288198T3 (en) 2014-05-30
CN101278590B (en) 2013-08-21
GB2430121A (en) 2007-03-14
WO2007015066A3 (en) 2007-05-18
JP5209475B2 (en) 2013-06-12
US20100322426A1 (en) 2010-12-23
JP5259401B2 (en) 2013-08-07
ES2411133T3 (en) 2013-07-04
GB0625663D0 (en) 2007-01-31
CN101278577A (en) 2008-10-01
EP2506655A3 (en) 2016-07-13
JP5021644B2 (en) 2012-09-12
EP2506658A3 (en) 2016-07-13
GB2447365B (en) 2008-12-03
CN101278575A (en) 2008-10-01
CN103281807A (en) 2013-09-04
DE202006020960U1 (en) 2011-08-08
EP2506656A3 (en) 2016-07-13
GB2428937B (en) 2010-08-18

Similar Documents

Publication Publication Date Title
EP2375798B1 (en) Authentication of an access point using USIM
EP1911307B1 (en) Private access point containing a sim card
US8036664B2 (en) Method and apparatus for determining rove-out
US7995994B2 (en) Method and apparatus for preventing theft of service in a communication system
US8204502B2 (en) Method and apparatus for user equipment registration
US8150397B2 (en) Method and apparatus for establishing transport channels for a femtocell
US8073428B2 (en) Method and apparatus for securing communication between an access point and a network controller
Lee et al. Internet of things security-multilayered method for end to end data communications over cellular networks
AU2005236981B2 (en) Improved subscriber authentication for unlicensed mobile access signaling
US20080076392A1 (en) Method and apparatus for securing a wireless air interface
US20080076412A1 (en) Method and apparatus for registering an access point
US20080076419A1 (en) Method and apparatus for discovery
US8041335B2 (en) Method and apparatus for routing of emergency services for unauthorized user equipment in a home Node B system
US20130095789A1 (en) Access point
WO2008036961A2 (en) Method and apparatus for resource management
GB2452688A (en) In-C Device to Core Network Interface Specification
US20040133806A1 (en) Integration of a Wireless Local Area Network and a Packet Data Network

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOBLE VENTURE FINANCE II S.A., LUXEMBOURG

Free format text: SECURITY AGREEMENT;ASSIGNOR:UBIQUISYS LIMITED;REEL/FRAME:021484/0270

Effective date: 20080521

Owner name: NOBLE VENTURE FINANCE II S.A.,LUXEMBOURG

Free format text: SECURITY AGREEMENT;ASSIGNOR:UBIQUISYS LIMITED;REEL/FRAME:021484/0270

Effective date: 20080521

AS Assignment

Owner name: TRIPLEPOINT CAPITAL LLC, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:UBIQUISYS LIMITED;REEL/FRAME:025971/0558

Effective date: 20110218

AS Assignment

Owner name: UBIQUISYS LIMITED, UNITED KINGDOM

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:NOBLE VENTURE FINANCE II S.A.;REEL/FRAME:029898/0852

Effective date: 20110221

AS Assignment

Owner name: UBIQUISYS LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DA SILVA, CRISTAVAO;REEL/FRAME:030209/0668

Effective date: 20130404

AS Assignment

Owner name: UBIQUISYS LIMITED, UNITED KINGDOM

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TRIPLEPOINT CAPITAL LLC;REEL/FRAME:030518/0158

Effective date: 20130523

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: CISCO TECHNOLOGY, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UBIQUISYS LIMTED;REEL/FRAME:048329/0578

Effective date: 20190201