US20100156193A1 - Inductively coupled data and power transfer system and apparatus - Google Patents

Inductively coupled data and power transfer system and apparatus Download PDF

Info

Publication number
US20100156193A1
US20100156193A1 US12/643,527 US64352709A US2010156193A1 US 20100156193 A1 US20100156193 A1 US 20100156193A1 US 64352709 A US64352709 A US 64352709A US 2010156193 A1 US2010156193 A1 US 2010156193A1
Authority
US
United States
Prior art keywords
pod
inductively coupled
docking station
data
transportable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/643,527
Inventor
Mark Rhodes
Brendan Hyland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WFS Technologies Ltd
Original Assignee
WFS Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WFS Technologies Ltd filed Critical WFS Technologies Ltd
Assigned to WIRELESS FIBRE SYSTEMS reassignment WIRELESS FIBRE SYSTEMS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HYLAND, BRENDAN, MARK, RHODES
Publication of US20100156193A1 publication Critical patent/US20100156193A1/en
Priority to US13/602,405 priority Critical patent/US8716902B2/en
Assigned to WFS TECHNOLOGIES LTD. reassignment WFS TECHNOLOGIES LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WIRELESS FIBRE SYSTEMS
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/22Transmitting seismic signals to recording or processing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/42Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1632External expansion units, e.g. docking stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3808Seismic data acquisition, e.g. survey design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive loop type
    • H04B5/70
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • H01F2038/143Inductive couplings for signals
    • H04B5/72
    • H04B5/79

Definitions

  • the present invention relates to a system for transferring electronic data and/or power from one station to another by means of a transportable unit provided with a solid state memory device a portable energy source and an inductively coupled, electrically insulated connector.
  • USB Universal Serial Bus
  • NAND flash memory integrated circuits typically consist of a USB interface device which supports several NAND flash memory integrated circuits. Power is supplied over the USB standard connector which also supports the two wire high speed serial data interface.
  • Several inventions have sort to devise mechanical protection mechanisms for the USB connector. For example U.S. Patent Application Publication 2008/108245A1 “Protection mechanism for terminal of memory stick adapter” Shu-Chin, describes a retracting cover for the terminals of a memory stick device. The mechanism taught by Shu-chin provides a means to minimize mechanical damage of the connector contacts.
  • Contamination of the electrically conductive terminals is another failure mechanism of the USB memory stick connector.
  • the connector relies on metal to metal conductive contact and this can fail due to contamination with insulating material, which prevents conductive contact, or contamination with conductive material, which can introduce a short circuit between adjacent pins.
  • an electrical connector includes terminals or pins which make conductive electrical contact with each other. Such terminals and pins are subject to corrosion and contamination; corrosion of the terminals produces poor or intermittent contact and failure of the connector. Furthermore, in under water applications, water must be excluded from the conductive contacts to prevent short circuits due to the partially conductive nature of water. Thus, wet mating connections present even greater challenges to overcome since water must be expelled from the conductive contacts during mating and since care must be taken to ensure an electrical signal is not applied to the connector while the contacts are exposed to the water and before the connection is made. A connector which does not rely upon direct conductive contact would avoid these problems.
  • any multi pin connector must be rotationally aligned to ensure registration of the intended cross connections. This requirement can be problematic in underwater applications, particularly where the connection point is not readily accessible by an operator such as when a connection is established by an autonomous system deep in the ocean. Slip ring connectors have been designed to avoid this issue but typically employ conductive contacts which are subject to corrosion and contamination as described herein. An electrically insulated data and power connection which mates independent of angular alignment would be beneficial in many underwater applications.
  • the system for undersea seismic imaging taught by Carstens comprises a network or array of seismic monitoring stations which include sensors—such as geophones and hydrophones located at evenly spaced intervals (typically 50 metres) spanning a given area around a field of underwater exploration.
  • the seismic monitoring stations taught be Carstens are linked together by a wired network of cable, and the data collected from the seismic sensors is gathered and stored by a main processing unit which is connected into the wired network; the wired network of cable also provides a means for the synchronization of the various sensors in the network.
  • the seismic sensors and seismic monitoring stations record data at regular time intervals. Over the duration of one ‘survey’ the data collected per station could be in the order of one Gigabyte. The transfer of one Gigabyte of data in a reasonable length of time produces a requirement of the wired network for a data rate which is in the order of hundreds of kilobits per second.
  • the benefits of rolling out such a wired seismic motoring network are optimization of oil and gas production, the generation of information on the optimum drilling locations and the generation of information on field capacity and yield.
  • the drawbacks of installing such a wired seismic motoring network are the cost of network deployment and the cost of maintenance thereof. It would be preferable to deploy a network of isolated, free-standing seismic monitoring stations, where power and data transfer are provided by some alternative means to a wired network.
  • a system for transferring electronic data from a first station to a second station by means of a transportable pod comprising a solid state memory device and an inductively coupled, electrically insulated connector.
  • a transportable pod comprising a battery, a solid state memory device, each of which is electrically coupled to an inductively coupled connector of the transportable pod via control electronic circuitry.
  • electrical power is transferred between the battery of the pod and an external docking station via the inductively coupled connector of the pod.
  • data is transferred between the solid state memory device of the pod and an external docking station via the same inductively coupled connector.
  • the solid state memory device of the transportable pod may be implemented using a flash memory device; hard disk device or alternative means of electronic storage.
  • the transportable pod of the present invention is particularly suited to applications where the remote host docking station is located underwater.
  • control electronic circuitry coupling the battery to the inductively coupled connector of the transportable pod is a power transfer sub-system comprising an AC/DC converter or a DC/AC converter.
  • control electronic circuitry coupling the memory device of the transportable pod to the inductively coupled connector is a data interface comprising a high pass filter and a modem operable to decode a data stream received from the external docking station or to encode a data stream to be transferred to docking station.
  • a release mechanism that is activated remotely to initiate de-mating of the transportable pod from the remote host docking station.
  • Remote activation may be via radio communications.
  • remote activation may be via acoustic subsea communications, or subsea radio communications.
  • the transportable pod comprising a solid state memory device and a battery is arranged to be positively buoyant when immersed in water.
  • the transportable pod will float to the surface of the water to allow recovery of the transportable pod from the surface of the water.
  • the transportable pod will remain tethered to the host system as it floats to the surface of the water to ensure it remains close to the expected recovery point.
  • the transportable pod may be provided with a spooled line that is attached to the remote host system and which is deployed as the pod rises to the surface.
  • a means for providing the transportable pod with positive buoyancy in response to a remote release signal may be implemented using a compressed gas canister which inflates a bladder contained in or attached to the outside of the transportable pod to create positive buoyancy.
  • the docking station forms part of a remote host system comprising an inductively coupled connector that can mate to the inductively coupled connector of the transportable pod thereby providing a means for transferring electrical power from the pod battery to the host docking station via the inductive connectors of the pod and the host station, and also providing means for transferring data from the host station to the transportable pod and/or data from the transportable pod to the host station.
  • a docking station that forms part of a home station comprising an inductively coupled connector that can mate to the inductively coupled connector of the transportable pod thereby providing means for transferring charge to the pod battery, and for transferring data to and from the pod memory device.
  • the system of the present invention typically has applications where an electrically conductive contact based connector system would be exposed to contaminants.
  • Applications of the present invention include any harsh environment, and the inductively coupled data and power transfer systems and apparatus described herein are particularly suited to underwater applications.
  • a remote host docking station comprising multiple inductively coupled connectors each of which are pre-loaded with transportable pods, and system control circuitry which can detach a spent pod after its deployment period and which can switch to a fresh pod for data and power transfer to allow data collection without the need for a system to replace memory pods.
  • the home docking station and host docking station may be further provided with Universal Serial Bus (USB) interfaces.
  • USB Universal Serial Bus
  • FIG. 1 shows a functional block diagram of the electronic circuitry of a transportable pod according to an embodiment of the present invention
  • FIG. 2 shows a block diagram of an inductively coupled data and power transfer system according to an embodiment of the present invention
  • FIG. 3 shows the mechanical construction of a female inductive connector 30 and a male inductive connector 31 for use in the embodiment of the present invention depicted in FIG. 2 ;
  • FIG. 4 shows a three dimensional illustration of the female inductive connector and the male inductive connector of FIG. 3 , further comprising a Universal Serial Bus (USB) pigtail for connection to any conventional item of computer hardware;
  • USB Universal Serial Bus
  • FIG. 5 shows a transportable pod comprising a male inductive connector, mated to a female inductive connector 54 of a docking station according to an embodiment of the present invention
  • FIG. 6 shows a block diagram of an inductively coupled data and power transfer system comprising an array of sensors and a docking station which mates with a transportable pod according to an embodiment of the present invention.
  • FIG. 1 is a functional block diagram of a transportable pod according to an embodiment of the present invention.
  • Block 10 represents the inductively coupled connector which is shown in further detail in FIG. 3 .
  • Data interface 11 processes a modulated signal which is received from an external docking station (not shown) via inductively coupled connector 10 and formats the data for presentation at the input of memory device 12 .
  • data interface 11 can read stored data in memory device 13 and modulate the data for transfer to an external docking station (not shown) via inductively coupled connector 10 so as to provide bi directional data exchange between the external docking station (not shown) and memory device 12 of the transportable pod of the present invention.
  • Data interface 11 might include such electronic circuitry as a modem to modulate data from memory device 12 for transfer over inductive connector 10 and to de-modulate data received via inductive connector 10 for interfacing with memory device 12 .
  • Power transfer sub-system 13 couples battery 14 to inductive connector 10 of the transportable pod and comprises electronic circuitry for coupling AC electrical power received at inductive connector 10 to battery 1 such circuitry might include an AC/DC converter; power transfer sub-system 13 similarly comprises electronic circuitry for coupling DC power from battery 14 to AC electrical power at inductive connector 10 , such circuitry might include a DC/AC converter.
  • FIG. 2 shows a block diagram of an inductively coupled data and power transfer system according to an embodiment of the present invention.
  • the inductively coupled data and power transfer system comprises transportable pod 201 which is mated with docking station 200 .
  • Docking station 200 may be a remote host docking station—for example located underwater and comprising one or more sensors for data collection; alternatively, docking station may be a home station—for example located on a base station.
  • Transportable pod 201 comprises memory device 18 , battery 17 and inductively coupled connector 19 .
  • inductive connector 19 transfers power and data between docking station 200 and memory device 18 of transportable pod 201 .
  • AC to DC converter 16 is used to provide DC power to battery 17 for charging.
  • DC to AC converter 15 is used to convert DC from battery 17 to AC for coupling to docking station 200 via inductive connector 19 .
  • High pass filter 27 separates the power transfer signal from a modulated carrier signal that sends and received data via inductive connector 19 .
  • Communications modem 28 modulates data received from memory device 18 for transfer over inductive connector 19 and de-modulates data received via inductive connector 19 for interfacing with memory device 18 .
  • Docking station 200 comprises data interface 20 and communications modem 21 connected to inductive connector 26 via high pass filter 25 and further comprises home charging interface 22 and/or host power interface 23 .
  • home charging interface is typically omitted.
  • host power interface 23 is typically omitted.
  • High pass filter 25 separates the power transfer signal from a modulated carrier signal that sends and received data via inductive connector 26 .
  • Home charging interface comprises a DC to AC converter to convert DC power which it receives at an input of home docking station 200 to AC power for coupling to transportable pod 201 via inductive connectors 26 and 19 .
  • Host charging interface comprises an AC to DC converter to convert AC power received from transportable pod 201 via inductive connectors 19 and 26 and to provide DC power to remote host docking station 200 .
  • DC power provided to remote host docking station 200 from transportable pod 201 via inductive connectors 19 and 26 can be used to power communications modem 21 , data interface 20 and any sensors or other data collection devices which are connected to docking station 200 .
  • Data collected by remote host docking station 200 is transferred to memory device 18 of transportable pod 201 via communications modem 21 , high pass filter 25 , inductive connectors 26 and 19 , high pass filter 27 , and communications modem 28 .
  • the transportable pod of the present invention depicted in FIG. 1 and the inductively coupled data and power transfer system of the present invention depicted in FIG. 2 is particularly suitable for the transfer of data and electrical power between a home docking station and a remote host docking station via a transportable pod where the remote host docking station is located underwater.
  • a transportable pod is provided with a solid state memory device, a battery supply and an inductive connector system.
  • An unmanned underwater vehicle (UUV) transports the transportable pod to a remotely deployed sensor (RDS) unit on the seabed.
  • the RDS has been deployed for a period of time, it draws its power from the battery within the transportable pod and stores recorded data within the solid state memory device of the transportable pod.
  • the UUV detaches a previously deployed first transportable pod from the RDS by transmitting a short range underwater radio signal to initiate release of the pod.
  • the UUV recovers the first transportable pod and replaces it with a second unit which it has brought from the surface of the sea.
  • the first unit is recovered for analysis of recorded data.
  • the second unit has a fully charged battery which provides power to the RDS for the next deployment period.
  • the RDS continues to record data on the memory device of the second transportable pod.
  • the transportable pod and host docking station form part of a system for recovering data and/or delivering power to a remotely deployed subsea seismic sensor or array of sensors.
  • Sensors may be spaced at known intervals along a subsea cable that is arranged to carry data and power from each sensor to a host docking station.
  • a transportable pod mated with the docking station provides power for the connected sensor array and stores recorded data from the sensors.
  • the transportable pod can be exchanged periodically as described above.
  • FIG. 3 shows the mechanical construction of the inductively coupled connectors 19 and 26 of FIG. 2 .
  • Inductively coupled connector 19 of FIG. 2 is represented by male inductive connector 31 of FIG. 3 and inductively coupled connector 26 of FIG. 2 is represented by female inductive connector 30 of FIG. 3 .
  • the upper section of FIG. 3 shows a cross section side view of both female connector 30 and male connector 31 .
  • the lower section of FIG. 3 shows a cross section bottom view of female connector 30 .
  • Line A-A indicates the position of the cross section shown in the lower part of FIG. 3 .
  • Female inductive connector 30 comprises a coil of wire 32 wound on a core 33 formed of a material having a high magnetic permeability. A material having a relative permeability greater than 10 would be suitable for this application.
  • the entire female connector 30 is encased in a housing 34 formed of an electrically insulating material.
  • Male inductive connector 31 comprises a coil of wire 35 wound on a core 37 formed of a material having a high magnetic permeability. A relative permeability greater than 10 would be suitable for this application.
  • the entire male connector 31 is encased in a housing 36 formed of an electrically insulating material.
  • Male connector 31 and female connector 30 are designed so that the mechanical interface presented by one is the inverse of the other, so that the two connectors fit together snugly. When female connector 30 is mated with male connector 31 , magnetic cores 33 and 37 are aligned so that the coil 32 of female inductive connector 30 and the coil 35 of male inductive connector 31 are strongly inductively coupled.
  • FIG. 4 shows a three dimensional illustration of the female inductive connector 40 and the male inductive connector 41 of FIG. 3 , further comprising a Universal Serial Bus (USB) pigtail 43 , with USB type A connector 44 for connection to any conventional item of computer hardware.
  • USB Universal Serial Bus
  • FIG. 5 shows a transportable pod 55 for underwater use comprising a male inductive connector 56 , mated to a female conductive connector 54 of a docking station (not shown) with a captive connection 51 , 52 , 53 which may be released by a radio signal.
  • Flange 51 supports wire link 52 which connects to flange 53 thereby retaining transportable pod 55 in contact with connector 55 .
  • a current is passed through wire link 52 which is sufficient to fuse or break the wire resulting in release of the transportable pod from connector 54 .
  • the release command may be transmitted wirelessly by an RF signal or by an acoustic signal.
  • the transportable pod 55 comprises a float 50 attached to an upwardly facing side thereof, so that transportable pod 55 is positively buoyant and will float to the surface of the water when the release mechanism is activated.
  • FIG. 6 shows a block diagram of an inductively coupled data and power transfer system comprising an array of sensors wired to a docking station according to another embodiment of the present invention.
  • the system of FIG. 6 comprises an array of sensor nodes 62 wired to a docking station 63 comprising an inductively coupled connector (not shown) that mates with a an inductively coupled connector (not shown) of a transportable pod 61 for collection by a UUV.
  • Sensor nodes 62 may be seismic survey sensors that are spaced along and connected to data and power cable 65 .
  • Data and power cable 65 acts to control the spacing of sensors during deployment, supplies power from the transportable pod 61 via the inductively coupled connectors of the pod 61 and the docking station 63 to each sensor node 62 and similarly transfers data from each sensor node 62 to the transportable pod 61 via the inductively coupled connectors of the docking station 63 and pod 61 .
  • Data can also be transferred from a memory storage device of transportable pod 61 , through host docking station 63 to each sensor 62 via the inductively coupled connectors of the docking station 63 and pod 61 and via data and power cable 65 .
  • UUV 60 periodically exchanges memory pod 61 with a fresh unit.
  • battery is used so as to encompass any form of portable energy source.
  • an energy source might be a rechargeable battery, a long life battery, a capacitive device or a fuel cell.
  • inductively coupled data and power transfer systems described herein are generally suited to systems and applications which are deployed in underwater environments. However, there is no reason why the system of the present invention would be limited to such underwater systems and applications.

Abstract

The present invention provides a system and apparatus for transferring electronic data and/or power from one station to another by means of a transportable pod comprising a solid state memory device and further provided with an inductively linked, electrically insulated connector. The transportable pod comprises a battery which is used to power a remote host docking station, which may be used in an underwater environment for the collection of subsea data. The transportable pod can be transferred alternately from a home docking station, where it is charged up, and where it's stored data is uploaded and to a remote host docking station where is provides power, and where it collects and stores data collected by the remote host docking station.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of GB 0823436.1 filed Dec. 23, 2008, entitled Inductively Coupled Memory Transfer System, by Mark Rhodes and Brendan Hyland, which application is fully incorporated herein by reference.
  • FIELD OF USE
  • The present invention relates to a system for transferring electronic data and/or power from one station to another by means of a transportable unit provided with a solid state memory device a portable energy source and an inductively coupled, electrically insulated connector.
  • BACKGROUND TO THE INVENTION
  • Universal Serial Bus (USB) “memory sticks” have become an extremely convenient and practical method of transferring electronic data between computer systems. Recently the capacity supported by these small transportable devices has increased to many tens of Gigabytes and no doubt will continue to expand further over time. These devices typically consist of a USB interface device which supports several NAND flash memory integrated circuits. Power is supplied over the USB standard connector which also supports the two wire high speed serial data interface. Several inventions have sort to devise mechanical protection mechanisms for the USB connector. For example U.S. Patent Application Publication 2008/108245A1 “Protection mechanism for terminal of memory stick adapter” Shu-Chin, describes a retracting cover for the terminals of a memory stick device. The mechanism taught by Shu-chin provides a means to minimize mechanical damage of the connector contacts.
  • Contamination of the electrically conductive terminals is another failure mechanism of the USB memory stick connector. The connector relies on metal to metal conductive contact and this can fail due to contamination with insulating material, which prevents conductive contact, or contamination with conductive material, which can introduce a short circuit between adjacent pins.
  • There is a need for a solid state portable memory device integrated with an electrically insulated connector system that overcomes these limitations.
  • Electrical connections are a challenging aspect of underwater electrical system design; the standard implementation of an electrical connector includes terminals or pins which make conductive electrical contact with each other. Such terminals and pins are subject to corrosion and contamination; corrosion of the terminals produces poor or intermittent contact and failure of the connector. Furthermore, in under water applications, water must be excluded from the conductive contacts to prevent short circuits due to the partially conductive nature of water. Thus, wet mating connections present even greater challenges to overcome since water must be expelled from the conductive contacts during mating and since care must be taken to ensure an electrical signal is not applied to the connector while the contacts are exposed to the water and before the connection is made. A connector which does not rely upon direct conductive contact would avoid these problems.
  • Additionally, any multi pin connector must be rotationally aligned to ensure registration of the intended cross connections. This requirement can be problematic in underwater applications, particularly where the connection point is not readily accessible by an operator such as when a connection is established by an autonomous system deep in the ocean. Slip ring connectors have been designed to avoid this issue but typically employ conductive contacts which are subject to corrosion and contamination as described herein. An electrically insulated data and power connection which mates independent of angular alignment would be beneficial in many underwater applications.
  • In the field of oil and gas exploration, seismic imaging over a large area of the seabed is an important method for optimization of oil and gas production, and for the assessment of the capacity of a particular field. The article entitled “Breakthrough for repeated seismic” by Halfdan Carstens, Geo ExPro; September 2004; pp 26-29, http://www.geoexpro.com/sfiles/8/21/6/file/Valhall26-29.pdf outlines a system for the gathering of seismic imaging data over a large area of the seabed.
  • The system for undersea seismic imaging taught by Carstens comprises a network or array of seismic monitoring stations which include sensors—such as geophones and hydrophones located at evenly spaced intervals (typically 50 metres) spanning a given area around a field of underwater exploration. The seismic monitoring stations taught be Carstens are linked together by a wired network of cable, and the data collected from the seismic sensors is gathered and stored by a main processing unit which is connected into the wired network; the wired network of cable also provides a means for the synchronization of the various sensors in the network.
  • Typically the seismic sensors and seismic monitoring stations record data at regular time intervals. Over the duration of one ‘survey’ the data collected per station could be in the order of one Gigabyte. The transfer of one Gigabyte of data in a reasonable length of time produces a requirement of the wired network for a data rate which is in the order of hundreds of kilobits per second.
  • The benefits of rolling out such a wired seismic motoring network are optimization of oil and gas production, the generation of information on the optimum drilling locations and the generation of information on field capacity and yield. The drawbacks of installing such a wired seismic motoring network are the cost of network deployment and the cost of maintenance thereof. It would be preferable to deploy a network of isolated, free-standing seismic monitoring stations, where power and data transfer are provided by some alternative means to a wired network.
  • SUMMARY OF THE INVENTION
  • According to one aspect of the present invention, there is provided a system for transferring electronic data from a first station to a second station by means of a transportable pod comprising a solid state memory device and an inductively coupled, electrically insulated connector.
  • According to another aspect of the present invention, there is provided a system for transferring electrical power through the inductively coupled connector from a battery provided within the transportable pod between the first and second stations.
  • According to another aspect of the present invention, there is provided a transportable pod comprising a battery, a solid state memory device, each of which is electrically coupled to an inductively coupled connector of the transportable pod via control electronic circuitry. During use, electrical power is transferred between the battery of the pod and an external docking station via the inductively coupled connector of the pod. Furthermore, during use, data is transferred between the solid state memory device of the pod and an external docking station via the same inductively coupled connector.
  • The solid state memory device of the transportable pod may be implemented using a flash memory device; hard disk device or alternative means of electronic storage.
  • The transportable pod of the present invention is particularly suited to applications where the remote host docking station is located underwater.
  • In some embodiments the control electronic circuitry coupling the battery to the inductively coupled connector of the transportable pod is a power transfer sub-system comprising an AC/DC converter or a DC/AC converter.
  • In other embodiments the control electronic circuitry coupling the memory device of the transportable pod to the inductively coupled connector is a data interface comprising a high pass filter and a modem operable to decode a data stream received from the external docking station or to encode a data stream to be transferred to docking station.
  • In one embodiment, there is provided a release mechanism that is activated remotely to initiate de-mating of the transportable pod from the remote host docking station. Remote activation may be via radio communications. For embodiments where the remote host docking station is located underwater, remote activation may be via acoustic subsea communications, or subsea radio communications.
  • According to another embodiment of the present invention, the transportable pod comprising a solid state memory device and a battery is arranged to be positively buoyant when immersed in water. Thus, for example, when the remote release de-mates the transportable pod from an underwater remote host docking station the transportable pod will float to the surface of the water to allow recovery of the transportable pod from the surface of the water.
  • In some applications, the transportable pod will remain tethered to the host system as it floats to the surface of the water to ensure it remains close to the expected recovery point. The transportable pod may be provided with a spooled line that is attached to the remote host system and which is deployed as the pod rises to the surface.
  • In another embodiment of the present invention, there is provided a means for providing the transportable pod with positive buoyancy in response to a remote release signal. This may be implemented using a compressed gas canister which inflates a bladder contained in or attached to the outside of the transportable pod to create positive buoyancy.
  • In some embodiments, the docking station forms part of a remote host system comprising an inductively coupled connector that can mate to the inductively coupled connector of the transportable pod thereby providing a means for transferring electrical power from the pod battery to the host docking station via the inductive connectors of the pod and the host station, and also providing means for transferring data from the host station to the transportable pod and/or data from the transportable pod to the host station.
  • In other embodiments of the present invention, there is provided a docking station that forms part of a home station comprising an inductively coupled connector that can mate to the inductively coupled connector of the transportable pod thereby providing means for transferring charge to the pod battery, and for transferring data to and from the pod memory device.
  • The system of the present invention typically has applications where an electrically conductive contact based connector system would be exposed to contaminants.
  • Applications of the present invention include any harsh environment, and the inductively coupled data and power transfer systems and apparatus described herein are particularly suited to underwater applications.
  • In another embodiment of the present invention, there is provided a mechanical retention mechanism and mechanical release mechanism for the transportable pod.
  • According to another embodiment of the present invention, there is provided a remote host docking station comprising multiple inductively coupled connectors each of which are pre-loaded with transportable pods, and system control circuitry which can detach a spent pod after its deployment period and which can switch to a fresh pod for data and power transfer to allow data collection without the need for a system to replace memory pods.
  • In one embodiment the home docking station and host docking station may be further provided with Universal Serial Bus (USB) interfaces.
  • Embodiments of the present invention will now be described with reference to the accompanying figures in which:
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 shows a functional block diagram of the electronic circuitry of a transportable pod according to an embodiment of the present invention;
  • FIG. 2 shows a block diagram of an inductively coupled data and power transfer system according to an embodiment of the present invention;
  • FIG. 3 shows the mechanical construction of a female inductive connector 30 and a male inductive connector 31 for use in the embodiment of the present invention depicted in FIG. 2;
  • FIG. 4 shows a three dimensional illustration of the female inductive connector and the male inductive connector of FIG. 3, further comprising a Universal Serial Bus (USB) pigtail for connection to any conventional item of computer hardware;
  • FIG. 5 shows a transportable pod comprising a male inductive connector, mated to a female inductive connector 54 of a docking station according to an embodiment of the present invention;
  • FIG. 6 shows a block diagram of an inductively coupled data and power transfer system comprising an array of sensors and a docking station which mates with a transportable pod according to an embodiment of the present invention.
  • DETAILED DESCRIPTION
  • FIG. 1 is a functional block diagram of a transportable pod according to an embodiment of the present invention. Block 10 represents the inductively coupled connector which is shown in further detail in FIG. 3. Data interface 11 processes a modulated signal which is received from an external docking station (not shown) via inductively coupled connector 10 and formats the data for presentation at the input of memory device 12. Similarly, data interface 11 can read stored data in memory device 13 and modulate the data for transfer to an external docking station (not shown) via inductively coupled connector 10 so as to provide bi directional data exchange between the external docking station (not shown) and memory device 12 of the transportable pod of the present invention. Data interface 11 might include such electronic circuitry as a modem to modulate data from memory device 12 for transfer over inductive connector 10 and to de-modulate data received via inductive connector 10 for interfacing with memory device 12. Power transfer sub-system 13 couples battery 14 to inductive connector 10 of the transportable pod and comprises electronic circuitry for coupling AC electrical power received at inductive connector 10 to battery 1 such circuitry might include an AC/DC converter; power transfer sub-system 13 similarly comprises electronic circuitry for coupling DC power from battery 14 to AC electrical power at inductive connector 10, such circuitry might include a DC/AC converter.
  • FIG. 2 shows a block diagram of an inductively coupled data and power transfer system according to an embodiment of the present invention. The inductively coupled data and power transfer system comprises transportable pod 201 which is mated with docking station 200. Docking station 200 may be a remote host docking station—for example located underwater and comprising one or more sensors for data collection; alternatively, docking station may be a home station—for example located on a base station. Transportable pod 201 comprises memory device 18, battery 17 and inductively coupled connector 19. During use, inductive connector 19 transfers power and data between docking station 200 and memory device 18 of transportable pod 201. AC to DC converter 16 is used to provide DC power to battery 17 for charging. On the other hand DC to AC converter 15 is used to convert DC from battery 17 to AC for coupling to docking station 200 via inductive connector 19. High pass filter 27 separates the power transfer signal from a modulated carrier signal that sends and received data via inductive connector 19. Communications modem 28 modulates data received from memory device 18 for transfer over inductive connector 19 and de-modulates data received via inductive connector 19 for interfacing with memory device 18.
  • Docking station 200 comprises data interface 20 and communications modem 21 connected to inductive connector 26 via high pass filter 25 and further comprises home charging interface 22 and/or host power interface 23. For systems in applications where docking station 200 is a remote host station, home charging interface is typically omitted. Similarly for systems where docking station 200 is a home station, host power interface 23 is typically omitted. High pass filter 25 separates the power transfer signal from a modulated carrier signal that sends and received data via inductive connector 26. Home charging interface comprises a DC to AC converter to convert DC power which it receives at an input of home docking station 200 to AC power for coupling to transportable pod 201 via inductive connectors 26 and 19. The power coupled to transportable pod 201 via inductive connectors 26 and 19 is used to charge battery 17 of transportable pod 201. Host charging interface comprises an AC to DC converter to convert AC power received from transportable pod 201 via inductive connectors 19 and 26 and to provide DC power to remote host docking station 200. DC power provided to remote host docking station 200 from transportable pod 201 via inductive connectors 19 and 26 can be used to power communications modem 21, data interface 20 and any sensors or other data collection devices which are connected to docking station 200. Data collected by remote host docking station 200 is transferred to memory device 18 of transportable pod 201 via communications modem 21, high pass filter 25, inductive connectors 26 and 19, high pass filter 27, and communications modem 28.
  • The transportable pod of the present invention depicted in FIG. 1 and the inductively coupled data and power transfer system of the present invention depicted in FIG. 2 is particularly suitable for the transfer of data and electrical power between a home docking station and a remote host docking station via a transportable pod where the remote host docking station is located underwater.
  • In an example usage case, a transportable pod is provided with a solid state memory device, a battery supply and an inductive connector system. An unmanned underwater vehicle (UUV) transports the transportable pod to a remotely deployed sensor (RDS) unit on the seabed. The RDS has been deployed for a period of time, it draws its power from the battery within the transportable pod and stores recorded data within the solid state memory device of the transportable pod. The UUV detaches a previously deployed first transportable pod from the RDS by transmitting a short range underwater radio signal to initiate release of the pod. The UUV recovers the first transportable pod and replaces it with a second unit which it has brought from the surface of the sea. The first unit is recovered for analysis of recorded data. The second unit has a fully charged battery which provides power to the RDS for the next deployment period. The RDS continues to record data on the memory device of the second transportable pod.
  • In another system application the transportable pod and host docking station form part of a system for recovering data and/or delivering power to a remotely deployed subsea seismic sensor or array of sensors. Sensors may be spaced at known intervals along a subsea cable that is arranged to carry data and power from each sensor to a host docking station. A transportable pod mated with the docking station provides power for the connected sensor array and stores recorded data from the sensors. The transportable pod can be exchanged periodically as described above.
  • FIG. 3 shows the mechanical construction of the inductively coupled connectors 19 and 26 of FIG. 2. Inductively coupled connector 19 of FIG. 2 is represented by male inductive connector 31 of FIG. 3 and inductively coupled connector 26 of FIG. 2 is represented by female inductive connector 30 of FIG. 3. The upper section of FIG. 3 shows a cross section side view of both female connector 30 and male connector 31. The lower section of FIG. 3 shows a cross section bottom view of female connector 30. Line A-A indicates the position of the cross section shown in the lower part of FIG. 3. Female inductive connector 30 comprises a coil of wire 32 wound on a core 33 formed of a material having a high magnetic permeability. A material having a relative permeability greater than 10 would be suitable for this application. The entire female connector 30 is encased in a housing 34 formed of an electrically insulating material. Male inductive connector 31 comprises a coil of wire 35 wound on a core 37 formed of a material having a high magnetic permeability. A relative permeability greater than 10 would be suitable for this application. The entire male connector 31 is encased in a housing 36 formed of an electrically insulating material. Male connector 31 and female connector 30 are designed so that the mechanical interface presented by one is the inverse of the other, so that the two connectors fit together snugly. When female connector 30 is mated with male connector 31, magnetic cores 33 and 37 are aligned so that the coil 32 of female inductive connector 30 and the coil 35 of male inductive connector 31 are strongly inductively coupled.
  • FIG. 4 shows a three dimensional illustration of the female inductive connector 40 and the male inductive connector 41 of FIG. 3, further comprising a Universal Serial Bus (USB) pigtail 43, with USB type A connector 44 for connection to any conventional item of computer hardware.
  • FIG. 5 shows a transportable pod 55 for underwater use comprising a male inductive connector 56, mated to a female conductive connector 54 of a docking station (not shown) with a captive connection 51, 52, 53 which may be released by a radio signal. Flange 51 supports wire link 52 which connects to flange 53 thereby retaining transportable pod 55 in contact with connector 55. At the moment when transportable pod 55 is to be release from connector 54 a current is passed through wire link 52 which is sufficient to fuse or break the wire resulting in release of the transportable pod from connector 54. The release command may be transmitted wirelessly by an RF signal or by an acoustic signal. The transportable pod 55 comprises a float 50 attached to an upwardly facing side thereof, so that transportable pod 55 is positively buoyant and will float to the surface of the water when the release mechanism is activated.
  • FIG. 6 shows a block diagram of an inductively coupled data and power transfer system comprising an array of sensors wired to a docking station according to another embodiment of the present invention. The system of FIG. 6 comprises an array of sensor nodes 62 wired to a docking station 63 comprising an inductively coupled connector (not shown) that mates with a an inductively coupled connector (not shown) of a transportable pod 61 for collection by a UUV. Sensor nodes 62 may be seismic survey sensors that are spaced along and connected to data and power cable 65. Data and power cable 65 acts to control the spacing of sensors during deployment, supplies power from the transportable pod 61 via the inductively coupled connectors of the pod 61 and the docking station 63 to each sensor node 62 and similarly transfers data from each sensor node 62 to the transportable pod 61 via the inductively coupled connectors of the docking station 63 and pod 61. Data can also be transferred from a memory storage device of transportable pod 61, through host docking station 63 to each sensor 62 via the inductively coupled connectors of the docking station 63 and pod 61 and via data and power cable 65. UUV 60 periodically exchanges memory pod 61 with a fresh unit.
  • Those skilled in the art will understand that any form of data storage device or data storage medium other than those specified in the foregoing examples could be used to realize the present invention.
  • Moreover, those skilled in the art will understand that the term battery is used so as to encompass any form of portable energy source. Such an energy source might be a rechargeable battery, a long life battery, a capacitive device or a fuel cell.
  • The inductively coupled data and power transfer systems described herein are generally suited to systems and applications which are deployed in underwater environments. However, there is no reason why the system of the present invention would be limited to such underwater systems and applications.
  • Moreover, the above descriptions of the specific embodiments are made by way of example only and are not for the purposes of limitation. It will be obvious to a person skilled in the art that in order to achieve some or most of the advantages of the present invention, practical implementations may not necessarily be exactly as exemplified and may include variations within the scope of the present invention.

Claims (23)

1. A transportable pod;
said transportable pod comprising a battery, a solid state memory device, and an inductively coupled connector,
said battery and said solid state memory device being electrically coupled to said inductively coupled connector via control electronic circuitry
wherein, during use, electrical power is transferred between said battery and a docking station external to said pod via said inductively coupled connector and data is transferred between said docking station and said solid state memory device via said inductively coupled connector.
2. A transportable pod according to claim 1 wherein said inductively coupled connector is electrically insulated.
3. A transportable pod according to claim 1 wherein said transportable pod is adapted to operate in an underwater environment.
4. A transportable pod according to claim 1, said control electronic circuitry comprising a filter circuit which separates a low frequency electrical power component to be coupled to or from said battery and a high frequency data component to be coupled to or from said memory device.
5. A transportable pod according to claim 1, said control electronic circuitry comprising a DC to AC converter.
6. A transportable pod according to claim 1, said control electronic circuitry comprising an AC to DC converter.
7. A transportable pod according to claim 1, said control electronic circuitry comprising a modem operable to decode a data stream received from said docking station or to encode a data stream to be transferred to said docking station.
8. A transportable pod according to claim 1 said transportable pod further comprising a captive mechanical interface to facilitate connection of said pod to said docking station.
9. A transportable pod according to claim 1 wherein the average density of said pod is less than that of water.
10. An inductively coupled data and power transfer system comprising the transportable pod of claim 1 and a remote host docking station comprising an inductively coupled connector wherein during use, said battery of said pod provides electrical power to said remote host docking station via said respective inductively coupled connector of said pod and data is received from said remote host docking station via said respective inductively coupled connector of said docking station and said pod and is stored on said memory device.
11. An inductively coupled data and power transfer system according to claim 10 wherein said received data from said remote host docking station is collected from a sensor connected to said remote host docking station.
12. An inductively coupled data and power transfer system according to claim 10 wherein said remote host docking station is located underwater.
13. An inductively coupled data and power transfer system according to claim 10 further comprising an array of sensors connected to said remote host docking station, wherein, during use, said transportable pod provides electrical power to said remote host docking station via said respective inductively coupled connector of said pod and said docking station, and data from said array of sensors is received via said respective inductively coupled connector of said docking station and said pod and is stored in said solid state memory device of said pod.
14. An inductively coupled data and power transfer system according to claim 10 wherein said transportable pod further comprises a captive mechanical interface to facilitate connection of said pod to said docking station.
15. An inductively coupled data and power transfer system according to claim 10 wherein said pod further comprises a mechanism for detachment of said pod from said remote host docking station.
16. An inductively coupled data and power transfer system according to claim 15 wherein said mechanism for detachment of said pod from said remote host docking station is triggered by a radio signal.
17. An inductively coupled data and power transfer system according to claim 15 wherein said mechanism for detachment of said pod from said remote host docking station is triggered by an acoustic signal.
18. An inductively coupled data and power transfer system according to claim 10 wherein said remote host docking station is located underwater and wherein said pod further comprises an expandable bladder which is inflated after detachment of said pod from said remote host docking station.
19. An inductively coupled data and power transfer system according to claim 10 wherein said remote host docking station is located underwater and wherein said pod further comprises a spooled line that is attached to said remote host station and which is deployed as said transportable pod rises to the surface.
20. An inductively coupled data and power transfer system comprising the transportable pod of claim 1 and a home docking station comprising an inductively coupled connector wherein, during use said battery of said pod is charged by said home docking station via said respective inductively coupled connector of said home docking station and said pod, and stored data in said solid state memory device of said pod transferred to said home docking station via said respective inductively coupled connector of said pod and said home docking station.
21. An inductively coupled data and power transfer system;
said system comprising a transportable pod and a docking station, said pod comprising a battery a solid state memory device, each coupled to an inductively coupled connector, said docking station also comprising an inductively coupled connector
wherein, during use, data and electrical power is transferred from said pod to said docking station or to said pod from said docking station via said respective inductively coupled connector of said pod and said docking station.
22. An inductively coupled data and power transfer system;
said system comprising a home station and a remote host station and further comprising a transportable pod, said transportable pod comprising a battery, a solid state memory device, each coupled to an inductively coupled connector, said home station comprising an inductively coupled connector and said remote host station also comprising an inductively coupled connector
wherein, during use, electrical power is transferred from said home station to said remote host station via said battery of said pod and via each said inductively coupled connector of said home station, said pod and said remote station and data is transferred from said remote host station to said home station via said memory device of said pod and via each said inductively coupled connector of said home station, said remote station and said pod.
23. An inductively coupled data and power transfer system according to claim 22 wherein said transfer of power and data takes place through said pod alternately docking on said home station and said remote host station.
US12/643,527 2008-12-23 2009-12-21 Inductively coupled data and power transfer system and apparatus Abandoned US20100156193A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/602,405 US8716902B2 (en) 2008-12-23 2012-09-04 Inductively coupled data and power transfer system and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0823436A GB0823436D0 (en) 2008-12-23 2008-12-23 Inductively coupled memory transfer system
GB0823436.1 2008-12-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/602,405 Division US8716902B2 (en) 2008-12-23 2012-09-04 Inductively coupled data and power transfer system and apparatus

Publications (1)

Publication Number Publication Date
US20100156193A1 true US20100156193A1 (en) 2010-06-24

Family

ID=40344104

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/643,527 Abandoned US20100156193A1 (en) 2008-12-23 2009-12-21 Inductively coupled data and power transfer system and apparatus
US13/602,405 Expired - Fee Related US8716902B2 (en) 2008-12-23 2012-09-04 Inductively coupled data and power transfer system and apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/602,405 Expired - Fee Related US8716902B2 (en) 2008-12-23 2012-09-04 Inductively coupled data and power transfer system and apparatus

Country Status (2)

Country Link
US (2) US20100156193A1 (en)
GB (2) GB0823436D0 (en)

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090143010A1 (en) * 2007-11-29 2009-06-04 Sony Corporation Communication system and communication apparatus
US20100081483A1 (en) * 2008-09-26 2010-04-01 Manjirnath Chatterjee Shield for use with a computing device that receives an inductive signal transmission
US20100081377A1 (en) * 2008-09-26 2010-04-01 Manjirnath Chatterjee Magnetic latching mechanism for use in mating a mobile computing device to an accessory device
US20100081473A1 (en) * 2008-09-26 2010-04-01 Manjirnath Chatterjee Orientation and presence detection for use in configuring operations of computing devices in docked environments
US20100121965A1 (en) * 2008-11-12 2010-05-13 Palm, Inc. Protocol for Program during Startup Sequence
US20100131691A1 (en) * 2008-09-26 2010-05-27 Manjirnath Chatterjee Extending device functionality amongst inductively linked devices
US20100146308A1 (en) * 2008-09-26 2010-06-10 Richard Gioscia Portable power supply device for mobile computing devices
US20100172090A1 (en) * 2009-01-05 2010-07-08 Manjirnath Chatterjee Interior connector scheme for accessorizing a mobile computing device with a removeable housing segment
US20110018356A1 (en) * 2009-07-21 2011-01-27 Manjirnath Chatterjee Power bridge circuit for bi-directional wireless power transmission
US20110037321A1 (en) * 2009-07-21 2011-02-17 Manjirnath Chatterjee Power bridge circuit for bi-directional inductive signaling
US20110106954A1 (en) * 2008-09-26 2011-05-05 Manjirnath Chatterjee System and method for inductively pairing devices to share data or resources
USD640976S1 (en) 2008-08-28 2011-07-05 Hewlett-Packard Development Company, L.P. Support structure and/or cradle for a mobile computing device
US20110298295A1 (en) * 2010-06-03 2011-12-08 Combs Jeffrey S System and method for providing power throughout a structure without wiring
DE102010023602A1 (en) * 2010-06-12 2011-12-15 Atlas Elektronik Gmbh Apparatus and method for transferring data from or to an underwater pressure body
US20120146424A1 (en) * 2010-12-14 2012-06-14 Takashi Urano Wireless power feeder and wireless power transmission system
US20120170418A1 (en) * 2006-08-03 2012-07-05 Mark Rhodes Underwater communications
US8395547B2 (en) 2009-08-27 2013-03-12 Hewlett-Packard Development Company, L.P. Location tracking for mobile computing device
USD687038S1 (en) 2009-11-17 2013-07-30 Palm, Inc. Docking station for a computing device
US20130193915A1 (en) * 2012-01-27 2013-08-01 Braun Gmbh (A German Corporation) Inductive Charger For Hand Held Appliances
US20130312742A1 (en) * 2011-08-16 2013-11-28 Ploom, Inc. Low temperature electronic vaporization device and methods
US8712324B2 (en) 2008-09-26 2014-04-29 Qualcomm Incorporated Inductive signal transfer system for computing devices
US8755815B2 (en) 2010-08-31 2014-06-17 Qualcomm Incorporated Use of wireless access point ID for position determination
WO2014093061A1 (en) * 2012-12-12 2014-06-19 Oceaneering International Inc. Wireless data transmission via inductive coupling using di/dt as the magnetic modulation scheme without hysteresis
US8841881B2 (en) 2010-06-02 2014-09-23 Bryan Marc Failing Energy transfer with vehicles
US8850045B2 (en) 2008-09-26 2014-09-30 Qualcomm Incorporated System and method for linking and sharing resources amongst devices
US8868939B2 (en) 2008-09-26 2014-10-21 Qualcomm Incorporated Portable power supply device with outlet connector
US8946941B2 (en) 2010-09-14 2015-02-03 Monterey Bay Aquarium Research Institute Wireless power and data transfer device for harsh and extreme environments
US20150084783A1 (en) * 2013-09-25 2015-03-26 Cgg Services Sa Geophysical survey node rolling method and system
US9058928B2 (en) 2010-12-14 2015-06-16 Tdk Corporation Wireless power feeder and wireless power transmission system
US9097544B2 (en) 2009-08-27 2015-08-04 Qualcomm Incorporated Location tracking for mobile computing device
US20150222130A1 (en) * 2012-10-17 2015-08-06 Murata Manufacturing Co., Lid. Wireless power receiver device, wireless power transmitter device, and wirelss power transceiver device
US9201457B1 (en) 2001-05-18 2015-12-01 Qualcomm Incorporated Synchronizing and recharging a connector-less portable computer system
US20160028238A1 (en) * 2014-07-24 2016-01-28 Seabed Geosolutions B.V. Inductive power for seismic sensor node
US20160069674A1 (en) * 2014-09-08 2016-03-10 The Government Of The United States, As Represented By The Secretary Of The Army Underwater Signal Conversion
US9301258B2 (en) 2013-04-10 2016-03-29 Cgg Services Sa Geophysical data acquisition and power transfer method apparatus and system
US9395827B2 (en) 2009-07-21 2016-07-19 Qualcomm Incorporated System for detecting orientation of magnetically coupled devices
WO2016156629A1 (en) * 2015-03-31 2016-10-06 Ingenieria Y Marketing, S.A. Dosimetric control system
US9490521B2 (en) 2011-02-21 2016-11-08 Wisub As Underwater connector arrangement
US9549573B2 (en) 2013-12-23 2017-01-24 Pax Labs, Inc. Vaporization device systems and methods
US20170170876A1 (en) * 2015-12-11 2017-06-15 Oceaneering International, Inc. Extremely high speed data transfer and communications
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
US10045567B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10045568B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10058130B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US10104915B2 (en) 2013-12-23 2018-10-23 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US10111470B2 (en) 2013-12-23 2018-10-30 Juul Labs, Inc. Vaporizer apparatus
US20180342983A1 (en) * 2014-09-11 2018-11-29 Cpg Technologies, Llc Embedding data on a power signal
US20180366983A1 (en) * 2017-06-19 2018-12-20 Endress+Hauser Conducta Gmbh+Co. Kg Connection element, sensor, and sensor arrangement for process automation
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
US10244793B2 (en) 2005-07-19 2019-04-02 Juul Labs, Inc. Devices for vaporization of a substance
USD848057S1 (en) 2016-06-23 2019-05-07 Pax Labs, Inc. Lid for a vaporizer
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
US10463069B2 (en) 2013-12-05 2019-11-05 Juul Labs, Inc. Nicotine liquid formulations for aerosol devices and methods thereof
US10512282B2 (en) 2014-12-05 2019-12-24 Juul Labs, Inc. Calibrated dose control
US10517530B2 (en) 2012-08-28 2019-12-31 Juul Labs, Inc. Methods and devices for delivering and monitoring of tobacco, nicotine, or other substances
US10653180B2 (en) 2013-06-14 2020-05-19 Juul Labs, Inc. Multiple heating elements with separate vaporizable materials in an electric vaporization device
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
US10834964B2 (en) 2005-07-19 2020-11-17 Juul Labs, Inc. Method and system for vaporization of a substance
US10865001B2 (en) 2016-02-11 2020-12-15 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
US10952468B2 (en) 2013-05-06 2021-03-23 Juul Labs, Inc. Nicotine salt formulations for aerosol devices and methods thereof
US11196296B2 (en) * 2018-04-26 2021-12-07 Amosense Co., Ltd. Wireless power transmission system for rotating connector
US11478021B2 (en) 2014-05-16 2022-10-25 Juul Labs, Inc. Systems and methods for aerosolizing a vaporizable material
US11647783B2 (en) 2005-07-19 2023-05-16 Juul Labs, Inc. Devices for vaporization of a substance
US11660403B2 (en) 2016-09-22 2023-05-30 Juul Labs, Inc. Leak-resistant vaporizer device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120008460A1 (en) * 2010-07-12 2012-01-12 Wireless Seismic Data acquisition system with removable
US9281906B2 (en) 2012-12-31 2016-03-08 Hydril USA Distribution LLC Subsea power and data communication apparatus and related methods
US10084338B2 (en) * 2013-07-31 2018-09-25 Intel Corporation Wireless charging unit and coupler based docking combo for a wireless device
US10383192B2 (en) 2014-03-24 2019-08-13 Signify Holding B.V. Contactless LED lighting fixture and LED lighting network including contactless LED lighting fixture
US9816856B2 (en) 2015-12-17 2017-11-14 Harris Corporation Magnetically coupled optical connector assembly and related methods
US10291071B2 (en) 2016-01-19 2019-05-14 The United States Of America As Represented By The Secretary Of The Navy Wireless power and data transfer for unmanned vehicles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060199146A1 (en) * 2005-03-01 2006-09-07 Schick Technologies Method of transferring power and data via an inductive link
US20080108245A1 (en) * 2006-11-02 2008-05-08 Shu-Chin Chu Protection mechanism for terminal of memory stick adapter
US20080238893A1 (en) * 2007-03-28 2008-10-02 Kensuke Ishii Image capture apparatus wireless display
US20080255464A1 (en) * 2007-04-10 2008-10-16 Vincent G Michael System and method for diagnosing and treating long qt syndrome
US20080307508A1 (en) * 2007-06-08 2008-12-11 Conley Kevin M Method for using time from a trusted host device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037189A (en) * 1975-10-20 1977-07-19 Western Gear Corporation Method and apparatus for determining the profile of an underwater pipeline
US7176589B2 (en) * 1995-09-22 2007-02-13 Input/Output, Inc. Electrical power distribution and communication system for an underwater cable
US6343494B2 (en) * 1998-08-11 2002-02-05 Mannesmann Vdo Ag Locking device
GB2359049A (en) * 2000-02-10 2001-08-15 H2Eye Remote operated vehicle
DE20018560U1 (en) * 2000-10-30 2002-03-21 Cameron Gmbh Control and supply system
US7462951B1 (en) * 2004-08-11 2008-12-09 Access Business Group International Llc Portable inductive power station
GB0428046D0 (en) * 2004-12-22 2005-01-26 Artimi Ltd Contactless connector systems
EP2341644A1 (en) 2005-06-13 2011-07-06 WFS Technologies Limited Underwater communications system
US7352567B2 (en) * 2005-08-09 2008-04-01 Apple Inc. Methods and apparatuses for docking a portable electronic device that has a planar like configuration and that operates in multiple orientations
US8169185B2 (en) * 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
US8220540B2 (en) * 2006-08-11 2012-07-17 Baker Hughes Incorporated Apparatus and methods for estimating loads and movements of members downhole
GB2464972A (en) * 2008-11-03 2010-05-05 Mark Wilson Cathodic protection monitoring system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060199146A1 (en) * 2005-03-01 2006-09-07 Schick Technologies Method of transferring power and data via an inductive link
US20080108245A1 (en) * 2006-11-02 2008-05-08 Shu-Chin Chu Protection mechanism for terminal of memory stick adapter
US20080238893A1 (en) * 2007-03-28 2008-10-02 Kensuke Ishii Image capture apparatus wireless display
US20080255464A1 (en) * 2007-04-10 2008-10-16 Vincent G Michael System and method for diagnosing and treating long qt syndrome
US20080307508A1 (en) * 2007-06-08 2008-12-11 Conley Kevin M Method for using time from a trusted host device

Cited By (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9201457B1 (en) 2001-05-18 2015-12-01 Qualcomm Incorporated Synchronizing and recharging a connector-less portable computer system
US10244793B2 (en) 2005-07-19 2019-04-02 Juul Labs, Inc. Devices for vaporization of a substance
US10834964B2 (en) 2005-07-19 2020-11-17 Juul Labs, Inc. Method and system for vaporization of a substance
US11647783B2 (en) 2005-07-19 2023-05-16 Juul Labs, Inc. Devices for vaporization of a substance
US8576667B2 (en) * 2006-08-03 2013-11-05 Wfs Technologies Ltd. Underwater communications
US20120170418A1 (en) * 2006-08-03 2012-07-05 Mark Rhodes Underwater communications
US20090143010A1 (en) * 2007-11-29 2009-06-04 Sony Corporation Communication system and communication apparatus
USD640976S1 (en) 2008-08-28 2011-07-05 Hewlett-Packard Development Company, L.P. Support structure and/or cradle for a mobile computing device
US8234509B2 (en) 2008-09-26 2012-07-31 Hewlett-Packard Development Company, L.P. Portable power supply device for mobile computing devices
US8868939B2 (en) 2008-09-26 2014-10-21 Qualcomm Incorporated Portable power supply device with outlet connector
US20110106954A1 (en) * 2008-09-26 2011-05-05 Manjirnath Chatterjee System and method for inductively pairing devices to share data or resources
US20100131691A1 (en) * 2008-09-26 2010-05-27 Manjirnath Chatterjee Extending device functionality amongst inductively linked devices
US8850045B2 (en) 2008-09-26 2014-09-30 Qualcomm Incorporated System and method for linking and sharing resources amongst devices
US8712324B2 (en) 2008-09-26 2014-04-29 Qualcomm Incorporated Inductive signal transfer system for computing devices
US20100081483A1 (en) * 2008-09-26 2010-04-01 Manjirnath Chatterjee Shield for use with a computing device that receives an inductive signal transmission
US8688037B2 (en) 2008-09-26 2014-04-01 Hewlett-Packard Development Company, L.P. Magnetic latching mechanism for use in mating a mobile computing device to an accessory device
US20100081473A1 (en) * 2008-09-26 2010-04-01 Manjirnath Chatterjee Orientation and presence detection for use in configuring operations of computing devices in docked environments
US20100146308A1 (en) * 2008-09-26 2010-06-10 Richard Gioscia Portable power supply device for mobile computing devices
US8385822B2 (en) 2008-09-26 2013-02-26 Hewlett-Packard Development Company, L.P. Orientation and presence detection for use in configuring operations of computing devices in docked environments
US8527688B2 (en) 2008-09-26 2013-09-03 Palm, Inc. Extending device functionality amongst inductively linked devices
US8401469B2 (en) 2008-09-26 2013-03-19 Hewlett-Packard Development Company, L.P. Shield for use with a computing device that receives an inductive signal transmission
US20100081377A1 (en) * 2008-09-26 2010-04-01 Manjirnath Chatterjee Magnetic latching mechanism for use in mating a mobile computing device to an accessory device
US20100121965A1 (en) * 2008-11-12 2010-05-13 Palm, Inc. Protocol for Program during Startup Sequence
US9083686B2 (en) 2008-11-12 2015-07-14 Qualcomm Incorporated Protocol for program during startup sequence
US8305741B2 (en) 2009-01-05 2012-11-06 Hewlett-Packard Development Company, L.P. Interior connector scheme for accessorizing a mobile computing device with a removeable housing segment
US20100172090A1 (en) * 2009-01-05 2010-07-08 Manjirnath Chatterjee Interior connector scheme for accessorizing a mobile computing device with a removeable housing segment
US20110037321A1 (en) * 2009-07-21 2011-02-17 Manjirnath Chatterjee Power bridge circuit for bi-directional inductive signaling
US8437695B2 (en) 2009-07-21 2013-05-07 Hewlett-Packard Development Company, L.P. Power bridge circuit for bi-directional inductive signaling
US20110018356A1 (en) * 2009-07-21 2011-01-27 Manjirnath Chatterjee Power bridge circuit for bi-directional wireless power transmission
US9395827B2 (en) 2009-07-21 2016-07-19 Qualcomm Incorporated System for detecting orientation of magnetically coupled devices
US8954001B2 (en) 2009-07-21 2015-02-10 Qualcomm Incorporated Power bridge circuit for bi-directional wireless power transmission
US8395547B2 (en) 2009-08-27 2013-03-12 Hewlett-Packard Development Company, L.P. Location tracking for mobile computing device
US9097544B2 (en) 2009-08-27 2015-08-04 Qualcomm Incorporated Location tracking for mobile computing device
USD687038S1 (en) 2009-11-17 2013-07-30 Palm, Inc. Docking station for a computing device
US11186192B1 (en) 2010-06-02 2021-11-30 Bryan Marc Failing Improving energy transfer with vehicles
US9393878B1 (en) 2010-06-02 2016-07-19 Bryan Marc Failing Energy transfer with vehicles
US8841881B2 (en) 2010-06-02 2014-09-23 Bryan Marc Failing Energy transfer with vehicles
US9114719B1 (en) 2010-06-02 2015-08-25 Bryan Marc Failing Increasing vehicle security
US10124691B1 (en) 2010-06-02 2018-11-13 Bryan Marc Failing Energy transfer with vehicles
US20110298295A1 (en) * 2010-06-03 2011-12-08 Combs Jeffrey S System and method for providing power throughout a structure without wiring
DE102010023602A1 (en) * 2010-06-12 2011-12-15 Atlas Elektronik Gmbh Apparatus and method for transferring data from or to an underwater pressure body
US9191781B2 (en) 2010-08-31 2015-11-17 Qualcomm Incorporated Use of wireless access point ID for position determination
US8755815B2 (en) 2010-08-31 2014-06-17 Qualcomm Incorporated Use of wireless access point ID for position determination
US8946941B2 (en) 2010-09-14 2015-02-03 Monterey Bay Aquarium Research Institute Wireless power and data transfer device for harsh and extreme environments
US9058928B2 (en) 2010-12-14 2015-06-16 Tdk Corporation Wireless power feeder and wireless power transmission system
US20120146424A1 (en) * 2010-12-14 2012-06-14 Takashi Urano Wireless power feeder and wireless power transmission system
US10355334B2 (en) 2011-02-21 2019-07-16 Wisub As Underwater connector arrangement
US9490521B2 (en) 2011-02-21 2016-11-08 Wisub As Underwater connector arrangement
US11904089B2 (en) 2011-08-16 2024-02-20 Juul Labs, Inc. Devices for vaporization of a substance
US9408416B2 (en) 2011-08-16 2016-08-09 Pax Labs, Inc. Low temperature electronic vaporization device and methods
US20130312742A1 (en) * 2011-08-16 2013-11-28 Ploom, Inc. Low temperature electronic vaporization device and methods
US9337675B2 (en) * 2012-01-27 2016-05-10 Braun Gmbh Inductive charger for hand held appliances
US20130193915A1 (en) * 2012-01-27 2013-08-01 Braun Gmbh (A German Corporation) Inductive Charger For Hand Held Appliances
US10517530B2 (en) 2012-08-28 2019-12-31 Juul Labs, Inc. Methods and devices for delivering and monitoring of tobacco, nicotine, or other substances
US10033217B2 (en) * 2012-10-17 2018-07-24 Murata Manufacturing Co., Ltd. Wireless power receiver device, wireless power transmitter device, and wireless power transceiver device
US20150222130A1 (en) * 2012-10-17 2015-08-06 Murata Manufacturing Co., Lid. Wireless power receiver device, wireless power transmitter device, and wirelss power transceiver device
WO2014093061A1 (en) * 2012-12-12 2014-06-19 Oceaneering International Inc. Wireless data transmission via inductive coupling using di/dt as the magnetic modulation scheme without hysteresis
US9124306B2 (en) 2012-12-12 2015-09-01 Oceaneering International, Inc. Wireless data transmission via inductive coupling using di/dt as the magnetic modulation scheme without hysteresis
US10638792B2 (en) 2013-03-15 2020-05-05 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
US9301258B2 (en) 2013-04-10 2016-03-29 Cgg Services Sa Geophysical data acquisition and power transfer method apparatus and system
US10952468B2 (en) 2013-05-06 2021-03-23 Juul Labs, Inc. Nicotine salt formulations for aerosol devices and methods thereof
US10653180B2 (en) 2013-06-14 2020-05-19 Juul Labs, Inc. Multiple heating elements with separate vaporizable materials in an electric vaporization device
US9753174B2 (en) * 2013-09-25 2017-09-05 Cgg Services Sas Geophysical survey node rolling method and system
US20150084783A1 (en) * 2013-09-25 2015-03-26 Cgg Services Sa Geophysical survey node rolling method and system
EP2853927A3 (en) * 2013-09-25 2015-12-23 CGG Services SA Geophysical survey node rolling method and system
US10463069B2 (en) 2013-12-05 2019-11-05 Juul Labs, Inc. Nicotine liquid formulations for aerosol devices and methods thereof
US11510433B2 (en) 2013-12-05 2022-11-29 Juul Labs, Inc. Nicotine liquid formulations for aerosol devices and methods thereof
US11744277B2 (en) 2013-12-05 2023-09-05 Juul Labs, Inc. Nicotine liquid formulations for aerosol devices and methods thereof
US10701975B2 (en) 2013-12-23 2020-07-07 Juul Labs, Inc. Vaporization device systems and methods
US10058129B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
US10111470B2 (en) 2013-12-23 2018-10-30 Juul Labs, Inc. Vaporizer apparatus
US10117465B2 (en) 2013-12-23 2018-11-06 Juul Labs, Inc. Vaporization device systems and methods
US10117466B2 (en) 2013-12-23 2018-11-06 Juul Labs, Inc. Vaporization device systems and methods
US10045567B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10058130B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10058124B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
US10045568B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10104915B2 (en) 2013-12-23 2018-10-23 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US10159282B2 (en) 2013-12-23 2018-12-25 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10070669B2 (en) 2013-12-23 2018-09-11 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10201190B2 (en) 2013-12-23 2019-02-12 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10912331B2 (en) 2013-12-23 2021-02-09 Juul Labs, Inc. Vaporization device systems and methods
US9549573B2 (en) 2013-12-23 2017-01-24 Pax Labs, Inc. Vaporization device systems and methods
US10667560B2 (en) 2013-12-23 2020-06-02 Juul Labs, Inc. Vaporizer apparatus
US11752283B2 (en) 2013-12-23 2023-09-12 Juul Labs, Inc. Vaporization device systems and methods
US10264823B2 (en) 2013-12-23 2019-04-23 Juul Labs, Inc. Vaporization device systems and methods
US11478021B2 (en) 2014-05-16 2022-10-25 Juul Labs, Inc. Systems and methods for aerosolizing a vaporizable material
US10135290B2 (en) * 2014-07-24 2018-11-20 Seabed Geosolutions B.V. Inductive power for seismic sensor node
US20170133875A1 (en) * 2014-07-24 2017-05-11 Seabed Geosolutions B.V. Inductive power for seismic sensor node
US20190067980A1 (en) * 2014-07-24 2019-02-28 Seabed Geosolutions B.V. Inductive power for seismic sensor node
US10879722B2 (en) * 2014-07-24 2020-12-29 Seabed Geosolutions B.V. Inductive power for seismic sensor node
US20160028238A1 (en) * 2014-07-24 2016-01-28 Seabed Geosolutions B.V. Inductive power for seismic sensor node
US9595833B2 (en) * 2014-07-24 2017-03-14 Seabed Geosolutions B.V. Inductive power for seismic sensor node
US9794737B2 (en) * 2014-09-08 2017-10-17 The United States Of America, As Represented By The Secretary Of The Army Underwater signal conversion
US10680676B2 (en) 2014-09-08 2020-06-09 The Government Of The United States, As Represented By The Secretary Of The Army Underwater signal conversion
US20160069674A1 (en) * 2014-09-08 2016-03-10 The Government Of The United States, As Represented By The Secretary Of The Army Underwater Signal Conversion
US20180342983A1 (en) * 2014-09-11 2018-11-29 Cpg Technologies, Llc Embedding data on a power signal
US10512282B2 (en) 2014-12-05 2019-12-24 Juul Labs, Inc. Calibrated dose control
US10234569B2 (en) 2015-03-31 2019-03-19 Ingenieria Y Marketing S.A. Dosimetric control system
WO2016156629A1 (en) * 2015-03-31 2016-10-06 Ingenieria Y Marketing, S.A. Dosimetric control system
US20170170876A1 (en) * 2015-12-11 2017-06-15 Oceaneering International, Inc. Extremely high speed data transfer and communications
US10128909B2 (en) * 2015-12-11 2018-11-13 Oceaneering International, Inc. Subsea contactless connector system and method with extremely high data transfer rate
US10865001B2 (en) 2016-02-11 2020-12-15 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
USD929036S1 (en) 2016-06-16 2021-08-24 Pax Labs, Inc. Vaporizer cartridge and device assembly
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
USD913583S1 (en) 2016-06-16 2021-03-16 Pax Labs, Inc. Vaporizer device
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
USD848057S1 (en) 2016-06-23 2019-05-07 Pax Labs, Inc. Lid for a vaporizer
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
US11660403B2 (en) 2016-09-22 2023-05-30 Juul Labs, Inc. Leak-resistant vaporizer device
US10778033B2 (en) * 2017-06-19 2020-09-15 Endress+Hauser Conducta Gmbh+Co. Kg Connection element, sensor, and sensor arrangement for process automation
CN109142944A (en) * 2017-06-19 2019-01-04 恩德莱斯和豪瑟尔分析仪表两合公司 Connecting element, sensor and the sensor device for process automation
US20180366983A1 (en) * 2017-06-19 2018-12-20 Endress+Hauser Conducta Gmbh+Co. Kg Connection element, sensor, and sensor arrangement for process automation
USD927061S1 (en) 2017-09-14 2021-08-03 Pax Labs, Inc. Vaporizer cartridge
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
US11196296B2 (en) * 2018-04-26 2021-12-07 Amosense Co., Ltd. Wireless power transmission system for rotating connector

Also Published As

Publication number Publication date
US8716902B2 (en) 2014-05-06
US20120326526A1 (en) 2012-12-27
GB2466560B (en) 2011-03-16
GB2466560A (en) 2010-06-30
GB0823436D0 (en) 2009-01-28
GB0921696D0 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
US8716902B2 (en) Inductively coupled data and power transfer system and apparatus
EP3172790B1 (en) Inductive power for seismic sensor node
EP3101449B1 (en) Flat contact quick connect connection for an autonomous seismic node
US20110216625A1 (en) System for Seismic Exploration A Submerged Subsurface Including Implanted Bases
CN209029598U (en) Electronic band
EP3105617A2 (en) Cableless seismic sensors and methods for recharging
AU2013337722A1 (en) Land based unit for seismic data acquisition
US20160202380A1 (en) Ocean sensor system
US20210021913A1 (en) Underwater data capture and transmission system
AU2011360952B2 (en) Seismic sensing device
EP2853927A2 (en) Geophysical survey node rolling method and system
WO2013114138A2 (en) Improved subsea installation deployment
CN101499042A (en) Adaptor device and medical apparatus system
WO2021102270A1 (en) Systems and methods for wireless transmission of power in deep subsurface monitoring
TWI591370B (en) Underwater sensing device and underwater sensing array
KR100883090B1 (en) Under Water Temperature and Depth Measurement Data Collecting System
CN102309305A (en) Imaging device and transmission/receiving system
US20220206181A1 (en) Submersible sensing system for water and sediment monitoring
JP6423074B2 (en) Anti-theft alarm device with high efficiency charging function
CN102043706A (en) Contact history recording system, contact history recording method and image processing apparatus
CN214538087U (en) Remote water meter device
JP5625190B2 (en) Power supply and data recording device, cable-type seabed observation device, seabed observation system
EP4167492A1 (en) Wireless power connector
CN117080690A (en) Electric core, battery module and battery package
BR112019025985B1 (en) SEISMIC DATA ACQUISITION UNIT

Legal Events

Date Code Title Description
AS Assignment

Owner name: WIRELESS FIBRE SYSTEMS,UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARK, RHODES;HYLAND, BRENDAN;SIGNING DATES FROM 20091222 TO 20100106;REEL/FRAME:023975/0475

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: WFS TECHNOLOGIES LTD., UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WIRELESS FIBRE SYSTEMS;REEL/FRAME:032451/0481

Effective date: 20120611