US20090047931A1 - Method and apparatus for wireless access control - Google Patents

Method and apparatus for wireless access control Download PDF

Info

Publication number
US20090047931A1
US20090047931A1 US12/191,256 US19125608A US2009047931A1 US 20090047931 A1 US20090047931 A1 US 20090047931A1 US 19125608 A US19125608 A US 19125608A US 2009047931 A1 US2009047931 A1 US 2009047931A1
Authority
US
United States
Prior art keywords
access
node
access terminal
terminal
signaling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/191,256
Inventor
Sanjiv Nanda
Ramin Rezaiifar
Mehmet Yavuz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Priority to US12/191,256 priority Critical patent/US20090047931A1/en
Priority to CA2694979A priority patent/CA2694979A1/en
Priority to RU2010109858/07A priority patent/RU2461967C2/en
Priority to CN201410341713.4A priority patent/CN104185244B/en
Priority to JP2010521948A priority patent/JP5372933B2/en
Priority to MX2010001897A priority patent/MX2010001897A/en
Priority to KR1020107005803A priority patent/KR101268999B1/en
Priority to EP08797993.6A priority patent/EP2183933B1/en
Priority to PCT/US2008/073341 priority patent/WO2009026162A1/en
Priority to BRPI0815222-5A priority patent/BRPI0815222A2/en
Priority to AU2008289182A priority patent/AU2008289182B2/en
Priority to CN200880102853.9A priority patent/CN101785336B/en
Priority to TW097131501A priority patent/TWI397278B/en
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NANDA, SANJIV, YAVUZ, MEHMET, REZAIIFAR, RAMIN
Publication of US20090047931A1 publication Critical patent/US20090047931A1/en
Priority to JP2013118668A priority patent/JP5730944B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/08Access security
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/08Access security
    • H04W12/084Access security using delegated authorisation, e.g. open authorisation [OAuth] protocol
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/322Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by location data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/04Access restriction performed under specific conditions based on user or terminal location or mobility data, e.g. moving direction, speed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • This application relates generally to wireless communication and more specifically, but not exclusively, to improving communication performance.
  • Wireless communication systems are widely deployed to provide various types of communication (e.g., voice, data, multimedia services, etc.) to multiple users.
  • various types of communication e.g., voice, data, multimedia services, etc.
  • small-coverage base stations may be deployed, for example, in a user's home.
  • Such small-coverage base stations are generally known as access point base stations, home NodeBs, or femto cells and may be used to provide more robust indoor wireless coverage to mobile units.
  • such small-coverage base stations are connected to the Internet and the mobile operator's network via a DSL router or a cable modem.
  • RF radio frequency
  • an access terminal In a typical macro cellular deployment the radio frequency (“RF”) coverage is planned and managed by cellular network operators to optimize coverage. In such a deployment, an access terminal generally will connect to the best base station it hears for service.
  • RF planning may be employed in an attempt to ensure that the signal a given access terminal receives from a serving base station is sufficiently higher than the signals the access terminal receives from any interfering base stations, thereby enabling the access terminal to receive adequate service.
  • deployment of small-coverage base stations may be ad-hoc and RF coverage of these base stations may not be optimized by the mobile operator. Consequently, RF interference, jamming, and out-of-service issues may arise between these base stations and nearby access terminals operating on a macro cell. For example, an access terminal that is not authorized to access a nearby base station (e.g., a femto cell) may be subjected to interference from that base station. Thus, there is a need for improved network interference management for wireless networks.
  • the disclosure relates in some aspects to assigning restricted access nodes (e.g., femto nodes) to a designated channel (e.g., carrier).
  • restricted access nodes e.g., femto nodes
  • a designated channel e.g., carrier
  • access terminals that are in active communication with a macro access node also may be assigned to the designated channel while access terminals that are idling on a macro access node are not assigned to the designated channel.
  • active access terminals with low-mobility may be assigned to the designated channel but active access terminals with high-mobility are not.
  • such a scheme may result in effective utilization of system resources while reducing interference between restricted access nodes and access terminals associated with macro access nodes.
  • the disclosure relates in some aspect to performing an inter-frequency handoff at an access terminal associated with a macro access node when the access terminal is in or near a coverage area of a restricted access node (e.g., a femto node).
  • a restricted access node e.g., a femto node
  • the access terminal may switch to a different carrier for its macro communications if the carrier-to-interference (“C/I”) at the access terminal worsens to a certain degree.
  • C/I carrier-to-interference
  • this scheme also may reduce interference between restricted access nodes and access terminals associated with macro access nodes.
  • the disclosure relates in some aspect to performing an inter-frequency handoff based on a location of an access terminal.
  • an access terminal that is associated with (e.g., in active communication with) a macro access node on a given carrier may perform an off-frequency scan based on location information.
  • the access terminal may determine whether it is within a coverage area of a designated (e.g., preferred) access node that is operating on a different carrier. If so, the access terminal may perform a handoff to the designated access node.
  • a designated e.g., preferred access node that is operating on a different carrier.
  • such a scheme may reduce interference between restricted access nodes and access terminals associated with macro access nodes by facilitating a handoff to a designated node if the access node is near the designated node.
  • the disclosure relates in some aspect to controlling access to a restricted access node. For example, when an access terminal attempts to gain access to a restricted access node the restricted access node and/or an access terminal (e.g., a home access terminal) that is associated with the restricted access node may determine whether to allow the requested access. In some aspects a decision as to whether to allow access is based on one or more defined policies. In some aspects a decision as to whether to allow access is based on a decision by a user of the access terminal that is associated with the restricted access node.
  • an access terminal e.g., a home access terminal
  • FIG. 1 is a simplified diagram of several sample aspects of a network including macro coverage and smaller scale coverage;
  • FIG. 2 is a simplified block diagram of several sample aspects of a communication system
  • FIG. 3 is a flowchart of several sample aspects of operations that may be performed to assign carriers for wireless nodes
  • FIG. 4 is a flowchart of several sample aspects of operations that may be performed to perform a handoff to another carrier based on received signals;
  • FIG. 5 is a flowchart of several sample aspects of operations that may be performed to perform a handoff to another carrier based on location information;
  • FIGS. 6A and 6B are a flowchart of several sample aspects of operations that may be performed to control access to a restricted access node
  • FIG. 7 is a simplified diagram illustrating coverage areas for wireless communication
  • FIG. 8 is a simplified diagram of a wireless communication system including femto nodes
  • FIG. 9 is a simplified block diagram of several sample aspects of communication components.
  • FIGS. 10-16 are simplified block diagrams of several sample aspects of apparatuses configured to assign carriers and control access as taught herein.
  • an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways.
  • an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein.
  • such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein.
  • an aspect may comprise at least one element of a claim.
  • FIG. 1 illustrates sample aspects of a network system 100 where a macro access node 102 provides macro scale coverage 104 (e.g., a large area cellular network such as a 3G network) and an access node 106 provides coverage over a smaller coverage area 108 (e.g., a residence or a building).
  • macro scale coverage 104 e.g., a large area cellular network such as a 3G network
  • access nodes such as the access node 106 may be used to provide one or more of incremental capacity growth, in-building coverage, and different services (e.g., for a more robust user experience).
  • the wireless terminal 110 may be served over a wide area by the access node 102 and at a specific sub-area by the access node 106 .
  • the access node 106 may be restricted in that it may only provide service to a defined set of nodes.
  • a coverage hole (e.g., corresponding to the coverage area 108 ) may be created in the macro coverage area 104 for nodes such as wireless terminal 112 that are authorized to access the macro node 102 but are not authorized to access the access node 106 .
  • a coverage hole such as this may affect both active and idle access terminals operating within the macro coverage area. For example, if an idle access terminal is denied registration at a restricted access node, the access terminal may experience C/I degradation (e.g., in the current channel and perhaps one or more adjacent channels). As a result, the access terminal may need to perform a handoff to another macro carrier. Similarly, if an active access terminal is denied association at a restricted access node, the access terminal may experience C/I degradation on the downlink, and also cause interference on the uplink at the restricted access node. The active access terminal also may attempt a handoff to another macro channel with better C/I. If such a channel cannot be found, however, the active call may be dropped due to loss of signal. Moreover, before the call is lost, transmissions from the access terminal may cause a temporary out-of-service condition at the restricted access node.
  • C/I degradation e.g., in the current channel and perhaps one or more adjacent channels.
  • the access terminal may need to perform a handoff to
  • the disclosure relates in some aspects to managing access and/or interference issues that may arise when an access terminal is in the vicinity of a restricted access node. These and other aspects of the disclosure will be described with reference to a communication system 200 as shown in FIG. 2 and the flowcharts of FIGS. 3-6A .
  • the system 200 will be used to describe the scenario that follows.
  • the wireless terminal 110 e.g., a home access terminal
  • the access node 106 e.g., a restricted base station
  • the wireless terminal 112 is associated with the access node 102 (e.g., a macro base station).
  • the wireless terminal 112 enters the coverage area of the access node 106 and attempts to establish communication (e.g., as a guest access terminal).
  • the system 200 also includes a centralized controller 202 that may communicate with the access nodes 102 and 106 (e.g., over backhaul connections).
  • FIG. 2 also illustrates several sample components that may be implemented in these nodes in accordance with the teachings herein. To reduce the complexity of FIG. 2 , only a few components are shown in the various nodes. It should be appreciated that similar components may be incorporated into other nodes in the system, irrespective of whether this is shown in FIG. 2 .
  • the nodes including transceivers for communicating with each other and with other nodes.
  • a transceiver 204 of the node 112 includes a transmitter 208 for sending signals and a receiver 210 for receiving signals.
  • a transceiver 206 of the node 106 includes a transmitter 212 for transmitting signals and a receiver 214 for receiving signals.
  • the nodes also may include access controllers (e.g., access controllers 216 , 218 , and 220 ) for controlling access to a node and for providing other related functionality as taught herein.
  • the nodes also may include communication controllers (not shown) for managing communications with other nodes and for providing other related functionality as taught herein.
  • the other components illustrated in FIG. 2 will be discussed in the disclosure that follows.
  • FIG. 3 describes several operations that may be employed in conjunction with assigning carriers to nodes in a system.
  • FIG. 4 describes several operations that may be employed in conjunction with switching to another carrier based on detected signals.
  • FIG. 5 describes several operations that may be employed in conjunction with switching to another carrier based on location information.
  • FIGS. 6A and 6B describe several operations that may be employed in conjunction with controlling access to a restricted node.
  • FIGS. 3-6B may be described as being performed by specific components (e.g., components of the system 200 ). It should be appreciated, however, that these operations may be performed by other types of components and may be performed using a different number of components. It also should be appreciated that one or more of the operations described herein may not be employed in a given implementation.
  • access terminals e.g., nodes 110 and 112
  • a macro access node e.g., nodes 102 and 106 , respectively
  • a restricted access node e.g., nodes 102 and 106 , respectively.
  • the channels e.g., carriers
  • the channels may be controlled to mitigate interference that may otherwise be caused by a restricted access node operating on the same channel as a macro node. Moreover, this may be accomplished while maintaining sufficient utilization of the channels.
  • all of the restricted access nodes in the system may be assigned to a common channel.
  • all of the femto nodes in a given operator's network may be deployed on the same carrier (designated the femto channel).
  • such a configuration may be achieved, for example, by cooperation of the centralized controller 202 and the access node 106 .
  • Blocks 304 - 316 describe a procedure that may be employed to assign a channel for an access terminal operating within a macro cell. Such a procedure may be implemented, for example, by cooperation of carrier selector components 222 and 224 of the nodes 112 and 102 , respectively. For example, the carrier selector 224 may configure the carrier selector 222 to operate on a designated carrier.
  • the channel assignment procedure commences at block 304 (e.g., in conjunction with making a call assignment). As represented by block 306 , this channel assignment may be based on whether the access terminal is currently active (e.g., in-call) or idle. In some implementations, the access terminal's current mode may be determined by a mode determiner component 226 as shown in FIG. 2 .
  • the access terminal may be assigned to a different channel than the femto channel if an alternate channel is available.
  • idle macro access terminals may only need paging and other limited services. Hence, there may not be as great of a need to load-balance these access terminals across all channels.
  • idle handoffs that may be otherwise performed when the idle macro access terminal encounters the femto node may be avoided.
  • the access terminal switches to an active mode (e.g., when the access terminal receives a call), the access terminal may be assigned a different channel at that time (e.g., in conjunction with a call assignment).
  • active macro access terminals may be assigned to the femto channel under some circumstances.
  • the assignment of a macro access terminal to a femto channel may take into account whether such an assignment may result in relatively high overhead. For example, it may be undesirable to place an access terminal that has high mobility on the femto channel since this may result in a relatively large number of handoffs as the access terminal passes by different femto nodes in the network.
  • the access terminal is relatively stationary and not within the coverage of a femto node, there may be a much lower likelihood of interference with femto nodes and inter-frequency handoffs. In this case, placing the access terminal on the femto channel may result in better utilization of the femto channel.
  • a determination of whether to assign a macro access terminal to the femto channel may be based on the nobility of the access terminal. Such a determination may be made, for example, by comparing a mobility metric associated with the access terminal with one or more threshold mobility metric values. Thus, as represented by block 314 , in the event the mobility of the access terminal is greater than equal to a threshold mobility value, the access terminal may be assigned to a channel that is different than the femto channel. Conversely, as represented by block 316 , in the event the mobility of the access terminal is less than or equal to a threshold mobility value the access terminal may be assigned to the femto channel.
  • a mobility metric as described above may be implemented in various ways.
  • a low-speed/high-speed classifier may be implemented in new access terminals.
  • the mobility of an access terminal may be determined based on whether an active access terminal on the femto channel frequently provides femto node C/I reports (e.g., to the macro access node).
  • the access terminal may generate a report every time it encounters signals from a different femto node. In the event the rate of these reports meets or exceeds a certain threshold, the access terminal may be directed away from the femto channel.
  • the femto channel may be solely dedicated to femto nodes.
  • FIG. 4 when an access terminal approaches a coverage hole on its current operating carrier (e.g., caused by restricted node), the access terminal may switch to a different carrier (e.g., in cooperation with a serving access node).
  • the operations of FIG. 4 commence at block 402 where the access terminal 112 is initially associated with a macro access node 102 on a given carrier (e.g., designated as the first carrier).
  • the access terminal 112 (e.g., the receiver 210 ) will receive signals on the first carrier from the access node 102 and, potentially, other nearby access nodes. The access terminal 112 may thus determine the C/I associated with signals (e.g., pilot signals) received from the access node 102 . In some implementations the access terminal 112 (e.g., the transmitter 208 ) may send this C/I information to the access node 102 .
  • signals e.g., pilot signals
  • the access terminal 112 may receive signals from that access node on the first carrier. As represented by block 408 , the access terminal 112 may determine whether it is allowed to access the access node detected a block 406 .
  • the access terminal 112 may elect to associate with that access node.
  • one or more access nodes may be designated as preferred access nodes (e.g., a home femto node) for the access terminal 112 .
  • the access terminal 112 may be configured to associate with a preferred access node whenever the access terminal 112 detects the presence of such a node.
  • the access terminal 112 may maintain a preferred roaming list (“PRL”) that identifies its preferred access nodes.
  • PRL preferred roaming list
  • the access terminal 112 and/or a serving access node may determine whether to switch to a different carrier at blocks 412 , 414 , and 416 .
  • the access terminal 112 e.g., the carrier selector 222
  • the access terminal 112 may elect to switch to a different carrier based on detection of signals from a restricted access node (e.g., access node 106 ) and/or based on a determination that the C/I on the first carrier has degraded (e.g., due to interference from the access node 106 operating on the first carrier).
  • degradation of C/I may be indicated, for example, if the C/I is less than or equal to a threshold value.
  • one or more of the above operations may be implemented by cooperation of the access terminal 112 and the access node 102 .
  • the access terminal may send information relating to the signals received at blocks 404 and 406 to the access node 102 .
  • the access node 102 e.g., the carrier selector 224
  • the access terminal 112 may invoke a handoff operation.
  • the access terminal 112 may switch to the second carrier and attempt to establish communication.
  • the above procedure may be used when the access terminal is in either an idle mode or an active mode. For example, if a macro access terminal idling on the femto channel detects degraded C/I due to a nearby restricted femto node, the access terminal may initiate idle handoff operations.
  • the access terminal may simply associate with the femto node as described above at block 410 . If, on the other hand, the access terminal is not allowed to associate with the femto node, the access terminal may perform a scan in an attempt to find macro coverage signals on another carrier.
  • a macro access terminal that is in active communication on the femto channel detects degraded C/I due to a nearby restricted femto node
  • the access terminal may send a C/I report to its macro node along with information about the femto node as discussed above.
  • the macro access node may then determine that the C/I degradation is due to interference from the femto node and initiate an active inter-frequency handoff.
  • the access terminal 112 may drop its call. In such a case, the access terminal 112 may end up in an idle state (e.g., within the coverage of the access node 106 )
  • the access terminal 112 may continue to monitor received signals as represented by operational flow back to block 404 (e.g., on the original carrier or the new carrier). In this way, the access terminal 112 may repeatedly monitor for coverage holes caused by nearby restricted access nodes and attempt to mitigate any associated interference.
  • an access terminal may conduct off-frequency scans to determine whether it has entered a coverage area of an access node that is operating on a different carrier. For example, if a preferred access node has been designated for an access terminal (e.g., in a PRL), the access terminal may repeatedly conduct off-frequency scans in an attempt to detect signals (e.g., pilot signals) from the preferred access node.
  • the operations of FIG. 4 commence at block 502 where the access terminal 112 is initially associated with a macro access node 102 on a given carrier (e.g., designated as the first carrier).
  • the access terminal 112 determines location information that may be used to determine whether the access terminal 112 is in the vicinity of a given access node.
  • This location information may take various forms.
  • the location information may comprise a geographic location of the access terminal 112 .
  • the location determiner 228 may include functionality (e.g., GPS functionality, cellular functionality, and so on) for determining this geographic location.
  • the access terminal 112 also may determine whether it is experiencing any degradation in its received signals. For example, a decision to switch to another carrier also may be based on whether the signal from the macro access node 102 is becoming weak (e.g., C/I is degrading).
  • the access terminal 112 may determine whether to conduct an off-frequency scan to search for one or more other access nodes. As mentioned above, such a scan may be invoked based on the location information (e.g., by determining whether the access terminal 112 is proximate to a given access node operating on a different carrier). For the case of geographic-based location information, the search controller 230 may, for example, determine whether to conduct a search based on a comparison of the current geographic location as determined at block 504 with a known location of the specified access node.
  • Determining proximity to a given access node may be accomplished in various ways. For example, when access nodes such as femto nodes are setup (e.g., upon installation), each access node may upload its coordinates (e.g., latitude and longitude) together with identification information (e.g., its PN and sector ID) to a database. This information may be sent, for example, via an IP backhaul.
  • coordinates e.g., latitude and longitude
  • identification information e.g., its PN and sector ID
  • the access terminal determines where it is based on, for example, coordinates from a GPS component.
  • the access terminal may then access the database (e.g., the access terminal may be configured a priori with the URL of the database) and query the database for any access nodes (e.g., femto nodes) in the vicinity of the access terminal. If the access terminal determines that there is such an access node in the vicinity, the access terminal may conduct an off-frequency search in an attempt to find the access node.
  • the database e.g., the access terminal may be configured a priori with the URL of the database
  • any access nodes e.g., femto nodes
  • a centralized database may advantageously simplify network management. For example, when a new access node (e.g., femto node) is installed, the centralized database may be updated. An access terminal may then query that database whenever it needs to. In some aspects, an implementation such as this may be more efficient than, for example, an implementation where the PRL for an access terminal is updated every time a new access node is installed.
  • a new access node e.g., femto node
  • a decision to conduct a scan may optionally be based on any degradation in the signals received on the first carrier.
  • the access terminal 112 may be more likely to conduct a scan when the signal degradation is high.
  • the access terminal 112 determines whether any signals are received on the second carrier. If so, the access terminal 112 may elect to perform a handoff to associate with an access node operating on the second carrier (block 514 ). For example, if the access terminal 112 (e.g., a handoff controller 232 ) detects a home femto node on the second carrier, the access terminal 112 may elect to associate with that home femto node. If the access terminal 112 is in an active mode (e.g., in-call), appropriate context transfer procedures may be used to perform an active handoff.
  • an active mode e.g., in-call
  • the access terminal 112 may request association with the access node. If the access terminal 112 is denied access to the access node while in active mode, the call may drop if the coverage on the first carrier runs out. In such a case, the access terminal 112 may end up in an idle mode within the coverage of the access node.
  • a restricted access node e.g., access node 106
  • a macro access node that is aware of the possible existence of a femto access node may request an access terminal to perform an off-frequency search at a frequency that is periodically specified by the network.
  • a femto node may send a request for an off-frequency search to an access terminal that is connected to it to determine whether it is appropriate to handout (e.g., to a macro access node).
  • the access node may grant some form of access to the access terminal in accordance with the teachings herein.
  • the access node may grant temporary access, restricted access, or some other form of access to the access terminal.
  • access to a restricted access node may be based on policy defined for the access node 106 .
  • policy may relate to, for example, one or more of which access terminals may be granted access, how long the access terminals may be granted access, and whether there are any restrictions on this access.
  • the access controller 216 located at the access node 106 determines whether the access terminal 112 is permitted to access the access node 106 (e.g., as a guest access terminal).
  • policy for the access node 106 may be defined by another node in the network.
  • an access controller 220 e.g., a policy manager
  • implemented at the centralized controller 202 e.g., a central access management function managed by an operator or service provider
  • an access controller 218 e.g., a policy manager
  • policy associated with one policy manager e.g., the access controller 220
  • policy associated with another policy manager e.g., the access controller 218
  • a home access terminal will be referred to simply as the access terminal 110 .
  • the access terminal 112 may enter the coverage area of the access node 106 .
  • the access terminal 112 may request access to the access node 106 (e.g., access to the coverage area) in some manner.
  • the request may be sent via a message such as an SMS message.
  • the access terminal 112 may initiate a request by attempting to register with the access node, initiate a call with the access node, or handoff to the access node (e.g., when in an active state). In conjunction with such a request, the access terminal 112 may send an identification parameter to the access node 106 .
  • the access node 106 may authenticate the access terminal 112 .
  • the access node 106 e.g., an authorization controller 234
  • the access node 106 may issue a challenge to the access terminal 112 and verify any response it receives from the access terminal 112 .
  • the access node 106 may cooperate with an authorization, authentication, and accounting server (e.g., associated with the centralized controller 202 ) to authenticate the access terminal 112 (e.g., by authenticating a user name or some other identifier associated with the access terminal 112 ).
  • the access controller 216 then commences determining whether to grant access to the access terminal 112 . As represented by block 610 , this determination may be based on the policy implemented by the access controller 216 and, optionally, input from the access terminal 110 . As an example of the latter scenario, the owner of the access node 106 may use the access terminal 110 to authorize a guest access terminal to use the access node 106 .
  • a request may be provided to the policy manager of the access node 106 requesting to allow the access terminal 112 to gain access to (e.g., register with) the access node 106 .
  • the access node 106 may then deny the request or grant the request (e.g., allowing temporary or permanent access).
  • the policy implemented the access node 106 may take various forms. For example, a policy may involve one or more of the criteria set forth below.
  • a policy may comprise an access control list that identifies permitted access terminals and/or non-permitted access terminals.
  • the access controller 216 may compare an identifier of the access terminal 112 with the access control list to determine whether to permit access.
  • a policy may allow all requests to be temporarily admitted for a specified duration and permit some form of restricted access.
  • the access terminal 112 may be granted access for 15 minutes, one hour, and so on, and/or the access terminal 112 may be granted access at certain times. In this way, potential out-of-service events may be avoided at the access node 106 .
  • a policy may grant permanent access to certain access terminals (e.g., permanently entered into the closed user group). For example, an owner may grant permanent access to a neighbor access terminal. Such cooperation between neighbors may benefit both parties by achieving improved grade of service for each neighbor.
  • a policy may define different types of access that may be permitted under different circumstances. For example, the policy may grant access to any access terminal that is attempting to make an e911 call.
  • a policy may depend on the call state of the access terminal 112 .
  • a response to a registration request may depend on whether the access terminal 112 is in an idle mode or an active mode.
  • a policy manager may be configured to automatically offer temporary service to the access terminal 112 if the access terminal 112 is an active mode.
  • a policy manager may be configured to notify one or both of the access controllers 218 and 220 whenever a request is received from the access terminal 112 when it is idling, whereby these entities may play a part in determining whether to grant access to the access terminal 112 .
  • a policy may depend on the signal strength of signals received at the access node 106 (e.g., from the access terminal 112 ). For example, a policy manager may be configured to automatically offer temporary service to the access terminal 112 if the signal strength from the access terminal 112 exceeds a threshold (e.g., to reduce interference at the access node 106 ). In addition, when the measured rise over thermal and the noise floor at the access node 106 is approaching an out-of-service threshold, a policy may permit temporary access to the access terminal 112 to avoid an out-of-service condition at the access node 106 .
  • the access node 106 may be designed with a relaxed rise over thermal limit to allow the access terminal 112 to transmit at a higher power that causes a larger rise over thermal than what may be typical in a macro cellular deployment. In this way, the number of out-of-service events at the access node 106 may be reduced.
  • a policy may define different types of access (e.g., in conjunction with temporary access). For example, a policy may specify that the access terminal 112 is to be provided full association (e.g., full-service) by the access node 106 .
  • a policy may specify that the access terminal 112 is to be provided less than full service (e.g., to restrict consumption of resources such as bandwidth at the access node 106 ).
  • the access terminal 112 may be restricted to signaling-only association.
  • the access terminal 112 may be admitted to the access node 106 via a path provided for signaling.
  • the access terminal 112 may thus send signaling to and receive signaling from the access node 106 , or some other network element (e.g., a macro RNC).
  • This type of signaling may relate to, for example, paging, mobility signaling, and registration.
  • the access terminal 112 is not allowed to send or receive user traffic through the access node 106 (e.g., call setup is not permitted).
  • a policy may specify that the access terminal 112 is to be restricted to local signaling-only association.
  • This signaling may involve, for example, locally generated signaling such as redirection messages, resource utilization messages (e.g., to control interference), and power control messages.
  • this signaling may relate to media access control (“MAC”) level operations.
  • MAC media access control
  • the access node 106 may obtain permission from a user (e.g., the owner of the access node 106 ) before granting access to the access terminal 112 .
  • the access node 106 e.g., the transmitter 212
  • this request may include an authenticated identification parameter associated with the access terminal 112 (e.g., a user name).
  • the access terminal 110 is not required to be present in the coverage area of the access node 106 . Rather, this message exchange with the access terminal 110 may be employed as long as the access terminal 110 is in service somewhere in the network (e.g., when the access terminal 110 is registered somewhere in an associated wide area network).
  • the access terminal 110 may determine whether to permit the requested access. In some implementations this may involve outputting a notification relating to the request via an output device (not shown) of the access terminal 110 . For example, a request may be displayed on a display device of the access terminal 110 . The user of the access terminal 110 may then use an input device (not shown) of the access terminal 110 to provide a response to the request that indicates whether the request is allowed (and, optionally, the form of access allowed).
  • the access terminal 110 may then send an appropriate response to the access node 106 .
  • this response may authorize access to the access terminal 112 (e.g., associated with an authenticated identification parameter provided at block 616 ).
  • the access node 106 may then grant or allow the requested access based on the response (block 622 ).
  • the operations of the access terminal 110 employ policy similar to the policy described above (e.g., as implemented by the access controller 218 ).
  • the access terminal 110 may configure the policy manager of the access node 106 with an identifier of an access terminal before the access terminal arrives in the coverage area of the access node 106 .
  • a user may elect to authorize a neighbor to access the access node 106 .
  • the user may cause an appropriate entry to be made to the access control list maintained by the access node 106 .
  • access manager functionality may be implemented in a variety of ways in accordance with the teachings herein.
  • a femto node manager may be employed to temporarily or permanently admit access terminals to a closed user group and permit access to a restricted femto node.
  • an access terminal may be configured to be a femto node manager if it is assigned access terminal function manager status.
  • a service provider may deploy a network element with femto node manager function to apply service provider policies on closed user group management. The service provider may configure either the access terminal femto node manager or the femto node manager function in the network to override the other.
  • interference issues may be addressed in a more effective manner in some aspects as compared to, for example, techniques that may address these issues via lower layer (e.g., PHY and/or MAC) modifications (e.g., by adapting radio parameters or employing time division multiplexing).
  • lower layer e.g., PHY and/or MAC
  • the teachings herein may be employed in a network that includes macro scale coverage (e.g., a macro cellular network environment) and smaller scale coverage (e.g., a residential or building network environment).
  • macro scale coverage e.g., a macro cellular network environment
  • smaller scale coverage e.g., a residential or building network environment.
  • AT access terminal
  • ANs access nodes
  • the smaller coverage nodes may be used to provide incremental capacity growth, in-building coverage, and different services (e.g., for a more robust user experience).
  • a node that provides coverage over a relatively large area may be referred to as a macro node.
  • a node that provides coverage over a relatively small area may be referred to as a femto node.
  • a node that provides coverage over an area that is smaller than a macro area and larger than a femto area may be referred to as a pico node (e.g., providing coverage within a commercial building).
  • a cell associated with a macro node, a femto node, or a pico node may be referred to as a macro cell, a femto cell, or a pico cell, respectively.
  • a given cell may be further associated with (e.g., divided into) one or more sectors.
  • a macro node may be configured or referred to as an access node, base station, access point, eNodeB, macro cell, and so on.
  • a femto node may be configured or referred to as a home NodeB, home eNodeB, access point base station, femto cell, and so on.
  • FIG. 7 illustrates an example of a coverage map 700 for a network where several tracking areas 702 (or routing areas or location areas) are defined. Specifically, areas of coverage associated with tracking areas 702 A, 702 B, and 702 C are delineated by the wide lines in FIG. 7 .
  • the system provides wireless communication via multiple cells 704 (represented by the hexagons), such as, for example, macro cells 704 A and 704 B, with each cell being serviced by a corresponding access node 706 (e.g., access nodes 706 A- 706 C).
  • access terminals 708 e.g., access terminals 708 A and 708 B
  • Each access terminal 708 may communicate with one or more access nodes 706 on a forward link (“FL”) and/or a reverse link (“RL”) at a given moment, depending upon whether the access terminal 708 is active and whether it is in soft handoff, for example.
  • the network may provide service over a large geographic region.
  • the macro cells 704 may cover several blocks in a neighborhood.
  • the tracking areas 702 also include femto coverage areas 710 .
  • each of the femto coverage areas 710 e.g., femto coverage areas 710 A
  • a macro coverage area 704 e.g., macro coverage area 704 B
  • a femto coverage area 710 may not lie entirely within a macro coverage area 704 .
  • a large number of femto coverage areas 710 may be defined within a given tracking area 702 or macro coverage area 704 .
  • one or more pico coverage areas may be defined within a given tracking area 702 or macro coverage area 704 . To reduce the complexity of FIG. 7 , only a few access nodes 706 , access terminals 708 , and femto nodes 710 are shown.
  • FIG. 8 illustrates a communication system 800 where one or more femto nodes are deployed within a network environment.
  • the system 800 includes multiple femto nodes 810 (e.g., femto nodes 810 A and 810 B) installed in a relatively small scale network environment (e.g., in one or more user residences 830 ).
  • Each femto node 810 may be coupled to a wide area network 840 (e.g., the Internet) and a mobile operator core network 850 via a DSL router, a cable modem, a wireless link, or other connectivity means (not shown).
  • each femto node 810 may be configured to serve associated access terminals 820 (e.g., access terminal 820 A) and, optionally, other access terminals 820 (e.g., access terminal 820 B).
  • access to femto nodes 810 may be restricted whereby a given access terminal 820 may be served by a set of designated (e.g., home) femto node(s) 810 but may not be served by any non-designated femto nodes 810 (e.g., a neighbor's femto node 810 ).
  • the owner of a femto node 810 may subscribe to mobile service, such as, for example, 3G mobile service offered through the mobile operator core network 850 .
  • an access terminal 820 may be capable of operating both in macro environments and in smaller scale (e.g., residential) network environments. In other words, depending on the current location of the access terminal 820 , the access terminal 820 may be served by an access node 860 of the macro cell mobile network 850 or by any one of a set of femto nodes 810 (e.g., the femto nodes 810 A and 810 B that reside within a corresponding user residence 830 ).
  • a femto node 810 may be backward compatible with existing access terminals 820 .
  • a femto node 810 may be deployed on a single frequency or, in the alternative, on multiple frequencies. Depending on the particular configuration, the single frequency or one or more of the multiple frequencies may overlap with one or more frequencies used by a macro node (e.g., the node 860 ).
  • an access terminal 820 may be configured to communicate either with the macro network 850 or the femto nodes 810 , but not both simultaneously. In addition, in some aspects an access terminal 820 being served by a femto node 810 may not be in a soft handover state with the macro network 850 .
  • an access terminal 820 may be configured to connect to a preferred femto node (e.g., the home femto node of the access terminal 820 ) whenever such connectivity is possible. For example, whenever a subscriber's access terminal 820 is within the subscriber's residence 830 , it may be desired that the access terminal 820 communicate only with a home femto node 810 .
  • a preferred femto node e.g., the home femto node of the access terminal 820
  • the access terminal 820 may continue to search for the most preferred network (e.g., the preferred femto node 810 ) using a Better System Reselection (“BSR”), which may involve a periodic scanning of available systems to determine whether better systems are currently available, and subsequent efforts to associate with such preferred systems.
  • BSR Better System Reselection
  • the access terminal 820 may limit the search for specific band and channel. For example, the search for the most preferred system may be repeated periodically.
  • the access terminal 820 selects the femto node 810 for camping within its coverage area.
  • an access node such as a femto node may be restricted in some aspects.
  • a given femto node may only provide certain services to certain access terminals.
  • a given access terminal may only be served by the macro cell mobile network and a defined set of femto nodes (e.g., the femto nodes 810 that reside within the corresponding user residence 830 ).
  • a node may be restricted to not provide at least one of: signaling, data access, registration, paging, or service to at least one node.
  • a restricted femto node (which may also be referred to as a Closed Subscriber Group Home NodeB) is one that provides service to a restricted provisioned set of access terminals. This set may be temporarily or permanently extended as necessary.
  • a Closed Subscriber Group (“CSG”) may be defined as the set of access nodes (e.g., femto nodes) that share a common access control list of access terminals.
  • a channel on which all femto nodes (or all restricted femto nodes) in a region operate may be referred to as a femto channel.
  • an open femto node may refer to a femto node with no restricted association.
  • a restricted femto node may refer to a femto node that is restricted in some manner (e.g., restricted for association and/or registration).
  • a home femto node may refer to a femto node on which the access terminal is authorized to access and operate on.
  • a guest femto node may refer to a femto node on which an access terminal is temporarily authorized to access or operate on.
  • An alien femto node may refer to a femto node on which the access terminal is not authorized to access or operate on, except for perhaps emergency situations (e.g., 911 calls).
  • a home access terminal may refer to an access terminal that is authorized to access the restricted femto node.
  • a guest access terminal may refer to an access terminal with temporary access to the restricted femto node.
  • An alien access terminal may refer to an access terminal that does not have permission to access the restricted femto node, except for perhaps emergency situations, for example, such as 911 calls (e.g., an access terminal that does not have the credentials or permission to register with the restricted femto node).
  • a pico node may provide the same or similar functionality for a larger coverage area.
  • a pico node may be restricted, a home pico node may be defined for a given access terminal, and so on.
  • a wireless multiple-access communication system may simultaneously support communication for multiple wireless access terminals.
  • each terminal may communicate with one or more base stations via transmissions on the forward and reverse links.
  • the forward link (or downlink) refers to the communication link from the base stations to the terminals
  • the reverse link (or uplink) refers to the communication link from the terminals to the base stations.
  • This communication link may be established via a single-in-single-out system, a multiple-in-multiple-out (“MIMO”) system, or some other type of system.
  • MIMO multiple-in-multiple-out
  • a MIMO system employs multiple (N T ) transmit antennas and multiple (N R ) receive antennas for data transmission.
  • a MIMO channel formed by the N T transmit and N R receive antennas may be decomposed into N S independent channels, which are also referred to as spatial channels, where N S ⁇ min ⁇ N T , N R ⁇ .
  • Each of the N S independent channels corresponds to a dimension.
  • the MIMO system may provide improved performance (e.g., higher throughput and/or greater reliability) if the additional dimensionalities created by the multiple transmit and receive antennas are utilized.
  • a MIMO system may support time division duplex (“TDD”) and frequency division duplex (“FDD”).
  • TDD time division duplex
  • FDD frequency division duplex
  • the forward and reverse link transmissions are on the same frequency region so that the reciprocity principle allows the estimation of the forward link channel from the reverse link channel. This enables the access point to extract transmit beam-forming gain on the forward link when multiple antennas are available at the access point.
  • FIG. 9 depicts several sample components that may be employed to facilitate communication between nodes.
  • a wireless device 910 e.g., an access point
  • a wireless device 950 e.g., an access terminal
  • traffic data for a number of data streams is provided from a data source 912 to a transmit (“TX”) data processor 914 .
  • TX transmit
  • each data stream is transmitted over a respective transmit antenna.
  • the TX data processor 914 formats, codes, and interleaves the traffic data for each data stream based on a particular coding scheme selected for that data stream to provide coded data.
  • the coded data for each data stream may be multiplexed with pilot data using OFDM techniques.
  • the pilot data is typically a known data pattern that is processed in a known manner and may be used at the receiver system to estimate the channel response.
  • the multiplexed pilot and coded data for each data stream is then modulated (i.e., symbol mapped) based on a particular modulation scheme (e.g., BPSK, QSPK, M-PSK, or M-QAM) selected for that data stream to provide modulation symbols.
  • the data rate, coding, and modulation for each data stream may be determined by instructions performed by a processor 930 .
  • a data memory 932 may store program code, data, and other information used by the processor 930 or other components of the device 910 .
  • the modulation symbols for all data streams are then provided to a TX MIMO processor 920 , which may further process the modulation symbols (e.g., for OFDM).
  • the TX MIMO processor 920 then provides N T modulation symbol streams to N T transceivers (“XCVR”) 922 A through 922 T.
  • XCVR N T transceivers
  • the TX MIMO processor 920 applies beam-forming weights to the symbols of the data streams and to the antenna from which the symbol is being transmitted.
  • Each transceiver 922 receives and processes a respective symbol stream to provide one or more analog signals, and further conditions (e.g., amplifies, filters, and upconverts) the analog signals to provide a modulated signal suitable for transmission over the MIMO channel.
  • N T modulated signals from transceivers 922 A through 922 T are then transmitted from N T antennas 924 A through 924 T, respectively.
  • the transmitted modulated signals are received by N R antennas 952 A through 952 R and the received signal from each antenna 952 is provided to a respective transceiver (“XCVR”) 954 A through 954 R.
  • Each transceiver 954 conditions (e.g., filters, amplifies, and downconverts) a respective received signal, digitizes the conditioned signal to provide samples, and further processes the samples to provide a corresponding “received” symbol stream.
  • a receive (“RX”) data processor 960 then receives and processes the N R received symbol streams from N R transceivers 954 based on a particular receiver processing technique to provide N T “detected” symbol streams.
  • the RX data processor 960 then demodulates, deinterleaves, and decodes each detected symbol stream to recover the traffic data for the data stream.
  • the processing by the RX data processor 960 is complementary to that performed by the TX MIMO processor 920 and the TX data processor 914 at the device 910 .
  • a processor 970 periodically determines which pre-coding matrix to use (discussed below). The processor 970 formulates a reverse link message comprising a matrix index portion and a rank value portion.
  • a data memory 972 may store program code, data, and other information used by the processor 970 or other components of the device 950 .
  • the reverse link message may comprise various types of information regarding the communication link and/or the received data stream.
  • the reverse link message is then processed by a TX data processor 938 , which also receives traffic data for a number of data streams from a data source 936 , modulated by a modulator 980 , conditioned by the transceivers 954 A through 954 R, and transmitted back to the device 910 .
  • the modulated signals from the device 950 are received by the antennas 924 , conditioned by the transceivers 922 , demodulated by a demodulator (“DEMOD”) 940 , and processed by a RX data processor 942 to extract the reverse link message transmitted by the device 950 .
  • the processor 930 determines which pre-coding matrix to use for determining the beam-forming weights then processes the extracted message.
  • FIG. 9 also illustrates that the communication components may include one or more components that perform access/carrier control operations as taught herein.
  • an access/carrier control component 990 may cooperate with the processor 930 and/or other components of the device 910 to send/receive signals to/from another device (e.g., device 950 ) as taught herein.
  • an access/carrier control component 992 may cooperate with the processor 970 and/or other components of the device 950 to send/receive signals to/from another device (e.g., device 910 ).
  • the functionality of two or more of the described components may be provided by a single component.
  • a single processing component may provide the functionality of the access/carrier control component 990 and the processor 930 and a single processing component may provide the functionality of the access/carrier control component 992 and the processor 970 .
  • teachings herein may be incorporated into various types of communication systems and/or system components.
  • teachings herein may be employed in a multiple-access system capable of supporting communication with multiple users by sharing the available system resources (e.g., by specifying one or more of bandwidth, transmit power, coding, interleaving, and so on).
  • the teachings herein may be applied to any one or combinations of the following technologies: Code Division Multiple Access (“CDMA”) systems, Multiple-Carrier CDMA (“MCCDMA”), Wideband CDMA (“W-CDMA”), High-Speed Packet Access (“HSPA,” “HSPA+”) systems, Time Division Multiple Access (“TDMA”) systems, Frequency Division Multiple Access (“FDMA”) systems, Single-Carrier FDMA (“SC-FDMA”) systems, Orthogonal Frequency Division Multiple Access (“OFDMA”) systems, or other multiple access techniques.
  • CDMA Code Division Multiple Access
  • MCCDMA Multiple-Carrier CDMA
  • W-CDMA Wideband CDMA
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • SC-FDMA Single-Carrier FDMA
  • OFDMA Orthogonal Frequency Division Multiple Access
  • a CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (“UTRA)”, cdma2000, or some other technology.
  • UTRA includes W-CDMA and Low Chip Rate (“LCR”).
  • LCR Low Chip Rate
  • the cdma2000 technology covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (“GSM”).
  • GSM Global System for Mobile Communications
  • An OFDMA network may implement a radio technology such as Evolved UTRA (“E-UTRA”), IEEE 802.11, IEEE 802.16, IEEE 802.20, Flash-OFDM®, etc.
  • E-UTRA Evolved UTRA
  • IEEE 802.11, IEEE 802.16, IEEE 802.20 Flash-OFDM®
  • Flash-OFDM® Flash-OFDM®
  • LTE Long Term Evolution
  • UMB Ultra-Mobile Broadband
  • LTE is a release of UMTS that uses E-UTRA.
  • 3GPP terminology it is to be understood that the teachings herein may be applied to 3GPP (Re199, Re15, Re16, Re17) technology, as well as 3GPP2 (IxRTT, 1xEV-DO Re1O, RevA, RevB) technology and other technologies.
  • an access node as discussed herein (e.g., a macro node, a femto node, or a pico node) may be configured or referred to as an access point (“AP”), a base station (“BS”), a NodeB, a radio network controller (“RNC”), an eNodeB, a base station controller (“BSC”), a base transceiver station (“BTS”), a transceiver function (“TF”), a radio router, a radio transceiver, a basic service set (“BSS”), an extended service set (“ESS”), a radio base station (“RBS”), or some other terminology.
  • AP access point
  • BS base station
  • NodeB a radio network controller
  • RNC radio network controller
  • eNodeB eNodeB
  • BSC base station controller
  • BTS base transceiver station
  • TF transceiver function
  • radio router a radio transceiver
  • BSS basic service set
  • ESS extended
  • an access terminal as discussed herein may be referred to as a mobile station, user equipment, a subscriber unit, a subscriber station, a remote station, a remote terminal, a user terminal, a user agent, a user device, or some other terminology.
  • a node may consist of, be implemented within, or include a cellular telephone, a cordless telephone, a Session Initiation Protocol (“SIP”) phone, a wireless local loop (“WLL”) station, a personal digital assistant (“PDA”), a handheld device having wireless connection capability, or some other suitable processing device connected to a wireless modem.
  • SIP Session Initiation Protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • an apparatus may comprise a phone (e.g., a cellular phone or smart phone), a computer (e.g., a laptop), a portable communication device, a portable computing device (e.g., a personal data assistant), an entertainment device (e.g., a music or video device, or a satellite radio), a global positioning system device, or any other suitable device that is configured to communicate via a wireless medium.
  • a phone e.g., a cellular phone or smart phone
  • a computer e.g., a laptop
  • a portable communication device e.g., a portable computing device (e.g., a personal data assistant)
  • an entertainment device e.g., a music or video device, or a satellite radio
  • a global positioning system device e.g., a global positioning system device, or any other suitable device that is configured to communicate via a wireless medium.
  • a wireless node may comprise an access node (e.g., an access point) for a communication system.
  • an access node may provide, for example, connectivity for or to a network (e.g., a wide area network such as the Internet or a cellular network) via a wired or wireless communication link.
  • the access node may enable another node (e.g., an access terminal) to access the network or some other functionality.
  • the nodes may be portable or, in some cases, relatively non-portable.
  • a wireless node e.g., a wireless device
  • an appropriate communication interface e.g., via a wired connection
  • a wireless node may communicate via one or more wireless communication links that are based on or otherwise support any suitable wireless communication technology.
  • a wireless node may associate with a network.
  • the network may comprise a local area network or a wide area network.
  • a wireless device may support or otherwise use one or more of a variety of wireless communication technologies, protocols, or standards such as those discussed herein (e.g., CDMA, TDMA, OFDM, OFDMA, WiMAX, Wi-Fi, and so on).
  • a wireless node may support or otherwise use one or more of a variety of corresponding modulation or multiplexing schemes.
  • a wireless node may thus include appropriate components (e.g., air interfaces) to establish and communicate via one or more wireless communication links using the above or other wireless communication technologies.
  • a wireless node may comprise a wireless transceiver with associated transmitter and receiver components (e.g., transmitter 208 or 212 and receiver 210 or 214 ) that may include various components (e.g., signal generators and signal processors) that facilitate communication over a wireless medium.
  • apparatuses 1000 , 1100 , 1200 , 1300 , 1400 , 1500 , and 1600 are represented as a series of interrelated functional blocks.
  • the functionality of these blocks may be implemented as a processing system including one or more processor components.
  • the functionality of these blocks may be implemented using, for example, at least a portion of one or more integrated circuits (e.g., an ASIC).
  • an integrated circuit may include a processor, software, other related components, or some combination thereof
  • the functionality of these blocks also may be implemented in some other manner as taught herein.
  • one or more of the dashed blocks in FIGS. 10-16 relate to optional functionality.
  • the apparatuses 1000 , 1100 , 1200 , 1300 , 1400 , 1500 , and 1600 may include one or more modules that may perform one or more of the functions described above with regard to various figures.
  • an active or idle determining means 1002 may correspond to, for example, a mode determiner 226 as discussed herein.
  • a carrier assigning means 1004 may correspond to, for example, a carrier selector 224 as discussed herein.
  • a terminal configuring means 1006 may correspond to, for example, a carrier selector 224 as discussed herein.
  • a receiving means 1102 may correspond to, for example, a receiver 210 as discussed herein.
  • a carrier switch determining means 1104 may correspond to, for example, a carrier selector 222 as discussed herein.
  • a receiving means 1202 may correspond to, for example, a receiver as discussed herein.
  • a carrier switch determining means 1204 may correspond to, for example, a carrier selector 224 as discussed herein.
  • a receiving means 1302 may correspond to, for example, a receiver 210 as discussed herein.
  • a location determining means 1304 may correspond to, for example, a location determiner 228 as discussed herein.
  • a search determining means 1306 may correspond to, for example, a search controller 230 as discussed herein.
  • a handoff performing means 1308 may correspond to, for example, a handoff controller 232 as discussed herein.
  • a receiving means 1402 may correspond to, for example, a receiver 214 as discussed herein.
  • An access determining means 1404 may correspond to, for example, an access controller 216 as discussed herein.
  • a receiving means 1502 may correspond to, for example, a receiver as discussed herein.
  • An access determining means 1504 may correspond to, for example, an access controller 218 as discussed herein.
  • a transmitting means 1506 may correspond to, for example, a transmitter as discussed herein.
  • a terminal identifying means 1602 may correspond to, for example, a receiver 214 as discussed herein.
  • An authenticating means 1604 may correspond to, for example, an authorization controller 234 as discussed herein.
  • a parameter presenting means 1606 may correspond to, for example, a transmitter 212 as discussed herein.
  • a receiving means 1608 may correspond to, for example, a receiver 214 as discussed herein.
  • any reference to an element herein using a designation such as “first,” “second,” and so forth does not generally limit the quantity or order of those elements. Rather, these designations may be used herein as a convenient method of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements may be employed there or that the first element must precede the second element in some manner. Also, unless stated otherwise a set of elements may comprise one or more elements.
  • terminology of the form “at least one of: A, B, or C” used in the description or the claims means “A or B or C or any combination thereof.”
  • any of the various illustrative logical blocks, modules, processors, means, circuits, and algorithm steps described in connection with the aspects disclosed herein may be implemented as electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two, which may be designed using source coding or some other technique), various forms of program or design code incorporating instructions (which may be referred to herein, for convenience, as “software” or a “software module”), or combinations of both.
  • software or a “software module”
  • various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
  • the various illustrative logical blocks, modules, and circuits described in connection with the aspects disclosed herein may be implemented within or performed by an integrated circuit (“IC”), an access terminal, or an access point.
  • the IC may comprise a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, electrical components, optical components, mechanical components, or any combination thereof designed to perform the functions described herein, and may execute codes or instructions that reside within the IC, outside of the IC, or both.
  • a general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • any connection is properly termed a computer-readable medium.
  • Disk and disc includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • a computer-readable medium may be implemented in any suitable computer-program product.

Abstract

In some aspect restricted access nodes are assigned to a designated common channel while access terminals that are in active communication with a macro access node may selectively be assigned to the designated channel. In some aspect an access terminal associated with macro access node may perform a handoff to a different carrier when the access terminal is in the vicinity of a coverage area of a restricted access node. In some aspect an access terminal associated with a macro access node may perform a handoff to a different carrier based on location information. In some aspect access to a restricted access node is controlled based on policy and/or based on operation of an access terminal associated with the restricted access node.

Description

    CLAIM OF PRIORITY UNDER 35 U.S.C. §119
  • This application claims the benefit of and priority to commonly owned U.S. Provisional Patent Application No. 60/965,164, filed Aug. 17, 2007, and assigned Attorney Docket No. 071995P1, the disclosure of which is hereby incorporated by reference herein.
  • CROSS-REFERENCE TO RELATED APPLICATION
  • This application is related to concurrently filed and commonly owned U.S. patent application Ser. No. ______ entitled “METHOD AND APPARATUS FOR INTERFERENCE MANAGEMENT,” and assigned Attorney Docket No. 071995U1, the disclosure of which is hereby incorporated by reference herein.
  • BACKGROUND
  • 1. Field
  • This application relates generally to wireless communication and more specifically, but not exclusively, to improving communication performance.
  • 2. Introduction
  • Wireless communication systems are widely deployed to provide various types of communication (e.g., voice, data, multimedia services, etc.) to multiple users. As the demand for high-rate and multimedia data services rapidly grows, there lies a challenge to implement efficient and robust communication systems with enhanced performance.
  • To supplement the base stations of a conventional mobile phone network (e.g., a macro cellular network), small-coverage base stations may be deployed, for example, in a user's home. Such small-coverage base stations are generally known as access point base stations, home NodeBs, or femto cells and may be used to provide more robust indoor wireless coverage to mobile units. Typically, such small-coverage base stations are connected to the Internet and the mobile operator's network via a DSL router or a cable modem.
  • In a typical macro cellular deployment the radio frequency (“RF”) coverage is planned and managed by cellular network operators to optimize coverage. In such a deployment, an access terminal generally will connect to the best base station it hears for service. Here, RF planning may be employed in an attempt to ensure that the signal a given access terminal receives from a serving base station is sufficiently higher than the signals the access terminal receives from any interfering base stations, thereby enabling the access terminal to receive adequate service.
  • In contrast, deployment of small-coverage base stations may be ad-hoc and RF coverage of these base stations may not be optimized by the mobile operator. Consequently, RF interference, jamming, and out-of-service issues may arise between these base stations and nearby access terminals operating on a macro cell. For example, an access terminal that is not authorized to access a nearby base station (e.g., a femto cell) may be subjected to interference from that base station. Thus, there is a need for improved network interference management for wireless networks.
  • SUMMARY
  • A summary of sample aspects of the disclosure follows. It should be understood that any reference to the term aspects herein may refer to one or more aspects of the disclosure.
  • The disclosure relates in some aspects to assigning restricted access nodes (e.g., femto nodes) to a designated channel (e.g., carrier). Moreover, access terminals that are in active communication with a macro access node also may be assigned to the designated channel while access terminals that are idling on a macro access node are not assigned to the designated channel. In some cases, active access terminals with low-mobility may be assigned to the designated channel but active access terminals with high-mobility are not. In some aspects such a scheme may result in effective utilization of system resources while reducing interference between restricted access nodes and access terminals associated with macro access nodes.
  • The disclosure relates in some aspect to performing an inter-frequency handoff at an access terminal associated with a macro access node when the access terminal is in or near a coverage area of a restricted access node (e.g., a femto node). For example, when an access terminal that is associated with (e.g., in active communication with) a macro access node on a given carrier detects a femto node on the same carrier, the access terminal may switch to a different carrier for its macro communications if the carrier-to-interference (“C/I”) at the access terminal worsens to a certain degree. Thus, this scheme also may reduce interference between restricted access nodes and access terminals associated with macro access nodes.
  • The disclosure relates in some aspect to performing an inter-frequency handoff based on a location of an access terminal. For example, an access terminal that is associated with (e.g., in active communication with) a macro access node on a given carrier may perform an off-frequency scan based on location information. In this way, the access terminal may determine whether it is within a coverage area of a designated (e.g., preferred) access node that is operating on a different carrier. If so, the access terminal may perform a handoff to the designated access node. In some aspects such a scheme may reduce interference between restricted access nodes and access terminals associated with macro access nodes by facilitating a handoff to a designated node if the access node is near the designated node.
  • The disclosure relates in some aspect to controlling access to a restricted access node. For example, when an access terminal attempts to gain access to a restricted access node the restricted access node and/or an access terminal (e.g., a home access terminal) that is associated with the restricted access node may determine whether to allow the requested access. In some aspects a decision as to whether to allow access is based on one or more defined policies. In some aspects a decision as to whether to allow access is based on a decision by a user of the access terminal that is associated with the restricted access node.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other sample aspects of the disclosure will be described in the detailed description and the appended claims that follow, and in the accompanying drawings, wherein:
  • FIG. 1 is a simplified diagram of several sample aspects of a network including macro coverage and smaller scale coverage;
  • FIG. 2 is a simplified block diagram of several sample aspects of a communication system;
  • FIG. 3 is a flowchart of several sample aspects of operations that may be performed to assign carriers for wireless nodes;
  • FIG. 4 is a flowchart of several sample aspects of operations that may be performed to perform a handoff to another carrier based on received signals;
  • FIG. 5 is a flowchart of several sample aspects of operations that may be performed to perform a handoff to another carrier based on location information;
  • FIGS. 6A and 6B are a flowchart of several sample aspects of operations that may be performed to control access to a restricted access node;
  • FIG. 7 is a simplified diagram illustrating coverage areas for wireless communication;
  • FIG. 8 is a simplified diagram of a wireless communication system including femto nodes;
  • FIG. 9 is a simplified block diagram of several sample aspects of communication components; and
  • FIGS. 10-16 are simplified block diagrams of several sample aspects of apparatuses configured to assign carriers and control access as taught herein.
  • In accordance with common practice the various features illustrated in the drawings may not be drawn to scale. Accordingly, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. In addition, some of the drawings may be simplified for clarity. Thus, the drawings may not depict all of the components of a given apparatus (e.g., device) or method. Finally, like reference numerals may be used to denote like features throughout the specification and figures.
  • DETAILED DESCRIPTION
  • Various aspects of the disclosure are described below. It should be apparent that the teachings herein may be embodied in a wide variety of forms and that any specific structure, function, or both being disclosed herein is merely representative. Based on the teachings herein one skilled in the art should appreciate that an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein. Furthermore, an aspect may comprise at least one element of a claim.
  • FIG. 1 illustrates sample aspects of a network system 100 where a macro access node 102 provides macro scale coverage 104 (e.g., a large area cellular network such as a 3G network) and an access node 106 provides coverage over a smaller coverage area 108 (e.g., a residence or a building). In some aspects, access nodes such as the access node 106 may be used to provide one or more of incremental capacity growth, in-building coverage, and different services (e.g., for a more robust user experience). Thus, as a node such as wireless terminal 110 moves through the network, the wireless terminal 110 may be served over a wide area by the access node 102 and at a specific sub-area by the access node 106. As will be discussed in more detail below, however, the access node 106 may be restricted in that it may only provide service to a defined set of nodes. As a result, a coverage hole (e.g., corresponding to the coverage area 108) may be created in the macro coverage area 104 for nodes such as wireless terminal 112 that are authorized to access the macro node 102 but are not authorized to access the access node 106.
  • A coverage hole such as this may affect both active and idle access terminals operating within the macro coverage area. For example, if an idle access terminal is denied registration at a restricted access node, the access terminal may experience C/I degradation (e.g., in the current channel and perhaps one or more adjacent channels). As a result, the access terminal may need to perform a handoff to another macro carrier. Similarly, if an active access terminal is denied association at a restricted access node, the access terminal may experience C/I degradation on the downlink, and also cause interference on the uplink at the restricted access node. The active access terminal also may attempt a handoff to another macro channel with better C/I. If such a channel cannot be found, however, the active call may be dropped due to loss of signal. Moreover, before the call is lost, transmissions from the access terminal may cause a temporary out-of-service condition at the restricted access node.
  • The disclosure relates in some aspects to managing access and/or interference issues that may arise when an access terminal is in the vicinity of a restricted access node. These and other aspects of the disclosure will be described with reference to a communication system 200 as shown in FIG. 2 and the flowcharts of FIGS. 3-6A.
  • The system 200 will be used to describe the scenario that follows. The wireless terminal 110 (e.g., a home access terminal) is associated with the access node 106 (e.g., a restricted base station) whereby the wireless terminal 110 may have full access at the access node 106. In addition, initially the wireless terminal 112 is associated with the access node 102 (e.g., a macro base station). At some point in time, the wireless terminal 112 enters the coverage area of the access node 106 and attempts to establish communication (e.g., as a guest access terminal). As will be described below, the system 200 also includes a centralized controller 202 that may communicate with the access nodes 102 and 106 (e.g., over backhaul connections).
  • FIG. 2 also illustrates several sample components that may be implemented in these nodes in accordance with the teachings herein. To reduce the complexity of FIG. 2, only a few components are shown in the various nodes. It should be appreciated that similar components may be incorporated into other nodes in the system, irrespective of whether this is shown in FIG. 2. The nodes including transceivers for communicating with each other and with other nodes. For example, a transceiver 204 of the node 112 includes a transmitter 208 for sending signals and a receiver 210 for receiving signals. A transceiver 206 of the node 106 includes a transmitter 212 for transmitting signals and a receiver 214 for receiving signals. The nodes also may include access controllers (e.g., access controllers 216, 218, and 220) for controlling access to a node and for providing other related functionality as taught herein. The nodes also may include communication controllers (not shown) for managing communications with other nodes and for providing other related functionality as taught herein. The other components illustrated in FIG. 2 will be discussed in the disclosure that follows.
  • Sample operations of a system such as the system 200 will now be treated in more detail in conjunction with the flowcharts of FIGS. 3-6B. Briefly, FIG. 3 describes several operations that may be employed in conjunction with assigning carriers to nodes in a system. FIG. 4 describes several operations that may be employed in conjunction with switching to another carrier based on detected signals. FIG. 5 describes several operations that may be employed in conjunction with switching to another carrier based on location information. FIGS. 6A and 6B describe several operations that may be employed in conjunction with controlling access to a restricted node.
  • For convenience, the operations of FIGS. 3-6B (or any other operations discussed or taught herein) may be described as being performed by specific components (e.g., components of the system 200). It should be appreciated, however, that these operations may be performed by other types of components and may be performed using a different number of components. It also should be appreciated that one or more of the operations described herein may not be employed in a given implementation.
  • For illustration purposes the following description is presented in the context of access terminals (e.g., nodes 110 and 112) that communicate with a macro access node and a restricted access node (e.g., nodes 102 and 106, respectively). It should be appreciated, however, that the teachings herein may be applicable to other types of apparatuses or apparatuses that are referred to using other terminology.
  • Referring initially to FIG. 3, the channels (e.g., carriers) on which femto nodes and on which access terminals associated with macro nodes are deployed may be controlled to mitigate interference that may otherwise be caused by a restricted access node operating on the same channel as a macro node. Moreover, this may be accomplished while maintaining sufficient utilization of the channels.
  • As represented by block 302, all of the restricted access nodes in the system may be assigned to a common channel. For example, all of the femto nodes in a given operator's network may be deployed on the same carrier (designated the femto channel). In FIG. 2, such a configuration may be achieved, for example, by cooperation of the centralized controller 202 and the access node 106.
  • Blocks 304-316 describe a procedure that may be employed to assign a channel for an access terminal operating within a macro cell. Such a procedure may be implemented, for example, by cooperation of carrier selector components 222 and 224 of the nodes 112 and 102, respectively. For example, the carrier selector 224 may configure the carrier selector 222 to operate on a designated carrier.
  • The channel assignment procedure commences at block 304 (e.g., in conjunction with making a call assignment). As represented by block 306, this channel assignment may be based on whether the access terminal is currently active (e.g., in-call) or idle. In some implementations, the access terminal's current mode may be determined by a mode determiner component 226 as shown in FIG. 2.
  • As represented by block 308, if the access terminal is idling on a macro node, the access terminal may be assigned to a different channel than the femto channel if an alternate channel is available. In some aspects, idle macro access terminals may only need paging and other limited services. Hence, there may not be as great of a need to load-balance these access terminals across all channels. By not placing idle macro access terminals on the femto channel, idle handoffs that may be otherwise performed when the idle macro access terminal encounters the femto node may be avoided. In the event the access terminal switches to an active mode (e.g., when the access terminal receives a call), the access terminal may be assigned a different channel at that time (e.g., in conjunction with a call assignment).
  • As represented by block 310 and 312, active macro access terminals may be assigned to the femto channel under some circumstances. In some aspects the assignment of a macro access terminal to a femto channel may take into account whether such an assignment may result in relatively high overhead. For example, it may be undesirable to place an access terminal that has high mobility on the femto channel since this may result in a relatively large number of handoffs as the access terminal passes by different femto nodes in the network. In contrast, if the access terminal is relatively stationary and not within the coverage of a femto node, there may be a much lower likelihood of interference with femto nodes and inter-frequency handoffs. In this case, placing the access terminal on the femto channel may result in better utilization of the femto channel.
  • Accordingly, in some aspects a determination of whether to assign a macro access terminal to the femto channel may be based on the nobility of the access terminal. Such a determination may be made, for example, by comparing a mobility metric associated with the access terminal with one or more threshold mobility metric values. Thus, as represented by block 314, in the event the mobility of the access terminal is greater than equal to a threshold mobility value, the access terminal may be assigned to a channel that is different than the femto channel. Conversely, as represented by block 316, in the event the mobility of the access terminal is less than or equal to a threshold mobility value the access terminal may be assigned to the femto channel.
  • A mobility metric as described above may be implemented in various ways. For example, in some implementations a low-speed/high-speed classifier may be implemented in new access terminals. In some implementations the mobility of an access terminal may be determined based on whether an active access terminal on the femto channel frequently provides femto node C/I reports (e.g., to the macro access node). Here, the access terminal may generate a report every time it encounters signals from a different femto node. In the event the rate of these reports meets or exceeds a certain threshold, the access terminal may be directed away from the femto channel. Also, in the event femto node deployments become widespread in a network, the femto channel may be solely dedicated to femto nodes.
  • Referring now to FIG. 4, when an access terminal approaches a coverage hole on its current operating carrier (e.g., caused by restricted node), the access terminal may switch to a different carrier (e.g., in cooperation with a serving access node). The operations of FIG. 4 commence at block 402 where the access terminal 112 is initially associated with a macro access node 102 on a given carrier (e.g., designated as the first carrier).
  • As represented by block 404, the access terminal 112 (e.g., the receiver 210) will receive signals on the first carrier from the access node 102 and, potentially, other nearby access nodes. The access terminal 112 may thus determine the C/I associated with signals (e.g., pilot signals) received from the access node 102. In some implementations the access terminal 112 (e.g., the transmitter 208) may send this C/I information to the access node 102.
  • As represented by block 406, as the access terminal 112 approaches a coverage area of another access node, the access terminal 112 also may receive signals from that access node on the first carrier. As represented by block 408, the access terminal 112 may determine whether it is allowed to access the access node detected a block 406.
  • As represented by block 410, if the access terminal 112 is allowed to access the access node, the access terminal 112 may elect to associate with that access node. For example, one or more access nodes may be designated as preferred access nodes (e.g., a home femto node) for the access terminal 112. In such a case, the access terminal 112 may be configured to associate with a preferred access node whenever the access terminal 112 detects the presence of such a node. To this end, in some implementations the access terminal 112 may maintain a preferred roaming list (“PRL”) that identifies its preferred access nodes.
  • If the access terminal 112 is not allowed to access the access node at block 408 (e.g., the access node is restricted to provide service to some other access terminal), the access terminal 112 and/or a serving access node may determine whether to switch to a different carrier at blocks 412, 414, and 416. For example, in some cases the access terminal 112 (e.g., the carrier selector 222) may elect to switch to a different carrier based on detection of signals from a restricted access node (e.g., access node 106) and/or based on a determination that the C/I on the first carrier has degraded (e.g., due to interference from the access node 106 operating on the first carrier). Here, degradation of C/I may be indicated, for example, if the C/I is less than or equal to a threshold value.
  • In some cases, one or more of the above operations may be implemented by cooperation of the access terminal 112 and the access node 102. For example, the access terminal may send information relating to the signals received at blocks 404 and 406 to the access node 102. Then, based on detection of degraded C/I at the access terminal 112 and/or the presence of the restricted access node 106 (and/or a preferred access node) as indicated by the information, the access node 102 (e.g., the carrier selector 224) may invoke a handoff operation. As a result, the access terminal 112 may switch to the second carrier and attempt to establish communication.
  • The above procedure may be used when the access terminal is in either an idle mode or an active mode. For example, if a macro access terminal idling on the femto channel detects degraded C/I due to a nearby restricted femto node, the access terminal may initiate idle handoff operations. Here, if the access terminal determines that the femto node is either open or grants access to the access terminal, the access terminal may simply associate with the femto node as described above at block 410. If, on the other hand, the access terminal is not allowed to associate with the femto node, the access terminal may perform a scan in an attempt to find macro coverage signals on another carrier.
  • If a macro access terminal that is in active communication on the femto channel detects degraded C/I due to a nearby restricted femto node, the access terminal may send a C/I report to its macro node along with information about the femto node as discussed above. The macro access node may then determine that the C/I degradation is due to interference from the femto node and initiate an active inter-frequency handoff.
  • If a request by the access terminal 112 to associate with the access node 106 is denied and no alternative carrier is available within the coverage area of the access node 106, the access terminal 112 may drop its call. In such a case, the access terminal 112 may end up in an idle state (e.g., within the coverage of the access node 106)
  • In any event, the access terminal 112 may continue to monitor received signals as represented by operational flow back to block 404 (e.g., on the original carrier or the new carrier). In this way, the access terminal 112 may repeatedly monitor for coverage holes caused by nearby restricted access nodes and attempt to mitigate any associated interference.
  • Referring now to FIG. 5, it may be desirable for an access terminal to conduct off-frequency scans to determine whether it has entered a coverage area of an access node that is operating on a different carrier. For example, if a preferred access node has been designated for an access terminal (e.g., in a PRL), the access terminal may repeatedly conduct off-frequency scans in an attempt to detect signals (e.g., pilot signals) from the preferred access node. The operations of FIG. 4 commence at block 502 where the access terminal 112 is initially associated with a macro access node 102 on a given carrier (e.g., designated as the first carrier).
  • As represented by block 504, the access terminal 112 (e.g., a location determiner 228) determines location information that may be used to determine whether the access terminal 112 is in the vicinity of a given access node. This location information may take various forms. For example, in some implementations the location information may comprise a geographic location of the access terminal 112. In such a case, the location determiner 228 may include functionality (e.g., GPS functionality, cellular functionality, and so on) for determining this geographic location.
  • As represented by block 506, in some implementations the access terminal 112 also may determine whether it is experiencing any degradation in its received signals. For example, a decision to switch to another carrier also may be based on whether the signal from the macro access node 102 is becoming weak (e.g., C/I is degrading).
  • As represented by blocks 508 and 510, the access terminal 112 (e.g., a search controller 230) may determine whether to conduct an off-frequency scan to search for one or more other access nodes. As mentioned above, such a scan may be invoked based on the location information (e.g., by determining whether the access terminal 112 is proximate to a given access node operating on a different carrier). For the case of geographic-based location information, the search controller 230 may, for example, determine whether to conduct a search based on a comparison of the current geographic location as determined at block 504 with a known location of the specified access node.
  • Determining proximity to a given access node may be accomplished in various ways. For example, when access nodes such as femto nodes are setup (e.g., upon installation), each access node may upload its coordinates (e.g., latitude and longitude) together with identification information (e.g., its PN and sector ID) to a database. This information may be sent, for example, via an IP backhaul.
  • As discussed above, the access terminal determines where it is based on, for example, coordinates from a GPS component. The access terminal may then access the database (e.g., the access terminal may be configured a priori with the URL of the database) and query the database for any access nodes (e.g., femto nodes) in the vicinity of the access terminal. If the access terminal determines that there is such an access node in the vicinity, the access terminal may conduct an off-frequency search in an attempt to find the access node.
  • The use of such a centralized database may advantageously simplify network management. For example, when a new access node (e.g., femto node) is installed, the centralized database may be updated. An access terminal may then query that database whenever it needs to. In some aspects, an implementation such as this may be more efficient than, for example, an implementation where the PRL for an access terminal is updated every time a new access node is installed.
  • As mentioned above a decision to conduct a scan may optionally be based on any degradation in the signals received on the first carrier. For example, the access terminal 112 may be more likely to conduct a scan when the signal degradation is high.
  • As represented by block 512, the access terminal 112 determines whether any signals are received on the second carrier. If so, the access terminal 112 may elect to perform a handoff to associate with an access node operating on the second carrier (block 514). For example, if the access terminal 112 (e.g., a handoff controller 232) detects a home femto node on the second carrier, the access terminal 112 may elect to associate with that home femto node. If the access terminal 112 is in an active mode (e.g., in-call), appropriate context transfer procedures may be used to perform an active handoff.
  • If the access terminal 112 is denied access to a restricted access node (e.g., access node 106) while in idle mode, the access terminal 112 may request association with the access node. If the access terminal 112 is denied access to the access node while in active mode, the call may drop if the coverage on the first carrier runs out. In such a case, the access terminal 112 may end up in an idle mode within the coverage of the access node.
  • The initiation of a procedure that determines whether to switch to another carrier may be accomplished in various ways and based on various criteria. For example, in some cases a macro access node that is aware of the possible existence of a femto access node may request an access terminal to perform an off-frequency search at a frequency that is periodically specified by the network. In some cases, a femto node may send a request for an off-frequency search to an access terminal that is connected to it to determine whether it is appropriate to handout (e.g., to a macro access node).
  • As mentioned above, when a guest (or alien) access terminal approaches a restricted access node, interference, jamming, and out-of-service conditions may occur. To mitigate such conditions, the access node may grant some form of access to the access terminal in accordance with the teachings herein. For example, the access node may grant temporary access, restricted access, or some other form of access to the access terminal. These and other aspects of the disclosure will now be described in conjunction with FIGS. 6A and 6B. For convenience, a restricted access node will be referred to as the access node 106 in the following discussion. Similarly, a guest or alien access terminal (e.g., which may be granted guest access) will be referred to as the access terminal 112.
  • As represented by block 602, in some aspects access to a restricted access node may be based on policy defined for the access node 106. As will be described in more detail below, such policy may relate to, for example, one or more of which access terminals may be granted access, how long the access terminals may be granted access, and whether there are any restrictions on this access.
  • In some aspects, the access controller 216 (e.g., implementing a policy manager) located at the access node 106 determines whether the access terminal 112 is permitted to access the access node 106 (e.g., as a guest access terminal). In some cases, policy for the access node 106 may be defined by another node in the network. For example, an access controller 220 (e.g., a policy manager) implemented at the centralized controller 202 (e.g., a central access management function managed by an operator or service provider) and/or an access controller 218 (e.g., a policy manager) implemented at an associated home access terminal may define the policy implemented by the access controller 216. These entities may then send the policy to the access node 106 via an appropriate communication link (e.g., wired or wireless) to configure or update policy at the access node 106. In some cases, policy associated with one policy manager (e.g., the access controller 220) may override policy associated with another policy manager (e.g., the access controller 218). For convenience, in the following discussion a home access terminal will be referred to simply as the access terminal 110.
  • As represented by block 604, at some point in time the access terminal 112 may enter the coverage area of the access node 106. In addition, the access terminal 112 may request access to the access node 106 (e.g., access to the coverage area) in some manner. In some cases the request may be sent via a message such as an SMS message. In some cases the access terminal 112 may initiate a request by attempting to register with the access node, initiate a call with the access node, or handoff to the access node (e.g., when in an active state). In conjunction with such a request, the access terminal 112 may send an identification parameter to the access node 106.
  • As represented by block 606, upon receipt of the request by the access node 106 (e.g., the receiver 214), the access node 106 may authenticate the access terminal 112. For example, the access node 106 (e.g., an authorization controller 234) may issue a challenge to the access terminal 112 and verify any response it receives from the access terminal 112. In some implementations, the access node 106 may cooperate with an authorization, authentication, and accounting server (e.g., associated with the centralized controller 202) to authenticate the access terminal 112 (e.g., by authenticating a user name or some other identifier associated with the access terminal 112).
  • As represented by block 608, the access controller 216 then commences determining whether to grant access to the access terminal 112. As represented by block 610, this determination may be based on the policy implemented by the access controller 216 and, optionally, input from the access terminal 110. As an example of the latter scenario, the owner of the access node 106 may use the access terminal 110 to authorize a guest access terminal to use the access node 106.
  • The policy-based operations will be described first with reference to blocks 612 and 614. As represented by block 612, a request may be provided to the policy manager of the access node 106 requesting to allow the access terminal 112 to gain access to (e.g., register with) the access node 106. As represented by block 614, based on the policy, the access node 106 may then deny the request or grant the request (e.g., allowing temporary or permanent access). The policy implemented the access node 106 may take various forms. For example, a policy may involve one or more of the criteria set forth below.
  • In some aspects a policy may comprise an access control list that identifies permitted access terminals and/or non-permitted access terminals. Here, the access controller 216 may compare an identifier of the access terminal 112 with the access control list to determine whether to permit access.
  • In some aspects a policy may allow all requests to be temporarily admitted for a specified duration and permit some form of restricted access. For example, the access terminal 112 may be granted access for 15 minutes, one hour, and so on, and/or the access terminal 112 may be granted access at certain times. In this way, potential out-of-service events may be avoided at the access node 106.
  • In some aspects a policy may grant permanent access to certain access terminals (e.g., permanently entered into the closed user group). For example, an owner may grant permanent access to a neighbor access terminal. Such cooperation between neighbors may benefit both parties by achieving improved grade of service for each neighbor.
  • In some aspects a policy may define different types of access that may be permitted under different circumstances. For example, the policy may grant access to any access terminal that is attempting to make an e911 call.
  • In some aspects a policy may depend on the call state of the access terminal 112. For example, a response to a registration request may depend on whether the access terminal 112 is in an idle mode or an active mode. As a more specific example, a policy manager may be configured to automatically offer temporary service to the access terminal 112 if the access terminal 112 is an active mode. Conversely, a policy manager may be configured to notify one or both of the access controllers 218 and 220 whenever a request is received from the access terminal 112 when it is idling, whereby these entities may play a part in determining whether to grant access to the access terminal 112.
  • In some aspects, a policy may depend on the signal strength of signals received at the access node 106 (e.g., from the access terminal 112). For example, a policy manager may be configured to automatically offer temporary service to the access terminal 112 if the signal strength from the access terminal 112 exceeds a threshold (e.g., to reduce interference at the access node 106). In addition, when the measured rise over thermal and the noise floor at the access node 106 is approaching an out-of-service threshold, a policy may permit temporary access to the access terminal 112 to avoid an out-of-service condition at the access node 106. In some aspects the access node 106 may be designed with a relaxed rise over thermal limit to allow the access terminal 112 to transmit at a higher power that causes a larger rise over thermal than what may be typical in a macro cellular deployment. In this way, the number of out-of-service events at the access node 106 may be reduced.
  • In some aspects a policy may define different types of access (e.g., in conjunction with temporary access). For example, a policy may specify that the access terminal 112 is to be provided full association (e.g., full-service) by the access node 106.
  • Alternatively, a policy may specify that the access terminal 112 is to be provided less than full service (e.g., to restrict consumption of resources such as bandwidth at the access node 106). For example, the access terminal 112 may be restricted to signaling-only association. Here, the access terminal 112 may be admitted to the access node 106 via a path provided for signaling. The access terminal 112 may thus send signaling to and receive signaling from the access node 106, or some other network element (e.g., a macro RNC). This type of signaling may relate to, for example, paging, mobility signaling, and registration. However, the access terminal 112 is not allowed to send or receive user traffic through the access node 106 (e.g., call setup is not permitted).
  • In yet another example, a policy may specify that the access terminal 112 is to be restricted to local signaling-only association. This signaling may involve, for example, locally generated signaling such as redirection messages, resource utilization messages (e.g., to control interference), and power control messages. In some aspects, this signaling may relate to media access control (“MAC”) level operations. Here, no signaling connection is provided to the core network. In addition, paging and mobility-related signaling is not supported.
  • Referring now to blocks 616-622, in some implementations the access node 106 may obtain permission from a user (e.g., the owner of the access node 106) before granting access to the access terminal 112. For example, at block 616 the access node 106 (e.g., the transmitter 212) may forward a request (e.g., a guest access request) and/or other related information to the access terminal 110. As mentioned above, in some implementations this request may include an authenticated identification parameter associated with the access terminal 112 (e.g., a user name). It should be appreciated that the access terminal 110 is not required to be present in the coverage area of the access node 106. Rather, this message exchange with the access terminal 110 may be employed as long as the access terminal 110 is in service somewhere in the network (e.g., when the access terminal 110 is registered somewhere in an associated wide area network).
  • As represented by block 618, based on the receipt of this request (e.g., by a receiver, not shown), the access terminal 110 (e.g., the access controller 218) may determine whether to permit the requested access. In some implementations this may involve outputting a notification relating to the request via an output device (not shown) of the access terminal 110. For example, a request may be displayed on a display device of the access terminal 110. The user of the access terminal 110 may then use an input device (not shown) of the access terminal 110 to provide a response to the request that indicates whether the request is allowed (and, optionally, the form of access allowed).
  • As represented by block 620, the access terminal 110 (e.g., a transmitter, not shown) may then send an appropriate response to the access node 106. As mentioned above, this response may authorize access to the access terminal 112 (e.g., associated with an authenticated identification parameter provided at block 616). Upon receipt of this response by its receiver 214, the access node 106 may then grant or allow the requested access based on the response (block 622).
  • In some cases, the operations of the access terminal 110 employ policy similar to the policy described above (e.g., as implemented by the access controller 218). In some cases, the access terminal 110 may configure the policy manager of the access node 106 with an identifier of an access terminal before the access terminal arrives in the coverage area of the access node 106. For example, as mentioned above a user may elect to authorize a neighbor to access the access node 106. In such a case, the user may cause an appropriate entry to be made to the access control list maintained by the access node 106.
  • It should be appreciated that access manager functionality may be implemented in a variety of ways in accordance with the teachings herein. For example, in some implementations a femto node manager may be employed to temporarily or permanently admit access terminals to a closed user group and permit access to a restricted femto node. In one example, where one or more devices belong to a homeowner, an access terminal may be configured to be a femto node manager if it is assigned access terminal function manager status. In another example, a service provider may deploy a network element with femto node manager function to apply service provider policies on closed user group management. The service provider may configure either the access terminal femto node manager or the femto node manager function in the network to override the other.
  • In view of the above it should be appreciated that the teachings herein may be advantageously employed to mitigate interference in a wireless communication system. Moreover, through the use of higher-level procedures such as handoffs and association procedures, interference issues may be addressed in a more effective manner in some aspects as compared to, for example, techniques that may address these issues via lower layer (e.g., PHY and/or MAC) modifications (e.g., by adapting radio parameters or employing time division multiplexing).
  • As mentioned above, in some aspects the teachings herein may be employed in a network that includes macro scale coverage (e.g., a macro cellular network environment) and smaller scale coverage (e.g., a residential or building network environment). In such a network, as an access terminal (“AT”) moves through the network, the access terminal may be served in certain locations by access nodes (“ANs”) that provide macro coverage while the access terminal may be served at other locations by access nodes that provide smaller scale coverage. In some aspects, the smaller coverage nodes may be used to provide incremental capacity growth, in-building coverage, and different services (e.g., for a more robust user experience). In the discussion herein, a node that provides coverage over a relatively large area may be referred to as a macro node. A node that provides coverage over a relatively small area (e.g., a residence) may be referred to as a femto node. A node that provides coverage over an area that is smaller than a macro area and larger than a femto area may be referred to as a pico node (e.g., providing coverage within a commercial building).
  • A cell associated with a macro node, a femto node, or a pico node may be referred to as a macro cell, a femto cell, or a pico cell, respectively. In some implementations, a given cell may be further associated with (e.g., divided into) one or more sectors.
  • In various applications, other terminology may be used to reference a macro node, a femto node, or a pico node. For example, a macro node may be configured or referred to as an access node, base station, access point, eNodeB, macro cell, and so on. Also, a femto node may be configured or referred to as a home NodeB, home eNodeB, access point base station, femto cell, and so on.
  • FIG. 7 illustrates an example of a coverage map 700 for a network where several tracking areas 702 (or routing areas or location areas) are defined. Specifically, areas of coverage associated with tracking areas 702A, 702B, and 702C are delineated by the wide lines in FIG. 7.
  • The system provides wireless communication via multiple cells 704 (represented by the hexagons), such as, for example, macro cells 704A and 704B, with each cell being serviced by a corresponding access node 706 (e.g., access nodes 706A-706C). As shown in FIG. 7, access terminals 708 (e.g., access terminals 708A and 708B) may be dispersed at various locations throughout the network at a given point in time. Each access terminal 708 may communicate with one or more access nodes 706 on a forward link (“FL”) and/or a reverse link (“RL”) at a given moment, depending upon whether the access terminal 708 is active and whether it is in soft handoff, for example. The network may provide service over a large geographic region. For example, the macro cells 704 may cover several blocks in a neighborhood.
  • The tracking areas 702 also include femto coverage areas 710. In this example, each of the femto coverage areas 710 (e.g., femto coverage areas 710A) is depicted within a macro coverage area 704 (e.g., macro coverage area 704B). It should be appreciated, however, that a femto coverage area 710 may not lie entirely within a macro coverage area 704. In practice, a large number of femto coverage areas 710 may be defined within a given tracking area 702 or macro coverage area 704. Also, one or more pico coverage areas (not shown) may be defined within a given tracking area 702 or macro coverage area 704. To reduce the complexity of FIG. 7, only a few access nodes 706, access terminals 708, and femto nodes 710 are shown.
  • Connectivity for a femto node environment may be established in various ways. For example, FIG. 8 illustrates a communication system 800 where one or more femto nodes are deployed within a network environment. Specifically, the system 800 includes multiple femto nodes 810 (e.g., femto nodes 810A and 810B) installed in a relatively small scale network environment (e.g., in one or more user residences 830). Each femto node 810 may be coupled to a wide area network 840 (e.g., the Internet) and a mobile operator core network 850 via a DSL router, a cable modem, a wireless link, or other connectivity means (not shown). As discussed herein, each femto node 810 may be configured to serve associated access terminals 820 (e.g., access terminal 820A) and, optionally, other access terminals 820 (e.g., access terminal 820B). In other words, access to femto nodes 810 may be restricted whereby a given access terminal 820 may be served by a set of designated (e.g., home) femto node(s) 810 but may not be served by any non-designated femto nodes 810 (e.g., a neighbor's femto node 810).
  • The owner of a femto node 810 may subscribe to mobile service, such as, for example, 3G mobile service offered through the mobile operator core network 850. In addition, an access terminal 820 may be capable of operating both in macro environments and in smaller scale (e.g., residential) network environments. In other words, depending on the current location of the access terminal 820, the access terminal 820 may be served by an access node 860 of the macro cell mobile network 850 or by any one of a set of femto nodes 810 (e.g., the femto nodes 810A and 810B that reside within a corresponding user residence 830). For example, when a subscriber is outside his home, he is served by a standard macro access node (e.g., the node 860) and when the subscriber is at home, he/she is served by a femto node (e.g., the node 810B). Here, it should be appreciated that a femto node 810 may be backward compatible with existing access terminals 820.
  • A femto node 810 may be deployed on a single frequency or, in the alternative, on multiple frequencies. Depending on the particular configuration, the single frequency or one or more of the multiple frequencies may overlap with one or more frequencies used by a macro node (e.g., the node 860).
  • In some aspects, an access terminal 820 may be configured to communicate either with the macro network 850 or the femto nodes 810, but not both simultaneously. In addition, in some aspects an access terminal 820 being served by a femto node 810 may not be in a soft handover state with the macro network 850.
  • In some aspects, an access terminal 820 may be configured to connect to a preferred femto node (e.g., the home femto node of the access terminal 820) whenever such connectivity is possible. For example, whenever a subscriber's access terminal 820 is within the subscriber's residence 830, it may be desired that the access terminal 820 communicate only with a home femto node 810.
  • In some aspects, if the access terminal 820 operates within the macro cellular network 850 but is not residing on its most preferred network (e.g., as defined in a preferred roaming list), the access terminal 820 may continue to search for the most preferred network (e.g., the preferred femto node 810) using a Better System Reselection (“BSR”), which may involve a periodic scanning of available systems to determine whether better systems are currently available, and subsequent efforts to associate with such preferred systems. With the acquisition entry, the access terminal 820 may limit the search for specific band and channel. For example, the search for the most preferred system may be repeated periodically. Upon discovery of a preferred femto node 810, the access terminal 820 selects the femto node 810 for camping within its coverage area.
  • As mentioned above, an access node such as a femto node may be restricted in some aspects. For example, a given femto node may only provide certain services to certain access terminals. In deployments with so-called restricted (or closed) association, a given access terminal may only be served by the macro cell mobile network and a defined set of femto nodes (e.g., the femto nodes 810 that reside within the corresponding user residence 830). In some implementations, a node may be restricted to not provide at least one of: signaling, data access, registration, paging, or service to at least one node.
  • In some aspects, a restricted femto node (which may also be referred to as a Closed Subscriber Group Home NodeB) is one that provides service to a restricted provisioned set of access terminals. This set may be temporarily or permanently extended as necessary. In some aspects, a Closed Subscriber Group (“CSG”) may be defined as the set of access nodes (e.g., femto nodes) that share a common access control list of access terminals. A channel on which all femto nodes (or all restricted femto nodes) in a region operate may be referred to as a femto channel.
  • Various relationships may thus exist between a given femto node and a given access terminal. For example, from the perspective of an access terminal, an open femto node may refer to a femto node with no restricted association. A restricted femto node may refer to a femto node that is restricted in some manner (e.g., restricted for association and/or registration). A home femto node may refer to a femto node on which the access terminal is authorized to access and operate on. A guest femto node may refer to a femto node on which an access terminal is temporarily authorized to access or operate on. An alien femto node may refer to a femto node on which the access terminal is not authorized to access or operate on, except for perhaps emergency situations (e.g., 911 calls).
  • From a restricted femto node perspective, a home access terminal may refer to an access terminal that is authorized to access the restricted femto node. A guest access terminal may refer to an access terminal with temporary access to the restricted femto node. An alien access terminal may refer to an access terminal that does not have permission to access the restricted femto node, except for perhaps emergency situations, for example, such as 911 calls (e.g., an access terminal that does not have the credentials or permission to register with the restricted femto node).
  • For convenience, the disclosure herein describes various functionality in the context of a femto node. It should be appreciated, however, that a pico node may provide the same or similar functionality for a larger coverage area. For example, a pico node may be restricted, a home pico node may be defined for a given access terminal, and so on.
  • A wireless multiple-access communication system may simultaneously support communication for multiple wireless access terminals. As mentioned above, each terminal may communicate with one or more base stations via transmissions on the forward and reverse links. The forward link (or downlink) refers to the communication link from the base stations to the terminals, and the reverse link (or uplink) refers to the communication link from the terminals to the base stations. This communication link may be established via a single-in-single-out system, a multiple-in-multiple-out (“MIMO”) system, or some other type of system.
  • A MIMO system employs multiple (NT) transmit antennas and multiple (NR) receive antennas for data transmission. A MIMO channel formed by the NT transmit and NR receive antennas may be decomposed into NS independent channels, which are also referred to as spatial channels, where NS≦min {NT, NR}. Each of the NS independent channels corresponds to a dimension. The MIMO system may provide improved performance (e.g., higher throughput and/or greater reliability) if the additional dimensionalities created by the multiple transmit and receive antennas are utilized.
  • A MIMO system may support time division duplex (“TDD”) and frequency division duplex (“FDD”). In a TDD system, the forward and reverse link transmissions are on the same frequency region so that the reciprocity principle allows the estimation of the forward link channel from the reverse link channel. This enables the access point to extract transmit beam-forming gain on the forward link when multiple antennas are available at the access point.
  • The teachings herein may be incorporated into a node (e.g., a device) employing various components for communicating with at least one other node. FIG. 9 depicts several sample components that may be employed to facilitate communication between nodes. Specifically, FIG. 9 illustrates a wireless device 910 (e.g., an access point) and a wireless device 950 (e.g., an access terminal) of a MIMO system 900. At the device 910, traffic data for a number of data streams is provided from a data source 912 to a transmit (“TX”) data processor 914.
  • In some aspects, each data stream is transmitted over a respective transmit antenna. The TX data processor 914 formats, codes, and interleaves the traffic data for each data stream based on a particular coding scheme selected for that data stream to provide coded data.
  • The coded data for each data stream may be multiplexed with pilot data using OFDM techniques. The pilot data is typically a known data pattern that is processed in a known manner and may be used at the receiver system to estimate the channel response. The multiplexed pilot and coded data for each data stream is then modulated (i.e., symbol mapped) based on a particular modulation scheme (e.g., BPSK, QSPK, M-PSK, or M-QAM) selected for that data stream to provide modulation symbols. The data rate, coding, and modulation for each data stream may be determined by instructions performed by a processor 930. A data memory 932 may store program code, data, and other information used by the processor 930 or other components of the device 910.
  • The modulation symbols for all data streams are then provided to a TX MIMO processor 920, which may further process the modulation symbols (e.g., for OFDM). The TX MIMO processor 920 then provides NT modulation symbol streams to NT transceivers (“XCVR”) 922A through 922T. In some aspects, the TX MIMO processor 920 applies beam-forming weights to the symbols of the data streams and to the antenna from which the symbol is being transmitted.
  • Each transceiver 922 receives and processes a respective symbol stream to provide one or more analog signals, and further conditions (e.g., amplifies, filters, and upconverts) the analog signals to provide a modulated signal suitable for transmission over the MIMO channel. NT modulated signals from transceivers 922A through 922T are then transmitted from NT antennas 924A through 924T, respectively.
  • At the device 950, the transmitted modulated signals are received by NR antennas 952A through 952R and the received signal from each antenna 952 is provided to a respective transceiver (“XCVR”) 954A through 954R. Each transceiver 954 conditions (e.g., filters, amplifies, and downconverts) a respective received signal, digitizes the conditioned signal to provide samples, and further processes the samples to provide a corresponding “received” symbol stream.
  • A receive (“RX”) data processor 960 then receives and processes the NR received symbol streams from NR transceivers 954 based on a particular receiver processing technique to provide NT “detected” symbol streams. The RX data processor 960 then demodulates, deinterleaves, and decodes each detected symbol stream to recover the traffic data for the data stream. The processing by the RX data processor 960 is complementary to that performed by the TX MIMO processor 920 and the TX data processor 914 at the device 910.
  • A processor 970 periodically determines which pre-coding matrix to use (discussed below). The processor 970 formulates a reverse link message comprising a matrix index portion and a rank value portion. A data memory 972 may store program code, data, and other information used by the processor 970 or other components of the device 950.
  • The reverse link message may comprise various types of information regarding the communication link and/or the received data stream. The reverse link message is then processed by a TX data processor 938, which also receives traffic data for a number of data streams from a data source 936, modulated by a modulator 980, conditioned by the transceivers 954A through 954R, and transmitted back to the device 910.
  • At the device 910, the modulated signals from the device 950 are received by the antennas 924, conditioned by the transceivers 922, demodulated by a demodulator (“DEMOD”) 940, and processed by a RX data processor 942 to extract the reverse link message transmitted by the device 950. The processor 930 then determines which pre-coding matrix to use for determining the beam-forming weights then processes the extracted message.
  • FIG. 9 also illustrates that the communication components may include one or more components that perform access/carrier control operations as taught herein. For example, an access/carrier control component 990 may cooperate with the processor 930 and/or other components of the device 910 to send/receive signals to/from another device (e.g., device 950) as taught herein. Similarly, an access/carrier control component 992 may cooperate with the processor 970 and/or other components of the device 950 to send/receive signals to/from another device (e.g., device 910). It should be appreciated that for each device 910 and 950 the functionality of two or more of the described components may be provided by a single component. For example, a single processing component may provide the functionality of the access/carrier control component 990 and the processor 930 and a single processing component may provide the functionality of the access/carrier control component 992 and the processor 970.
  • The teachings herein may be incorporated into various types of communication systems and/or system components. In some aspects, the teachings herein may be employed in a multiple-access system capable of supporting communication with multiple users by sharing the available system resources (e.g., by specifying one or more of bandwidth, transmit power, coding, interleaving, and so on). For example, the teachings herein may be applied to any one or combinations of the following technologies: Code Division Multiple Access (“CDMA”) systems, Multiple-Carrier CDMA (“MCCDMA”), Wideband CDMA (“W-CDMA”), High-Speed Packet Access (“HSPA,” “HSPA+”) systems, Time Division Multiple Access (“TDMA”) systems, Frequency Division Multiple Access (“FDMA”) systems, Single-Carrier FDMA (“SC-FDMA”) systems, Orthogonal Frequency Division Multiple Access (“OFDMA”) systems, or other multiple access techniques. A wireless communication system employing the teachings herein may be designed to implement one or more standards, such as IS-95, cdma2000, IS-856, W-CDMA, TDSCDMA, and other standards. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (“UTRA)”, cdma2000, or some other technology. UTRA includes W-CDMA and Low Chip Rate (“LCR”). The cdma2000 technology covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as Global System for Mobile Communications (“GSM”). An OFDMA network may implement a radio technology such as Evolved UTRA (“E-UTRA”), IEEE 802.11, IEEE 802.16, IEEE 802.20, Flash-OFDM®, etc. UTRA, E-UTRA, and GSM are part of Universal Mobile Telecommunication System (“UMTS”). The teachings herein may be implemented in a 3GPP Long Term Evolution (“LTE”) system, an Ultra-Mobile Broadband (“UMB”) system, and other types of systems. LTE is a release of UMTS that uses E-UTRA. Although certain aspects of the disclosure may be described using 3GPP terminology, it is to be understood that the teachings herein may be applied to 3GPP (Re199, Re15, Re16, Re17) technology, as well as 3GPP2 (IxRTT, 1xEV-DO Re1O, RevA, RevB) technology and other technologies.
  • The teachings herein may be incorporated into (e.g., implemented within or performed by) a variety of apparatuses (e.g., wireless nodes). For example, an access node as discussed herein (e.g., a macro node, a femto node, or a pico node) may be configured or referred to as an access point (“AP”), a base station (“BS”), a NodeB, a radio network controller (“RNC”), an eNodeB, a base station controller (“BSC”), a base transceiver station (“BTS”), a transceiver function (“TF”), a radio router, a radio transceiver, a basic service set (“BSS”), an extended service set (“ESS”), a radio base station (“RBS”), or some other terminology.
  • In addition, an access terminal as discussed herein may be referred to as a mobile station, user equipment, a subscriber unit, a subscriber station, a remote station, a remote terminal, a user terminal, a user agent, a user device, or some other terminology. In some implementations such a node may consist of, be implemented within, or include a cellular telephone, a cordless telephone, a Session Initiation Protocol (“SIP”) phone, a wireless local loop (“WLL”) station, a personal digital assistant (“PDA”), a handheld device having wireless connection capability, or some other suitable processing device connected to a wireless modem.
  • Accordingly, one or more aspects taught herein may consist of, be implemented within, or include variety types of apparatuses. Such an apparatus may comprise a phone (e.g., a cellular phone or smart phone), a computer (e.g., a laptop), a portable communication device, a portable computing device (e.g., a personal data assistant), an entertainment device (e.g., a music or video device, or a satellite radio), a global positioning system device, or any other suitable device that is configured to communicate via a wireless medium.
  • As mentioned above, in some aspects a wireless node may comprise an access node (e.g., an access point) for a communication system. Such an access node may provide, for example, connectivity for or to a network (e.g., a wide area network such as the Internet or a cellular network) via a wired or wireless communication link. Accordingly, the access node may enable another node (e.g., an access terminal) to access the network or some other functionality. In addition, it should be appreciated that one or both of the nodes may be portable or, in some cases, relatively non-portable. Also, it should be appreciated that a wireless node (e.g., a wireless device) also may be capable of transmitting and/or receiving information in a non-wireless manner via an appropriate communication interface (e.g., via a wired connection).
  • A wireless node may communicate via one or more wireless communication links that are based on or otherwise support any suitable wireless communication technology. For example, in some aspects a wireless node may associate with a network. In some aspects the network may comprise a local area network or a wide area network. A wireless device may support or otherwise use one or more of a variety of wireless communication technologies, protocols, or standards such as those discussed herein (e.g., CDMA, TDMA, OFDM, OFDMA, WiMAX, Wi-Fi, and so on). Similarly, a wireless node may support or otherwise use one or more of a variety of corresponding modulation or multiplexing schemes. A wireless node may thus include appropriate components (e.g., air interfaces) to establish and communicate via one or more wireless communication links using the above or other wireless communication technologies. For example, a wireless node may comprise a wireless transceiver with associated transmitter and receiver components (e.g., transmitter 208 or 212 and receiver 210 or 214) that may include various components (e.g., signal generators and signal processors) that facilitate communication over a wireless medium.
  • The components described herein may be implemented in a variety of ways. Referring to FIGS. 10-16, apparatuses 1000, 1100, 1200, 1300, 1400, 1500, and 1600 are represented as a series of interrelated functional blocks. In some aspects the functionality of these blocks may be implemented as a processing system including one or more processor components. In some aspects the functionality of these blocks may be implemented using, for example, at least a portion of one or more integrated circuits (e.g., an ASIC). As discussed herein, an integrated circuit may include a processor, software, other related components, or some combination thereof The functionality of these blocks also may be implemented in some other manner as taught herein. In some aspects one or more of the dashed blocks in FIGS. 10-16 relate to optional functionality.
  • The apparatuses 1000, 1100, 1200, 1300, 1400, 1500, and 1600 may include one or more modules that may perform one or more of the functions described above with regard to various figures. For example, an active or idle determining means 1002 may correspond to, for example, a mode determiner 226 as discussed herein. A carrier assigning means 1004 may correspond to, for example, a carrier selector 224 as discussed herein. A terminal configuring means 1006 may correspond to, for example, a carrier selector 224 as discussed herein. A receiving means 1102 may correspond to, for example, a receiver 210 as discussed herein. A carrier switch determining means 1104 may correspond to, for example, a carrier selector 222 as discussed herein. A receiving means 1202 may correspond to, for example, a receiver as discussed herein. A carrier switch determining means 1204 may correspond to, for example, a carrier selector 224 as discussed herein. A receiving means 1302 may correspond to, for example, a receiver 210 as discussed herein. A location determining means 1304 may correspond to, for example, a location determiner 228 as discussed herein. A search determining means 1306 may correspond to, for example, a search controller 230 as discussed herein. A handoff performing means 1308 may correspond to, for example, a handoff controller 232 as discussed herein. A receiving means 1402 may correspond to, for example, a receiver 214 as discussed herein. An access determining means 1404 may correspond to, for example, an access controller 216 as discussed herein. A receiving means 1502 may correspond to, for example, a receiver as discussed herein. An access determining means 1504 may correspond to, for example, an access controller 218 as discussed herein. A transmitting means 1506 may correspond to, for example, a transmitter as discussed herein. A terminal identifying means 1602 may correspond to, for example, a receiver 214 as discussed herein. An authenticating means 1604 may correspond to, for example, an authorization controller 234 as discussed herein. A parameter presenting means 1606 may correspond to, for example, a transmitter 212 as discussed herein. A receiving means 1608 may correspond to, for example, a receiver 214 as discussed herein.
  • It should be understood that any reference to an element herein using a designation such as “first,” “second,” and so forth does not generally limit the quantity or order of those elements. Rather, these designations may be used herein as a convenient method of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements may be employed there or that the first element must precede the second element in some manner. Also, unless stated otherwise a set of elements may comprise one or more elements. In addition, terminology of the form “at least one of: A, B, or C” used in the description or the claims means “A or B or C or any combination thereof.”
  • Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • Those of skill would further appreciate that any of the various illustrative logical blocks, modules, processors, means, circuits, and algorithm steps described in connection with the aspects disclosed herein may be implemented as electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two, which may be designed using source coding or some other technique), various forms of program or design code incorporating instructions (which may be referred to herein, for convenience, as “software” or a “software module”), or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
  • The various illustrative logical blocks, modules, and circuits described in connection with the aspects disclosed herein may be implemented within or performed by an integrated circuit (“IC”), an access terminal, or an access point. The IC may comprise a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, electrical components, optical components, mechanical components, or any combination thereof designed to perform the functions described herein, and may execute codes or instructions that reside within the IC, outside of the IC, or both. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • It is understood that any specific order or hierarchy of steps in any disclosed process is an example of a sample approach. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the processes may be rearranged while remaining within the scope of the present disclosure. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
  • The functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. In summary, it should be appreciated that a computer-readable medium may be implemented in any suitable computer-program product.
  • The previous description of the disclosed aspects is provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects without departing from the scope of the disclosure. Thus, the present disclosure is not intended to be limited to the aspects shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (76)

1. A method of wireless communication, comprising:
receiving, at an access node, a request for access from an access terminal; and
determining, at the access node, whether to allow the requested access based on a policy maintained at the access node.
2. The method of claim 1, wherein the policy is provided, at least in part, by another access terminal that is associated with the access node.
3. The method of claim 1, wherein the determination further comprises:
transmitting a message regarding the requested access to another access terminal that is associated with the access node; and
receiving a response to the message, wherein the response indicates whether to allow the requested access.
4. The method of claim 1, wherein the determination further comprises determining whether an identifier of the access terminal is in an access list maintained by the access node.
5. The method of claim 1, wherein the policy relates to at least one of the group consisting of: access duration, access time, type of access, received signal strength, call state, and access terminal identity.
6. The method of claim 1, wherein the type of access relates to at least one of the group consisting of: full association, signaling-only association, and local signaling-only association.
7. The method of claim 1, wherein the signaling-only association relates to least one of the group consisting of: paging, mobility signaling, registration, signaling destined for the access node, and signaling destined for another node.
8. The method of claim 1, wherein the local signaling-only association relates to at least one of the group consisting of: power control, transmission of resource utilization messages, media access control operations, redirection, and signaling destined for the access node.
9. The method of claim 1, wherein the access node is restricted to not provide at least one of the group consisting of: signaling, data access, registration, paging, and service to at least one node.
10. The method of claim 1, wherein the access node comprises a femto node or a pico node.
11. An apparatus for wireless communication, comprising:
a receiver configured to receive, at an access node, a request for access from an access terminal; and
an access controller configured to determine, at the access node, whether to allow the requested access based on a policy maintained at the access node.
12. The apparatus of claim 11, wherein the policy is provided, at least in part, by another access terminal that is associated with the access node.
13. The apparatus of claim 11, wherein the determination further comprises:
transmitting a message regarding the requested access to another access terminal that is associated with the access node; and
receiving a response to the message, wherein the response indicates whether to allow the requested access.
14. The apparatus of claim 11, wherein the determination further comprises determining whether an identifier of the access terminal is in an access list maintained by the access node.
15. The apparatus of claim 11, wherein the policy relates to at least one of the group consisting of: access duration, access time, type of access, received signal strength, call state, and access terminal identity.
16. The apparatus of claim 11, wherein the type of access relates to at least one of the group consisting of: full association, signaling-only association, and local signaling-only association.
17. The apparatus of claim 11, wherein the access node is restricted to not provide at least one of the group consisting of: signaling, data access, registration, paging, and service to at least one node.
18. An apparatus for wireless communication, comprising:
means for receiving, at an access node, a request for access from an access terminal; and
means for determining, at the access node, whether to allow the requested access based on a policy maintained at the access node.
19. The apparatus of claim 18, wherein the policy is provided, at least in part, by another access terminal that is associated with the access node.
20. The apparatus of claim 18, wherein the determination further comprises:
transmitting a message regarding the requested access to another access terminal that is associated with the access node; and
receiving a response to the message, wherein the response indicates whether to allow the requested access.
21. The apparatus of claim 18, wherein the determination further comprises determining whether an identifier of the access terminal is in an access list maintained by the access node.
22. The apparatus of claim 18, wherein the policy relates to at least one of the group consisting of: access duration, access time, type of access, received signal strength, call state, and access terminal identity.
23. The apparatus of claim 18, wherein the type of access relates to at least one of the group consisting of: full association, signaling-only association, and local signaling-only association.
24. The apparatus of claim 18, wherein the access node is restricted to not provide at least one of the group consisting of: signaling, data access, registration, paging, and service to at least one node.
25. A computer-program product, comprising:
computer-readable medium comprising codes for causing a computer to:
receive, at an access node, a request for access from an access terminal; and
determine, at the access node, whether to allow the requested access based on a policy maintained at the access node.
26. The computer-program product of claim 25, wherein the policy is provided, at least in part, by another access terminal that is associated with the access node.
27. The computer-program product of claim 25, wherein the determination further comprises:
transmitting a message regarding the requested access to another access terminal that is associated with the access node; and
receiving a response to the message, wherein the response indicates whether to allow the requested access.
28. The computer-program product of claim 25, wherein the determination further comprises determining whether an identifier of the access terminal is in an access list maintained by the access node.
29. The computer-program product of claim 25, wherein the policy relates to at least one of the group consisting of: access duration, access time, type of access, received signal strength, call state, and access terminal identity.
30. The computer-program product of claim 25, wherein the type of access relates to at least one of the group consisting of: full association, signaling-only association, and local signaling-only association.
31. The computer-program product of claim 25, wherein the access node is restricted to not provide at least one of the group consisting of: signaling, data access, registration, paging, and service to at least one node.
32. A method of wireless communication, comprising:
receiving, at a first access terminal, a first message from an associated access node regarding a request by a second access terminal to access the access node;
determining, in response to the first message, whether to allow the requested access; and
transmitting a second message to the access node indicative of the determination.
33. The method of claim 32, wherein the determination comprises:
outputting, via an output device, a notification relating to whether the requested access should be allowed; and
obtaining, in response to the outputted indication, an indication that indicates whether the requested access is allowed.
34. The method of claim 34, wherein the outputting comprises displaying.
35. The method of claim 32, wherein:
the first message comprises an authenticated identifier of the second access terminal; and
the determination is based on the authenticated identifier.
36. The method of claim 32, further comprising:
defining policy for allowing at least one guest access terminal to access the access node; and
transmitting the policy to the access node.
37. The method of claim 36, wherein the policy relates to an access list that identifies the at least one guest access terminal as being allowed to access the access node.
38. The method of claim 36, wherein the policy relates to at least one of the group consisting of: access duration, access time, type of access, received signal strength, call state, and access terminal identity.
39. The method of claim 38, wherein the type of access relates to at least one of the group consisting of: full association, signaling-only association, and local signaling-only association.
40. The method of claim 39, wherein the signaling-only association relates to least one of the group consisting of: paging, mobility signaling, registration, signaling destined for the access node, and signaling destined for another node.
41. The method of claim 39, wherein the local signaling-only association relates to at least one of the group consisting of: power control, transmission of resource utilization messages, media access control operations, redirection, and signaling destined for the access node.
42. The method of claim 32, wherein the access node is restricted to not provide at least one of the group consisting of: signaling, data access, registration, paging, and service to at least one node.
43. The method of claim 32, wherein the access node comprises a femto node or a pico node.
44. An apparatus for wireless communication, comprising:
a receiver configured to receive, at a first access terminal, a first message from an associated access node regarding a request by a second access terminal to access the access node;
an access controller configured to determine, in response to the first message, whether to allow the requested access; and
a transmitter configured to transmit a second message to the access node indicative of the determination.
45. The apparatus of claim 44, wherein the determination comprises:
outputting, via an output device, a notification relating to whether the requested access should be allowed; and
obtaining, in response to the outputted indication, an indication that indicates whether the requested access is allowed.
46. The apparatus of claim 44, wherein the access controller is further configured to define policy for allowing at least one guest access terminal to access the access node, wherein the transmitter is further configured to transmit the policy to the access node.
47. The apparatus of claim 46, wherein the policy relates to at least one of the group consisting of: access duration, access time, type of access, received signal strength, call state, and access terminal identity.
48. The apparatus of claim 44, wherein the access node is restricted to not provide at least one of the group consisting of: signaling, data access, registration, paging, and service to at least one node.
49. An apparatus for wireless communication, comprising:
means for receiving, at a first access terminal, a first message from an associated access node regarding a request by a second access terminal to access the access node;
means for determining, in response to the first message, whether to allow the requested access; and
means for transmitting a second message to the access node indicative of the determination.
50. The apparatus of claim 49, wherein the determination comprises:
outputting, via an output device, a notification relating to whether the requested access should be allowed; and
obtaining, in response to the outputted indication, an indication that indicates whether the requested access is allowed.
51. The apparatus of claim 49, wherein the means determining is further configured to define policy for allowing at least one guest access terminal to access the access node, wherein the means for transmitting is configured to transmit the policy to the access node.
52. The apparatus of claim 51, wherein the policy relates to at least one of the group consisting of: access duration, access time, type of access, received signal strength, call state, and access terminal identity.
53. The apparatus of claim 49, wherein the access node is restricted to not provide at least one of the group consisting of: signaling, data access, registration, paging, and service to at least one node.
54. A computer-program product, comprising:
computer-readable medium comprising codes for causing a computer to:
receive, at a first access terminal, a first message from an associated access node regarding a request by a second access terminal to access the access node;
determine, in response to the first message, whether to allow the requested access; and
transmit a second message to the access node indicative of the determination.
55. The computer-program product of claim 54, wherein the determination comprises:
outputting, via an output device, a notification relating to whether the requested access should be allowed; and
obtaining, in response to the outputted indication, an indication that indicates whether the requested access is allowed.
56. The computer-program product of claim 54, wherein the computer-readable medium further comprises codes for causing the computer to:
define policy for allowing at least one guest access terminal to access the access node; and
transmit the policy to the access node.
57. The computer-program product of claim 56, wherein the policy relates to at least one of the group consisting of: access duration, access time, type of access, received signal strength, call state, and access terminal identity.
58. The computer-program product of claim 54, wherein the access node is restricted to not provide at least one of the group consisting of: signaling, data access, registration, paging, and service to at least one node.
59. A method of wireless communication, comprising:
identifying a first access terminal operating in proximity to an access point;
authenticating the first access terminal based on an identification parameter associated with the first access terminal; and
presenting, based on the authentication, an authenticated identification parameter to a second access terminal associated with the access point.
60. The method of claim 59, wherein the identification of the first access terminal comprises receiving, from the first access terminal, a request to access a coverage area of the access point.
61. The method of claim 60, wherein the authentication involve use of an authorization, authentication, and accounting server.
62. The method of claim 60, further comprising receiving, in response to the authenticated identification parameter, an indication from the second access terminal that indicates whether the first access terminal is allowed to access the coverage area.
63. The method of claim 59, wherein the access node is restricted to not provide at least one of the group consisting of: signaling, data access, registration, paging, and service to at least one node.
64. The method of claim 59, wherein the access node comprises a femto node or a pico node.
65. An apparatus for wireless communication, comprising:
a receiver configured to identify a first access terminal operating in proximity to a restricted access point;
an authentication controller configured to authenticate the first access terminal based on an identification parameter associated with the first access terminal; and
a transmitter configured to present, based on the authentication, an authenticated identification parameter to a second access terminal associated with the restricted access point.
66. The apparatus of claim 65, wherein the identification of the first access terminal comprises receiving, from the first access terminal, a request to access a coverage area of the access point.
67. The apparatus of claim 66, further comprising a receiver configured to receive, in response to the authenticated identification parameter, an indication from the second access terminal that indicates whether the first access terminal is allowed to access the coverage area.
68. The apparatus of claim 65, wherein the access node is restricted to not provide at least one of the group consisting of: signaling, data access, registration, paging, and service to at least one node.
69. An apparatus for wireless communication, comprising:
means for identifying a first access terminal operating in proximity to a restricted access point;
means for authenticating the first access terminal based on an identification parameter associated with the first access terminal; and
means for presenting, based on the authentication, an authenticated identification parameter to a second access terminal associated with the restricted access point.
70. The apparatus of claim 69, wherein the identification of the first access terminal comprises receiving, from the first access terminal, a request to access a coverage area of the access point.
71. The apparatus of claim 70, further comprising means for receiving, in response to the authenticated identification parameter, an indication from the second access terminal that indicates whether the first access terminal is allowed to access the coverage area.
72. The apparatus of claim 71, wherein the access node is restricted to not provide at least one of the group consisting of: signaling, data access, registration, paging, and service to at least one node.
73. A computer-program product, comprising:
computer-readable medium comprising codes for causing a computer to:
identify a first access terminal operating in proximity to a restricted access point;
authenticate the first access terminal based on an identification parameter associated with the first access terminal; and
present, based on the authentication, an authenticated identification parameter to a second access terminal associated with the restricted access point.
74. The computer-program product of claim 73, wherein the identification of the first access terminal comprises receiving, from the first access terminal, a request to access a coverage area of the access point.
75. The computer-program product of claim 74, wherein the computer-readable medium further comprises codes for causing the computer to receive, in response to the authenticated identification parameter, an indication from the second access terminal that indicates whether the first access terminal is allowed to access the coverage area.
76. The computer-program product of claim 73, wherein the access node is restricted to not provide at least one of the group consisting of: signaling, data access, registration, paging, and service to at least one node.
US12/191,256 2007-08-17 2008-08-13 Method and apparatus for wireless access control Abandoned US20090047931A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
US12/191,256 US20090047931A1 (en) 2007-08-17 2008-08-13 Method and apparatus for wireless access control
EP08797993.6A EP2183933B1 (en) 2007-08-17 2008-08-15 Access control for an ad-hoc small-coverage base station
PCT/US2008/073341 WO2009026162A1 (en) 2007-08-17 2008-08-15 Access control for an ad-hoc small-coverage base station
CN201410341713.4A CN104185244B (en) 2007-08-17 2008-08-15 For the connection control method and device of AD-HOC small-coverage base stations
JP2010521948A JP5372933B2 (en) 2007-08-17 2008-08-15 Access control of ad hoc small coverage base stations
MX2010001897A MX2010001897A (en) 2007-08-17 2008-08-15 Access control for an ad-hoc small-coverage base station.
KR1020107005803A KR101268999B1 (en) 2007-08-17 2008-08-15 Access control for an ad-hoc small-coverage base station
CA2694979A CA2694979A1 (en) 2007-08-17 2008-08-15 Access control for an ad-hoc small-coverage base station
RU2010109858/07A RU2461967C2 (en) 2007-08-17 2008-08-15 Controlling access for self-organising base station with small coverage area
BRPI0815222-5A BRPI0815222A2 (en) 2007-08-17 2008-08-15 Access control for a small ad hoc coverage base station
AU2008289182A AU2008289182B2 (en) 2007-08-17 2008-08-15 Access control for an ad-hoc small-coverage base station
CN200880102853.9A CN101785336B (en) 2007-08-17 2008-08-15 Access control for an AD-HOC small-coverage base station
TW097131501A TWI397278B (en) 2007-08-17 2008-08-18 Method and apparatus for wireless access control
JP2013118668A JP5730944B2 (en) 2007-08-17 2013-06-05 Access control of ad hoc small coverage base stations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US96516407P 2007-08-17 2007-08-17
US12/191,256 US20090047931A1 (en) 2007-08-17 2008-08-13 Method and apparatus for wireless access control

Publications (1)

Publication Number Publication Date
US20090047931A1 true US20090047931A1 (en) 2009-02-19

Family

ID=40362876

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/191,250 Active 2031-11-02 US8923212B2 (en) 2007-08-17 2008-08-13 Method and apparatus for interference management
US12/191,256 Abandoned US20090047931A1 (en) 2007-08-17 2008-08-13 Method and apparatus for wireless access control
US14/559,683 Active 2029-02-13 US9565612B2 (en) 2007-08-17 2014-12-03 Method and apparatus for interference management

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/191,250 Active 2031-11-02 US8923212B2 (en) 2007-08-17 2008-08-13 Method and apparatus for interference management

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/559,683 Active 2029-02-13 US9565612B2 (en) 2007-08-17 2014-12-03 Method and apparatus for interference management

Country Status (14)

Country Link
US (3) US8923212B2 (en)
EP (5) EP2384056B1 (en)
JP (6) JP5372933B2 (en)
KR (3) KR101222426B1 (en)
CN (5) CN104185244B (en)
AU (2) AU2008289177A1 (en)
BR (2) BRPI0815222A2 (en)
CA (4) CA2694979A1 (en)
ES (1) ES2563196T3 (en)
MX (2) MX2010001887A (en)
RU (4) RU2461967C2 (en)
TW (2) TWI397278B (en)
UA (1) UA97409C2 (en)
WO (2) WO2009026162A1 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090042593A1 (en) * 2007-08-10 2009-02-12 Qualcomm Incorporated Adaptation of transmit power for neighboring nodes
US20090046632A1 (en) * 2007-08-17 2009-02-19 Qualcomm Incorporated Method and apparatus for interference management
US20090052395A1 (en) * 2007-08-22 2009-02-26 Cellco Partnership (D/B/A Verizon Wireless) Femto-BTS RF access mechanism
US20090061821A1 (en) * 2007-08-30 2009-03-05 Cellco Partnership (D/B/A Verizon Wireless) Pico cell home mode operation
US20090070694A1 (en) * 2007-09-10 2009-03-12 Nokia Siemens Networks Oy Access control for closed subscriber groups
US20090082027A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management utilizing harq interlaces
US20090080499A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management employing fractional code reuse
US20090081970A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management employing fractional frequency reuse
US20090082026A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management utilizing power control
US20090080386A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management employing fractional time reuse
US20090086861A1 (en) * 2007-09-21 2009-04-02 Qualcomm Incorporated Interference management utilizing power and attenuation profiles
US20090092097A1 (en) * 2007-10-03 2009-04-09 Tomas Nylander Method and arrangement in a telecommunication system
US20090135790A1 (en) * 2007-11-27 2009-05-28 Qualcomm Incorporated Interface management in wireless communication system using hybrid time reuse
US20090197631A1 (en) * 2008-02-01 2009-08-06 Qualcomm Incorporated Interference mitigation for control channels in a wireless communication network
US20090252099A1 (en) * 2007-11-27 2009-10-08 Qualcomm Incorporated Interference management in a wireless communication system using frequency selective transmission
US20090262911A1 (en) * 2002-05-08 2009-10-22 Bremer Gordon F Repeaterless Backhaul
US20100039948A1 (en) * 2008-02-01 2010-02-18 Qualcomm Incorporated Interference management based on enhanced pilot measurement reports
US20100113032A1 (en) * 2008-10-30 2010-05-06 Lg Electronics Inc. Method of handover and base station information transmission in wireless communication system
US20100113027A1 (en) * 2008-11-01 2010-05-06 Broadband Wireless Technology Corp Apparatus, Method, And Tangible Machine-Readable Medium Thereof For CallBack HandOver Procedure In A FemTo-Network
US20100198968A1 (en) * 2009-02-02 2010-08-05 Qualcomm Incorporated Inclusion/exclusion messaging scheme for indicating whether a network entity performs access control
US20100234039A1 (en) * 2009-03-10 2010-09-16 Samsung Electronics Co., Ltd. Communication system with femtocells and an interference control method therefor
US20100248667A1 (en) * 2009-03-25 2010-09-30 Enfora, Inc. Enhanced jamming detection
US20100254355A1 (en) * 2009-04-03 2010-10-07 Charles Abraham Method and System for Determining a Location of a Device Using Femtocell Information
US20100273448A1 (en) * 2007-10-29 2010-10-28 Ntt Docomo, Inc. Mobile communication system, home base station, and mobile station
WO2010135487A1 (en) * 2009-05-22 2010-11-25 Verizon Patent And Licensing Inc. User equipment attachment / detachment from a long term evolution (lte) network
US20100298005A1 (en) * 2009-05-19 2010-11-25 Qualcomm Incorporated Minimizing interference to non-associated users
US20110070886A1 (en) * 2008-02-18 2011-03-24 Ntt Docomo, Inc. Mobile communication system, location registration method, handover method, exchange, mobile station, and radio control station
US20110143738A1 (en) * 2009-12-15 2011-06-16 Htc Corporation Method and system for managing autonomous search in various modes in a long-term evolution environment
US20110188485A1 (en) * 2010-02-02 2011-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements in a cellular communication network
US20110239271A1 (en) * 2008-12-08 2011-09-29 China Iwncomm Co., Ltd. Trusted network connection implementing method based on tri-element peer authentication
US20110299488A1 (en) * 2008-12-08 2011-12-08 Young Yong Kim Method of radio resource allocation and method of neighbor information transmission in wireless communication system
US20120044908A1 (en) * 2007-10-25 2012-02-23 Cisco Technology, Inc. Interworking gateway for mobile nodes
US20130051365A1 (en) * 2008-05-22 2013-02-28 Ntt Docomo Inc. Femtocell channel assignment and power control for improved femtocell coverage and efficient cell search
US20130079011A1 (en) * 2010-06-10 2013-03-28 France Telecom Traffic load management method, network and device
US8538420B2 (en) * 2011-09-19 2013-09-17 PureWave Networks, Inc Multi-band wireless cellular system and method
US20130244658A1 (en) * 2012-03-16 2013-09-19 Hitachi, Ltd. Handover management apparatus, base station, and handover management method
US20140179300A1 (en) * 2009-11-03 2014-06-26 Pantech Co., Ltd. Terminal for entering coverage of small base station, small base station, network apparatus, and method
US20140329527A1 (en) * 2009-05-01 2014-11-06 At&T Mobility Ii Llc Access control for macrocell to femtocell handover
US8891464B2 (en) 2011-09-19 2014-11-18 Redline Innovations Group, Inc. Architecture, devices and methods for supporting multiple channels in a wireless system
US20150003416A1 (en) * 2009-03-13 2015-01-01 Lg Electronics Inc. Handover performed in consideration of uplink/downlink component carrier setup
US20150078262A1 (en) * 2013-09-17 2015-03-19 Cisco Technology, Inc. System and method for performing resource allocation
US9065584B2 (en) 2010-09-29 2015-06-23 Qualcomm Incorporated Method and apparatus for adjusting rise-over-thermal threshold
US9094953B2 (en) 2011-09-19 2015-07-28 Redline Innovations Group Inc. Methods for supporting multiple operators in a wireless basestation
US9113354B2 (en) 2011-09-19 2015-08-18 Redline Innovations Group Inc. Shared backhaul link for multiple wireless systems
US9204365B2 (en) 2009-02-02 2015-12-01 Qualcomm Incorporated Controlling whether a network entity performs access control based on an indication from an access point
US9408126B2 (en) 2011-04-04 2016-08-02 Kyocera Corporation Mobile communication method
US9532293B2 (en) 2009-03-18 2016-12-27 Cisco Technology, Inc. Localized forwarding
US10129617B2 (en) 2014-03-05 2018-11-13 Huawei Technologies Co., Ltd Link switching method, device, and system
US10412587B1 (en) * 2018-06-07 2019-09-10 Motorola Solutions, Inc. Device, system and method to secure deployable access points in a side-haul communication network from a compromised deployable access point

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8326296B1 (en) 2006-07-12 2012-12-04 At&T Intellectual Property I, L.P. Pico-cell extension for cellular network
JP5314699B2 (en) * 2007-11-26 2013-10-16 ノキア シーメンス ネットワークス オサケユキチュア Local network access using public cells
US9246541B2 (en) 2008-02-01 2016-01-26 Qualcomm Incorporated UTRAN enhancements for the support of inter-cell interference cancellation
US8719420B2 (en) 2008-05-13 2014-05-06 At&T Mobility Ii Llc Administration of access lists for femtocell service
US8179847B2 (en) 2008-05-13 2012-05-15 At&T Mobility Ii Llc Interactive white list prompting to share content and services associated with a femtocell
CN101272353B (en) * 2008-05-21 2010-12-22 杭州华三通信技术有限公司 Wireless load balancing method and access controller
US8743776B2 (en) 2008-06-12 2014-06-03 At&T Mobility Ii Llc Point of sales and customer support for femtocell service and equipment
US8611822B2 (en) * 2008-07-15 2013-12-17 Qualcomm Incorporated Wireless communication systems with femto cells
US9370021B2 (en) 2008-07-31 2016-06-14 Google Technology Holdings LLC Interference reduction for terminals operating on neighboring bands in wireless communication systems
KR20110129432A (en) * 2009-02-27 2011-12-01 엔이씨 유럽 리미티드 Method for supporting an operational wireless connection of a mobile station to a macrocell or femtocell base station
JP5287361B2 (en) * 2009-03-04 2013-09-11 日本電気株式会社 Management device, communication system, control method, and program
US20100240382A1 (en) 2009-03-19 2010-09-23 Qualcomm Incorporated Systems, apparatus and methods for interference management in wireless networks
US8694017B2 (en) * 2009-03-25 2014-04-08 Qualcomm Incorporated Method and apparatus for interference management in a wireless communication system
US9344902B2 (en) * 2009-04-03 2016-05-17 Broadcom Corporation Method and system for evaluating deployment of femtocells as part of a cellular network
WO2010121437A1 (en) * 2009-04-24 2010-10-28 华为技术有限公司 Method and device for transmitting wireless data in a communication system
GB2471988A (en) 2009-04-27 2011-01-26 Nec Corp Communication System comprising Home Base Station and associated Closed Subscriber Group
JP5555312B2 (en) * 2009-05-08 2014-07-23 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and arrangement in a wireless communication system for dynamic carrier mode switching
WO2011005373A1 (en) * 2009-06-23 2011-01-13 Motorola Mobility, Inc. Signaling femto-cell deployment attributes to assist interference mitigation in heterogeneous networks
MX2011012966A (en) * 2009-06-30 2012-10-03 Telekom Uk Ltd Deutsche Method for handling communication between a user equipment and a radio network controller and program for controlling a radio network controller.
US8219086B2 (en) * 2009-07-06 2012-07-10 Intel Corporation Low duty mode for femtocell base stations
KR101706350B1 (en) * 2009-07-15 2017-02-28 한국전자통신연구원 Method of transmitting data for reducing interference in hierarchical cell structure
KR101056332B1 (en) * 2009-07-27 2011-08-11 주식회사 팬택 Terminal registration method and system by owner terminal of small base station network
US9055493B2 (en) * 2009-08-25 2015-06-09 Nec Corporation Wireless communication system, base station, wireless communication method and recording medium
CN102550075B (en) * 2009-10-02 2015-07-01 三菱电机株式会社 Mobile communication system
US8510801B2 (en) 2009-10-15 2013-08-13 At&T Intellectual Property I, L.P. Management of access to service in an access point
KR101666009B1 (en) * 2009-10-22 2016-10-14 삼성전자주식회사 Communication system of detecting victim terminal and performing interference coordination in multi-cell environments
US8520617B2 (en) 2009-11-06 2013-08-27 Motorola Mobility Llc Interference mitigation in heterogeneous wireless communication networks
US8433249B2 (en) 2009-11-06 2013-04-30 Motorola Mobility Llc Interference reduction for terminals operating in heterogeneous wireless communication networks
EP2515569A4 (en) * 2009-12-18 2014-12-24 Fujitsu Ltd Mobile communication system, base station apparatus and radio frequency changing method
GB2479376B (en) * 2010-04-07 2012-05-02 Toshiba Res Europ Ltd Mechanism of mobility management through a group of femto-cell base stations on offloading data-packets
US8743779B2 (en) * 2010-04-16 2014-06-03 Qualcomm Incorporated Systems, apparatus and methods to facilitate simultaneous traffic-idle or idle-idle demodulation
US9185619B2 (en) * 2010-06-29 2015-11-10 Qualcomm Incorporated Method and apparatus for mitigating interference in femtocell deployments
KR101117628B1 (en) * 2011-03-03 2012-04-06 한국정보보안연구소 주식회사 Wireless security system capable of detecting non-authorized access of wireless terminal and method thereof
JP5417421B2 (en) * 2011-12-06 2014-02-12 株式会社Nttドコモ Wireless control device
WO2014107884A1 (en) * 2013-01-11 2014-07-17 Telefonaktiebolaget L M Ericsson (Publ) Methods, apparatus, user equipment, wireless network node, and computer program product for random access
US8942708B2 (en) * 2013-01-30 2015-01-27 Sprint Spectrum L.P. Management of radio connection assignment in coverage area correlated with geographic region
JP6115913B2 (en) * 2013-02-04 2017-04-19 株式会社Kddi総合研究所 Communication device and control method thereof
US9084264B2 (en) * 2013-02-26 2015-07-14 Blackberry Limited Method and apparatus for small cell configuration in a heterogeneous network architecture
US9060276B1 (en) 2013-04-27 2015-06-16 Sprint Communications Company L.P. Providing service to a portable electronic device using allowed network codes
CN103490982B (en) * 2013-09-13 2017-01-18 天脉聚源(北京)传媒科技有限公司 Message processing method and device
JP5715723B2 (en) * 2014-04-16 2015-05-13 京セラ株式会社 Mobile communication method and base station
JP5813830B1 (en) * 2014-06-25 2015-11-17 ソフトバンク株式会社 Communications system
US9608794B2 (en) 2014-08-08 2017-03-28 Sprint Spectrum L.P. Systems and methods for scheduling transmissions between an access node and wireless devices
US9572064B2 (en) 2014-08-08 2017-02-14 Sprint Spectrum L.P. Systems and methods for scheduling transmissions from an access node
EP3178278B1 (en) * 2014-08-08 2020-02-19 Sprint Spectrum LP Systems and methods for scheduling communication at an access node
JP6415688B2 (en) * 2014-12-15 2018-10-31 華為技術有限公司Huawei Technologies Co.,Ltd. Processing method and apparatus for implementing high-frequency communication, and device
EP3070901A1 (en) * 2015-03-16 2016-09-21 Alcatel Lucent Communication device authentication in small cell network
CN108307475B (en) * 2016-08-09 2021-03-23 中兴通讯股份有限公司 Network access control method and device
US10299272B2 (en) 2016-11-04 2019-05-21 Nokia Solutions And Networks Oy Switching carrier frequency while user equipment is in off cycle
CN106550366A (en) * 2016-11-07 2017-03-29 广东欧珀移动通信有限公司 A kind of connection control method and mobile terminal
EP3678420A4 (en) 2017-09-28 2020-09-16 Huawei Technologies Co., Ltd. Access control method and device
JP6719525B2 (en) * 2018-09-26 2020-07-08 三菱電機株式会社 Mobile communication system

Citations (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028851A (en) * 1997-09-26 2000-02-22 Telefonaktiebolaget L M Ericsson (Publ) System and method for mobile assisted admission control
US6301478B1 (en) * 1993-05-17 2001-10-09 Telefonaktiebolaget Lm Ericsson (Publ) Intra cell handover and channel allocation to reduce interference
US6393003B1 (en) * 1997-08-22 2002-05-21 Samsung Electronics, Co., Ltd. Semi-soft handoff method that uses multiple common frequency
US6480716B2 (en) * 1997-05-13 2002-11-12 Nokia Telecommunications Oy Estimating subscriber terminal speed, selecting cell, and radio system
US20030064727A1 (en) * 2001-10-02 2003-04-03 Hsien-Ming Tsai System and method for channel allocation in a multi-band wireless network
US20030095513A1 (en) * 1999-12-15 2003-05-22 Nortel Networks Corporation Traffic management system and method for multi-carrier CDMA wireless networks
US20030095512A1 (en) * 2001-11-16 2003-05-22 Erol Hepsaydir Microcell deployment strategies in WCDMA networks
US6597679B1 (en) * 1999-12-01 2003-07-22 Telefonaktiebolat Lm Ericsson Control of compressed mode transmission in WCDMA
US20030198285A1 (en) * 2000-06-15 2003-10-23 Gang Qi Method and apparatus for estimating speed-adapted channel
US20040156372A1 (en) * 2003-02-12 2004-08-12 Timo Hussa Access point service for mobile users
US20040192375A1 (en) * 2003-03-25 2004-09-30 Samsung Electronics Co., Ltd. Apparatus and method for selecting an access network in a multi-wireless communication network
US20040235479A1 (en) * 2003-05-23 2004-11-25 Samsung Electronics Co., Ltd. Velocity estimation apparatus and method using level crossing rate
US20040252666A1 (en) * 2003-06-13 2004-12-16 Christopher Johnson Method of managing uplink radio resources in CDMA telecommunications system and arrangement therefore
US20050114650A1 (en) * 2003-11-20 2005-05-26 The Boeing Company Method and Hybrid System for Authenticating Communications
US20050136925A1 (en) * 2003-12-17 2005-06-23 Toshiaki Yamauchi Variable expiration parameter of a wireless communication device based upon signal strength
US20050141471A1 (en) * 2003-12-29 2005-06-30 Virtanen Terhi T. Method and system for controlling access bearer in a real-time data service
US20050250496A1 (en) * 2002-05-23 2005-11-10 Motorola, Inc. Communications methods and apparatus for use therein
US7027816B2 (en) * 2002-07-15 2006-04-11 Nec Corporation Method for changing over to different frequency at cellular phone system and cellular phone system using the method and base station controlling apparatus in the system and mobile communication terminal in the system
US20060084390A1 (en) * 1998-02-17 2006-04-20 Nokia Corporation Measurement reporting in a telecommunication system
US20060128392A1 (en) * 2004-12-14 2006-06-15 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for steering idle mobile stations
US7145890B1 (en) * 1999-08-09 2006-12-05 Sk Telecom Co. Ltd Method for carrying out handoff between macrocell and microcell in hierarchical cell structure
US20060291383A1 (en) * 2005-06-22 2006-12-28 Qi Bi Methods for quality of service reverse link admission and overload control in a wireless system
US20070011725A1 (en) * 2005-07-11 2007-01-11 Vasant Sahay Technique for providing secure network access
US20070046527A1 (en) * 2005-07-04 2007-03-01 Nokia Corporation Speed detection method in communication system, receiver, network element and processor
US20070097938A1 (en) * 2005-10-04 2007-05-03 Telefonaktiebolaget Lm Ericsson Automatic building of neighbor lists in mobile system
US20070105598A1 (en) * 2003-05-09 2007-05-10 Cellpoint Connect Aps Audio headset
US20070123260A1 (en) * 2005-11-28 2007-05-31 Won-Ik Kim Method for discovering wireless network for inter-system handover, multi-mode terminal unit and inter-working service server using the method
US20070140185A1 (en) * 2005-12-16 2007-06-21 Deepak Garg Radio network communication
US20070149226A1 (en) * 2003-12-23 2007-06-28 Martin De Vries Controlling reconfiguration in a cellular communication system
US20070248060A1 (en) * 2006-04-21 2007-10-25 Mooney Christopher F Method of providing access information to an access terminal
US20070270152A1 (en) * 2006-05-19 2007-11-22 Tomas Nylander Access control in a mobile communication system
US20080310404A1 (en) * 2005-05-27 2008-12-18 Niclas Valme Local Switching In Radio Access Networks
US20090007218A1 (en) * 2007-06-30 2009-01-01 Hubbard Scott M Switched-Based Network Security
US20090034443A1 (en) * 2007-07-30 2009-02-05 Jesse Walker Power saving idle mode algorithm for an access point
US20090042593A1 (en) * 2007-08-10 2009-02-12 Qualcomm Incorporated Adaptation of transmit power for neighboring nodes
US20090046632A1 (en) * 2007-08-17 2009-02-19 Qualcomm Incorporated Method and apparatus for interference management
US20090052395A1 (en) * 2007-08-22 2009-02-26 Cellco Partnership (D/B/A Verizon Wireless) Femto-BTS RF access mechanism
US20090061873A1 (en) * 2007-08-31 2009-03-05 Cellco Partnership (D/B/A Verizon Wireless) Active service redirection for a private femto cell
US20090081970A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management employing fractional frequency reuse
US20090082027A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management utilizing harq interlaces
US20090080499A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management employing fractional code reuse
US20090080386A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management employing fractional time reuse
US20090082026A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management utilizing power control
US20090086861A1 (en) * 2007-09-21 2009-04-02 Qualcomm Incorporated Interference management utilizing power and attenuation profiles
US20090097448A1 (en) * 2007-10-12 2009-04-16 Lucent Technologies Inc. Methods for idle registration and idle handoff in a femto environment
US20090129336A1 (en) * 2007-06-21 2009-05-21 Airwalk Communications, Inc. System, method, and computer-readable medium for user equipment handoff from a macrocellular network to an ip-femtocell network
US20090135796A1 (en) * 2007-11-27 2009-05-28 Qualcomm Incorporated Interface management in a wireless communication system using subframe time reuse
US20090186627A1 (en) * 2008-01-22 2009-07-23 Lucent Technologies Inc. Method of assigning an idle state access terminal to a carrier in a multiple carrier wireless communication system based on load on control channel resources
US20100120437A1 (en) * 2007-04-25 2010-05-13 Motorola, Inc. Cellular communication system and method of operation therefor
US20110281571A1 (en) * 2009-11-17 2011-11-17 Qualcomm Incorporated Idle access terminal-assisted time and/or frequency tracking
US20120039326A1 (en) * 2004-05-26 2012-02-16 Matsushita Electric Industrial Co., Ltd. Network System and Method For Providing an Ad-Hoc Access Environment

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645461A (en) 1987-06-29 1989-01-10 Q P Corp Production of food of expanded grains
US5428668A (en) 1993-11-04 1995-06-27 Ericsson Ge Mobile Communications Inc. Radio personal communications system and method for allocating frequencies for communications between a cellular terminal and a base station
US5729826A (en) * 1996-07-26 1998-03-17 Gavrilovich; Charles D. Mobile communication system with moving base station
JPH099354A (en) 1995-06-22 1997-01-10 Fujitsu Ltd Mobile terminal equipment control system
GB2315193B (en) 1996-07-10 2000-11-15 Orange Personal Comm Serv Ltd Mobile communications system
JP3545895B2 (en) * 1996-12-19 2004-07-21 京セラ株式会社 Free channel allocation method
CA2264125C (en) * 1998-03-03 2003-05-06 Nec Corporation Method of controlling transmission power in a cellular type mobile communication system
WO1999055102A1 (en) 1998-04-22 1999-10-28 Netline Communications Technologies (Nct) Ltd. Method and system for providing cellular communications services
KR100326330B1 (en) * 1998-05-08 2002-06-26 윤종용 Hand-off apparatus for mobile communication system and method therefor
KR100308661B1 (en) * 1998-08-28 2001-10-19 윤종용 Hand-off apparatus and method of mobile comunication system
JP3895929B2 (en) 1999-04-30 2007-03-22 ノキア コーポレイション Method and apparatus for performing handover using location information
US6430168B1 (en) * 1999-10-18 2002-08-06 Nortel Networks Limited CDMA base station lantern application
GB2355623B (en) 1999-10-19 2003-07-16 Ericsson Telefon Ab L M Packet transmission in a UMTS network
JP4275841B2 (en) 2000-04-27 2009-06-10 京セラ株式会社 In-vehicle communication control device
US6970719B1 (en) 2000-06-15 2005-11-29 Sprint Spectrum L.P. Private wireless network integrated with public wireless network
CN1138371C (en) 2000-12-19 2004-02-11 华为技术有限公司 Method for distributing forward link initial emission power in CDMA system
US6615044B2 (en) 2001-06-06 2003-09-02 Nokia Mobile Phones, Ltd. Method of WCDMA coverage based handover triggering
WO2003009655A1 (en) * 2001-07-18 2003-01-30 Ajinomoto Co., Inc. Film for circuit board
JP3865317B2 (en) 2001-09-19 2007-01-10 日立ソフトウエアエンジニアリング株式会社 Wireless LAN terminal participation control method, wireless LAN base station apparatus, and wireless LAN terminal apparatus
US7389112B2 (en) * 2001-12-07 2008-06-17 Telefonaktiebolaget L M Ericsson (Publ) Mobile terminal for optimal spectrum utilization in cellular systems
JP3905803B2 (en) 2002-08-08 2007-04-18 株式会社エヌ・ティ・ティ・ドコモ Authentication system, authentication method, and terminal device in wireless communication
US7363039B2 (en) * 2002-08-08 2008-04-22 Qualcomm Incorporated Method of creating and utilizing diversity in multiple carrier communication system
JP2004289723A (en) 2003-03-25 2004-10-14 Fujitsu Ltd Router device adaptable to wireless lan
JP2005020310A (en) * 2003-06-25 2005-01-20 Aruze Corp Information management system
US7251491B2 (en) 2003-07-31 2007-07-31 Qualcomm Incorporated System of and method for using position, velocity, or direction of motion estimates to support handover decisions
JP4318520B2 (en) 2003-09-26 2009-08-26 富士通株式会社 Terminal status control system
US7333795B2 (en) 2003-10-24 2008-02-19 Motorola Inc. Emergency call placement method
CN101422065B (en) 2003-12-22 2012-07-18 英特尔公司 Private base station with exclusivity
JP4375575B2 (en) 2004-03-31 2009-12-02 日本電気株式会社 Wireless communication network system, communication service providing method in the system, program, and recording medium
WO2005122437A1 (en) 2004-06-08 2005-12-22 Sk Telecom Co., Ltd. Handover method for mixed mobile communication system of asynchronous network and synchronous network
KR100601884B1 (en) 2004-07-02 2006-07-19 삼성전자주식회사 Apparatus and method for handover in wlan
US20060116123A1 (en) 2004-11-29 2006-06-01 Nokia Corporation Method and apparatus to optimize paging in a flexible multi-carrier system
US20070072563A1 (en) 2005-09-26 2007-03-29 Weaver Carl F Server selection in a wireless communications network
JP4708162B2 (en) 2005-11-02 2011-06-22 Kddi株式会社 Wireless communication system and wireless communication control method

Patent Citations (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301478B1 (en) * 1993-05-17 2001-10-09 Telefonaktiebolaget Lm Ericsson (Publ) Intra cell handover and channel allocation to reduce interference
US6480716B2 (en) * 1997-05-13 2002-11-12 Nokia Telecommunications Oy Estimating subscriber terminal speed, selecting cell, and radio system
US6393003B1 (en) * 1997-08-22 2002-05-21 Samsung Electronics, Co., Ltd. Semi-soft handoff method that uses multiple common frequency
US6028851A (en) * 1997-09-26 2000-02-22 Telefonaktiebolaget L M Ericsson (Publ) System and method for mobile assisted admission control
US20060084390A1 (en) * 1998-02-17 2006-04-20 Nokia Corporation Measurement reporting in a telecommunication system
US7145890B1 (en) * 1999-08-09 2006-12-05 Sk Telecom Co. Ltd Method for carrying out handoff between macrocell and microcell in hierarchical cell structure
US6597679B1 (en) * 1999-12-01 2003-07-22 Telefonaktiebolat Lm Ericsson Control of compressed mode transmission in WCDMA
US20030095513A1 (en) * 1999-12-15 2003-05-22 Nortel Networks Corporation Traffic management system and method for multi-carrier CDMA wireless networks
US20030198285A1 (en) * 2000-06-15 2003-10-23 Gang Qi Method and apparatus for estimating speed-adapted channel
US20030064727A1 (en) * 2001-10-02 2003-04-03 Hsien-Ming Tsai System and method for channel allocation in a multi-band wireless network
US20030095512A1 (en) * 2001-11-16 2003-05-22 Erol Hepsaydir Microcell deployment strategies in WCDMA networks
US20050250496A1 (en) * 2002-05-23 2005-11-10 Motorola, Inc. Communications methods and apparatus for use therein
US7027816B2 (en) * 2002-07-15 2006-04-11 Nec Corporation Method for changing over to different frequency at cellular phone system and cellular phone system using the method and base station controlling apparatus in the system and mobile communication terminal in the system
US20040156372A1 (en) * 2003-02-12 2004-08-12 Timo Hussa Access point service for mobile users
US20040192375A1 (en) * 2003-03-25 2004-09-30 Samsung Electronics Co., Ltd. Apparatus and method for selecting an access network in a multi-wireless communication network
US20070105598A1 (en) * 2003-05-09 2007-05-10 Cellpoint Connect Aps Audio headset
US20040235479A1 (en) * 2003-05-23 2004-11-25 Samsung Electronics Co., Ltd. Velocity estimation apparatus and method using level crossing rate
US20040252666A1 (en) * 2003-06-13 2004-12-16 Christopher Johnson Method of managing uplink radio resources in CDMA telecommunications system and arrangement therefore
US20050114650A1 (en) * 2003-11-20 2005-05-26 The Boeing Company Method and Hybrid System for Authenticating Communications
US20050136925A1 (en) * 2003-12-17 2005-06-23 Toshiaki Yamauchi Variable expiration parameter of a wireless communication device based upon signal strength
US20070149226A1 (en) * 2003-12-23 2007-06-28 Martin De Vries Controlling reconfiguration in a cellular communication system
US20050141471A1 (en) * 2003-12-29 2005-06-30 Virtanen Terhi T. Method and system for controlling access bearer in a real-time data service
US20120039326A1 (en) * 2004-05-26 2012-02-16 Matsushita Electric Industrial Co., Ltd. Network System and Method For Providing an Ad-Hoc Access Environment
US20060128392A1 (en) * 2004-12-14 2006-06-15 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for steering idle mobile stations
US20080310404A1 (en) * 2005-05-27 2008-12-18 Niclas Valme Local Switching In Radio Access Networks
US20060291383A1 (en) * 2005-06-22 2006-12-28 Qi Bi Methods for quality of service reverse link admission and overload control in a wireless system
US20070046527A1 (en) * 2005-07-04 2007-03-01 Nokia Corporation Speed detection method in communication system, receiver, network element and processor
US20070011725A1 (en) * 2005-07-11 2007-01-11 Vasant Sahay Technique for providing secure network access
US20070097938A1 (en) * 2005-10-04 2007-05-03 Telefonaktiebolaget Lm Ericsson Automatic building of neighbor lists in mobile system
US20070105568A1 (en) * 2005-10-04 2007-05-10 Telefonaktiebolaget Lm Ericsson (Publ) Paging for a radio access network having pico base stations
US20070183427A1 (en) * 2005-10-04 2007-08-09 Tomas Nylander Access control in radio access network having pico base stations
US20070123260A1 (en) * 2005-11-28 2007-05-31 Won-Ik Kim Method for discovering wireless network for inter-system handover, multi-mode terminal unit and inter-working service server using the method
US20070140185A1 (en) * 2005-12-16 2007-06-21 Deepak Garg Radio network communication
US20070248060A1 (en) * 2006-04-21 2007-10-25 Mooney Christopher F Method of providing access information to an access terminal
US20070270152A1 (en) * 2006-05-19 2007-11-22 Tomas Nylander Access control in a mobile communication system
US20100120437A1 (en) * 2007-04-25 2010-05-13 Motorola, Inc. Cellular communication system and method of operation therefor
US20090129336A1 (en) * 2007-06-21 2009-05-21 Airwalk Communications, Inc. System, method, and computer-readable medium for user equipment handoff from a macrocellular network to an ip-femtocell network
US20090007218A1 (en) * 2007-06-30 2009-01-01 Hubbard Scott M Switched-Based Network Security
US20090034443A1 (en) * 2007-07-30 2009-02-05 Jesse Walker Power saving idle mode algorithm for an access point
US8712461B2 (en) * 2007-08-10 2014-04-29 Qualcomm Incorporated Autonomous adaptation of transmit power
US8700083B2 (en) * 2007-08-10 2014-04-15 Qualcomm Incorporated Adaptation of transmit power based on maximum received signal strength
US20090042596A1 (en) * 2007-08-10 2009-02-12 Qualcomm Incorporated Adaptation of transmit power based on channel quality
US20090042593A1 (en) * 2007-08-10 2009-02-12 Qualcomm Incorporated Adaptation of transmit power for neighboring nodes
US20090046632A1 (en) * 2007-08-17 2009-02-19 Qualcomm Incorporated Method and apparatus for interference management
US20090052395A1 (en) * 2007-08-22 2009-02-26 Cellco Partnership (D/B/A Verizon Wireless) Femto-BTS RF access mechanism
US20090061873A1 (en) * 2007-08-31 2009-03-05 Cellco Partnership (D/B/A Verizon Wireless) Active service redirection for a private femto cell
US20090080386A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management employing fractional time reuse
US20090086861A1 (en) * 2007-09-21 2009-04-02 Qualcomm Incorporated Interference management utilizing power and attenuation profiles
US20090082026A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management utilizing power control
US20090080499A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management employing fractional code reuse
US20090082027A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management utilizing harq interlaces
US20090081970A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management employing fractional frequency reuse
US20090097448A1 (en) * 2007-10-12 2009-04-16 Lucent Technologies Inc. Methods for idle registration and idle handoff in a femto environment
US20090135796A1 (en) * 2007-11-27 2009-05-28 Qualcomm Incorporated Interface management in a wireless communication system using subframe time reuse
US20090186627A1 (en) * 2008-01-22 2009-07-23 Lucent Technologies Inc. Method of assigning an idle state access terminal to a carrier in a multiple carrier wireless communication system based on load on control channel resources
US20110281571A1 (en) * 2009-11-17 2011-11-17 Qualcomm Incorporated Idle access terminal-assisted time and/or frequency tracking

Cited By (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090262911A1 (en) * 2002-05-08 2009-10-22 Bremer Gordon F Repeaterless Backhaul
US8909279B2 (en) 2007-08-10 2014-12-09 Qualcomm Incorporated Adaptation of transmit power for neighboring nodes
US20090042593A1 (en) * 2007-08-10 2009-02-12 Qualcomm Incorporated Adaptation of transmit power for neighboring nodes
US9491722B2 (en) 2007-08-10 2016-11-08 Qualcomm Incorporated Adaptation of transmit power based on channel quality
US9565612B2 (en) 2007-08-17 2017-02-07 Qualcomm Incorporated Method and apparatus for interference management
US20090046632A1 (en) * 2007-08-17 2009-02-19 Qualcomm Incorporated Method and apparatus for interference management
US8923212B2 (en) 2007-08-17 2014-12-30 Qualcomm Incorporated Method and apparatus for interference management
US20090052395A1 (en) * 2007-08-22 2009-02-26 Cellco Partnership (D/B/A Verizon Wireless) Femto-BTS RF access mechanism
US8363621B2 (en) * 2007-08-22 2013-01-29 Cellco Partnership Femto-BTS RF access mechanism
US8259666B2 (en) * 2007-08-22 2012-09-04 Cellco Partnership Femto-BTS RF access mechanism
US20120108234A1 (en) * 2007-08-22 2012-05-03 Cellco Partnership D/B/A Verizon Wireless Femto-bts rf access mechanism
US8121089B2 (en) * 2007-08-22 2012-02-21 Cellco Partnership Femto-BTS RF access mechanism
US20090061821A1 (en) * 2007-08-30 2009-03-05 Cellco Partnership (D/B/A Verizon Wireless) Pico cell home mode operation
US8494522B2 (en) * 2007-08-30 2013-07-23 Cellco Partnership Pico cell home mode operation
US9220014B2 (en) * 2007-09-10 2015-12-22 Cellular Communications Equipment Llc Access control for closed subscriber groups
US20090070694A1 (en) * 2007-09-10 2009-03-12 Nokia Siemens Networks Oy Access control for closed subscriber groups
US8774801B2 (en) * 2007-09-10 2014-07-08 Nokia Siemens Networks Oy Access control for closed subscriber groups
US20140325597A1 (en) * 2007-09-10 2014-10-30 Cellular Communications Equipment Llc Access control for closed subscriber groups
US20090082027A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management utilizing harq interlaces
US20090082026A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management utilizing power control
US20090081970A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management employing fractional frequency reuse
US9137806B2 (en) 2007-09-21 2015-09-15 Qualcomm Incorporated Interference management employing fractional time reuse
US20090080499A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management employing fractional code reuse
US9078269B2 (en) 2007-09-21 2015-07-07 Qualcomm Incorporated Interference management utilizing HARQ interlaces
US9344973B2 (en) 2007-09-21 2016-05-17 Qualcomm Incorporated Interference management utilizing power and attenuation profiles
US8824979B2 (en) 2007-09-21 2014-09-02 Qualcomm Incorporated Interference management employing fractional frequency reuse
US20090086861A1 (en) * 2007-09-21 2009-04-02 Qualcomm Incorporated Interference management utilizing power and attenuation profiles
US9374791B2 (en) 2007-09-21 2016-06-21 Qualcomm Incorporated Interference management utilizing power and attenuation profiles
US20090080386A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management employing fractional time reuse
US9066306B2 (en) 2007-09-21 2015-06-23 Qualcomm Incorporated Interference management utilizing power control
US8243682B2 (en) * 2007-10-03 2012-08-14 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement in a telecommunication system
US20090092097A1 (en) * 2007-10-03 2009-04-09 Tomas Nylander Method and arrangement in a telecommunication system
US9445341B2 (en) 2007-10-25 2016-09-13 Cisco Technology, Inc. Apparatus, systems, and methods for providing interworking gateway
US10021725B2 (en) 2007-10-25 2018-07-10 Cisco Technology, Inc. Apparatus, systems, and methods for providing interworking gateway
US20120044908A1 (en) * 2007-10-25 2012-02-23 Cisco Technology, Inc. Interworking gateway for mobile nodes
US8699462B2 (en) * 2007-10-25 2014-04-15 Cisco Technology, Inc. Interworking gateway for mobile nodes
US20100273448A1 (en) * 2007-10-29 2010-10-28 Ntt Docomo, Inc. Mobile communication system, home base station, and mobile station
US8983428B2 (en) * 2007-10-29 2015-03-17 Ntt Docomo, Inc. Mobile communication system, home base station, and mobile station
US8948095B2 (en) 2007-11-27 2015-02-03 Qualcomm Incorporated Interference management in a wireless communication system using frequency selective transmission
US8837305B2 (en) 2007-11-27 2014-09-16 Qualcomm Incorporated Interference management in a wireless communication system using beam and null steering
US20090135790A1 (en) * 2007-11-27 2009-05-28 Qualcomm Incorporated Interface management in wireless communication system using hybrid time reuse
US9288814B2 (en) 2007-11-27 2016-03-15 Qualcomm Incorporated Interface management in wireless communication system using hybrid time reuse
US8848619B2 (en) 2007-11-27 2014-09-30 Qualcomm Incorporated Interface management in a wireless communication system using subframe time reuse
US8867456B2 (en) 2007-11-27 2014-10-21 Qualcomm Incorporated Interface management in wireless communication system using hybrid time reuse
US20090137241A1 (en) * 2007-11-27 2009-05-28 Qualcomm Incorporated Interference management in a wireless communication system using adaptive path loss adjustment
US20090135754A1 (en) * 2007-11-27 2009-05-28 Qualcomm Incorporated Interference management in a wireless communication system using overhead channel power control
US9119217B2 (en) 2007-11-27 2015-08-25 Qualcomm Incorporated Interference management in a wireless communication system using frequency selective transmission
US20090137221A1 (en) * 2007-11-27 2009-05-28 Qualcomm Incorporated Interference management in a wireless communication system using beam and null steering
US20090252099A1 (en) * 2007-11-27 2009-10-08 Qualcomm Incorporated Interference management in a wireless communication system using frequency selective transmission
US9072102B2 (en) 2007-11-27 2015-06-30 Qualcomm Incorporated Interference management in a wireless communication system using adaptive path loss adjustment
US8504091B2 (en) * 2008-02-01 2013-08-06 Qualcomm Incorporated Interference mitigation for control channels in a wireless communication network
US8599705B2 (en) 2008-02-01 2013-12-03 Qualcomm Incorporated Interference management based on enhanced pilot measurement reports
US20090197631A1 (en) * 2008-02-01 2009-08-06 Qualcomm Incorporated Interference mitigation for control channels in a wireless communication network
US20100039948A1 (en) * 2008-02-01 2010-02-18 Qualcomm Incorporated Interference management based on enhanced pilot measurement reports
US9648596B2 (en) 2008-02-01 2017-05-09 Qualcomm Incorporated Interference mitigation for control channels in a wireless communication network
US20110070886A1 (en) * 2008-02-18 2011-03-24 Ntt Docomo, Inc. Mobile communication system, location registration method, handover method, exchange, mobile station, and radio control station
US20130051365A1 (en) * 2008-05-22 2013-02-28 Ntt Docomo Inc. Femtocell channel assignment and power control for improved femtocell coverage and efficient cell search
US8626169B2 (en) * 2008-10-30 2014-01-07 Lg Electronics Inc. Method of handover and base station information transmission in wireless communication system
US20100113032A1 (en) * 2008-10-30 2010-05-06 Lg Electronics Inc. Method of handover and base station information transmission in wireless communication system
US8660093B2 (en) * 2008-11-01 2014-02-25 Broadband Wireless Technology Corp. Apparatus, method, and tangible machine-readable medium thereof for callback handover procedure in a femto-network
US20120322451A1 (en) * 2008-11-01 2012-12-20 Broadband Wireless Technology Corp. Apparatus, method, and tangible machine-readable medium thereof for callback handover procedure in a femto-network
US20100113027A1 (en) * 2008-11-01 2010-05-06 Broadband Wireless Technology Corp Apparatus, Method, And Tangible Machine-Readable Medium Thereof For CallBack HandOver Procedure In A FemTo-Network
US8767645B2 (en) * 2008-12-08 2014-07-01 Lg Electronics Inc. Method of radio resource allocation and method of neighbor information transmission in wireless communication system
US20110299488A1 (en) * 2008-12-08 2011-12-08 Young Yong Kim Method of radio resource allocation and method of neighbor information transmission in wireless communication system
US20110239271A1 (en) * 2008-12-08 2011-09-29 China Iwncomm Co., Ltd. Trusted network connection implementing method based on tri-element peer authentication
US8931049B2 (en) * 2008-12-08 2015-01-06 China Iwncomm Co., Ltd. Trusted network connection implementing method based on tri-element peer authentication
US9148786B2 (en) * 2009-02-02 2015-09-29 Qualcomm Incorporated Inclusion/exclusion messaging scheme for indicating whether a network entity performs access control
US9204365B2 (en) 2009-02-02 2015-12-01 Qualcomm Incorporated Controlling whether a network entity performs access control based on an indication from an access point
US20100198968A1 (en) * 2009-02-02 2010-08-05 Qualcomm Incorporated Inclusion/exclusion messaging scheme for indicating whether a network entity performs access control
CN102342036A (en) * 2009-03-10 2012-02-01 三星电子株式会社 Communication system with femtocells and interference control method therefor
US8818391B2 (en) 2009-03-10 2014-08-26 Samsung Electronics Co., Ltd Communication system with femtocells and an interference control method therefor
US20100234039A1 (en) * 2009-03-10 2010-09-16 Samsung Electronics Co., Ltd. Communication system with femtocells and an interference control method therefor
US10575223B2 (en) 2009-03-13 2020-02-25 Lg Electronics Inc. Handover performed in consideration of uplink/downlink component carrier setup
US20150003416A1 (en) * 2009-03-13 2015-01-01 Lg Electronics Inc. Handover performed in consideration of uplink/downlink component carrier setup
US9338705B2 (en) * 2009-03-13 2016-05-10 Lg Electronics Inc. Handover performed in consideration of uplink/downlink component carrier setup
US9532293B2 (en) 2009-03-18 2016-12-27 Cisco Technology, Inc. Localized forwarding
US20100248667A1 (en) * 2009-03-25 2010-09-30 Enfora, Inc. Enhanced jamming detection
US8208848B2 (en) * 2009-03-25 2012-06-26 Enfora, Inc. Enhanced jamming detection
US20100254355A1 (en) * 2009-04-03 2010-10-07 Charles Abraham Method and System for Determining a Location of a Device Using Femtocell Information
US8964635B2 (en) * 2009-04-03 2015-02-24 Broadcom Corporation Method and system for determining a location of a device using femtocell information
US9185616B2 (en) * 2009-05-01 2015-11-10 At&T Mobility Ii Llc Access control for macrocell to femtocell handover
US20140329527A1 (en) * 2009-05-01 2014-11-06 At&T Mobility Ii Llc Access control for macrocell to femtocell handover
US9420507B2 (en) 2009-05-01 2016-08-16 At&T Mobility Ii Llc Access control for macrocell to femtocell handover
US20100298005A1 (en) * 2009-05-19 2010-11-25 Qualcomm Incorporated Minimizing interference to non-associated users
US8838116B2 (en) 2009-05-19 2014-09-16 Qualcomm Incorporated Minimizing interference to non-associated users
US8755749B2 (en) 2009-05-19 2014-06-17 Qualcomm Incorporated Minimizing interference to non-associated users
US20100297997A1 (en) * 2009-05-19 2010-11-25 Qualcomm Incorporated Minimizing interference to non-associated users
WO2010135487A1 (en) * 2009-05-22 2010-11-25 Verizon Patent And Licensing Inc. User equipment attachment / detachment from a long term evolution (lte) network
US10383044B2 (en) 2009-05-22 2019-08-13 Verizon Patent And Licensing Inc. User equipment attachment/detachment from a long term evolution (LTE) network
US20100297995A1 (en) * 2009-05-22 2010-11-25 Verizon Patent And Licensing Inc. User equipment attachment/detachment from a long term evolution (lte) network
US8805364B2 (en) 2009-05-22 2014-08-12 Verizon Patent And Licensing Inc. User equipment attachment/detachment from a long term evolution (LTE) network
CN102714680A (en) * 2009-05-22 2012-10-03 维里逊专利及许可公司 User equipment attachment / detachment from a long term evolution (LTE) network
US9210594B2 (en) * 2009-11-03 2015-12-08 Pantech Co., Ltd. Terminal for entering coverage of small base station, small base station, network apparatus, and method
US20140179300A1 (en) * 2009-11-03 2014-06-26 Pantech Co., Ltd. Terminal for entering coverage of small base station, small base station, network apparatus, and method
US20110143738A1 (en) * 2009-12-15 2011-06-16 Htc Corporation Method and system for managing autonomous search in various modes in a long-term evolution environment
US8204481B2 (en) * 2009-12-15 2012-06-19 Htc Corporation Method and system for managing autonomous search in various modes in a long-term evolution environment
US9198211B2 (en) * 2010-02-02 2015-11-24 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements in a cellular communication network
US20110188485A1 (en) * 2010-02-02 2011-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements in a cellular communication network
US9888488B2 (en) 2010-02-02 2018-02-06 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements in a cellular communication network
US20130079011A1 (en) * 2010-06-10 2013-03-28 France Telecom Traffic load management method, network and device
US9307449B2 (en) * 2010-06-10 2016-04-05 France Telecom Traffic load management method, network and device
US9065584B2 (en) 2010-09-29 2015-06-23 Qualcomm Incorporated Method and apparatus for adjusting rise-over-thermal threshold
US9408126B2 (en) 2011-04-04 2016-08-02 Kyocera Corporation Mobile communication method
US9888418B2 (en) 2011-04-04 2018-02-06 Kyocera Corporation Mobile communication method
US9743285B2 (en) 2011-09-19 2017-08-22 Redline Communications, Inc. Architecture, devices and methods for supporting multiple channels in a wireless system
US9756650B2 (en) 2011-09-19 2017-09-05 Redline Communications Inc. Methods for supporting multiple operators in a wireless basestation
US8891464B2 (en) 2011-09-19 2014-11-18 Redline Innovations Group, Inc. Architecture, devices and methods for supporting multiple channels in a wireless system
US9167474B2 (en) 2011-09-19 2015-10-20 Redline Innovations Group Inc. Sharing of radio resources between a backhaul link and a radio access network
US9706430B2 (en) 2011-09-19 2017-07-11 Redline Communications Inc. Shared backhaul link for multiple wireless systems
US9113354B2 (en) 2011-09-19 2015-08-18 Redline Innovations Group Inc. Shared backhaul link for multiple wireless systems
US8538420B2 (en) * 2011-09-19 2013-09-17 PureWave Networks, Inc Multi-band wireless cellular system and method
US9301305B2 (en) 2011-09-19 2016-03-29 Redline Communications Inc. Architecture, devices and methods for supporting multiple channels in a wireless system
US9769696B2 (en) 2011-09-19 2017-09-19 Redline Communications Inc. Sharing of radio resources between a backhaul link and a radio access network
US9094953B2 (en) 2011-09-19 2015-07-28 Redline Innovations Group Inc. Methods for supporting multiple operators in a wireless basestation
US8923866B2 (en) * 2012-03-16 2014-12-30 Hitachi, Ltd. Handover management apparatus, base station, and handover management method
US20130244658A1 (en) * 2012-03-16 2013-09-19 Hitachi, Ltd. Handover management apparatus, base station, and handover management method
US20150078262A1 (en) * 2013-09-17 2015-03-19 Cisco Technology, Inc. System and method for performing resource allocation
US9730230B2 (en) * 2013-09-17 2017-08-08 Cisco Technology, Inc. System and method for performing resource allocation
US10129617B2 (en) 2014-03-05 2018-11-13 Huawei Technologies Co., Ltd Link switching method, device, and system
US10412587B1 (en) * 2018-06-07 2019-09-10 Motorola Solutions, Inc. Device, system and method to secure deployable access points in a side-haul communication network from a compromised deployable access point

Also Published As

Publication number Publication date
EP2384056B1 (en) 2016-01-27
EP2787769B1 (en) 2015-11-18
JP5372933B2 (en) 2013-12-18
CN101779506B (en) 2016-03-02
CA2819435C (en) 2016-11-01
JP2012239182A (en) 2012-12-06
RU2010109863A (en) 2011-09-27
AU2008289182A1 (en) 2009-02-26
CN103139867B (en) 2016-12-28
JP2010537574A (en) 2010-12-02
CN103139867A (en) 2013-06-05
US9565612B2 (en) 2017-02-07
JP5242685B2 (en) 2013-07-24
CA2819422A1 (en) 2009-02-26
EP2787769A1 (en) 2014-10-08
CA2694976C (en) 2015-07-14
BRPI0815222A2 (en) 2015-03-31
RU2010109858A (en) 2011-09-27
US8923212B2 (en) 2014-12-30
JP6072119B2 (en) 2017-02-01
WO2009026157A3 (en) 2009-08-27
US20090046632A1 (en) 2009-02-19
KR101328044B1 (en) 2013-11-13
RU2011135100A (en) 2013-02-27
CN103237352B (en) 2016-08-24
RU2011135098A (en) 2013-02-27
CN104185244B (en) 2018-07-06
EP2183933A1 (en) 2010-05-12
TWI397278B (en) 2013-05-21
KR20120109664A (en) 2012-10-08
EP2183933B1 (en) 2016-03-16
JP2010537573A (en) 2010-12-02
CA2694979A1 (en) 2009-02-26
CA2694976A1 (en) 2009-02-26
WO2009026162A1 (en) 2009-02-26
RU2461967C2 (en) 2012-09-20
EP2384057A1 (en) 2011-11-02
TW200917712A (en) 2009-04-16
JP5805589B2 (en) 2015-11-04
KR20100055480A (en) 2010-05-26
EP2189034A2 (en) 2010-05-26
JP2012239183A (en) 2012-12-06
TWI394467B (en) 2013-04-21
CN104185244A (en) 2014-12-03
EP2384056A1 (en) 2011-11-02
JP2015165675A (en) 2015-09-17
MX2010001887A (en) 2010-03-15
EP2189034B1 (en) 2014-09-17
JP5730944B2 (en) 2015-06-10
US20150146693A1 (en) 2015-05-28
CN101779506A (en) 2010-07-14
UA97409C2 (en) 2012-02-10
MX2010001897A (en) 2010-03-15
KR101222426B1 (en) 2013-01-16
CN103237352A (en) 2013-08-07
JP2013225880A (en) 2013-10-31
CN101785336B (en) 2014-07-30
CN101785336A (en) 2010-07-21
WO2009026157A2 (en) 2009-02-26
AU2008289177A1 (en) 2009-02-26
RU2464738C2 (en) 2012-10-20
CA2819435A1 (en) 2009-02-26
KR20100056527A (en) 2010-05-27
TW200917862A (en) 2009-04-16
KR101268999B1 (en) 2013-05-31
AU2008289182B2 (en) 2012-06-14
BRPI0814263A2 (en) 2015-02-03
BRPI0814263B1 (en) 2020-05-12
ES2563196T3 (en) 2016-03-11

Similar Documents

Publication Publication Date Title
US9565612B2 (en) Method and apparatus for interference management
US20100169412A1 (en) Interface authorization scheme
US8442060B2 (en) Method and apparatus for providing signaling access
US8849316B2 (en) Paging and access via different nodes

Legal Events

Date Code Title Description
AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NANDA, SANJIV;REZAIIFAR, RAMIN;YAVUZ, MEHMET;REEL/FRAME:021514/0168;SIGNING DATES FROM 20080821 TO 20080828

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION