Zoeken Afbeeldingen Maps Play YouTube Nieuws Gmail Drive Meer »
Inloggen
Gebruikers van een schermlezer: klik op deze link voor de toegankelijkheidsmodus. De toegankelijkheidsmodus beschikt over dezelfde essentiŽle functies, maar werkt beter met je lezer.

Patenten

  1. Geavanceerd zoeken naar patenten
PublicatienummerUS20090312036 A1
PublicatietypeAanvraag
AanvraagnummerUS 12/485,595
Publicatiedatum17 dec 2009
Aanvraagdatum16 juni 2009
Prioriteitsdatum16 juni 2008
Ook gepubliceerd alsUS8155666, US8462745, US8638725, US9001743, US20090310585, US20090312035, US20130288708, US20140135033, WO2010005731A1
Publicatienummer12485595, 485595, US 2009/0312036 A1, US 2009/312036 A1, US 20090312036 A1, US 20090312036A1, US 2009312036 A1, US 2009312036A1, US-A1-20090312036, US-A1-2009312036, US2009/0312036A1, US2009/312036A1, US20090312036 A1, US20090312036A1, US2009312036 A1, US2009312036A1
UitvindersFarshid Alizadeh-Shabdiz
Oorspronkelijke patenteigenaarSkyhook Wireless, Inc.
Citatie exporterenBiBTeX, EndNote, RefMan
Externe links: USPTO, USPTO-toewijzing, Espacenet
Methods and systems for improving the accuracy of expected error estimation in location determinations using a hybrid cellular and wlan positioning system
US 20090312036 A1
Samenvatting
The present disclosure relates to systems and methods for improving the accuracy of expected error estimations in hybrid cellular and WLAN location determination. In some embodiments, the method can include providing a WLAN based location estimate and an expected error estimate for the WLAN based location estimate, providing a cellular based location estimate and an expected error estimate for the cellular based location estimate, and determining the expected error of the location determination by evaluating the consistency of the cellular based location estimate to the WLAN based location estimate. In some embodiments, the location estimate with the lower expected error can be selected as the location determination of the WLAN and cellular enabled device. In some embodiments, the consistency of the estimates can include the distance between the cellular based location estimate and the WLAN based location estimate.
Afbeeldingen(12)
Previous page
Next page
Claims(20)
1. A method of determining an expected error in a location determination of a WLAN and cellular enabled device, the method comprising:
providing a WLAN based location estimate and an expected error estimate for the WLAN based location estimate;
providing cellular positioning measurements from at least one cell tower; and
determining the expected error of the location determination by evaluating the consistency of the cellular positioning system measurements to the WLAN based location estimate.
2. The method of claim 1, wherein consistent measurements between the WLAN based location estimate and the cellular positioning measurements from at least one cell tower result in a lower expected error in the location determination.
3. The method of claim 1, wherein inconsistent measurements between the WLAN based location estimate and the cellular positioning measurements from at least one cell tower result in a higher expected error in the location determination.
4. The method of claim 1, wherein the consistency comprises the distance between the WLAN positioning system location estimation and the satellite positioning measurements from at least one cell tower.
5. A method of determining an expected error in a location determination of a WLAN and cellular enabled device, the method comprising:
providing a WLAN based location estimate and an expected error estimate for the WLAN based location estimate;
providing a cellular based location estimate and an expected error estimate for the cellular based location estimate; and
determining the expected error of the location determination by evaluating the consistency of the cellular based location estimate to the WLAN based location estimate.
6. The method of claim 5, wherein the location estimate with the lower expected error is selected as the location determination of the WLAN and cellular enabled device.
7. The method of claim 5, wherein determining the expected error of the location determination comprises comparing the WLAN based location estimate and the cellular based location estimate.
8. The method of claim 5, wherein consistent measurements between the WLAN based location estimate and the cellular based location estimate result in a lower expected error in the location determination.
9. The method of claim 5, wherein inconsistent measurements between the WLAN based location estimate and the cellular based location estimate result in a higher expected error in the location determination.
10. The method of claim 5, wherein the consistency of the estimates comprises the distance between the cellular based location estimate and the WLAN based location estimate.
11. A system for determining an expected error in a location determination of a WLAN and cellular enabled device, the system comprising:
a positioning module comprising:
a WLAN module for receiving information from one or more WLAN access points to provide a WLAN based location estimate and an expected error for the WLAN based location estimate; and
a cellular positioning module for obtaining cellular positioning system measurements from at least one cell tower;
logic located in the positioning module for determining the expected error of the location determination by evaluating the consistency of the cellular positioning system measurements to the WLAN based location estimate.
12. The method of system 11, wherein consistent measurements between the WLAN based location estimate and the cellular positioning measurements from at least one cell tower result in a lower expected error in the location determination.
13. The method of system 11, wherein inconsistent measurements between the WLAN based location estimate and the cellular positioning measurements from at least one cell tower result in a higher expected error in the location determination.
14. The method of system 11, wherein the consistency comprises the distance between the WLAN positioning system location estimation and the satellite positioning measurements from at least one cell tower.
15. A system for determining an expected error in a location determination of a WLAN and cellular enabled device, the system comprising:
a positioning module comprising:
a WLAN module for receiving information from one or more WLAN access points to provide a WLAN based location estimate and an expected error for the WLAN based location estimate; and
a cellular positioning module for receiving information from at least one cell tower to provide a cellular based location estimate and an expected error estimate for the cellular based location estimate;
logic located in the positioning module for determining the expected error of the location determination by evaluating the consistency of the cellular based location estimate to the WLAN based location estimate.
16. The system of claim 15, wherein the location estimate with the lower expected error is selected as the location determination of the WLAN and cellular enabled device.
17. The system of claim 15, wherein determining the expected error of the location determination comprises comparing the WLAN based location estimate and the cellular based location estimate.
18. The system of claim 15, wherein consistent estimates between the WLAN based location estimate and the cellular based location estimate result in a lower expected error in the location determination.
19. The system of claim 15, wherein inconsistent estimates between the WLAN based location estimate and the cellular based location estimate result in a higher expected error in the location determination.
20. The system of claim 15, wherein the consistency of the estimates comprises the distance between the cellular based location estimate and the WLAN based location estimate.
Beschrijving
    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application claims the benefit under 35 U.S.C. ß119(e) of U.S. Provisional Application No. 61/061,853, filed on Jun. 16, 2008, entitled “Integrated WLAN-Based and Cellular-Based Positioning System,” which is herein incorporated by reference in its entirety.
  • [0002]
    This application is related to the following references:
  • [0003]
    U.S. Patent Application Ser. No. (TBA), filed concurrently herewith and entitled “Methods and Systems for Determining Location Using a Cellular and WLAN Positioning System by Selecting the Best WLAN PS Solution;” and
  • [0004]
    U.S. Patent Application Ser. No. (TBA), filed concurrently herewith and entitled “Methods and Systems for Determining Location Using a Cellular and WLAN Positioning System by Selecting the Best Cellular Positioning System Solution.”
  • BACKGROUND
  • [0005]
    1. Field
  • [0006]
    The disclosure generally relates to hybrid positioning systems and, more specifically, to methods of integrating a wireless local area network (WLAN)-based positioning system (WLAN PS) and a cellular-based positioning system (CPS) to improve the accuracy of location estimates, increase availability of the positioning service to more users, and also to improve estimation of the expected error in a user's position estimate.
  • [0007]
    2. Description of Related Art
  • [0008]
    In recent years the number of mobile computing devices has increased dramatically, creating the need for more advanced mobile and wireless services. Mobile email, walkie-talkie services, multi-player gaming, and call-following are examples of how new applications are emerging for mobile devices. In addition, users are beginning to demand/seek applications that not only utilize their current location but also share that location information with others. Parents wish to keep track of their children, supervisors need to track the locations of the company's delivery vehicles, and a business traveler looks to find the nearest pharmacy to pick up a prescription. All of these examples require an individual to know his own current location or the location of someone else. To date, we all rely on asking for directions, calling someone to ask their whereabouts, or having workers check-in from time to time to report their positions.
  • [0009]
    Location-based services are an emerging area of mobile applications that leverage the ability of new devices to calculate their current geographic positions and report them to a user or to a service. Examples of these services range from obtaining local weather, traffic updates, and driving directions to child trackers, buddy finders, and urban concierge services. These new location-sensitive devices rely on a variety of technologies that all use the same general concept. By measuring radio signals originating from known reference points, these devices can mathematically calculate the user's position relative to these reference points. Each of these approaches has its strengths and weaknesses depending upon the nature of the signals and measurements and the positioning algorithms employed.
  • [0010]
    Cellular-based positioning uses cell towers to determine the location of a mobile or user device. Cell towers are identified with a unique identifier in each cellular network in each country. Herein, the unique identifies of cell towers is referred to as cell ID. The cell IDs can be stored in a reference database, accessible by the mobile or user device. In the reference database, the cell ID can be used to link that cell ID to a previously determined location for the cell tower having that cell ID, where the location is also stored in the database. CPS can be based on received signal strength (RSS), time of arrival (ToA), or time difference of arrival (TDOA) from cell towers. Cellular-based positioning systems also can be based on the nearest neighbor technique, in which the entire service area is surveyed and a database of reception characteristics of points in the service area is constructed. The location of the survey points also can be logged, for example, by using a global positioning system (GPS). By comparing the reception characteristics of the mobile device with the surveyed points, the location of the mobile device can be determined. CPS can determine the position of a mobile device through several methods, including received signal strength and time of arrival.
  • [0011]
    CPS location determinations based on received signal strength use the received power of signals received from cell towers and triangulate the position of the mobile device based upon the received power values. The CPS based on received signal strength is not as accurate a system as compared to WLAN PS. The accuracy of the CPS systems using received signal strength is on the order of hundred meters, while the accuracy of WLAN PS is on the order of tens of meters.
  • [0012]
    CPS location determinations based on TOA measure the time that cellular radio wave travels to get to the mobile device from the cell tower and calculates the distance from the mobile device to the cell towers based on that time. If travel time of the cellular radio wave is measured correctly, the calculated distance from the cell towers can be accurate as WLAN PS, for example, up to ten meters. However, if the travel time is not measured correctly, the error in the location estimate can be higher than WLAN PS, for example, on the order of hundreds of meters up to a kilometer. The TOA method's accuracy depends on estimating the time of arrival of the cellular radio wave (as the name also indicates). In a normal operational environment of cellular network, the received signal is subject to multipath effect, which means the cellular receiver (of the mobile receiver) receives multiple copies of the transmitted signal reflected from the surroundings of the mobile device. These copies of the transmitted signal can arrive at slightly different times, and the selection of the signal which represents the distance between the mobile device and cell tower (or is the best estimate of distance) can be a challenge and an important part of the design of TOA based CPS. Further, there can be an option to consider all copies of the received signal and calculate distance based on all of them. In this case, there will be a set of distances (between the mobile device and cell tower) which will be passed to a trilateration module in the CPS (discussed herein). The trilateration module considers all the distance measurements from all the cell towers and finds the most likely location of the mobile device.
  • [0013]
    In the discussion herein, raw CPS measurements from a cell tower are generally intended to mean received signal strength (RSS) and/or times of arrival (TOAs) and/or time differences of arrival (TDOAs). References to cellular data are generally intended to mean the unique address of the cell tower (like cell ID), one or more record(s) of its, one or more power profile(s), and other attributes based on previous measurements of that cell tower. References to a CPS equation are intended to mean a mathematical equation relating the CPS measurements and data to the location of the mobile device.
  • [0014]
    WLAN-based positioning is a technology which uses WLAN access points to determine the location of mobile users. Metro-wide WLAN-based positioning systems have been explored by a several research labs. The most important research efforts in this area have been conducted by the PlaceLab (www.placelab.com, a project sponsored by Microsoft and Intel); the University of California, San Diego ActiveCampus project (ActiveCampus—Sustaining Educational Communities through Mobile Technology, technical report #CS2002-0714); and the MIT campus-wide location system. There is only one commercial metropolitan WLAN-based positioning system in the market at the time of this writing, and it is referred to herein as the WPS (WiFi positioning system) product of Skyhook Wireless, Inc. (www.skyhookwireless.com).
  • [0015]
    FIG. 1 depicts a conventional WLAN-based positioning system based on WiFi signals. The positioning system includes positioning software 103 that resides on a mobile or user device 101. Throughout a particular target geographical area, there are a plurality of fixed wireless access points 102 that transmit information using control/common channel signals. The device 101 monitors these transmissions. Each access point contains a unique hardware identifier known as a MAC address. The client positioning software 103 receives transmissions from the 802.11 access points in its range and calculates the geographic location of the computing device using the characteristics of the radio signals. Those characteristics include the MAC addresses, the unique identifiers of the 802.11 access points, the Time of Arrival (TOA) of the signals, and the signal strength at the client device 101. The client software 103 compares the observed 802.11 access points with those in its reference database 104 of access points. This reference database 104 may or may not reside in the device 101. The reference database 104 contains the calculated geographic locations and power profiles of all access points the system has collected. A power profile may be generated from a collection of measurements of the signal power or signal TOA at various locations. Using these known locations or power profiles, the client software 103 calculates the position of the user device 101 relative to the known positions of the access points 102 and determines the device's 101 absolute geographic coordinates in the form of latitude and longitude or latitude, longitude, and altitude. These readings then can be fed to location-based applications such as friend finders, local search web sites, fleet management systems, and an E911 service.
  • [0016]
    In the discussion herein, raw WLAN measurements from an access point are generally intended to mean received signal strength (RSS) and/or times of arrival (TOAs) and/or time differences of arrival (TDOAs). References to data are generally intended to mean the MAC address, one or more record(s) of it, one or more power profile(s), and other attributes based on previous measurements of that access point. References to a WLAN PS equation are intended to mean a mathematical equation relating the WLAN PS measurements and data to the location of the mobile device.
  • [0017]
    A WLAN-based positioning systems can be used indoors or outdoors. The only requirement is presence of WLAN access points in the vicinity of the user. The WLAN-based position systems can be leveraged using existing off-the-shelf WLAN cards without any modification other than to employ logic to estimate position.
  • [0018]
    FIG. 2 illustrates a conventional way of integrating WLAN PS and CPS, which consists of a WLAN PS 201 and a CPS 206 and a location combining logic 210.
  • [0019]
    WLAN PS 201 and CPS 206 are stand-alone systems, and each can operate independently of the other system. Thus, the result of each system can be calculated independent of the other system. The estimated location along with the expected error estimation of each system can be fed to the location combining logic 210. The expected error estimation is also referred to as HPE (horizontal positioning error) herein. The nominal rate of location update of CPS 206 and WLAN PS 201 is once a second. The location combining logic 210 combines the location estimates calculated in the same second by both systems.
  • [0020]
    WLAN PS 201 is a conventional system which estimates the location of a mobile device by using WLAN access points (WLAN AP). WLAN PS 201 can include a scanner of WLAN APs 202, a device to select WLAN APs 203, a trilateration module 204, and HPE estimation device 205.
  • [0021]
    WLAN scanner 202 detects WLAN APs surrounding the mobile device by detecting the received power (RSS, received signal strength) and/or time of arrival (TOA) of the signal. Different methods can be used to detect WLAN APs including active scanning, passive scanning, or combination of passive and active scanning.
  • [0022]
    The select WLAN APs device 203 selects the best set of WLAN APs to estimate location of the mobile device. For example, if ten WLAN APs are detected and one AP is located in Chicago and the others are located in Boston, without any other information, the Boston APs are selected. This is an indication that Chicago AP has been moved to Boston. In the conventional system, the best set of WLAN APs is selected based on geographical distribution of WLAN APs, in addition to corresponding parameters of WLAN APs, including received signal strength, signal to noise ratio, and the probability of being moved.
  • [0023]
    Trilateration module 204 uses WLAN APs and corresponding measurements and characteristics to estimate location of the mobile device. Received signal strength or TOA measurements from a WLAN AP are used to estimate distance of the mobile device to the WLAN AP. The aggregation of distance estimates from different WLAN APs with known location is used to calculate location of the mobile device. Trilateration 204 also can use a method which is called nearest neighbor, in which a location with a power profile similar or closest to the power reading of the mobile device is reported as the final location of the mobile device. The power profile of each WLAN AP or entire coverage area can be found in the calibration phase of the system by detailed survey of the coverage area.
  • [0024]
    HPE estimation device 205 is a module which estimates the expected error of the position estimate of the mobile device. The HPE or Horizontal Positioning Error is calculated based on previously scanned APs and their characteristics and also characteristics of the received signal as it was explained in co-pending Skyhook Wireless application Ser. No. 11/625,450 entitled “System and Method for Estimating Positioning Error Within a WLAN Based Positioning System,” the entire disclosure of which is hereby incorporated by reference.
  • [0025]
    CPS system 206 can include a cellular scanner 207, trilateration device 208, and the CPS HPE estimation module 209.
  • [0026]
    The cellular scanner 207 receives signals from one or more cell towers in view of the device, decodes the received signals, and measures received signal strength (RSS) and/or time of arrival (TOA) and/or time difference of arrival (TDOA) of the signals based on the approach taken in the trilateration module 208.
  • [0027]
    The trilateration device 208 uses measurements from cell towers to estimate the location of the mobile device.
  • [0028]
    HPE estimation device 209 estimates the expected error of the estimated location. The HPE estimation device 209 is conventional and calculates expected error based on geometry of the cell towers and signal quality of the received signal from cell towers, for example C/N (carrier to noise ratio).
  • [0029]
    Location combining logic 210 receives simultaneous location estimates and HPE estimates from WLAN PS 201 and CPS 206. Simultaneous location estimations include estimations within one second of each other. The location combining logic 210 reports one estimated location by selecting one WLAN or CPS estimate or by linearly combining them. For example, location combining logic might select the WLAN PS 201 estimate. Otherwise, it may report the CPS estimated location, it might report the final location based on an expected error, or it might report a weighted average of the estimated locations by both systems according to the HPE.
  • SUMMARY
  • [0030]
    The disclosed subject matter generally relates to hybrid positioning systems and, more specifically, to methods of integrating wireless local area network (WLAN)-based positioning system (WLAN PS) and cellular-based positioning system (CPS) to improve accuracy of location estimates, increase availability of the positioning service to more users, and improve estimation of the expected error in a user's position estimate.
  • [0031]
    Embodiments provide systems and methods of integrating a WLAN-based positioning system (WLAN PS) and a cellular-based positioning system (CPS). An integrated system refers herein to a system that combines the information and measurements from both systems in order to increase the availability of the positioning service to more users to improve the accuracy of the positioning estimates, as compared to each individual system working independently. The integration can occur at different levels from a high-level combination of location estimation provided by both systems to the lowest level of integration of raw measurements from both systems and combining them to find the best estimate of the location of a user or a mobile device. The integration also includes using information from one system to assist the other system so as to increase the accuracy of the various estimates.
  • [0032]
    The present disclosure relates to systems and methods for improving the accuracy of expected error estimations in hybrid cellular and WLAN location determination. In one embodiment, the method can include providing a WLAN based location estimate and an expected error estimate for the WLAN based location estimate, providing cellular positioning measurements from at least one cell tower, and determining the expected error of the location determination by evaluating the consistency of the cellular positioning system measurements to the WLAN based location estimate.
  • [0033]
    In some embodiments, consistent measurements between the WLAN based location estimate and the cellular positioning measurements from at least one cell tower can result in a lower expected error in the location determination.
  • [0034]
    In some embodiments, inconsistent measurements between the WLAN based location estimate and the cellular positioning measurements from at least one cell tower can result in a higher expected error in the location determination.
  • [0035]
    In some embodiments, the consistency can include the distance between the WLAN positioning system location estimation and the satellite positioning measurements from at least one cell tower.
  • [0036]
    In some embodiments, the method can include providing a WLAN based location estimate and an expected error estimate for the WLAN based location estimate, providing a cellular based location estimate and an expected error estimate for the cellular based location estimate, and determining the expected error of the location determination by evaluating the consistency of the cellular based location estimate to the WLAN based location estimate.
  • [0037]
    In some embodiments, the location estimate with the lower expected error can be selected as the location determination of the WLAN and cellular enabled device.
  • [0038]
    In some embodiments, determining the expected error of the location determination can include comparing the WLAN based location estimate and the cellular based location estimate.
  • [0039]
    In some embodiments, consistent measurements between the WLAN based location estimate and the cellular based location estimate can result in a lower expected error in the location determination.
  • [0040]
    In some embodiments, inconsistent measurements between the WLAN based location estimate and the cellular based location estimate can result in a higher expected error in the location determination.
  • [0041]
    In some embodiments, the consistency of the estimates can include the distance between the cellular based location estimate and the WLAN based location estimate.
  • [0042]
    In some embodiments, the system can include a positioning module having a WLAN module for receiving information from one or more WLAN access points to provide a WLAN based location estimate and an expected error for the WLAN based location estimate and a cellular positioning module for obtaining cellular positioning system measurements from at least one cell tower, and logic located in the positioning module for determining the expected error of the location determination by evaluating the consistency of the cellular positioning system measurements to the WLAN based location estimate.
  • [0043]
    In some embodiments, the system can include a positioning module having a WLAN module for receiving information from one or more WLAN access points to provide a WLAN based location estimate and an expected error for the WLAN based location estimate and a cellular positioning module for receiving information from at least one cell tower to provide a cellular based location estimate and an expected error estimate for the cellular based location estimate, and logic located in the positioning module for determining the expected error of the location determination by evaluating the consistency of the cellular based location estimate to the WLAN based location estimate.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • [0044]
    For a more complete understanding of various embodiments of the present invention, reference is now made to the following descriptions taken in connection with the accompanying drawings in which:
  • [0045]
    FIG. 1 illustrates a high-level architecture of a WLAN positioning system;
  • [0046]
    FIG. 2 illustrates a system for a conventional system for integrating WLAN PS and CPS;
  • [0047]
    FIG. 3 illustrates a system for providing a WLAN PS and CPS integrated location solution, according to some embodiments of the disclosed subject matter;
  • [0048]
    FIG. 4A illustrates an example of selecting a solution between possible WLAN PS solutions using a CPS location estimate, according to some embodiments of the disclosed subject matter;
  • [0049]
    FIG. 4B illustrates an example of selecting a detecting moved access points/access point clusters or cell tower IDs, according to some embodiments of the disclosed subject matter;
  • [0050]
    FIG. 5 illustrates a system for integrating a WLAN PS and a CPS in which a CPS location estimate is provided to the WLAN PS to select the best solution, according to some embodiments of the disclosed subject matter;
  • [0051]
    FIG. 6 illustrates an example of selecting a solution between possible CPS solutions based on a WLAN PS location estimate, according to some embodiments of the disclosed subject matter;
  • [0052]
    FIG. 7 illustrates a system for integrating a WLAN PS and a CPS and using a WLAN PS location estimate to select a CPS location estimate among possible CPS possible location estimates, according to some embodiments of the disclosed subject matter;
  • [0053]
    FIG. 8 illustrates a system for examining the location estimate and uncertainty provided by a WLAN PS against a CPS location measurements in order to find the best estimate of the location of a mobile device, according to some embodiments of the disclosed subject matter;
  • [0054]
    FIG. 9 illustrates an example for increasing the accuracy of an estimation of expected error by using CPS and WLAN PS information, according to some embodiments of the disclosed subject matter;
  • [0055]
    FIG. 10 illustrates a system for increasing the accuracy of an estimation of expected error by using CPS and WLAN PS information, according to some embodiments of the disclosed subject matter.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0056]
    Embodiments of the disclosed subject matter provide a method of integrating a WLAN-based positioning system (WLAN PS) and a cellular-based positioning system (CPS) to create a hybrid positioning system. An integrated or hybrid system refers to a system which inputs the measurements and location estimates from one system to another system before location estimate to improve the accuracy of the positioning and velocity and bearing estimates, and the accuracy of expected error estimate, as compared to each individual system working independently. The method of integrating a WLAN PS and CPS to create a hybrid positioning system can add CPS final estimates as another input to WLAN PS and WLAN PS final estimations as another input to CPS. In one embodiment, raw CPS measurements and raw WLAN PS measurements also can be integrated to select the best set of measurement to increase the accuracy of position estimate and HPE.
  • [0057]
    FIG. 3 illustrates a block diagram of a hybrid system of a WLAN PS 301 and a CPS 306.
  • [0058]
    The CPS 306 functions in a similar manner as the CPS 206 shown in FIG. 2 except that it is configured to receive a WLAN PS trilateration output 313 and a location estimation output 314 from the WLAN PS 301 and also to provide CPS trilateration 311 results to the WLAN PS. The integration of the WLAN PS trilateration and location estimation results with CPS 306 changes the design of CPS trilateration device 308 and HPE estimation device 309. A conventional CPS might need to be modified to provide the trilateration device's 308 results 311 outside of the CPS system.
  • [0059]
    This design change of CPS 306 after receiving WLAN PS information 313, 314 is discussed in more detail herein.
  • [0060]
    The WLAN PS 301 functions in a similar manner as the WLAN PS 201 shown in FIG. 2 except that it is configured to receive CPS trilateration output 311 and CPS location estimation 312 and to provide WLAN PS trilateration results 313. The integration of the CPS trilateration and location estimation results with the WLAN PS 301 changes the design of WLAN APs selection device 303, trilateration device 304, and HPE estimation device 305.
  • [0061]
    This design change of WLAN PS 301 after receiving CPS information 311 is discussed in more detail herein.
  • [0062]
    Under one embodiment, the disclosed method integrates a WLAN-based positioning system (WLAN PS) and a cellular positioning system (CPS) in which the WLAN PS provides a set of possible locations of a mobile device, and the CPS provides a location estimate of the mobile device. Among the possible WLAN PS location estimates, the WLAN location estimations which fit the CPS location estimate the best are selected as the final set of position estimates for the WLAN PS and CPS enabled mobile device.
  • [0063]
    In WLAN PS, the mobile device can detect one or more WLAN access points (WLAN APs), which can be used as reference points to locate the mobile device. The WLAN access points are generally randomly distributed and may move over time. Therefore, the WLAN positioning system applies a clustering algorithm to identify all the clusters of WLAN access points that are detected by the end user. Once the APs have been identified and grouped into clusters, the location of the device can be determined by using either each AP separately or by using the clusters of APs.
  • [0064]
    A cluster of WLAN access points is a set of WLAN access points where each access point is in the coverage area of each of the other access points. WLAN access points which are farther than a normal coverage of an access point from the cluster are considered to be part of a new cluster.
  • [0065]
    Once the APs have been identified and grouped into clusters, the location of each cluster of WLAN APs is estimated. The location of each cluster can be considered a possible location of the mobile device. Additionally, the CPS can provide a position estimate for the mobile device using cellular measurements from at least one cell tower. By combining WLAN PS and CPS position estimates, WLAN PS possible locations can be rejected if the distance from the WLAN PS possible locations to the CPS location estimate is an order of magnitude higher than accuracy of the CPS, where an exemplary accuracy of a CPS can be a few hundred meters. For example, if the distance between the CPS location estimate and a WLAN PS cluster is tens of kilometers, that cluster of WLAN APs can be rejected. In some embodiments, the location of individual APs, instead of clusters of APs, also can be examined against the CPS location estimate. For example, if two clusters of APs are pointing to Boston, one cluster of APs is pointing to Chicago and the CPS location estimate is in Boston, one of the APs pointing to Chicago or the cluster of APs pointing to Chicago can be examined against the CPS location estimate.
  • [0066]
    The final location can be calculated based on the remaining WLAN possible solutions, i.e., the remaining clusters of WLAN APs.
  • [0067]
    For example, FIG. 4A shows a WLAN PS 401, which consists of five WLAN access points 404. The WLAN access points form two clusters in this example, a first cluster 402 and a second cluster 403. Each cluster can be used to estimate the location of the user device. CPS also detects two cell towers 405 and estimates a location for the mobile device 406.
  • [0068]
    If distance between possible solutions of the WLAN PS is on an order of magnitude higher than the coverage area of the detected cell towers in CPS, the location estimate or solution 406 of the CPS can be used to select or eliminate WLAN AP clusters.
  • [0069]
    In this example, let us assume that cluster 402 and 403 are pointing to different cities like Boston and Seattle. The CPS location estimate 406 is consistent with cluster 402, and cluster 403 is rejected. Therefore, cluster 402 is selected to calculate the user location. In some instances, cluster 403 can be assumed to be moved or relocated to Boston. Because we know that the user's location is in Boston, we can assume that the user's device cannot be detecting using an AP in Chicago. Therefore, the cluster 403 can be assumed to have been relocated to Boston; otherwise, the user in Boston would not be detecting that access point. Further, the locations of the WLAN APs are tracked in one or more reference databases to which the user device has access. The user device accessed the reference database to determine that the WLAN APs reference location is Chicago. Because the user device has determined that the WLAN AP or cluster of WLAN APs have moved, the user device can send a message to the reference database to update the database to reflect that the new location of that WLAN AP or cluster of APs is Boston. The reference database can then be updated to reflect that new location. (For more details on detecting moved access points, please see U.S. patent application Ser. No. 11/359,154, entitled “Continuous Data Optimization of Moved Access Points in Positioning Systems,” filed Feb. 22, 2006;, the entire contents are hereby incorporated by reference.) Therefore, cluster 403 WLAN APs can be identified as moved in the reference database, and their location is updated. Therefore, clusters of WLAN APs which are not referring to the same general location as the CPS estimated location can be considered to be incorrect. In other words, the associated location of WLAN APs of those clusters can be considered to be inaccurate or stale, that is, the WLAN AP may have moved.
  • [0070]
    Under some embodiments, the disclosed method integrates a WLAN-based positioning system (WLAN PS) and a cellular positioning system (CPS) in which the WLAN PS provides one location estimate of a mobile device, and the CPS provides one location estimate of the mobile device, and the consistency between the WLAN PS and the CPS location estimates is used to choose a WLAN PS location estimate. Note that there is only one location estimation reported by each WLAN PS and CPS.
  • [0071]
    FIG. 4B illustrates an integrated solution of WLAN PS and CPS, in which WLAN PS 401 estimates a location 410 based on detected WLAN APs 412, which is far from CPS cell tower 414 location estimate 416. For example, if the WLAN PS locates the mobile device in Boston and the CPS locates the mobile device in Chicago, the discrepancy between WLAN PS and CPS location estimates indicate that either WLAN AP 412 has moved or CPS location estimate is not correct and the detected cell IDs have moved.
  • [0072]
    The WLAN PS can detect one or more WLAN APs. The WLAN PS extracts associated information about each detected WLAN AP from a reference database. The known WLAN APs (i.e., WLAN APs for which the reference database has location information) are used to locate the mobile device.
  • [0073]
    CPS also can detect one or more cell IDs of cell towers and extracts cell information for the detected cell IDs, for example, location and the coverage size of the cell tower associated with that cell ID. The detected cell IDs can be used to estimate the location of the mobile device. The estimated location by CPS can be used to verify the general location of the WLAN PS estimated location.
  • [0074]
    If the CPS and WLAN PS location estimates are pointing to the same general location (WLAN PS location estimate is within the expected accuracy of the CPS location estimate), the WLAN PS estimated location can be reported as final location of the mobile device. If the CPS and WLAN PS location estimates are pointing to locations that not in the same general location, this can indicate that the WLAN APs have moved or the associated location of the detected cell IDs are not correct.
  • [0075]
    Further, if a confidence of one of the location estimates reported by WLAN PS or CPS is high and it is higher than the other reported location, the estimated location with the highest level confidence is reported as the final estimated location of the mobile device. For example, if the latest locations of cell IDs are provided by the cellular carrier and most probably are correct, the confidence to the location associated to cell IDs is very high. Then, the location estimates WLAN system can be assumed to be incorrect. The discrepancy between the measurements can be reported back to the corresponding reference database. The WLAN AP or AP cluster locations can be updated in the corresponding reference database. If the confidence of either location is at the same level, then no location may be reported. This determination can be reported back to corresponding reference databases as an indication of possibility of WLAN AP movement and also a change of cell ID associated location information.
  • [0076]
    WLAN AP movement is estimated to occur more often than a change in the location of cell IDs. Therefore, in the case that WLAN PS and CPS location estimates are not consistent and distance between the estimated locations is an order of magnitude higher than the coverage of detected cell towers, the CPS location estimate is considered as the final location estimate of the mobile device, and it can be assumed that detected WLAN APs were moved to the new location.
  • [0077]
    If it is detected that a WLAN AP was moved, the new location in which the WLAN AP was detected can be used to correct and update location of the WLAN AP in the reference database.
  • [0078]
    FIG. 5 illustrates block diagram of integrated solution of CPS and WLAN PS. CPS 506 can be a standard, off-the-shelf device as discussed in FIG. 2. The CPS location estimate result 312 is directed to selecting WLAN APs module 503 and trilateration device 504.
  • [0079]
    The WLAN APs selection devices 503 received the data from WLAN scanner 202 and the CPS location estimate as an input. The WLAN APs selection device 503 clusters WLAN APs based on the distance between the access points and it results in one or more cluster. The clusters are used in the trilateration device 504 to find possible location estimates of the mobile device. The WLAN PS location estimates based on clusters are selected or rejected based on the cluster distance from the CPS location estimate.
  • [0080]
    Under one embodiment, WLAN PS is used to detect and correct when the cell ID associated location is not correct and the cell ID has been re-assigned to a cell tower with a different location. Cell towers are subject to reconfiguration and change of their cell IDs. In a cellular network, cell towers less often physically move and are more often reconfigured and the cell IDs are re-assigned. However, cellular network reconfiguration happens rarely. When cellular networks are reconfigured, cell IDs may be re-assigned to another cell tower and the other cell tower may not be in the same area as the original cell tower. This can result in an incorrect location association for some cell IDs. If a mobile device detects a set of reconfigured cell towers that still refer to their old configuration with the old location of the towers, the mobile device may find that the detected cell towers are an order of magnitude farther away than the normal coverage of a cell tower. The normal coverage of a cell tower is between couple of hundred meters to couple of kilometers, but coverage of any particular cell tower can be estimated based on the density of cell towers or by site survey of the area. Therefore, using different cell towers can result to different location estimates. Thus, there are cases that the mobile device may detect one or more cell towers with cell IDs whose associated locations are not consistent with their recorded location in a reference database. In other words, the associated location of cell IDs point to different locations.
  • [0081]
    For example, if a mobile device detects five towers, two towers may point to Chicago and three others may point to Boston. In this case, the WLAN PS estimated location of the mobile device can be used to resolve the discrepancy between cell IDs and location. In the example, if WLAN PS location estimate is in Boston, it can be concluded that the cell IDs pointing to Boston are correct and cell IDs pointing to Chicago are not correct. Thus, the WLAN PS location estimate can be used to identify if the cell IDs are pointing to an incorrect location and therefore have been re-assigned to a different cell tower.
  • [0082]
    If cell ID movement is detected, the location of WLAN PS can be used as a reference to correct and update location of the cell IDs which are registered at an incorrect location in the reference database.
  • [0083]
    FIG. 6 shows CPS and WLAN PS, in which CPS results to two different location estimates 605 and 606 and a WLAN positioning system 601 with a location estimate 602. The detected cell towers 603 and 604 are far apart and resulting in two different location estimates 605 and 606. In this example, WLAN PS location estimate 602 is consistent with CPS location estimate 605. Therefore, it is concluded that the cell ID of the cell tower 604 was changed, and the cell ID of cell tower 604 is located in the vicinity of the cell tower 603 and WLAN PS location estimate 602.
  • [0084]
    FIG. 7 illustrates WLAN PS 801 and CPS 806 integrated solution, in which all the modules are the same as FIG. 2, except for CPS trilateration 808. Trilateration based on cell towers 808 also receives WLAN PS location estimate 314 as an input. When CPS trilateration 808 provides multiple possible location estimates for the mobile device, the WLAN PS location estimate is used to detect cell towers having changed cell IDs and assigned to new locations.
  • [0085]
    Under another embodiment of the disclosed subject matter, a system and method is provided in which the WLAN PS can provide a region in which a possible location solution resides, and within the provided region the final location estimate of the mobile device can be selected based on CPS. This method can be used when the expected error of the CPS location estimate is less than the expected error of WLAN PS location estimate. For example, when CPS uses TOA or TDOA technology and there is a line of sight connection between the mobile device and the cell towers, the expected error of CPS can be less than that of WLAN PS. When CPS uses TOA and TDOA technology, the arrival time of received signal from each cell tower can be estimated. The received signal in cellular network can be subject to multipath, and there can be multiple copies of the received signal. Therefore, there can be multiple choices for the arrival time of the signal, which can result in different distance estimations between the mobile user and the cell tower. Thus, a set of distance measurements from two or more cell towers can result in multiple possible location estimates for the mobile device. CPS possible solutions are combined or selected by additional location information provided by WLAN PS about the location of the mobile device. For example, the CPS solution closest to the WLAN PS location solution can be selected as the final location estimate of the mobile device or possible solutions of CPS can be weighted according to their distance to the WLAN PS solution. After assigning a weight to each possible CPS location, various algorithms can be used to combine or select CPS possible locations. For example, the final reported location can be weighted by an average of all possible locations, low weight locations can be removed from the weighted average, or only the highest weighted location can be reported. Selection can be a special case of weighting, in which the respective weights are zero and one. A low weight can correspond to a CPS estimate that is far from the WLAN PS solution, for example, on the order of hundreds of meters. A high weight can correspond to a CPS estimate that is close to the WLAN PS solution, for example, within on the order of tens of meters.
  • [0086]
    In some embodiments, there is only a measurement from one cell tower. Therefore, only the distance from one cell tower is known, which results to a circle of possible solutions of cell positioning system, and the cellular based position estimate (in the circle of possible CPS solutions) closest to the WLAN location estimate is selected as the location of the WLAN and cellular enabled device
  • [0087]
    FIG. 8 shows an integrated WLAN PS and CPS, in which WLAN PS 901 provides an estimate of the location of the mobile device with some uncertainty 903. The uncertainty 903 can be the expected error of WLAN PS. The mobile device also acquires signals from two or more cell towers 902. CPS uses TOA in this example, and it returns a set of possible location estimates 904, 905, and 906. The location estimate 904 can be the final location estimate of the mobile device, because it is consistent with WLAN PS location estimate 903.
  • [0088]
    Referring back to FIG. 7, FIG. 7 shows an integrated solution of WLAN PS 801 and CPS 806 in which final location estimate 314 provided by WLAN PS is given to CPS trilateration device 808. However, in this embodiment, the CPS trilateration device 808 uses the WLAN PS location estimate 314 to select the best CPS location estimate instead of using the WLAN PS location estimate 314 to determine if the cell ID has moved.
  • [0089]
    WLAN PS 801 is an off the shelf system. The CPS 806 and trilateration device 808 can be modified to receive the WLAN PS location estimate 314 as an input. When the distance between associated locations of at least two detected cell IDs are an order of magnitude higher than normal coverage of the detected cell towers, the WLAN PS location estimate 314 can be used as an arbitrator to select cell IDs which are in the general area of the WLAN PS location estimate. Other cell IDs which are not in the general area of the WLAN PS location estimate can be marked as changed, i.e., the associated location of the cell tower was moved. Selecting the best set can mean selecting the one which is not moved. In other words, best set can be the set which has not moved.
  • [0090]
    Another embodiment of the invention provides a method to increase the accuracy of the expected error of a location estimate of an integrated location solution of CPS and WLAN PS and compare the integrated error to error location results for each individual system. The expected error estimation provides an uncertainty area around the estimated location. If the estimated locations of the WLAN PS and the CPS are within the uncertainty area of each other, i.e., the expected errors of the two systems are consistent, the uncertainty area of the final estimate can be reduced based on distance between estimated locations from both systems. If the estimated locations of WLAN PS and CPS are not within the uncertainty area of each other, i.e., the expected errors are inconsistent, the uncertainty area is increased based on distance between estimated locations from both systems. If only one of the estimated locations of WLAN PS and CPS falls inside the uncertainty area of the other system, the uncertainty area can be reduced or increased based on the quality of estimated error from each system. The estimated error of location estimate normally reports the 95% confidence interval, but it can report any other confidence interval as well.
  • [0091]
    FIG. 9 illustrates WLAN PS location estimation 1301, WLAN PS expected error of estimation 1303, CPS location estimation 1302 and CPS expected error of estimation 1304. The reported uncertainty by each system can be the expected error of a final position estimate. The error of estimation also can be referred to as uncertainty area.
  • [0092]
    In such a system, the CPS and WLAN PS each can provide a location estimate and also an estimate of the expected error in that location estimation. The expected errors of the location estimate provided by both systems can be combined in order to provide a better estimate of the error of the location estimation. For example, if each system provides an area around the reported location as an uncertainty of the estimated location (1303 and 1304), the integrated system considers the overlap of the uncertainty areas 1305 and also the distance between estimated locations 1306 to estimate the uncertainty of the final location estimate. The greater the distance between the estimated locations by CPS and WLAN PS is, the higher the expected error of location estimation. In another implementation, the system can select the location estimate with the lowest uncertainty as the final location estimate.
  • [0093]
    FIG. 10 illustrates a block diagram of integrated WLAN PS and CPS system, in which the expected error of each system is calculated using conventional methods, and the results are provided to integrated error estimation system device 1411. The integrated error estimation 1411 calculates the final expected error by considering the consistency between the reported locations by WLAN PS and CPS.
  • [0094]
    Upon review of the description and embodiments of the present invention, those skilled in the art will understand that modifications and equivalent substitutions may be performed in carrying out the invention without department from the essence of the invention. Thus, the invention is not meant to be limiting by the embodiments described explicitly above and is limited only by the claims which follow. Further, the features of the disclosed embodiments can be combined, rearranged, etc., within the scope of the invention to produce additional embodiments.
Patentcitaties
Geciteerd patent Aanvraagdatum Publicatiedatum Aanvrager Titel
US5420592 *5 april 199330 mei 1995Radix Technologies, Inc.Separated GPS sensor and processing system for remote GPS sensing and centralized ground station processing for remote mobile position and velocity determinations
US5936572 *25 feb 199710 aug 1999Trimble Navigation LimitedPortable hybrid location determination system
US5943606 *30 sept 199624 aug 1999Qualcomm IncorporatedDetermination of frequency offsets in communication systems
US5999124 *22 april 19987 dec 1999Snaptrack, Inc,Satellite positioning system augmentation with wireless communication signals
US6185427 *28 april 19986 feb 2001Snaptrack, Inc.Distributed satellite position system processing and application network
US6420999 *26 okt 200016 juli 2002Qualcomm, Inc.Method and apparatus for determining an error estimate in a hybrid position determination system
US6574557 *26 april 20023 juni 2003Pioneer CorporationPositioning error range setting apparatus, method, and navigation apparatus
US6587692 *30 maart 20001 juli 2003Lucent Technologies Inc.Location determination using weighted ridge regression
US6707422 *13 nov 200116 maart 2004Snaptrack IncorporatedMethod and apparatus for measurement processing of satellite positioning system (SPS) signals
US6725158 *10 juli 200220 april 2004Skybitz, Inc.System and method for fast acquisition reporting using communication satellite range measurement
US6894645 *11 dec 200317 mei 2005Nokia CorporationPosition estimation
US6928292 *12 maart 20029 aug 2005Hitachi, Ltd.Mobile handset with position calculation function
US7236126 *27 juli 200526 juni 2007Samsung Electronics Co., Ltd.AGPS system using NTP server and method for determining the location of a terminal using a NTP server
US7313402 *24 juni 200325 dec 2007Verizon Corporate Services Group Inc.System and method for evaluating accuracy of an automatic location identification system
US7479922 *31 maart 200520 jan 2009Deere & CompanyMethod and system for determining the location of a vehicle
US7545894 *21 maart 20059 juni 2009Purdue Research FoundationMethod and apparatus for detecting and processing global positioning system (GPS) signals
US7587081 *30 jan 20068 sept 2009Deere & CompanyMethod for processing stereo vision data using image density
US7595754 *24 dec 200729 sept 2009Qualcomm IncorporatedMethods, systems and apparatus for integrated wireless device location determination
US7664511 *12 dec 200516 feb 2010Nokia CorporationMobile location method for WLAN-type systems
US7724612 *20 april 200725 mei 2010Sirf Technology, Inc.System and method for providing aiding information to a satellite positioning system receiver over short-range wireless connections
US7822427 *6 okt 200626 okt 2010Sprint Spectrum L.P.Method and system for using a wireless signal received via a repeater for location determination
US20030011511 *3 juni 200216 jan 2003King Thomas M.Method and apparatus for assisted GPS
US20040023669 *25 juli 20035 feb 2004Interdigital Technology CorporationHandover between a cellular system and a wireless local area network
US20040160909 *29 aug 200319 aug 2004Leonid SheynblatMethod, apparatus, and machine-readable medium for providing indication of location service availability and the quality of available location services
US20050017898 *1 juni 200427 jan 2005Koichiro TeranishiPositional information determining apparatus
US20050090266 *7 sept 200428 april 2005Leonid SheynblatLocal area network assisted positioning
US20050237967 *21 april 200427 okt 2005Chiao-Wei LeeAutomatic configuration of wlan for mobile users
US20050285783 *3 nov 200429 dec 2005Neil HarperGlobal positioning system signal acquisition assistance
US20060170591 *29 juni 20053 aug 2006Cyril HouriSystem and method for enabling continuous geographic location estimation for wireless computing devices
US20070052583 *8 sept 20058 maart 2007Topcon Gps, LlcPosition determination using carrier phase measurements of satellite signals
US20070109184 *24 mei 200617 mei 2007Shyr You-Yuh JNovas hybrid positioning technology using terrestrial digital broadcasting signal (DBS) and global positioning system (GPS) satellite signal
US20070167174 *19 jan 200619 juli 2007Halcrow Michael AOn-device mapping of WIFI hotspots via direct connection of WIFI-enabled and GPS-enabled mobile devices
US20070268177 *24 aug 200622 nov 2007Rizwan AhmedSystem and/or method for determining sufficiency of pseudorange measurements
US20070279281 *31 mei 20076 dec 2007Ntt Docomo, Inc.Server device, mobile terminal and positioning mode selecting method
US20080111737 *8 maart 200715 mei 2008Motorola Inc.Method and system for hybrid location aiding for multi-mode devices
US20080137626 *3 dec 200712 juni 2008Samsung Electronics Co., Ltd.Apparatus and method for searching for wlan in portable terminal
US20080158053 *9 nov 20073 juli 2008Alpine Electronics, Inc.GPS Position Measuring Device
US20080214192 *26 jan 20064 sept 2008Soliman Samir SMobile communication system with position detection to facilitate hard handoff
US20080234533 *21 maart 200725 sept 2008Precision Innovations LlcSystem for evaluating an environment
US20090002237 *27 juni 20071 jan 2009Motorola, Inc.Method and device for determining a position of a portable electronic device
US20090042557 *25 juli 200812 feb 2009Wefi, Inc.System and Method For Mapping Wireless Access Points
US20090121927 *14 nov 200714 mei 2009Radiofy LlcSystems and Methods of Assisted GPS
US20090161806 *19 dec 200725 juni 2009Apple Inc.Microcontroller clock calibration using data transmission from an accurate third party
US20090168843 *2 okt 20082 juli 2009Texas Instruments IncorporatedPower-saving receiver circuits, systems and processes
US20090181695 *14 jan 200816 juli 2009Nokia CorporationUse of movement information about a wireless client
US20090187983 *5 sept 200823 juli 2009Board Of Trustees Of The University Of IllinoisMethod and system for distributed, localized authentication in the framework of 802.11
US20090189810 *15 jan 200930 juli 2009Broadcom CorporationWeighted aiding for positioning systems
US20090196267 *23 jan 20096 aug 2009Walker Sr Jonathan BSystems and methods for providing location based services (lbs) utilizing wlan and/or gps signals for seamless indoor and outdoor tracking
US20090231191 *17 maart 200817 sept 2009Wi-Lan, Inc.Systems and methods for distributing GPS clock to communications devices
US20090251364 *3 april 20088 okt 2009Beceem Communications Inc.Method and system of a mobile subscriber estimating position
US20090303112 *5 juni 200910 dec 2009Skyhook Wireless, Inc.System and method for refining a wlan-ps estimated location using satellite measurements in a hybrid positioning system
US20090303113 *5 juni 200910 dec 2009Skyhook Wireless, Inc.Methods and systems for improving the accuracy of expected error estimation in a hybrid positioning system
US20090303114 *5 juni 200910 dec 2009Skyhook Wireless, Inc.Method and system for determining location using a hybrid satellite and wlan positioning system by selecting the best wlan-ps solution
US20090303115 *5 juni 200910 dec 2009Skyhook Wireless, Inc.Methods and systems for stationary user detection in a hybrid positioning system
US20090303119 *5 juni 200910 dec 2009Skyhook Wireless, Inc.Systems and methods for using environmental information in a hybrid positioning system
US20090303120 *5 juni 200910 dec 2009Skyhook Wireless, Inc.Systems and methods for determining position using a wlan-ps estimated position as an initial position in a hybrid positioning system
US20090303121 *5 juni 200910 dec 2009Skyhook Wireless, Inc.System and method for using a satellite positioning system to filter wlan access points in a hybrid positioning system
US20090310585 *16 juni 200917 dec 2009Skyhook Wireless, Inc.Methods and systems for determining location using a cellular and wlan positioning system by selecting the best wlan ps solution
US20090312035 *16 juni 200917 dec 2009Skyhook Wireless, Inc.Methods and systems for determining location using a cellular and wlan positioning system by selecting the best cellular positioning system solution
US20100039323 *12 aug 200818 feb 2010Andrei KosolobovMethod and system for global position reference map (gprm) for agps
US20100195632 *3 feb 20095 aug 2010Prabhu KrishnanandAccess point detection for wireless networking
US20100309051 *6 aug 20109 dec 2010Mehran MoshfeghiMethod and system for determining the position of a mobile device
US20110012780 *16 juli 200920 jan 2011Skyhook Wireless, Inc.Systems and methods for using a satellite positioning system to detect moved wlan access points
US20110012784 *16 juli 200920 jan 2011Skyhook Wireless, Inc.Methods and systems for determining location using a hybrid satellite and wlan positioning system by selecting the best sps measurements
US20110021207 *24 juli 200927 jan 2011Morgan Edward JSystem and Method for Estimating Positioning Error Within a WLAN-Based Positioning System
US20110035420 *18 okt 201010 feb 2011Farshid Alizadeh-ShabdizLocation Beacon Database
US20110045840 *18 aug 200924 feb 2011Skyhook Wireless, Inc.Method and system for estimating range of mobile device to wireless installation
US20110058495 *12 nov 201010 maart 2011Skyhook Wireless, Inc.Estimation of Speed and Direction of Travel in a WLAN Positioning System
US20110074626 *29 sept 200931 maart 2011Skyhook Wireless, Inc.Improvement of the accuracy and performance of a hybrid positioning system
US20110080317 *2 okt 20097 april 2011Skyhook Wireless, Inc.Method of determining position in a hybrid positioning system using a dilution of precision metric
US20110080318 *2 okt 20097 april 2011Skyhook Wireless, Inc.Determining A Dilution of Precision Metric Using Two or Three GPS Satellites
US20110080841 *13 dec 20107 april 2011Skyhook Wireless, Inc.System and Method for Estimating Positioning Error within a WLAN-Based Positioning System
US20110164522 *14 maart 20117 juli 2011Skyhook Wireless, Inc.Estimation of Position Using WLAN Access Point Radio Propagation Characteristics in a WLAN Positioning System
Verwijzingen naar dit patent
Citerend patent Aanvraagdatum Publicatiedatum Aanvrager Titel
US77689636 juli 20073 aug 2010Skyhook Wireless, Inc.System and method of improving sampling of WLAN packet information to improve estimates of Doppler frequency of a WLAN positioning device
US77693964 dec 20073 aug 2010Skyhook Wireless, Inc.Location-based services that choose location algorithms based on number of detected access points within range of user device
US78180174 dec 200719 okt 2010Skyhook Wireless, Inc.Location-based services that choose location algorithms based on number of detected wireless signal stations within range of user device
US78357548 mei 200616 nov 2010Skyhook Wireless, Inc.Estimation of speed and direction of travel in a WLAN positioning system
US785623422 jan 200721 dec 2010Skyhook Wireless, Inc.System and method for estimating positioning error within a WLAN-based positioning system
US791666125 feb 200929 maart 2011Skyhook Wireless, Inc.Estimation of position using WLAN access point radio propagation characteristics in a WLAN positioning system
US79997425 juni 200916 aug 2011Skyhook Wireless, Inc.System and method for using a satellite positioning system to filter WLAN access points in a hybrid positioning system
US80147888 mei 20066 sept 2011Skyhook Wireless, Inc.Estimation of speed of travel using the dynamic signal strength variation of multiple WLAN access points
US801935713 dec 201013 sept 2011Skyhook Wireless, Inc.System and method for estimating positioning error within a WLAN-based positioning system
US802287716 juli 200920 sept 2011Skyhook Wireless, Inc.Systems and methods for using a satellite positioning system to detect moved WLAN access points
US803165713 aug 20084 okt 2011Skyhook Wireless, Inc.Server for updating location beacon database
US80542195 juni 20098 nov 2011Skyhook Wireless, Inc.Systems and methods for determining position using a WLAN-PS estimated position as an initial position in a hybrid positioning system
US806382016 juli 200922 nov 2011Skyhook Wireless, Inc.Methods and systems for determining location using a hybrid satellite and WLAN positioning system by selecting the best SPS measurements
US80893985 juni 20093 jan 2012Skyhook Wireless, Inc.Methods and systems for stationary user detection in a hybrid positioning system
US80893995 juni 20093 jan 2012Skyhook Wireless, Inc.System and method for refining a WLAN-PS estimated location using satellite measurements in a hybrid positioning system
US809038612 nov 20103 jan 2012Skyhook Wireless, Inc.Estimation of speed and direction of travel in a WLAN positioning system
US810328818 juni 200924 jan 2012Skyhook Wireless, Inc.Estimation of speed and direction of travel in a WLAN positioning system using multiple position estimations
US813014815 aug 20116 maart 2012Skyhook Wireless, Inc.System and method for using a satellite positioning system to filter WLAN access points in a hybrid positioning system
US814009413 feb 200920 maart 2012Skyhook Wireless, Inc.Continuous data optimization of new access points in positioning systems
US81446736 juli 200727 maart 2012Skyhook Wireless, Inc.Method and system for employing a dedicated device for position estimation by a WLAN positioning system
US815445417 aug 201110 april 2012Skyhook Wireless, Inc.Systems and methods for using a satellite positioning system to detect moved WLAN access points
US815566616 juni 200910 april 2012Skyhook Wireless, Inc.Methods and systems for determining location using a cellular and WLAN positioning system by selecting the best cellular positioning system solution
US815567314 maart 201110 april 2012Skyhook Wireless, Inc.Estimation of position using WLAN access point radio propagation characteristics in a WLAN positioning system
US81749318 okt 20108 mei 2012HJ Laboratories, LLCApparatus and method for providing indoor location, position, or tracking of a mobile computer using building information
US81851296 juli 200722 mei 2012Skyhook Wireless, Inc.System and method of passive and active scanning of WLAN-enabled access points to estimate position of a WLAN positioning device
US820025115 jan 201012 juni 2012Apple Inc.Determining a location of a mobile device using a location database
US822307417 aug 201117 juli 2012Skyhook Wireless, Inc.Systems and methods for using a satellite positioning system to detect moved WLAN access points
US82294556 juli 200724 juli 2012Skyhook Wireless, Inc.System and method of gathering and caching WLAN packet information to improve position estimates of a WLAN positioning device
US824296017 aug 201114 aug 2012Skyhook Wireless, Inc.Systems and methods for using a satellite positioning system to detect moved WLAN access points
US824427222 feb 200614 aug 2012Skyhook Wireless, Inc.Continuous data optimization of moved access points in positioning systems
US82791142 okt 20092 okt 2012Skyhook Wireless, Inc.Method of determining position in a hybrid positioning system using a dilution of precision metric
US82841003 mei 20129 okt 2012HJ Laboratories, LLCProviding indoor location, position, or tracking of a mobile computer using sensors
US828410317 aug 20119 okt 2012Skyhook Wireless, Inc.Systems and methods for using a satellite positioning system to detect moved WLAN access points
US83152336 juli 200720 nov 2012Skyhook Wireless, Inc.System and method of gathering WLAN packet samples to improve position estimates of WLAN positioning device
US836926428 dec 20075 feb 2013Skyhook Wireless, Inc.Method and system for selecting and providing a relevant subset of Wi-Fi location information to a mobile client device so the client device may estimate its position with efficient utilization of resources
US83959685 maart 201212 maart 2013HJ Laboratories, LLCProviding indoor location, position, or tracking of a mobile computer using building information
US840678518 aug 200926 maart 2013Skyhook Wireless, Inc.Method and system for estimating range of mobile device to wireless installation
US843333415 jan 201030 april 2013Apple Inc.Managing a location database for network-based positioning system
US846274516 juni 200911 juni 2013Skyhook Wireless, Inc.Methods and systems for determining location using a cellular and WLAN positioning system by selecting the best WLAN PS solution
US847829713 aug 20122 juli 2013Skyhook Wireless, Inc.Continuous data optimization of moved access points in positioning systems
US84945661 juni 201023 juli 2013Microsoft CorporationHybrid mobile phone geopositioning
US850405915 jan 20106 aug 2013Apple Inc.Location filtering using mobile country code
US852696730 dec 20113 sept 2013Skyhook Wireless, Inc.Estimation of speed and direction of travel in a WLAN positioning system
US853845723 okt 201217 sept 2013Skyhook Wireless, Inc.Continuous data optimization of moved access points in positioning systems
US85599749 juni 201115 okt 2013Skyhook Wireless, Inc.Methods of and systems for measuring beacon stability of wireless access points
US856448117 juli 201222 okt 2013Skyhook Wireless, Inc.Systems and methods for using a satellite positioning system to detect moved WLAN access points
US86062944 okt 201110 dec 2013Skyhook Wireless, Inc.Method of and system for estimating temporal demographics of mobile users
US861964315 april 201031 dec 2013Skyhook Wireless, Inc.System and method for estimating the probability of movement of access points in a WLAN-based positioning system
US86203447 april 201031 dec 2013Apple Inc.Location-based application program management
US86306579 juni 201114 jan 2014Skyhook Wireless, Inc.Systems for and methods of determining likelihood of reference point identity duplication in a positioning system
US8634846 *22 maart 201021 jan 2014Broadcom CorporationMethod and system for determining a location of a mobile device based on a plurality of location samples
US863486015 jan 201021 jan 2014Apple Inc.Location determination using cached location area codes
US863825629 sept 200928 jan 2014Skyhook Wireless, Inc.Accuracy and performance of a hybrid positioning system
US863872511 juni 201328 jan 2014Skyhook Wireless, Inc.Methods and systems for determining location using a cellular and WLAN positioning system by selecting the best WLAN PS solution
US865537115 jan 201018 feb 2014Apple Inc.Location determination using cached location area codes
US866057615 jan 201025 feb 2014Apple Inc.Adaptive location determination
US87000539 juni 201115 april 2014Skyhook Wireless, Inc.Systems for and methods of determining likelihood of relocation of reference points in a positioning system
US870614021 mei 201222 april 2014Skyhook Wireless, Inc.System and method of passive and active scanning of WLAN-enabled access points to estimate position of a WLAN positioning device
US884249625 feb 201323 sept 2014HJ Laboratories, LLCProviding indoor location, position, or tracking of a mobile computer using a room dimension
US88907463 nov 201118 nov 2014Skyhook Wireless, Inc.Method of and system for increasing the reliability and accuracy of location estimation in a hybrid positioning system
US89092459 aug 20119 dec 2014Skyhook Wireless, Inc.System and method for estimating positioning error within a WLAN-based positioning system
US89719159 juni 20113 maart 2015Skyhook Wireless, Inc.Systems for and methods of determining likelihood of mobility of reference points in a positioning system
US897192311 okt 20133 maart 2015Skyhook Wireless, Inc.Methods of and systems for measuring beacon stability of wireless access points
US89834934 feb 201317 maart 2015Skyhook Wireless, Inc.Method and system for selecting and providing a relevant subset of Wi-Fi location information to a mobile client device so the client device may estimate its position with efficient utilization of resources
US900869029 aug 201314 april 2015Skyhook Wireless, Inc.Estimation of speed and direction of travel in a WLAN positioning system
US901335018 okt 201321 april 2015Skyhook Wireless, Inc.Systems and methods for using a satellite positioning system to detect moved WLAN access points
US90147159 juni 201121 april 2015Skyhook Wireless, Inc.Systems for and methods of determining likelihood of atypical transmission characteristics of reference points in a positioning system
US90315807 nov 201312 mei 2015Skyhook Wireless, Inc.Method of and system for estimating temporal demographics of mobile users
US903716220 maart 201219 mei 2015Skyhook Wireless, Inc.Continuous data optimization of new access points in positioning systems
US905237810 april 20129 juni 2015Skyhook Wireless, Inc.Estimation of position using WLAN access point radio propagation characteristics in a WLAN positioning system
US911015911 feb 201518 aug 2015HJ Laboratories, LLCDetermining indoor location or position of a mobile computer using building information
US911623015 aug 201425 aug 2015HJ Laboratories, LLCDetermining floor location and movement of a mobile computer in a building
US91191689 april 201325 aug 2015Apple Inc.Managing a location database for network-based positioning system
US9151824 *21 dec 20126 okt 2015Qualcomm IncorporatedAdaptive control of crowdsourcing data using mobile device generated parameters
US917623023 feb 20153 nov 2015HJ Laboratories, LLCTracking a mobile computer indoors using Wi-Fi, motion, and environmental sensors
US918249431 jan 201510 nov 2015HJ Laboratories, LLCTracking a mobile computer indoors using wi-fi and motion sensor information
US921052920 dec 20138 dec 2015Apple Inc.Location-based application program management
US923741525 maart 201312 jan 2016Skyhook Wireless, Inc.Method and system for estimating range of mobile device to wireless installation
US9244173 *15 sept 201526 jan 2016Samsung Electronics Co. Ltd.Determining context of a mobile computer
US925360515 april 20102 feb 2016Skyhook Wireless, Inc.System and method for resolving multiple location estimate conflicts in a WLAN-positioning system
US929889724 mei 201329 maart 2016Skyhook Wireless, Inc.Method of and systems for privacy preserving mobile demographic measurement of individuals, groups and locations over time and space
US93075142 sept 20145 april 2016Google Inc.Managing use of location-identification services
US936378516 maart 20097 juni 2016Skyhook Wireless, Inc.Calculation of quality of WLAN access point characterization for use in a WLAN positioning system
US9398415 *23 mei 201419 juli 2016Amdocs Software Systems LimitedSystem, method, and computer program for determining geo-location of user equipment for a subscriber that is in simultaneous communication with a cellular network and a wi-fi network
US939855813 sept 201319 juli 2016Skyhook Wireless, Inc.Continuous data optimization of moved access points in positioning systems
US94266132 dec 201423 aug 2016Skyhook Wireless, Inc.System and method for estimating positioning error within a WLAN-based positioning system
US94678078 mei 201511 okt 2016Skyhook Wireless, Inc.Estimating demographics associated with a selected geographic area
US94916554 sept 20158 nov 2016Qualcomm IncorporatedAdaptive control of crowdsourcing data using mobile device generated parameters
US951647131 dec 20136 dec 2016Skyhook Wireless, Inc.System and method for estimating the probability of movement of access points in a WLAN-based positioning system
US95215122 maart 201513 dec 2016Skyhook Wireless, Inc.Determining a designated wireless device lacks a fixed geographic location and using the determination to improve location estimates
US9571979 *10 juni 201514 feb 2017The Nielsen Company (Us), LlcMethods and apparatus for cell tower location estimation using multiple types of data sources
US9615206 *21 juni 20164 april 2017Amdocs Development LimitedSystem, method, and computer program for determining geo-location of user equipment for a subscriber that is in simultaneous communication with a cellular network and a Wi-Fi network
US9628359 *23 dec 201318 april 2017Google Inc.Network selection using current and historical measurements
US963551024 juni 201625 april 2017Athentek Innovations, Inc.Database for Wi-Fi position estimation
US965933319 juli 201323 mei 2017Disney Enterprises, Inc.Dining experience management
US966814531 dec 201530 mei 2017The Nielsen Company (Us), LlcMethods and apparatus to scan a wireless communication spectrum
US968407924 sept 201520 juni 2017Samsung Electronics Co., Ltd.Determining context of a mobile computer
US20070258420 *8 mei 20068 nov 2007Farshid Alizadeh-ShabdizEstimation of speed of travel using the dynamic signal strength variation of multiple WLAN access points
US20070259624 *8 mei 20068 nov 2007Farshid Alizadeh-ShabdizEstimation of speed and direction of travel in a WLAN positioning system
US20080008118 *6 juli 200710 jan 2008Skyhook Wireless, Inc.System and method of gathering wlan packet samples to improve position estimates of wlan positioning device
US20080008120 *6 juli 200710 jan 2008Skyhook Wireless, Inc.System and method of improving sampling of wlan packet information to improve estimates of doppler frequency of a wlan positioning device
US20080108371 *22 jan 20078 mei 2008Farshid Alizadeh-ShabdizSystem and method for estimating positioning error within a wlan-based positioning system
US20080192696 *25 juli 200514 aug 2008Joachim SachsHandover Optimisation in a Wlan Radio Access Network
US20080248741 *5 april 20079 okt 2008Farshid Alizadeh-ShabdizTime difference of arrival based estimation of direction of travel in a wlan positioning system
US20080248808 *5 april 20079 okt 2008Farshid Alizadeh-ShabdizEstimation of position, speed and bearing using time difference of arrival and received signal strength in a wlan positioning system
US20090154371 *25 feb 200918 juni 2009Skyhook Wireless, Inc.Estimation of position using wlan access point radio propagation characteristics in a wlan positioning system
US20090303112 *5 juni 200910 dec 2009Skyhook Wireless, Inc.System and method for refining a wlan-ps estimated location using satellite measurements in a hybrid positioning system
US20110021207 *24 juli 200927 jan 2011Morgan Edward JSystem and Method for Estimating Positioning Error Within a WLAN-Based Positioning System
US20110080841 *13 dec 20107 april 2011Skyhook Wireless, Inc.System and Method for Estimating Positioning Error within a WLAN-Based Positioning System
US20110164522 *14 maart 20117 juli 2011Skyhook Wireless, Inc.Estimation of Position Using WLAN Access Point Radio Propagation Characteristics in a WLAN Positioning System
US20110207455 *23 feb 201025 aug 2011Garmin Ltd.Method and apparatus for estimating cellular tower location
US20110212732 *22 maart 20101 sept 2011David GarrettMethod and system for determining a location of a mobile device based on a plurality of location samples
US20140122170 *19 juli 20131 mei 2014Disney Enterprises, Inc.Detection of guest position
US20140179237 *21 dec 201226 juni 2014Qualcomm IncorporatedAdaptive Crowdsourcing Using Mobile Device Generated Parameters
US20170222901 *17 april 20173 aug 2017Google Inc.Network selection using current and historical measurements
WO2011106361A2 *23 feb 20111 sept 2011Garmin Switzerland GmbhMethod and apparatus for estimating cellular tower location
WO2011106361A3 *23 feb 201124 nov 2011Garmin Switzerland GmbhMethod and apparatus for estimating cellular tower location
WO2014182883A1 *8 mei 201413 nov 2014Telcom Ventures, LlcMethods of position-location determination using a high-confidence range, and related systems and devices
Classificaties
Classificatie in de VS455/456.1
Internationale classificatieH04W24/00
CoŲperatieve classificatieG01S5/0263, G01S5/0252, H04W64/00
Europese classificatieH04W64/00, G01S5/02H1
Juridische gebeurtenissen
DatumCodeGebeurtenisBeschrijving
29 dec 2009ASAssignment
Owner name: SKYHOOK WIRELESS, INC., MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALIZADEH-SHABDIZ, FARSHID;REEL/FRAME:023711/0426
Effective date: 20091222