US20110077802A1 - Robot System - Google Patents

Robot System Download PDF

Info

Publication number
US20110077802A1
US20110077802A1 US12/959,879 US95987910A US2011077802A1 US 20110077802 A1 US20110077802 A1 US 20110077802A1 US 95987910 A US95987910 A US 95987910A US 2011077802 A1 US2011077802 A1 US 2011077802A1
Authority
US
United States
Prior art keywords
robot
mobile robot
network
content
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/959,879
Inventor
Michael J. Halloran
Jeffrey W. Mammen
Tony L. Campbell
Jason S. Walker
Paul E. Sandin
John N. Billington, JR.
Daniel N. Ozick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
iRobot Corp
Original Assignee
iRobot Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP06839009A external-priority patent/EP1963941B1/en
Application filed by iRobot Corp filed Critical iRobot Corp
Priority to US12/959,879 priority Critical patent/US20110077802A1/en
Assigned to IROBOT CORPORATION reassignment IROBOT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SANDIN, PAUL E., WALKER, JASON S., BILLINGTON, JOHN N., HALLORAN, MICHAEL J., CAMPBELL, TONY L., MAMMEN, JEFFREY W., OZICK, DANIEL N.
Publication of US20110077802A1 publication Critical patent/US20110077802A1/en
Priority to US13/893,905 priority patent/US8761931B2/en
Priority to US14/275,355 priority patent/US9392920B2/en
Priority to US15/182,849 priority patent/US9599990B2/en
Priority to US15/417,997 priority patent/US9901236B2/en
Priority to US15/880,767 priority patent/US10182695B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4013Contaminants collecting devices, i.e. hoppers, tanks or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • A47L11/4041Roll shaped surface treating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4061Steering means; Means for avoiding obstacles; Details related to the place where the driver is accommodated
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4072Arrangement of castors or wheels
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • A47L5/28Suction cleaners with handles and nozzles fixed on the casings, e.g. wheeled suction cleaners with steering handle
    • A47L5/30Suction cleaners with handles and nozzles fixed on the casings, e.g. wheeled suction cleaners with steering handle with driven dust-loosening tools, e.g. rotating brushes
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/009Carrying-vehicles; Arrangements of trollies or wheels; Means for avoiding mechanical obstacles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • A47L9/04Nozzles with driven brushes or agitators
    • A47L9/0461Dust-loosening tools, e.g. agitators, brushes
    • A47L9/0466Rotating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/12Dry filters
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2857User input or output elements for control, e.g. buttons, switches or displays
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2894Details related to signal transmission in suction cleaners
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/30Arrangement of illuminating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0003Home robots, i.e. small robots for domestic use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0227Control of position or course in two dimensions specially adapted to land vehicles using mechanical sensing means, e.g. for sensing treated area
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/028Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/32Auto pilot mode
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/01Mobile robot
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/50Miscellaneous

Definitions

  • This invention relates to robot systems, and more particularly to power saving robot systems and robot system networks.
  • Autonomous robots are robots which can perform desired tasks in unstructured environments without continuous human guidance. Many kinds of robots are autonomous to some degree. Different robots can be autonomous in different ways. An autonomous coverage robot traverses a work surface without continuous human guidance to perform one or more tasks. In the field of home, office and/or consumer-oriented robotics, mobile robots that perform household functions such as vacuum cleaning, floor washing, patrolling, lawn cutting and other such tasks have been widely adopted. Autonomous coverage robot systems that include a coverage robot and peripheral devices are generally battery powered. As a result, the battery life of each component of the system affects the operability of the overall system.
  • the present disclosure provides a robot which can communicate with a base station and/or internet site via wireless communications media, in one configuration using a wireless bridge adapted for connection directly to a home wired network to provide a direct presence and proxies for the robot, allowing the robot to be a fully functional network node.
  • a power-saving robot system includes at least one peripheral device to be placed in an environment and a mobile robot.
  • the peripheral device includes a power supply, a wireless communication component, and a controller having an active mode in which the peripheral device is fully operative and a hibernation mode in which the peripheral device is at least partly inactive.
  • the wireless communication component is capable of activation in the hibernation mode.
  • the mobile robot includes a drive system that moves the robot about the environment, a wireless communication component, and a controller.
  • the controller has an activating routine that communicates with the peripheral device via the wireless communication components and temporarily activates the peripheral device from the hibernation mode when the wireless communication components of the peripheral device and the robot come within range of one another.
  • the wireless communication components communicate with transmission wavelengths that permit the robot and the peripheral device to be outside a line of sight. Conversely, in another implementation, the wireless communication components communicate with transmission wavelengths that require the robot and the peripheral device to be within a line of sight. In one example, the peripheral device is precluded from altering modes from the hibernation mode to the active mode until a line of sight is present between the robot and the peripheral device.
  • the wireless communication components may communicate with a point-to-point protocol while excluding routing and may communicate commands interpretable by the peripheral device to initiate a function.
  • the wireless transmission communicated by the robot wireless communication circuit includes identification information.
  • the wireless transmission communicated by the peripheral device wireless communication circuit may include identification information as well.
  • the peripheral device while in the hibernation mode, occasionally listens for a robot ping. Also, while in the hibernation mode, the peripheral device occasionally polls for a quiet robot.
  • the peripheral device is a base station. In another example, the peripheral device is a mobile device.
  • the robot measures a signal strength of a wireless transmission communicated by the wireless communication component of the peripheral device to determine a distance from the peripheral device.
  • the wireless communication components communicate over a radiofrequency.
  • the controller of the robot determines a locality of the robot based on information received via the wireless communication component of the robot from a peripheral device, such as a beacon, located in an area in which the robot is operating.
  • the peripheral device is configured to transmit radio-frequency identification information.
  • each locality within a robot environment may respectively include a beacon configured to wirelessly emit respective location information (e.g. in an environment corresponding to a house, each “locality” may represent a room, and each room may be installed with a beacon broadcasting a unique identification over radio-frequency or other such medium).
  • a base station may be provided in at least one locality, and the beacon may be configured to communicate with the base station and to relay data therefrom and/or thereto.
  • the beacon may emerge from a low-power “hibernation” intermittently by listening for RF or IR of the robot, by operating a wake-up timer, by being actively RF or IR interrogated by the robot, or any permutation of combinations thereof based on time elapsed since a last event or number or frequency or character of interactions.
  • the robot may activate a peripheral device according to a schedule or transmit schedule information to the peripheral device, which activates itself based on the schedule.
  • a robot system in another aspect, includes a network data bridge and a mobile robot.
  • the network data bridge includes a broadband network interface, a wireless command interface, and a data bridge component.
  • the broadband network interface is connectable to an internet protocol network and carries communications transferred in compliance with an internet protocol.
  • the wireless command interface is connectable to a wireless command protocol network and carries communications transferred under a command protocol.
  • the data bridge component extracts serial commands received via the broadband network interface from the internet protocol and applies the command protocol thereto.
  • the data bridge component listens to the narrowband wireless interface and sends a robot, peripheral, network and system state to the Internet via the broadband network interface. This information is automatically sent to a monitoring service via internet protocols, where long-term monitoring and analysis takes place.
  • Actions/commands resulting from this analysis are injected into the narrowband wireless network by the RF-bridge. These actions can include serial commands, new software images for robot and/or peripheral, or queries for more in-depth (debugging) information that can be interpreted and responded to by the robot.
  • the data bridge component also broadcasts the serial commands via the narrowband wireless interface.
  • the mobile robot includes a drive system that moves the robot about an environment and a wireless command communication component that receives the serial commands transmitted from the network data bridge.
  • the system also includes at least one peripheral device to be placed in the environment.
  • the peripheral device includes a wireless command communication component that receives serial commands transmitted from the robot and the network data bridge.
  • the peripheral device also includes a controller having an active mode wherein the peripheral device is fully operative and a hibernation mode wherein the peripheral device is at least partly inactive.
  • the wireless communication circuit is capable of activation in the hibernation mode.
  • the robot can receive and utilize customizable sounds or other audio content for interacting with a user.
  • the robot receives audible content and plays back the audible content in coordination with specific robot functions.
  • the robot controls externally visible indicia of the robot in coordination with a play back of audible content such as, inter alia, synthesized voice content during a user interaction and/or training mode.
  • the robot includes a facade or external housing changeable with customized cladding.
  • the home robot includes interchangeable molded plastic or metal body panels affixed to an exterior of the robot by snap-on fasteners, insertable fitting tabs and receivers, screws, magnetic fixing pieces, etc.
  • the interchangeable body panels correlate to audio content uploadable to the robot.
  • the customized body panel includes an identification system for automatically causing the robot to download and/or use the corresponding audible content.
  • the identification system may include an integrated circuit, characteristic resistance, bar code, optical identifier, RFID, passive magnetic resonance, or mechanical identification system (e.g. a punch-card-like series of holes or protrusions).
  • the robot includes a radio receiver configured to receive audible content via wireless transmission, a memory configured to store the audible content, a speaker configured to emit the audible content, and indicia controllable by a controller and configured to indicate operative information in a first mode and to indicate illustrative information in coordination with the audible content in a second mode.
  • the indicia may include a light-emitting diode and also a power indicator configured to indicate an actual power state of the robot in the first mode and a training pattern in the second mode.
  • the robot may further include a voice synthesizer configured to synthesize spoken didactic information based on the audible content.
  • the wireless transmission may be structured according to a packet-encoded transmission protocol.
  • the robot may further include a customizable body panel detachably affixed to a main body of home robot, where the customizable body panel corresponds with themed audio data included in the audible content.
  • the robot may be configured to operate in at least first and second modes.
  • the first mode corresponds to a normal robot operating state of the performing a primary function.
  • the second mode corresponds to a training mode, where the speaker emits an audible training instructional program.
  • the indicia of the robot displays according to a training pattern in timed coordination with the audible training/instructional program, where the training pattern displayed on the indicia is different from an operative pattern corresponding to an actual state of the home robot.
  • a robot system in another aspect, includes a mobile robot and a wireless communication system for communicating with the robot.
  • the wireless communication system includes a network interface unit configured to communicably interface with a first network and to wirelessly transmit data to the robot.
  • the wireless communication system also includes a server configured to communicate with the network interface unit via the first network.
  • the robot is configured to wirelessly transmit data to the network interface unit, which is configured to convert the data from a wireless protocol to a network protocol used by the first network.
  • the network interface unit transmits the data to the server.
  • the server may be configured to produce robot usage, robot behavior, and/or customer information based on the data transmitted to the server.
  • a user terminal configured to communicably interface with the first network and to control at least one function of the robot may be provided.
  • the user terminal transmits a command corresponding to at least one robot function to the network interface unit via the first network.
  • the network interface unit wirelessly transmits the command to the robot.
  • User interaction is performed through this user interface, allowing further usage data to be collected.
  • This offloaded interface also allows the robots to coordinate actions without needing to communicate directly with one another.
  • the robot systems are functionally independent of one another, but are tied together via the server through a single user interface/data logging/usage information collecting server.
  • the wireless communication system includes audible content stored at the server.
  • the server is configured to transmit the audible content to the network interface unit, which is configured to wirelessly transmit the audible content to the robot.
  • audible content may be stored at the user terminal, which is configured to transmit the audible content to the network interface unit via the first network.
  • the network interface unit is configured to wireless transmit the audible content to the robot.
  • content may be stored at a base station to which the robot docks for recharging and/or servicing.
  • Robot-generated data may include theme data corresponding to audible content, in which the server transmits the audible content to the robot via the network interface unit in response to the theme data.
  • the data may alternatively include a behavior theme configured to cause the robot to behave according to a theme.
  • the audible content may include voice data.
  • Other robot behavioral changes may be implemented based on long-term monitoring and analysis of the robot-generated data. (For example, if the robot does not make it back to the dock before the battery gives out three times in a row, the server modifies the behavior of the robot to start looking for the dock/base station earlier. This modifies the robot behavior to be “more conservative.”)
  • Robot performance can be autonomously modified by the learned effects of the actual customer home. This can take place after the robot has been purchased and server is updated to provide a better model of robot/home performance characteristics.
  • the wireless reporting infrastructure allows a modification of behavior based telemetry to provide the best performance for a particular customer.
  • the learning process is dynamic and can change as an understanding of the data increases.
  • the wireless communication system includes a second user terminal which is configured to communicably interface with the first network.
  • a theme may be stored at the first user terminal, which transmits the theme to the second user terminal via the first network.
  • the first network may include UDP, TCP/IP, and/or Ethernet, as examples.
  • a content distribution system for distributing data to a robot includes a first server configured to communicably interface with a first network and a user-side node configured to transmit data to the robot.
  • the robot receives customizable content via the user-side node.
  • the content distribution system further includes a network hub configured to use a protocol compatible with the first network and a network adapter configured to communicably connect the network hub with the first network.
  • the user-side node is configured to detachably interface with the network hub.
  • a data slot is installed on the robot and configured to receive the user-side node.
  • the content distribution system further includes a content server configured to communicably interface with the first network and to transmit the audible content to the robot via the user-side node using the first network.
  • the content server transmits content to the user-side node based on information received from the first server (e.g., the content served by the content server may include licensed content such as music or sound, images, “dance” moves or patterns performable by an appropriate type of mobile robot such as a wheeled robot—also referred to herein as “robo-motions”, and the like, for which the copyright is held by a third party; alternatively, the copyright holder of the content may be the manufacturer or any other entity).
  • the user-side node of the content distribution system may be configured to receive content from the server via the first network, and the user-side node may be configured to transmit the content to the robot via a wireless communication protocol.
  • the content distribution system further includes a user terminal configured to communicate via the first network and a content selection display presented on the user terminal.
  • the customizable content is transmitted to the robot when selected from the content selection display on the user terminal.
  • the user-side node includes an Ethernet dongle or a USB dongle (or “network bridge”) configured to detachably connect to an Ethernet hub.
  • the user-side node is configured to receive content via the Ethernet hub and is configured to transmit the content to the robot via a second protocol different from the first network.
  • the term “data bridge” is understood to refer to all such dongles and/or pocketable and/or portable devices capable of appropriately communicating with a robot, either via wireless, wired, or direct physical connection, or any other suitable modality for such a portable device to communicate and/or transmit data to the robot.
  • the user-side node may receive content from the data bridge or from a remote site, with no client application located on the user terminal, just a web browser. Alternatively, a specific client application may be provided.
  • the user-side node may be configured to operate using power supplied via the first network.
  • the customizable content may include audible content, which may be organized into a theme of related discrete sounds.
  • a main body of the robot includes a detachable body panel having an audio/theme identification unit.
  • the robot is configured to identify audio content and/or a theme corresponding to the detachable body panel via the theme identification unit.
  • the second protocol may include a wireless transmission protocol (e.g. ZigBee, 802.11a/b, wireless USB, serial-over-RF, AMPS, CDMA, GSM, Bluetooth, a simplistic or proprietary scheme, etc.).
  • the content distribution system may further include a voice synthesizer installed to the robot, in which the audio data includes voice synthesis parameters (for altering the perceived “personality” of a robot, or to better accommodate someone who has hearing loss in certain frequency ranges, for example).
  • voice synthesis parameters for altering the perceived “personality” of a robot, or to better accommodate someone who has hearing loss in certain frequency ranges, for example.
  • the robot may further comprise a robot firmware which is customized based on user feedback or robot sensor data processed by a server, in which the robot firmware is downloaded to the robot from the server.
  • FIG. 1A is schematic diagram showing an example of a power-saving robot system.
  • FIG. 1B is a sectional view showing an example of a mobile robot.
  • FIG. 1C is schematic diagram showing an example of a peripheral device.
  • FIG. 2 is a schematic diagram showing an example of a robot system.
  • FIG. 3 is a block diagram showing an example of a network data bridge.
  • FIG. 4 is a schematic diagram showing an example of a robot system including mobile robots, in which a computer transmits themes to the mobile robots.
  • FIG. 5 is a schematic diagram showing an example of body panel themes for a mobile robot.
  • FIG. 6A is a schematic diagram showing an example of a mobile robot that includes a network data bridge.
  • FIG. 6B is a schematic diagram showing an example of a mobile robot and an example of a network data bridge which connects to other networks via a network that runs over power lines in a building.
  • FIG. 7 is a block diagram showing an example of a robot system including a manufacturer server and a licensed content provider server.
  • FIG. 8 is a schematic diagram showing an example of a robot system including a vendor and a manufacturer server.
  • FIG. 9A is a state diagram showing an example of a state machine for a mobile robot.
  • FIG. 9B is a state diagram showing an example of a state machine for a mobile robot.
  • FIG. 9C is a state diagram showing an example of a state machine for a mobile robot.
  • FIG. 1A is schematic diagram showing an example of a power-saving robot system 100 .
  • the system 100 includes a peripheral device 102 and a mobile robot 104 .
  • the mobile robot 104 is a cleaning robot, such as a vacuum, brushing, or mopping robot.
  • the peripheral device 102 transmits wireless commands to control the movement of the mobile robot 104 .
  • the peripheral device 102 enters a hibernation mode or low power consumption state.
  • a wireless command transmitted by the mobile robot 104 activates the peripheral device 102 from the hibernation mode.
  • the mobile robot 104 and the peripheral device 102 use a point to point protocol while communicating to one another.
  • the peripheral device 102 is a base station, such as a device to recharge the mobile robot 104 or a receptacle to empty debris from the mobile robot 104 .
  • the mobile robot 104 includes a drive system 1042 , a wireless communication component 1044 , and a controller 1046 .
  • the drive system 1042 moves the mobile robot 104 about an environment, such as a floor to be cleaned.
  • the wireless communication component 1044 communicates with the peripheral device 102 .
  • the wireless communication component 1044 may receive signal beams from the peripheral device 102 , such as infrared (IR), radio frequency (RF), and/or audio signals.
  • IR signals infrared
  • RF signals may be used to provide communication when the peripheral device 102 and the mobile robot 104 are outside of one another's line of sight.
  • IR signals may be used to provide communication when the peripheral device 102 and the mobile robot 104 are inside of one another's line of sight.
  • the mobile robot 104 may use the signal strength to determine a distance to the peripheral device 102 . The signals may prohibit movement of the mobile robot 104 through a particular area or guide the movement of the mobile robot 104 to a particular area.
  • the controller 1046 uses the wireless communication component 1044 to temporarily activate the peripheral device 102 from a hibernation state, such as a state consuming a low amount of power.
  • the mobile robot 104 uses an IR signal, or line of sight form of communication, to activate the peripheral device 102 from the hibernation mode.
  • the mobile robot 104 sends the activation command in response to a query from the peripheral device 102 . In certain implementations, the mobile robot 104 occasionally sends the activation command, such as continuously or periodically.
  • the peripheral device 102 includes a power supply 1022 , a wireless communication component 1024 , and a controller 1026 .
  • the power supply 1022 may be, for example, an electric battery.
  • the power supply 1022 provides power to the various functions of the peripheral device 102 , such as generating navigational signal beams 106 a - c .
  • the wireless communication component 1024 generates a fence beam 106 a , a left guide (or directed) beam 106 b , and a right guide (or directed) beam 106 c .
  • the wireless communication component 1024 also receives wireless signals from the mobile robot 104 .
  • the controller 1026 activates one or more of the beams 106 a - c during the active mode and disables beams 106 a - c in the hibernation mode.
  • the peripheral device 102 occasionally listens for an activation command from the mobile robot 104 .
  • the peripheral device 102 sends an activation poll to the mobile robot 104 to determine if it should become active.
  • the fence or barrier beam 106 a prevents the mobile robot 104 from passing through the area where the mobile robot 104 detects the fence beam 106 a .
  • Beams 106 b - c aid the navigation of the mobile robot 104 .
  • the robot 104 includes a display panel 105 in electrical communication with the controller board 1046 .
  • the display panel 105 includes indicia 1052 and an audio output device 1054 .
  • the indicia 1052 include a segmented illuminable maintenance display substantially mimicking the appearance of the robot.
  • the indicia 1052 include themed displays, which will be described later in further detail.
  • the controller board 1046 controls the illumination of indicia 1052 and the audio responses from the audio output device 1054 .
  • the peripheral device 104 may perform in several capacities.
  • the peripheral device 102 may act as a fence.
  • the peripheral device 102 may use the fence beam 106 a to prevent the mobile robot 104 form passing through an area, such as a doorway.
  • the peripheral device 102 may also act as a gate.
  • the fence beam 106 a may provide a gate that prevents passage during a particular time interval, such as when the mobile robot 104 is in the process of cleaning a room.
  • the peripheral device 102 may deactivates the fence beam 106 a when the mobile robot 104 has finished cleaning the room and grants passage to the mobile robot 104 .
  • the mobile robot 104 uses the beams 106 b - c to guide its way through the area covered by the gate.
  • the peripheral device 102 may act as a trail marker or navigation beacon.
  • the mobile robot 104 may use the beams 106 b - c to navigate through areas, such as doorways.
  • the beams 106 a - c may contain information, such as an identifier (ID) of the peripheral device 102 , an identifier of the type of beam, and an indication of whether the peripheral device 102 is a gate or a fence. If it is a gate, the beam identification allows the robot 104 to determine whether it is detecting the left or right guide beams 106 b and 106 c , respectively.
  • ID an identifier
  • the peripheral device identifier allows the mobile robot 104 to distinguish the beams 106 a - c of the peripheral device 102 from beams transmitted by another peripheral device.
  • the mobile robot 104 may be taught (or may itself learn) a path to an area, such as a back room of a house, by following a pattern of peripheral device identifiers.
  • the beam type identifier indicates whether the beam is a fence beam 106 a , a left side navigation beam 106 b , or a right side navigation beam 106 c . If the beam is a fence beam 106 a , the beam information may also indicate whether the beam is acting as a gate that may be opened, given the proper command, or a barrier that remains closed. In any case, while the mobile robot 104 is out of range, the peripheral device 102 hibernates and the beams 106 a - c remain inactive.
  • the wireless communication component 1024 of the peripheral device 102 receives a signal from the wireless communication component 1044 of the mobile robot 104 to activate the peripheral device 102 from a hibernation state.
  • the mobile robot 104 transmits a first activation signal 108 a to activate a first set of peripheral device beams, such as the fence beam 106 a while cleaning is in progress.
  • the mobile robot 104 transmits a second activation signal 108 b to activate a second set of peripheral device beams, such as the navigation beams 106 b - c when the mobile robot 104 moves to another room.
  • the signals 108 a - b include a mobile robot identifier.
  • the peripheral device 102 may use the mobile robot identifier to activate, for example, a first set of beams, such as the fence beam 106 a , in response to an activation request from the mobile robot 104 and a second set of beams, such as the beams 106 b - c in response to an activation request from a second mobile robot.
  • the mobile robot identifiers allow the peripheral device 102 to activate beams based on the mobile robot requesting the activation, such as by providing a fence to the mobile robot 104 and a gate to a second mobile robot.
  • FIG. 2 is a schematic diagram showing an example of a robot system 200 .
  • the robot system 200 includes the mobile robot 104 and a network data bridge 202 .
  • the wireless communication component 1044 of the mobile robot 104 receives serial commands from the network data bridge 202 , such as radio-frequency (RF) signals.
  • RF radio-frequency
  • these signals may be transmitted by the network data bridge 202 or other such user-side node, which is in turn connected to an Ethernet router/switch/hub 204 along with several other Ethernet-connected devices such as a home computer 206 , a laptop computer 208 , a cable/DSL/satellite/broadband-adapter 210 or modem, and e.g. one or more other computing devices such as a personal digital assistant 212 .
  • the network data bridge 202 which attaches to an Ethernet port on the Internet-connected router 204 or switch may automatically download a script from a predetermined Internet or local server (e.g., via BOOTP, DHCP, HTTP, FTP, and/or TFTP) thereby providing automatic commands, such as device configuration or diagnostic testing, to be performed.
  • a user may manage the mobile robot 104 using a device, such as the computer 206 .
  • the Ethernet-attached network data bridge 202 may provide for configuration and operational functionality via a small, embedded HTTP server built into the firmware of the network data bridge 202 .
  • Devices other than the computer 206 may also be used to interface with the network data bridge 202 , such as a set-top box, a game console, the PDA 212 , a cell phone 214 , or a home server that is programmed to communicate using web or other networked interfaces.
  • the network data bridge 202 such as a set-top box, a game console, the PDA 212 , a cell phone 214 , or a home server that is programmed to communicate using web or other networked interfaces.
  • access to broadband is provided via a USB port, as may be provided by the computer 206 .
  • a user may insert a driver CD-ROM into the computer 206 upon plugging in a USB-based wireless transceiver, in order to install a driver therefore.
  • Another connection such as IEEE 1394/Firewire, RS-232, parallel port connections, and/or X10, may be used. These, however, may not necessarily be network data bridges.
  • a network data bridge 202 Once a network data bridge 202 is attached to the network-accessible device 204 , it can contact a server.
  • FIG. 7 is a block diagram showing an example of a robot system 700 including a manufacturer server 702 and a licensed content provider server 704 .
  • the manufacturer server 702 and the content provider server 704 may be connected to the broadband modem 210 via the Internet 706 or another appropriate network.
  • the mobile robot 104 may report information to the server 702 , such as the status of the mobile robot 104 or usage data regarding the mobile robot 104 .
  • the server 702 may store the reported data in a repository 708 .
  • the reported data may be associated with information regarding the user of the mobile robot 104 .
  • the user information may be stored in a repository 710 .
  • the network data bridge 202 may connect wirelessly to the mobile robot 104 and initiate communications therewith. While the Ethernet hub 204 includes four wired Ethernet ports as well as 802.11 wireless Ethernet connectivity, and although 802.11 or other such wireless networking protocol may be used to communicate with a mobile robot 104 from the base station other than via a network data bridge, in certain implementations, the mobile robot 104 and the network data bridge 202 use a simple, serialized RF protocol in order to exchange information between the mobile robot 104 and the base station, rather than the full-weight networking protocols.
  • the mobile robot 104 may be further simplified by providing receive-only functionality on the mobile robot 104 , instead of bi-directional wireless communication support.
  • the mobile robot 104 may include full bi-directional wireless communications support in order to transmit information from the mobile robot 104 to the base station (and e.g., to the user, the manufacturer, etc.).
  • the manufacturer may receive real-world mobile robot data for product refinement and R & D.
  • the mobile robot 104 may collect data regarding behavioral patterns (e.g., a number of errors encountered, a number of times the mobile robot 104 has become stuck, or how frequently the mobile robot 104 is used) and forward such information to the mobile robot's manufacturer for refining market research and producing future models of the mobile robot 104 , for example, by correcting design flaws or device problems.
  • customer information such as frequency of robot use, name, customer ID, etc., may also be correlated using information forwarded to the manufacturer's website from the mobile robot 104 via wireless and wired networking.
  • a wireless update function may be provided by the network data bridge 202 in order to update the robot's firmware or other on-board software, personality, sounds, and/or displayed pictures.
  • a user may design themes or other content and have this content transmitted to the mobile robot 104 via the wireless communication channel provided by the network data bridge 202 .
  • FIG. 3 is a block diagram showing an example of a network data bridge.
  • the network data bridge 202 includes a network connector 302 , such as an RJ-11-style male Ethernet connector.
  • the network data bridge 202 includes an antenna 304 , such as an enclosed, internal antenna, operatively driven by a wireless command interface 306 , which is in turn connected to a data bridge component 308 (the mobile 104 robot may likewise include an enclosed, internal antenna; alternatively, either the network data bridge 202 and/or the mobile robot 104 may either one or both include one or more external antennas, either in addition to or in lieu of an internal antenna, for example).
  • the data bridge component 308 is connected to a broadband network interface 310 for managing and converting inbound and outbound broadband-side data (such as Ethernet, 802.11b, and/or TCP/IP packets) to and from to a wireless-side simplified networking protocol.
  • the data bridge component 308 extracts serial commands received by the broadband network interface 310 and broadcasts the commands via the wireless command interface 306 and the antenna 304 , using the RPAN protocol.
  • the network data bridge 202 is plugged directly into the owner's broadband router 204 .
  • the network data bridge 202 acquires network information from a DHCP server or optionally configured by an advanced user.
  • the network data bridge 202 calls home (i.e., a home robot manufacturer's or reseller's Internet server) with local configuration information (serial number, local network properties, etc.).
  • the network data bridge 202 begins polling a pre-configured URL with periodic HTTP POSTs. Each post contains status information on the mobile robot(s) 104 in the customer's home. This data can be robot/firmware specific—the network data bridge 202 need not understand the data itself (although it may well do so in certain implementations).
  • a CGI script receiving the POSTS processes this sensor report and updates an internal database creating a historical view of the robot system.
  • Software-based virtual sensors examine this database (on a per-robot basis) and trigger events such as virtually pressing a button on the robot or triggering an email to its owner.
  • the owner may visit the home robot manufacturer's web presence using a modern, i.e.; JavaScript-enabled (or any other suitable scripting language such as Visual Basic, python, PERL, Php, etc.) web browser, and creates a user account.
  • a modern i.e.; JavaScript-enabled (or any other suitable scripting language such as Visual Basic, python, PERL, Php, etc.) web browser, and creates a user account.
  • the customer enters the unique key as shipped with the wireless data bridge—this unique key pairs the incoming sensor stream with this user's account.
  • This page is dynamically generated using the information already provided by the robot gateway and product information and tie-ins provided by the back end infrastructure of the manufacturer's server(s).
  • Theme or content store contacts robot sensor database and adds to the command queue: “download this content to robot # 2 ”
  • the gateway device next posts sensor data
  • the HTTP response is the command to download the attached content data to the specified robot.
  • the wireless data bridge begins forwarding this binary stream to the robot via RF.
  • the gateway may sends a download acknowledgement with the next sensor report.
  • the javascript (or other suitable script) embedded into the owners' web interface has been polling the back-end servers for status updates.
  • a progress bar has been drawn and animated using javascript and DHTML (or Ruby on Rails, a JAVA applet, or any other suitable display technology). The user may feel that s/he is interacting directly with the robot via the web page, despite the levels of software and communication indirection laying therebetween.
  • the wireless data bridge 202 may include a female port into which an Ethernet patch cable (or other such networking cord) plugs into from a suitable network connection point, and/or into which an interface portion of a home robot attaches, for example.
  • these communication channels provides a mechanism for retrieving sensor data and sending commands to robots in the field by piggy-backing on their broadband connection.
  • Such a bi-directional communication system allows deployment of online services and to retrieve sensor data from a manufacturer's installed base for improved customer service and system characterizations. It may further increase the manufacturer's comprehension of how robots and individual subsystems perform in the field.
  • Interaction the network-enabled mobile robot(s) 104 in a customer's home may take place through a web browser, in accordance with certain embodiments.
  • Web browser access provides support for robot interaction via non-PC devices (e.g., cell phones, and PDAs) with compliant browsers.
  • FIG. 6A is a schematic diagram showing an example of the mobile robot 104 that includes the network data bridge 202 .
  • the network data bridge 202 is a card that is inserted into an interface slot 602 in the mobile robot 104 .
  • This type of network data bridge may be self-contained and transport data on constituent RAM, ROM, Flash, or EEPROM, type storage devices (which might be loaded with software, video, or audio content either at a user's computer equipped with a special writing unit or at the manufacturer in order to provide content such as themed content, for example); or can be loaded with code number(s) that authorizes a wireless download to the network data bridge 202 ; or, alternatively, may be connected to a network via a wire or by wireless Ethernet, for example.
  • a “Memory stick”-type (serial port interface), network data bridge 202 may provide content to mobile robot users who lack an Ethernet hub or Internet connection, or for users who are unable to purchase content online via credit card, or who simply come across a set of content while at a store and wish to make an impulse purchase or gift purchase for another. Furthermore, similar to the network data bridge implementation discussed above, personal computer use is not necessarily required because the user may plug the “memory stick”-type network data bridge 202 directly into a receptacle 602 defined by the mobile robot 104 , and content on the network data bridge 202 may be automatically uploaded to the mobile robot 104 . See, e.g., U.S. patent application Ser. No. 11/166,518, incorporated herein by reference in its entirety.
  • FIG. 6B is a schematic diagram showing an example of the mobile robot 104 and an example of the network data bridge 202 which connects to other networks via a network that runs over power lines in a building.
  • the network data bridge 202 may be configured to plug into a standard power outlet 604 and to participate with a home power-line network, for example, in homes or markets where Ethernet networking components are not available.
  • the network data bridge 202 may plug into a standard telephone wall jack in order to communicate via a home telephone wiring network, for example.
  • the network data bridge 202 might be plugged into any of an Ethernet port, the power socket 604 or a telephone wall jack, and auto-negotiate a connection to the Internet (if available) and/or to the mobile robot(s) 104 .
  • Ethernet-over-home power lines and similar schemes or products are widely produced and well known in the art; for example, as an early commercial endeavor in this technology area, the X10 communication standard permits communication over power lines by encoding a single bit of information at each zero-point in the 120 V(RMS) @60 Hz power cycle common in North America, for example, and many more modern Ethernet-like power line networking systems are commercially available, in which each networked device connects to the network typically via an electrical socket on a wall.
  • the network data bridge extracts the serial commands and data from encapsulating broadband protocols (Ethernet, TCP/IP, 802.11x) for transmission on the local wireless robot network (RPAN), and similarly encapsulates such commands and data from the RPAN for transmission on the broadband network.
  • broadband protocols Ethernet, TCP/IP, 802.11x
  • the wireless data bridge 202 may provide web server functionality and serve static or dynamic web content corresponding to enabled mobile robots 104 belonging to the mobile robot user.
  • Such web server functionality may be provided on the mobile robot user's local broadband network and e.g., be broadcast discoverable using TCP/IP, UDP, Ethernet, SNMP, NetBEUI, IPX, SMB or uPnP broadcast network announcing, for example, in order to be found by mobile robot users when browsing the local area network; alternatively, a static network address (such as a standard, pre-set IP address) may be assigned to the data bridge 202 such that users may simply type the static network address into a web browser to reach the web server on the network data bridge 202 .
  • the web content may be active or static, and may be tailored to the functionality to be provided and/or may be updated via the Internet or local network.
  • FIG. 9 is a schematic diagram showing an example of the robot system 200 with a content serving system for transmitting content to a mobile robot.
  • the system 200 for accessing home robot-related content and controlling a home robot via the Internet may include an embedded web-server; an online presence accessible as a service/content provider; and a web-based user interface specific to the robots 104 in the customer's home. These components may be used to tunnel events across the Internet to an online “robot presence” generated by, for example, a home robot manufacturer. This “robot presence” may provide interactivity with the user's home robot (audible content or other types of theme and/or content downloads, remote button presses, etc.) via a hosted web service.
  • the events thus tunneled may include: changes in sensor values, user interaction, commands to the robot, and state changes, inter alia.
  • a bi-directional communication channel such as a wireless robot network communication channel
  • a bi-directional communication channel allows melding between a robot in someone's home, procedural and informational repositories on a remote server, and a web-based robot user interface, to produce powerful capabilities and forge new functionalities such as adding offloaded “intelligence” to otherwise simple robots (by, for example, performing the bulk of number-crunching or compute-intensive tasks on a separate computer or server, and simply uploading and/or downloading results and/or sensor input to and from the home robot itself).
  • By tunneling the local robot system's communication fabric across the Internet or other suitable network it is possible to allow back-end servers to interact with robots in users' homes.
  • the data bridge 202 may send local network information to the Internet server.
  • the user may connect to the Internet 706 and may be redirected to the local bridge as appropriate.
  • the need to know the user's local information may be eliminated.
  • a wireless remote control may offer several similar wireless functions for controlling or managing the mobile robot 104 .
  • the wireless remote control may communicate directly with the mobile robot 104 via an infrared (IR) or RF protocol, or may relay commands through the network data bridge 202 , for example, when the mobile robot 104 is not within sight but the remote control is within IR signaling range of the network data bridge 202 .
  • IR infrared
  • RF radio frequency
  • the network data bridge 202 may thus also be provided with an IR sensor for receiving mobile robot control commands from the wireless remote control, and then relay the commands wirelessly to the mobile robot 104 —for example, the embedded web-server may bridge a proprietary or ad-hoc communication method used internally by the mobile robot 104 (and also used by accessory items added to the mobile robot 104 ) with a persistent online presence by translating the internal communication protocol(s) into HTTP POST and GET transactions.
  • the online presence may generate a web-based user interface that incorporates javascript components to asynchronously poll the mobile robot 104 for state changes (e.g., battery voltage).
  • This javascript may asynchronously fetch changes in the robot properties and rewrite the content in the page.
  • Sensor values, etc. can be refreshed by the web browser without the customer needing to click refresh on the browser, for example.
  • the web-based interface may use customer tracking and persistence robot sensor data to pair the mobile robot 104 with the customer account and present user interfaces for equipment the customer owns.
  • the commands relayed from the remote control may also be relayed throughout the beacon network to reach a home robot that may be quite distant from the remote control.
  • Wireless bandwidth (especially in unlicensed bands such as 900 MHz, 2.5 GHz, or any other such suitable public RF band) is by its nature limited, and because the presence of multiple RF devices (such as, for example, multiple mobile robots and/or network data bridges; WiFi, BlueTooth, X10, mobile or portable telephone or other common wireless devices; and/or interference from sources such as solar flares, RF discharge from electrical lines, florescent lights, or any other RF-interfering entity) may further restrict the effective amount of bandwidth or the degree of reliability of bandwidth available for wireless mobile robot communications, reliability and postponement measures may be taken to enhance the functionality of the network data bridge 202 and/or the mobile robot 104 ; conversely, the network data bridge 202 and/or the mobile robot 104 may be configured to reduce their consumption of available bandwidth in order to give priority to other wireless devices.
  • multiple RF devices such as, for example, multiple mobile robots and/or network data bridges; WiFi, BlueTooth, X10, mobile or portable telephone or other common wireless devices;
  • CRC cyclic redundancy checking
  • hash routines such as, MD5 sums or CRAM
  • ECC parity or error correcting codes
  • the network data bridge 202 and/or the mobile robot 104 may be scheduled to transmit theme content, usage/behavior data, or any other such communication during night-time or off-peak times; alternatively, for example, the network data bridge 202 and/or the mobile robot 104 (and/or the manufacturer's server) may be scheduled to perform their communication (or the bulk of their communication) at an automatically detected off-peak usage time, by detecting when bandwidth usage is lowest (either in real-time or by collecting data of bandwidth usage-per-time-of-day over a series of days or weeks and then determining the generally least used times of day, as non-limiting examples).
  • Reliability measures may be taken at either the network or application layer or both, for example, or at any other suitable layer in a communication stack (such as the data bridge using UDP on the Internet for simplicity and non-critical communications, but the web server using full error-checking, reliability and/or error correction measures, windowing, etc.
  • the web server functionality in such a data bridge can communicate with a known network address or location (such as a fixed IP address or uniform resource locator (URL)) in view of issues that arise with DHCP and dynamic IP address assignment, for example; the web server on the network data bridge 202 may thus behave in a manner similar to a client for a significant portion of time in order to actively access and/or poll “server”-like resources available on the mobile robot 104 (via wireless connection, for example), as in many examples the mobile robot 104 maintains relatively little network functionality in the mobile robot 104 itself (such capabilities being offloaded largely onto the network data bridge 202 ).
  • a known network address or location such as a fixed IP address or uniform resource locator (URL)
  • URL uniform resource locator
  • the web server functionality may establish network communications with the mobile robot 104 and/or Internet server(s) via a suitable protocol or standard, such as FTP, FTPS, TFTP, HTTP, HTTPS, GOPHER, TELNET, DICT, FILE and LDAP, HTTP POST, HTTP PUT, FTP uploading, HTTP form based upload, proxies, cookies, user+password authentication (Basic, Digest, NTLM, Negotiate, Kerberos4), file transfer resume, http proxy tunneling, and/or other suitable network methods (such as a method supported by libcurl, for example).
  • the network data bridge 202 may employ network announcement techniques such as uPnP, dynamic DNS, reverse ARP, Ethernet or UDP or TCP/IP broadcasting, or another suitable method of broadcasting the existence of the network data bridge 202 to other devices on the same network.
  • the mobile robot 104 By offloading much of the server functionality from the mobile robot 104 to the network data bridge 202 , and using the network data bridge 202 as a communications proxy, mirror and gateway, the mobile robot 104 is also shielded from excessive client requests that might otherwise tax its processing and/or bandwidth resources. For example, the mobile robot 104 may in one time period (e.g., ten minutes) produce thirty visual snapshots from an on-board camera. Then, if several entities were to attempt to download the snapshots from the mobile robot 104 simultaneously, the mobile robot 104 might quickly be overwhelmed as the wireless network became bogged with service request traffic.
  • one time period e.g., ten minutes
  • the mobile robot 104 may be accessed by just one entity, the network data bridge 202 , at a known regimen of polling requests, thus preserving the mobile robot's bandwidth and processing capability while still permitting replication of any such collected data by copying it to Internet servers for broader access, for example.
  • the network data bridge 202 may transmit via other suitable frequencies and/or bands in the electromagnetic spectrum, such as the 900 MHz, 2.4 GHz, microwave frequencies, or other suitable bands.
  • the mobile robot 104 and/or the network data bridge 202 may employ frequency shifting, spread spectrum, sub-channel technologies, and/or other such interference-avoidance schemes or techniques for avoiding interference with other unlicensed RF applications (phones, baby monitors, etc.).
  • robot commands might be sent by the network data bridge 202 .
  • Additional functionality may be provided to the user in the form of issuing remote commands while away from home. Accordingly, if a home robot owner were to forget to schedule or activate the mobile robot 104 prior to leaving on a business trip, the mobile robot user might still program or activate the mobile robot 104 remotely via a command generated by (for example) a mobile robot interaction website provided by the mobile robot manufacturer, which would be relayed through the Internet or other suitable network to the network data bridge 202 , which would in turn convert the information received from the Internet into a corresponding wireless robot network command and transmit the command wirelessly to the mobile robot 104 for execution.
  • a command generated by for example
  • a mobile robot interaction website provided by the mobile robot manufacturer
  • a series of robot commands corresponding to timing and execution of movements, etc. may be compiled into a “dance” routine and transmitted to the mobile robot 104 after a user selects the “dance” from a website maintained on the mobile robot manufacturer's server; alternatively, the “dance” might be combined with audible content such as music or sounds, and/or commands to control the indicia (such as light-emitting diodes (LEDs), liquid-crystal displays, and/or backlights, inter alia) to provide a multimedia “dance,” music and lightshow.
  • LEDs light-emitting diodes
  • a further non-limiting example includes live trouble-shooting or technical support provided to mobile robot users, e.g., initiated through a telephone call or the Internet, or e.g., through a microphone and speaker installed as part of the mobile robot 104 along with the appropriate computing, recording, mixing and transceiving hardware and software (and bandwidth, both wireless and over the Internet, as well as proper latency and synchronization).
  • a camera might be included for enhancing such virtual interaction, and/or the proximity sensor normally put to use in obstacle detection may be employed during alternative modes as a general-purpose observation camera in those implementations in which the proximity sensor is configured to function as a visual-spectrum camera, with encoding and transmission of streaming video from the robot via the wireless link to the network data bridge 202 and onto a networked destination, inter alia.
  • the mobile robot 104 may collect certain data regarding battery use, recharging frequency, amount of time spent performing its primary task, the amount of time spent idle, the frequency with which the robot becomes stuck, etc., and periodically transmit this data to the mobile robot manufacturer's servers via the network data bridge 202 .
  • the ability to transmit audible content to the mobile robot 104 permits the mobile robot 104 to “speak” instructions directly to the user of the mobile robot 104 at the time and place of use.
  • the mobile robot 104 may speak directions when in a demo mode that is initially run to demonstrate various features the mobile robot 104 can perform.
  • Voice instruction to the mobile robot user can be accomplished by transmitting encoded audible content to the mobile robot 104 (either by installing such audible content on read-only memory (ROM) in the home robot at the time of manufacture, or by transmitting wirelessly or otherwise and storing the audible content in flash RAM, for example) and playing it back over an on-board decoder and/or synthesizer and speaker installed in the mobile robot 104 .
  • Synthesized speech encoded for decoding on speech synthesis hardware may require less on-board storage than non-synthesized speech; however, as an alternative, natural or computer speech may be recorded as wave-form encoded (and/or psycho-acoustically encoded) sound data and transmitted to the mobile robot 104 for storage and later playback.
  • speech for playback on the mobile robot 104 may also be encoded as WAV files or compressed sound files (e.g., employing compression such as Lempel-Zev-Welch (LZW) or other techniques that are less computer-resource-intensive than, for example, MP3 or Windows Media (WMV) decoding).
  • LZW Lempel-Zev-Welch
  • WMV Windows Media
  • a phoneme string file to be downloaded to the mobile robot 104 may include and/or be thematically associated with, for example, an animation storyboard file including tags that trigger synchronized or asynchronous parallel movement events, lights (or other indicia) and/or non-synthesized sound
  • an animation storyboard file including tags that trigger synchronized or asynchronous parallel movement events, lights (or other indicia) and/or non-synthesized sound
  • a string such as “he-llo ha-w [which may here represent a tag to start a “bowing” trajectory in, trajectory out movement as an asynchronous ballistic behavior] a-re y-ou” may thus trigger the associated “bowing” robo-motion (e.g., thematic “dance” or emotive behavior performable by the mobile robot 104 ).
  • the mobile robot 104 may include speech-recognition functionality in order to recognize spoken commands or other interaction from mobile robot users; also, the storyboarding capability as discussed above may encompass and encode responses and references to any of the functionalities or capabilities performable by the mobile robot 104 .
  • An RF system used by the mobile robot 104 , the network data bridge 202 , the remote control, and/or the peripheral device 102 may include four radio transceiver modules that are located in the mobile robot 104 , the remote control, the peripheral device 102 , and the network data bridge 202 .
  • the remote control may use RF to transmit control signals to the mobile robot 104 using a bidirectional protocol or unidirectional protocol; also, the remote control unit may allow the user to “drive” the mobile robot 104 around as well as sending scheduling data created on the remote control unit.
  • the mobile robot 104 may use RF to wake-up and power-manage the peripheral deice 102 using a bidirectional protocol.
  • the network data bridge 202 may use RF to transmit data and code updates to the mobile robot 104 as well as to upload diagnostic data from the mobile robot 104 using a bidirectional protocol. Furthermore, when there are multiple peripheral devices as well as the network data bridge 202 in operation, in which the peripheral devices and the network data bridge 202 can maintain an RF or other communication channel in a relayed fashion, the wireless robot network communication between the network data bridge 202 and the mobile robot 104 may be propagated along the chain of peripheral devices even when the mobile robot 104 is beyond the direct RF range of the network data bridge 202 . The effective range of the wireless robot network can be extended by the linking of peripheral devices.
  • the 2.4 GHz ISM band may be used with either direct-sequence or frequency-hopping spread-spectrum transmission techniques.
  • either a custom proprietary protocol based on some implementation of a standard 7-layer OSI model may be used, or the ZigBee 802.15.4 standard protocol may alternatively be used, inter alia.
  • the custom protocol may allow for proper regulatory compliance in all countries of interest, for example, or alternatively, may be suited for each anticipated national market.
  • the following single chip, integrated RF transceiver radio modules are examples of chipsets that may be used to implement the RF system: Chipcon CC2500; Chipcon CC2420; Freescale MC13191; Freescale MC13192.
  • a printed circuit “F” style antenna design may be used with either no external RF power amplification or a suitable RF power amplification depending on the range and power requirements.
  • Robot-net RF may include a sparse protocol that simply has robot or beacon control and reporting messages like WAKEUP, GO_CLEAN(robot-n), ERROR(robot-n, i-am-stuck), etc.
  • the savings in complexity may enable small amounts of memory (e.g., 8K) on some elements of the network.
  • a Lighthouse may have 8 KByte of program memory.
  • the point-to-point protocol may be simpler than Zigbee because it does not support routing of traffic from endpoints other than the home robot products, encryption of data packets, or many other features needed for meshing.
  • robot-net may define messages that are specific to robot control and monitoring which are unique (lighthouses may also be configured to use the protocol, although they may be turned on and off by the robot extra-protocol). This control is unique even if implemented such that ZigBee forms a portion of the application layer, as a non-limiting example.
  • At least one of the endpoints may be mobile.
  • Instantaneous signal strength, or signal strength over time can be used to help the robot navigate or correct beacon-based navigation, e.g., by providing additional data informing the robot that it is proceeding in the correct direction or in a failure mode, as non-limiting examples.
  • the demo mode may include several speech files may be scripted in sequence; in which the script is not necessarily an interpreted script, but may simply represent a linear routine coded in any suitable manner.
  • the script may flash the lights and buttons visible on the mobile robot 104 , make sounds and cause the mobile robot 104 to do the things it is supposed to demonstrate (such as spot cleaning)
  • the demo script may flash the lights or other indicia directly and run the behaviors directly, or could generate phantom presses/sensor events within the robot's computer control system to make the appropriate indicia and/or behaviors occur.
  • the voice routine could tell the user to press spot clean now (or could send a phantom button press to the UI control, which would flash the button as usual and start as usual.
  • demos may be triggered by fake signals forwarded to a virtual sensor, for example—demo of stasis/stuck response by telling the mobile robot 104 it is stuck, etc.), then wait a certain period before reasserting control for the remainder of the demo.
  • the demo could detect that the user pressed the wrong button and redirect him, as well, for example.
  • robot-motions (interchangeably, “animotions”) which may be transmitted either alone or as part of a theme or bundle may include new functional robot motions or behaviors such as spot-coverage, wall-following, and bounce operational modes, which may pertain to at least certain implementations of mobile robots in accordance with the present invention are specifically described in U.S. Pat. No. 6,809,490, by Jones et al., entitled, Method and System for Multi-Mode Coverage for an Autonomous Robot, the entire disclosure of which is herein incorporated by reference in its entirety.
  • the mobile robot 104 may be provided with a speaker for playback of audible content, a wireless or direct link to the network data bridge 202 for receiving the audible content, and a processor (for example, a speech synthesizer, MIDI chipset and/or frequency modulation (FM) unit, etc.) for replaying the audible content.
  • a processor for example, a speech synthesizer, MIDI chipset and/or frequency modulation (FM) unit, etc.
  • the audible content may have significant functionality—in a non-limiting example, a warning siren sound may be downloaded to provide a clear signal when the mobile robot 104 detects a potentially hazardous condition such as overheating of a vacuum motor, or a series of slowly-spoken instructions may provide hard-of-hearing or disabled mobile robot users with a more understandable tutorial on the use of the mobile robot 104 .
  • the audible content and/or theme may provide instructions or other speech in any of a variety of human languages or dialects; in addition, any behavioral or movement-based content such as may be associated with or included in a regional, national, linguistic, cultural, occupational, character or other such theme may also be appropriately correlated.
  • a “ballerina” theme might include spoken instructions affecting an accent reminiscent of a French accent, and a motion profile that causes the mobile robot 104 to perform pirouettes, spirals, figure eights, and other movements reminiscent of a dancer performing ballet, inter alia; this might also be associated with a body cladding set that would suggest a leotard, for example, to enhance the thematic effect.
  • FIG. 5 is a schematic diagram showing an example of body panel themes for the mobile robot 104 .
  • the mobile robot 104 may include customizable, snap-on or otherwise interchangeable exterior panels 502 a - b which may be “themed” for permitting mobile robot users to individualize their mobile robots.
  • body panels may be molded from plastic and thereafter painted, dyed, or covered with an adhesive material; any suitable modality for coloring, designing or drawing patterns thereon may be used, as appropriate.
  • a design may be applied to the interior of a transparent sheet-like polymer material, and then the polymer sheet or body panel may be applied to a molded plastic piece as a body panel; as a result, the design is protected by the transparent polymer sheet, while rapid theming of body panels in a “just-in-time” (JIT) distribution strategy may be achieved.
  • the panels may also be customized by user content, e.g., printed by ink jet onto an appropriate material.
  • the user may upload a photo, which can be adapted to a template, and the JIT-made shell may be made and delivered at the appropriate time (e.g., x-mas panel with sounds of a user's own family singing Christmas Carols, e.g. uploaded to the server by the user earlier for inclusion into a modified or customized theme).
  • the interchangeable body panels 502 a - b may include an identification system corresponding to audible or other thematic content that may be transmitted to the home robot to complete the theming effect.
  • the body panels include an electrical contact 504 which is positioned along the interior edge of the panels 502 a - b so as to contact a corresponding electrical contact on the mobile robot 104 when installed thereon.
  • the electrical contact 504 on the body panels 502 a - b is operatively connected to an appropriate electronic identification unit, such as an integrated circuit (IC) 506 that outputs a voltage pattern corresponding to a unique theme ID number; and/or a specific resistance 508 which likewise corresponds to particular theme IDs 510 a - b .
  • IC integrated circuit
  • the body panels 502 a - b may include an RFID or passive magnetic device; a mechanical ID mechanism such as a punch-card like series of holes or peaks; an optical ID system such as a barcode or characteristic color; or any other modality suitable for identifying a body panel's corresponding theme.
  • the ID can be transmitted by the mobile robot 104 back to the network data bridge 202 as authorization or identification to download corresponding themed firmware, multimedia, etc. to the mobile robot 104 as discussed herein.
  • the mobile robot 104 may e.g., reject theme content as potentially unauthorized; or, conversely, accept any theme material if there is little concern regarding unlicensed theme content.
  • FIG. 8 is a schematic diagram showing an example of a robot system 800 including a vendor 802 (as a type of audible or other content) and a manufacturer server 804 .
  • the system 800 acts as a content distribution system, in which the vendor 802 distributes licensed content to mobile robots (“consumer robots”) under the supervision of licensing and security-checking systems (“big brother” 806 , “CRM” 808 ) as a back-end to a consumer-oriented website administered by a robot manufacturer (“E-Commerce Site” 810 ).
  • “Rtoon” may signify distributable content, whether audio or other thematic material, for example.
  • the mobile robot 104 may wirelessly transmit information regarding the detected theme ID to the mobile robot manufacturer's server via the wireless robot network data bridge 202 and Internet, for example.
  • the server may then determine whether audible or other content corresponding to the transmitted theme ID is available, and if so whether the corresponding content is properly paid for, licensed, etc.
  • the server may transmit the corresponding content (such as a set of audio data arranged as a sound theme and/or a set of robot “dance” commands, indicia patterns, etc.) to the mobile robot 104 via the Internet and the network data bridge 202 , for example; alternatively, the server may transmit an “unlock code” or cryptographic key for decoding encrypted and/or otherwise restricted content already present at the mobile robot 104 ; or, for example, the mobile robot manufacturer's server may cause a separate content server (e.g., belonging to a third party and under licensing and electronic distribution agreement with the mobile robot manufacturer, for example) to transmit such data to the appropriate mobile robot which sent the theme ID.
  • a separate content server e.g., belonging to a third party and under licensing and electronic distribution agreement with the mobile robot manufacturer, for example
  • FIG. 4 is a schematic diagram showing an example of a robot system 400 including mobile robots 104 a - c , in which the computer 206 transmits themes to the mobile robots 104 a - c .
  • Mobile robot users may receive new or updated musical, sound, visual, choreographic or other such thematic content which corresponds to the themed body panels installed on their mobile robots.
  • a website 402 displayed on the personal computer (PC) 206 offers a choice of three sets of music contents, ‘A’ 404 a , ‘B’ 404 b , or ‘C’ 404 c , for transmittal to or activation on the mobile robots 104 a - c ).
  • the theming may even extend to the content within themes—e.g., if a robot has several audio files or “earcons” loaded (e.g., in a format such as MIDI), and then selects a “steel drum” theme, the theme might include musical instrument elements (e.g., also encoded as MIDI instruments or other suitable format) which replace the standard instruments that would normally be played in the earcons or sound files; as such, a rock ballad may be “themed” into a Caribbean anthem, as a non-limiting example.
  • MIDI a format
  • the theme might include musical instrument elements (e.g., also encoded as MIDI instruments or other suitable format) which replace the standard instruments that would normally be played in the earcons or sound files; as such, a rock ballad may be “themed” into a Caribbean anthem, as a non-limiting example.
  • Audio such as background music to be played while the home robot either sits idle or performs tasks
  • “earcons” that is, sounds that convey meaning and which are played back when triggered by certain events or behaviors, such as the robot playing a car-crash “earcon” when the robot bump sensor detects a collision with an obstacle, or the phrase “feed me!” as an earcon when the robot's detergent or other consumable bin is empty, inter alia
  • daily or monthly activity or activation schedules such that a “family dog” themed robot may cease hibernation or recharging mode when a sound corresponding to the delivery of the morning newspaper is detected, and then proceed to the user's bedroom to “bark” and cavort about in figure “s” or semi-random movement patterns (or to “wag its tail” by rotating the hind portion of the robot repeatedly back and forth) adjacent the user's bed to wake the user or to get the user's attention in a manner reminiscent of an excited dog; a “listening” behavioral routine which may cause the robot to, for example,
  • content such as the “robo-motions” (“dance” moves or distinctive motions performed by wheeled or otherwise mobile home robots) may be triggered on command by way of voice command recognition, etc., on the robot such that the user may clap her hands or verbally instruct the robot to “beg” or “stand still” or “dance the Lindy Hop,” and the robot would comply by performing the associated robo-motion, for example.
  • a “super robot cleaner” theme might include behavioral patterns that cause the home robot to detect spots on the floor and to spend a particular proportion of cleaning time vacuuming or washing the spots discovered as a result of the theme.
  • a mobile robot may be themed as a chess piece, such theme to include not only distinctive body cladding (with different types possible such as “knight,” “rook,” “pawn,” etc.) and e.g., chess-themed music and sounds, but also e.g., a network behavior so as to coordinate with a central server (or possible to “swarm” with several other home robots also acting as chess pieces) so as to adopt the role of a particular piece on a chessboard, in which a user or users bring a plurality of home robots and arrange them in an environment simulating a chess board and command the home robots to move as chess pieces during a chess game; this high-level “chess” theme thus may include also the rules of chess and behaviors and movement patterns (as well as network routines and functions) of various chess pieces, as well as visual and
  • the content types that may be used and combined into theme packages may encompass a broad range of material, virtually as broad as the range of potential capabilities performable by the mobile robot 104 , for example.
  • the present inventors intend that the examples of associated themed content given herein can be generalized for the purposes of the invention according to their readily recognized type:
  • the chess and trivia game examples are examples of providing associated themed content linking at least two of a predetermined game rule set, game piece or paraphernalia set, game appearance, and game sounds.
  • parrot and dog examples are examples of providing associated themed content linking at least two of a predetermined entity (i.e., animal or person) motion set, appearance, and sounds. This would extend to celebrities, so called “licensed properties” linked to well-known entertainment programs or books, characters and the like.
  • a predetermined entity i.e., animal or person
  • the ballet example is an example of providing associated themed content linking at least two of a predetermined dance move set, paraphernalia, appearance, music, and sounds.
  • the country-and-western example below is an example of providing associated themed content linking at least two of a musical genre move set, paraphernalia, appearance, music, and sounds.
  • Mobile robot users with Internet-capable personal computers, cell phones, PDAs, and other devices may also browse the home robot manufacturer's server via a web site and select themes, sounds, tones, “dances,” software, or other suitable mobile robot content for download and/or purchase.
  • the user interface presented to the user may also be customized to match the robot theme as well—that is, a theme may include multimedia content that can be manifested on the robot but also on an online interface that is associated with the robot having the theme, and with which the user interacts when using the online interface and/or the robot.
  • users may select themed body panels, base stations, batteries, accessories, new home robots, data bridges, etc., from the web site, and have the items shipped to their home. Items such as body panels may then be ordered in bulk in blank form by the manufacturer or reseller who operates the web site, and then apply themed designs rapidly and “just-in-time” after (or before, when sales prediction analysis is properly applied) receiving an order from a home robot user.
  • themed items may be accompanied by a CD-ROM, floppy disk, “memory stick”-type data bridge, or other data medium in order to transmit the appropriate corresponding themed content to the home robot upon installation of the ordered themed item.
  • the mobile robot manufacturer or reseller may omit shipping data media along with physical items, and instead offer Internet-based transmission of the corresponding themed content (via the wireless robot network data bridge, for example), or do so when orders are received from customers who the manufacturer or reseller has a record of having previously bought the network data bridge 202 , for example (or when records show that the customer already has the most up-to-date version of the appropriate themed content).
  • the mobile robot manufacturer or reseller may reduce shipping charges when it is known that the ordering customer has the ability to update the mobile robot 104 via the network data bridge 202 , for example.
  • customers may be offered a variety of functional and thematic combinations for body paneling, sounds and music, “dance” routines, and indicia flash patterns (and/or one-off or single-item offerings in a “mix-'n′-match” mode, such as a Country/Western paneling-themed robot with a rock'n′roll “dance” routine and a classical piano sound theme, in a non-limiting example).
  • the County/Western theme body panel 502 a is linked to music content ‘A’ 510 a
  • the piano theme body panel 502 b is linked to music content ‘B’ 510 b (which would usually be piano-related).
  • accessory replacement and service reminders tied to usage can be contemplated—e.g., reminders to replace the batteries after a certain number of recharge cycles or hours expended.
  • the online service may be configured to enter a recommended replacement part (to replace a part recorded as having accumulated sufficient cycles or time to be worn according to the uploaded data) or a consumable material such as detergent, cat food, lubricant or any other such material (to augment the stock of the consumable material recorded as needing replenishment) into the user's online shopping cart or one-click purchase queue, as non-limiting examples.
  • a website may be handled in a conventional manner, by permitting online credit card or check payment, etc.
  • customers may place orders for a customized home robot with their choice of complete theme or a “mix-'n'-match” robot (e.g., a male lion vs. a female lion) personalized to the users' own variegated tastes and styles.
  • a customized home robot with their choice of complete theme or a “mix-'n'-match” robot (e.g., a male lion vs. a female lion) personalized to the users' own variegated tastes and styles.
  • users may be offered the option to apply slogans, names, or any arbitrary writing and/or images to be printed on their home robots, for example.
  • a further example permits the user to create or record his or her own sounds or music content and to transmit this custom content to his or her home robot.
  • the home robot manufacturer may employ a media and/or authoring software protection scheme, for example, such that only licensed copies of the authoring software will function properly and such that only content produced on a properly licensed copy of the manufacturer-provided software will correctly play back on that manufacturer's home robots, for example.
  • public-key encryption techniques may be applied in which each robot receives a public key known to the user (such as a serial number, for example), and a private key known only by the manufacturer.
  • the copy that the home robot user receives may “watermark” its output content with the encryption key such that only the particular user's home robot can pay back the output content, as a non-limiting example.
  • Other encryption or protection schemes may be employed to allow wider or narrow distribution, as appropriate to business and license/copyright protection concerns.
  • users may be offered a content subscription service in which a number of themes and/or audible or other content are made available per month or other time period to the user who purchases the subscription.
  • FIGS. 9A-C are state diagrams showing examples of state machines 900 , 930 , and 960 for the mobile robot 104 , the lighthouse peripheral device 102 , and a remote control peripheral device, respectively.
  • the Robot Personal Area Network (RPAN) protocol used by the network data bridge 202 , the mobile robot 104 , and the peripheral device 102 can be used in many ways as defined by applications.
  • RPAN Robot Personal Area Network
  • FIG. 9A shows a high level state diagram that serves as a reference for the following discussion.
  • the mobile robot 104 is an RPAN master responsible for several tasks, such as providing a unique address to isolate communications with its peripherals from other RPAN systems, deciding on a radio channel to use, operating on the common channel as necessary to report this operational channel, and transmitting a beacon which defines time windows that peripherals should use to communicate.
  • the RF network is inactive, meaning that no beacon is transmitted. While in this state 902 , the mobile robot 104 can be woken up over RF by executing the following steps in a constant loop.
  • CSC Common Signaling Channel
  • every second the mobile robot 104 invites peripheral devices, such as the peripheral device 102 , to wake it up.
  • peripheral devices such as the peripheral device 102 .
  • a peripheral wanting to wake up the mobile robot 104 will listen for a second for the “Activate Invite” message and respond promptly with the “Activate Request” message which wakes up the mobile robot 104 .
  • the mobile robot 104 When the mobile robot 104 has been woken up to active scan state 904 , it checks if its radio channel is still valid. If the robot sleeps for more than 10 minutes, the radio channel will be reselected. This time is chosen to safely exceed any session oriented timers. The first step in reselecting a channel is to actively scan for other RPAN masters and exclude their channels from the set of acceptable channels.
  • An active scan is performed by sending two “Ping” messages on the CSC to the broadcast RPAN address.
  • the mobile robot 104 listens for 30 ms after each message for “Ping Response”. Each “Ping” message is separated by 360 ms.
  • candidate channels are scanned for energy levels in order of preference.
  • 100 energy level samples are obtained in about 100 ms of time.
  • the first channel to have an average energy level below an acceptance threshold is chosen as the new operational channel. In the unlikely event that no channels meet these criteria, one is randomly chosen.
  • beacon period a window of time following the beacon which is valid for devices to communicate is advertised.
  • This “contention access period” is set to 220 ms in the normal mode. While not in the contention access period, the robot operates on the common channel to answer “Ping” messages with “Ping Responses” advertising the radio channel on which the robot is operating.
  • beacon and contention access periods are as follows: to keep beacon tracking overhead low, to keep radio power consumption low, and to allow peripherals with very inaccurate clocks to reliably find robots. This final goal is satisfied by defining one more time constant which is the “ping separation period”. If a peripheral sends two pings separated by 360 ms, the real time assuming the clock is plus or minus 30% is anywhere between 252 ms and 468 ms. On the low side, the 252 ms is sufficiently high so that both pings will not occur while the mobile robot 104 is on the operational channel. On the high side, the 468 ms is smaller than the 500 ms that the mobile robot 104 is listening on the common channel guaranteeing that one of them will be receiving during that time. There are other combinations of values that work. Also, with higher clock accuracy the contention access period duty cycle can be higher. These values can be recalculated for other systems based on those needs.
  • the 500 ms when the mobile robot 104 is operating on the common channel represent a dead time that can be unacceptable at times.
  • One such time is when the mobile robot 104 is being driven remotely.
  • Another is when the mobile robot 104 sensors are being monitored for diagnostic purposes.
  • a peripheral may send a “Low Latency Request” message which contains a byte representing the number of seconds that low latency mode should be used. The low latency time can be refreshed with subsequent messages. Also, the mobile robot 104 itself may switch to low latency mode.
  • FIG. 9B shows the state diagram 930 that serves as a reference for the following discussion.
  • message flows between the mobile robot 104 and the lighthouse peripheral device 102 are illustrated.
  • a peripheral device, such as the lighthouse peripheral device 102 may be a simple slave device.
  • the slave 102 begins in a low power consumption state 932 designated as “Free” in the state diagram 930 .
  • this state 932 it wakes up periodically and attempts to join a robot network. It does this by setting its channel to the common signaling channel (CSC is the 5th channel). It then sends a broadcast message to ask any robots who are listening on this channel to respond. The response from a robot hearing this message advertises a network with an ID on an appropriate channel (zero based numbering). This is the same active scanning process described above.
  • the lighthouse 102 will get 0 or more responses in the two 30 ms windows of time it listens after sending the requests. If none are received, it will go back to sleep and perform another active scan in 4 seconds. If one or more are received, it will choose to join the network of a mobile robot whose response message was received with the greatest signal strength value.
  • the lighthouse 102 If the lighthouse 102 has ever received a Join Accept message from a robot, that robot's RPAN ID is used instead of the broadcast address in the ping message. In this way, the lighthouse 102 will not waste power waking up for a robot that is in RF range but not its owner, e.g. the neighbor's mobile robot.
  • the lighthouse 102 If the lighthouse 102 wants to join a robot's network and does not have an assigned address, the lighthouse 102 will randomly select a MAC address (marked as “Soft” in the MAC header) to use temporarily until the robot assigns one to it.
  • a MAC address marked as “Soft” in the MAC header
  • “Seeking” state 934 the lighthouse 102 changes channels and listens for the beacon emitted periodically by the mobile robot 104 . It should pick this up within a few seconds at most. If this does not happen, a timeout (30 seconds) will send it back to the “Free” state 932 .
  • the lighthouse 102 will advance to “Binding” state 936 .
  • the lighthouse 102 will filter packets from other robots and monitor its link to the RPAN network from the MAC layer beacon tracking. These are shown in the state diagram as “Link Up” and “Link Down” events.
  • the robot Upon entering this state 936 , the robot will send a “join request” message. This starts a timer on the lighthouse 102 getting accepted into the network within 5 minutes. If that expires, the lighthouse 102 will return to “Free” 932 . (This 5 minute time period is known to both the robot 104 and the lighthouse 102 so that each can expire their pending Whenever the robot 104 receives a join request that causes a collision of soft MAC addresses in its table, it will send a join rejection message that does not need to be acknowledged, and the entry will not go into the table. The lighthouse 102 (and perhaps the other lighthouse with the colliding MAC address) will follow the Join Fail event on the state diagram which will result in regenerating a MAC address and trying the bind again.
  • the robot 104 When the robot 104 receives a join request message and wants to delay the binding until another handshake is performed as is the case with lighthouses, it sends a join pending message.
  • a join pending message is needed if an acceptance or rejection will not be sent within 3500 ms.
  • the lighthouse 102 While acceptance is pending, the lighthouse 102 will transmit a 4-bit code in the confinement beam ( 11 ) which indicates that it has not bound to the robot.
  • the robot 104 runs into a code 11 beam, it stops and looks at its list of lighthouses requesting bindings. For each entry, it issues a command to wink the code to 12 . If that command is not acknowledged or the beam change is not seen, the lighthouse 102 is not in range, and the robot 104 moves on to the next entry in the list. If the robot 104 succeeds in seeing the beam, it sends a join accept message which moves the lighthouse 102 into Active state 938 where it obeys beam commands requested by the master.
  • the beam command message contains the state of beams as well as the 4-bit code that should be in the beam.
  • the binding process is designed to obviate the need to assign static MAC addresses to simple devices of which there can be multiple talking to a robot at once.
  • the assignment of addresses by the robot 104 can simply amount to cycling through a list of valid addresses. If the assigned MAC addresses are to expire some time after the bind, it greatly reduces the chance that the user could cause a configuration error.
  • FIG. 9C shows the state diagram 960 for the remote control.
  • the remote is used to drive the robot 104 around program its schedule.
  • the remote control has a group address and does not require a numeric address.
  • the pressing of a button triggers seeking state 934 and the search for robots on the common channel.
  • the search is performed at a very low power setting if the RPAN ID stored in non-volatile memory is blank. Otherwise, full power is used. In this way, a robot in very close proximity will respond to an unpaired remote.
  • the search can be described by the following loop which is executed continually until a robot is found or until the remote puts itself back to sleep due to inactivity.
  • the remote moves to binding state 936 and the robot with the highest signal strength is selected.
  • the remote switches to the robots channel and gets link by tracking the beacon. It then sends a ping message to itself. If it gets a response, then that means another remote control is using the group address. If no response is received, the remote is in active state 938 and is allowed to control the robot 104 .
  • the remote successfully communicates with the robot 104 on the operational channel, that robots RPAN ID is programmed into the remote controls non-volatile memory.
  • the remote control communicates with the robot 104 as long as it is awake and buttons have been pressed recently (60 seconds). If the beacon is lost for over 10 seconds which is how Link Down is configured on the remote, it tried to find a robot again.
  • a paired remote control can be unpaired by installing the batteries with the left drive button depressed and keeping it held down for three seconds. It is then paired as part of the robot discovery algorithm described above.
  • Driving the robot 104 and operating its user interface remotely is accomplished by sending button states to the robot 104 and receiving LED states from the robot 104 . These are updated when they change as well as at a refresh interval. In this way, the remote can be thought of as a dumb terminal.
  • the communications system performs the following actions: wake to RF for lighthouses and robots, remote control and lighthouse beam control commands, low power consumes a low amount of power, occupies a small RAM/ROM footprint, code and sound download, coexists with common interferers found in such environments, coexists with other robot systems in proximity as will be common in the mobile robot 104 development labs and some home environments, provides a simple growth path at each layer of the networking hierarchy.
  • the RF communications stack to be used on the robot systems 100 and 200 is discussed in a layer oriented approach starting from lowest and ending with the highest. The approach is based on the seven layer Open Systems Interconnection (OSI) Reference Model.
  • OSI Open Systems Interconnection
  • the physical layer uses the 2.4 GHz direct sequence spread spectrum (DSSS) modem as is specified in IEEE 802.15.4.
  • the physical layer supports the following features: 16 available channels; energy detection (ED) provided on demand; clear channel assessment (CCA) using energy, carrier sense or both; and link quality indication (LQI) provided with packet reception.
  • ED energy detection
  • CCA clear channel assessment
  • LQI link quality indication
  • the MAC layer provides the ability for a device to transmit broadcast and uni-cast messages to other devices within radio range. This does not preclude any topology from being supported in the future. However, layers above this MAC layer will impose restrictions.
  • the MAC layer supports the following features: single master and multiple slaves, master sends beacon containing the beacon period and active period which allows a slave device to track the beacon knowing when to listen and when to save power, slave tracks beacon to establish link status, master can be told by higher layers to listen on the network establishment channel during idle periods of the beacon, a 16-bit Robot Personal Area Network Identifier (RPAN ID) to allow devices to filter packets not on the robot network of interest when channel is shared, group identifier in addresses include allow broadcast to specific device types and obviate need for unique MAC addresses for many types of peripherals, collision avoidance algorithm using CCA and random back-off, and reliability through acknowledge requests and automatic retry.
  • RPAN ID Robot Personal Area Network Identifier
  • MAC layer acknowledgement was done for the IEEE 802.15.4. This may bring the MAC layer up to par with wired media such as half duplex Ethernet where collision detection can be used to give the sender a high level of confidence that the packet arrived at the destination.
  • Network layer acknowledgement schemes may be needed when bridges and routers between the sender and receiver have the potential to drop packets due to resource constraints. Either MAC layer or network layer acknowledgement can be made to suit the needs of this network.
  • the MAC layer acknowledge is time sensitive since there is no addressing information contained in the packet. If the acknowledgement is sent very quickly, it is unlikely to collide with a new data packet or be confused as an acknowledgement to the new data packet. The sequence number reduces the chances of processing the wrong ACK.
  • An acknowledgement at the network layer is not as time sensitive since the packet contains addressing information. However, more time is wasted sending this extra information and the latency is worse as information is passed between layers. More state information is potentially needed to remember which packets have not been acknowledged unless head of line blocking is used.
  • Avoiding time critical processing of packets is not desirable, but there may be situations in which it is used. If another robot or an IEEE 802.15.4 device is operating on the same channel, the receiver may need to promptly parse and discard a valid packet not intended for it. To the extent it delays, it risks not listening when a packet intended for it is received. After factoring this in, it may be appropriate to include the ACK and retry feature at the MAC layer and take steps to mitigate the imposed real time constraints.
  • an acknowledgement scheme implemented at the MAC or network layers can be made to work. If the MAC layer proves problematic, due to any of the concerns expressed above, the acknowledgment scheme can be implemented at the network layer.
  • the network layer is responsible for establishing membership in a network.
  • the role of a master device and a slave device are different at this layer.
  • the network layer supports the following slave features: network discovery using low power active scanning on common channel, can issue requests to join a network using a temporary random MAC address, and can participate in a network without any joining transaction if MAC address is known.
  • the network layer supports the following master features: channel selection when network is started based on best available channel, and management of join requests sent on the common channel including assignment of MAC addresses to slaves using temporary ones.
  • Channel 4 does not get 802.11b interference in the USA or Europe. As such, it is chosen as the common signaling channel used for network joining procedures.
  • the defined MAC layer draws on IEEE 802.15.4. Some concepts borrowed include the CSMA-CD algorithm, the reliability feature, and the beacon concept to some extent. The PAN coordination features are replaced with a method more targeted to the more limited needs of the higher layers.
  • the MAC layer is based on the presence of a master who generates beacons which define a period of active communications during which any device can talk to a device. Slave devices track this beacon to determine if the robot is present and when it can save power.
  • the mobile robot 104 is the master device and is responsible for transmitting the beacon and managing slave devices. Slave devices track the beacon of the master so they know when they should listen for the next beacon, when they can communicate with other devices, and when they should turn off their RF modems to save power.
  • the MAC layer header includes a field designed to conflict with the IEEE 802.15.4 frame type field so that such a MAC device should reject it as an invalid frame type, and is otherwise designed to allow multiple RPANs to share a single channel.
  • the RPAN ID field is in a fixed location in the packet, so a receiver can filter on a particular RPAN much like a Virtual LAN (VLAN) in Ethernet.
  • VLAN Virtual LAN
  • Beacons are transmitted by a master at periodic intervals.
  • One reason is to imbed information about when the slave devices should expect to exchange messages with the master. This duty cycle control allows some level of power saving even during active operational modes.
  • the second reason for transmitting beacons is to provide a constant status on the proximity of the robot. The goal is to unburden application layer software from doing this task.
  • a beacon is sent periodically as specified by the Beacon Period which is specified in the beacon itself. So, a slave receiving a beacon knows when to expect the next one.
  • An Access Period is specified in the beacon, as well. This dictates the period of time during which the master will be active on the channel. Slaves should pay attention during this time and may shut down their receivers at other times.
  • the sequence number in the beacon allows the slave to detect one or more missing beacons.
  • the beacon periods may be set in a manner related to the period that peripherals use to wake up and try to join a network.
  • a typical beacon period may be on the order of a second.
  • the jitter of the beacon message is relatively high considering the random nature of the back-off algorithm.
  • the slaves should not be burdened with having to manage events with a high level of temporal precision.
  • the slave should define a “beacon window” which is a time period centered on the next expected time a beacon will be received.
  • the slave should listen for the beacon during this window. The window ends when the expected beacon is received, ideally. If no beacon is received, the window ends, but the slave operates during the access period as if it received one. When a beacon is missed in this way, the window is lengthened for the next beacon since clock inaccuracies add.
  • beacons Once too many beacons have been missed, a loss of beacon is declared and the slave just listens constantly until it reacquires it.
  • the loss of beacon condition is analogous in the Ethernet world to losing link.
  • the master transmits beacons with a time accuracy of less than 0.1%.
  • the MAC engine is based on a 250 microsecond process tick in order to simplify the management of state timers and avoid busy waiting. It should be a design goal of the implementation to insure that the processing in a single tick never exceeds 125 microseconds in order to leave plenty of processor available for other more critical tasks.
  • 7.8 characters can be transmitted at the fixed baud rate of 250 kbps. Including the preamble and PHY header, the smallest possible packet is 8 characters long. This means that two CCA functions performed in consecutive ticks will almost certainly detect an ACK in flight.
  • the collision avoidance algorithm is invoked whenever there is a packet ready to transmit.
  • the transmitter will delay a random number of back-off periods before running the CCA function. On the tick where the CCA function has completed, the transmitter will start sending if the CCA returned saying that the channel is clear.
  • the dead time between a packet reception ending and an ACK starting is between one and two ticks. So, a CCA function that does its best to prevent stepping on the ACK is one which performs two CCA measurements spaced a tick apart and declaring the channel clear if both pass.
  • the back-off period is designed to be longer than the transmission time of a small packet such as an ACK, so two ticks is chosen.
  • the receiver prepares to send an acknowledge packet provided that it will be able to pass the buffer along to the application.
  • the receiver waits one tick to give the sender time to switch its transceiver into receive mode, then transmits an acknowledgement which is the first 2 bytes of the MAC header echoed with the frame type changed to an the ACK value.
  • the sender expecting an ACK will wait for up to five ticks (1.25 ms) to receive the reply before retrying the transmission. Up to three retries are performed. If an acknowledgement is requested, the sender should postpone sending the packet if there is not enough time remaining in the current active period for the receiver to send the acknowledgement.
  • Transport Header which consists of a byte specifying the Service Access Point (SAP). This multiplexes different types of services onto the same device address. Previously, this has been accomplished using the “opcodes”.
  • Device Control, Device Status Request, and Device Status SAPs are related in that the payload messages use the same code points on a per device basis. That is to say that devices will have a published set of control and status information elements consisting of an element code followed by a known number of element payload bytes. If controllable over RF, the Device Control SAP is used to set values. Controllable and observable items can be queried with a Device Status Request. The actual status is delivered using the Device Status SAP whether solicited, i.e. requested over the Device Status Request SAP, or unsolicited, i.e. sent spontaneously. Alarms and other indications may be delivered in this way.
  • SAP codes for this related functionality are that it may a major portion of the overall RF traffic. As such, the smaller the packets can be made, the more reliable the transmission. So, for critical control and status messages, having a two byte header ⁇ Device_SAP> ⁇ Control_Cmd> or ⁇ Device_SAP> ⁇ Status_Cmd> keeps the PHY and MAC headers as small as possible.
  • ROBOT OBSTACLE DETECTION SYSTEM U.S. Pat. No. 6,594,844, disclosing proximity sensors such as cliff sensors and wall following sensors;
  • AUTONOMOUS FLOOR-CLEANING ROBOT U.S. Pat. No. 6,883,201, disclosing a general structure of an iRobot Roomba coverage/cleaning robot and main and edge cleaning heads in detail;
  • METONOMOUS FLOOR-CLEANING ROBOT U.S. Pat. No. 6,883,201

Abstract

A power-saving robot system includes at least one peripheral device and a mobile robot. The peripheral device includes a controller having an active mode and a hibernation mode, and a wireless communication component capable of activation in the hibernation mode. A controller of the robot has an activating routine that communicates with and temporarily activates the peripheral device, via wireless communication, from the hibernation mode. In another aspect, a robot system includes a network data bridge and a mobile robot. The network data bridge includes a broadband network interface, a wireless command interface, and a data bridge component. The data bridge component extracts serial commands received via the broadband network interface from an internet protocol, applies a command protocol thereto, and broadcasts the serial commands via the wireless interface. The mobile robot includes a wireless command communication component that receives the serial commands transmitted from the network data bridge.

Description

  • This application is a continuation of U.S. application Ser. No. 11/633,883, filed on Dec. 4, 2006, which claims priority under 35 U.S.C. 119(e) to a U.S. provisional patent application filed on Dec. 2, 2005, entitled “ROBOT NETWORKING, THEMING AND COMMUNICATION SYSTEM” and having assigned Ser. No. 60/741,442, the entire contents of which are hereby incorporated by reference.
  • TECHNICAL FIELD
  • This invention relates to robot systems, and more particularly to power saving robot systems and robot system networks.
  • BACKGROUND
  • Autonomous robots are robots which can perform desired tasks in unstructured environments without continuous human guidance. Many kinds of robots are autonomous to some degree. Different robots can be autonomous in different ways. An autonomous coverage robot traverses a work surface without continuous human guidance to perform one or more tasks. In the field of home, office and/or consumer-oriented robotics, mobile robots that perform household functions such as vacuum cleaning, floor washing, patrolling, lawn cutting and other such tasks have been widely adopted. Autonomous coverage robot systems that include a coverage robot and peripheral devices are generally battery powered. As a result, the battery life of each component of the system affects the operability of the overall system.
  • SUMMARY
  • The present disclosure provides a robot which can communicate with a base station and/or internet site via wireless communications media, in one configuration using a wireless bridge adapted for connection directly to a home wired network to provide a direct presence and proxies for the robot, allowing the robot to be a fully functional network node.
  • In one aspect, a power-saving robot system includes at least one peripheral device to be placed in an environment and a mobile robot. The peripheral device includes a power supply, a wireless communication component, and a controller having an active mode in which the peripheral device is fully operative and a hibernation mode in which the peripheral device is at least partly inactive. The wireless communication component is capable of activation in the hibernation mode. The mobile robot includes a drive system that moves the robot about the environment, a wireless communication component, and a controller. The controller has an activating routine that communicates with the peripheral device via the wireless communication components and temporarily activates the peripheral device from the hibernation mode when the wireless communication components of the peripheral device and the robot come within range of one another.
  • In one implementation, the wireless communication components communicate with transmission wavelengths that permit the robot and the peripheral device to be outside a line of sight. Conversely, in another implementation, the wireless communication components communicate with transmission wavelengths that require the robot and the peripheral device to be within a line of sight. In one example, the peripheral device is precluded from altering modes from the hibernation mode to the active mode until a line of sight is present between the robot and the peripheral device.
  • The wireless communication components may communicate with a point-to-point protocol while excluding routing and may communicate commands interpretable by the peripheral device to initiate a function. In one example, the wireless transmission communicated by the robot wireless communication circuit includes identification information. Similarly, the wireless transmission communicated by the peripheral device wireless communication circuit may include identification information as well.
  • In some implementations, the peripheral device, while in the hibernation mode, occasionally listens for a robot ping. Also, while in the hibernation mode, the peripheral device occasionally polls for a quiet robot. In one example, the peripheral device is a base station. In another example, the peripheral device is a mobile device.
  • In another implementation, the robot measures a signal strength of a wireless transmission communicated by the wireless communication component of the peripheral device to determine a distance from the peripheral device. In one example, the wireless communication components communicate over a radiofrequency.
  • In some implementations, the controller of the robot determines a locality of the robot based on information received via the wireless communication component of the robot from a peripheral device, such as a beacon, located in an area in which the robot is operating. The peripheral device is configured to transmit radio-frequency identification information. For example, each locality within a robot environment may respectively include a beacon configured to wirelessly emit respective location information (e.g. in an environment corresponding to a house, each “locality” may represent a room, and each room may be installed with a beacon broadcasting a unique identification over radio-frequency or other such medium). A base station may be provided in at least one locality, and the beacon may be configured to communicate with the base station and to relay data therefrom and/or thereto. It is advantageous for such beacons and base stations to save electrical power. The beacon may emerge from a low-power “hibernation” intermittently by listening for RF or IR of the robot, by operating a wake-up timer, by being actively RF or IR interrogated by the robot, or any permutation of combinations thereof based on time elapsed since a last event or number or frequency or character of interactions. Furthermore, the robot may activate a peripheral device according to a schedule or transmit schedule information to the peripheral device, which activates itself based on the schedule.
  • In another aspect, a robot system includes a network data bridge and a mobile robot. The network data bridge includes a broadband network interface, a wireless command interface, and a data bridge component. The broadband network interface is connectable to an internet protocol network and carries communications transferred in compliance with an internet protocol. The wireless command interface is connectable to a wireless command protocol network and carries communications transferred under a command protocol. The data bridge component extracts serial commands received via the broadband network interface from the internet protocol and applies the command protocol thereto. The data bridge component listens to the narrowband wireless interface and sends a robot, peripheral, network and system state to the Internet via the broadband network interface. This information is automatically sent to a monitoring service via internet protocols, where long-term monitoring and analysis takes place. Actions/commands resulting from this analysis are injected into the narrowband wireless network by the RF-bridge. These actions can include serial commands, new software images for robot and/or peripheral, or queries for more in-depth (debugging) information that can be interpreted and responded to by the robot. The data bridge component also broadcasts the serial commands via the narrowband wireless interface. The mobile robot includes a drive system that moves the robot about an environment and a wireless command communication component that receives the serial commands transmitted from the network data bridge.
  • In some implementations, the system also includes at least one peripheral device to be placed in the environment. The peripheral device includes a wireless command communication component that receives serial commands transmitted from the robot and the network data bridge. The peripheral device also includes a controller having an active mode wherein the peripheral device is fully operative and a hibernation mode wherein the peripheral device is at least partly inactive. The wireless communication circuit is capable of activation in the hibernation mode.
  • In another aspect, the robot can receive and utilize customizable sounds or other audio content for interacting with a user. The robot receives audible content and plays back the audible content in coordination with specific robot functions. In one example, the robot controls externally visible indicia of the robot in coordination with a play back of audible content such as, inter alia, synthesized voice content during a user interaction and/or training mode.
  • In yet another aspect, the robot includes a facade or external housing changeable with customized cladding. In one example, the home robot includes interchangeable molded plastic or metal body panels affixed to an exterior of the robot by snap-on fasteners, insertable fitting tabs and receivers, screws, magnetic fixing pieces, etc. The interchangeable body panels correlate to audio content uploadable to the robot. In one instance, the customized body panel includes an identification system for automatically causing the robot to download and/or use the corresponding audible content. The identification system may include an integrated circuit, characteristic resistance, bar code, optical identifier, RFID, passive magnetic resonance, or mechanical identification system (e.g. a punch-card-like series of holes or protrusions).
  • The ability to customize the robot by transferring selected sound or multimedia schemes, themes, tones, music, audio or visual content, choreographic or movement routines, or other data to the robot improves overall enjoyment from the robot by a user. In one aspect, the robot includes a radio receiver configured to receive audible content via wireless transmission, a memory configured to store the audible content, a speaker configured to emit the audible content, and indicia controllable by a controller and configured to indicate operative information in a first mode and to indicate illustrative information in coordination with the audible content in a second mode. The indicia may include a light-emitting diode and also a power indicator configured to indicate an actual power state of the robot in the first mode and a training pattern in the second mode. The robot may further include a voice synthesizer configured to synthesize spoken didactic information based on the audible content. Also, the wireless transmission may be structured according to a packet-encoded transmission protocol. The robot may further include a customizable body panel detachably affixed to a main body of home robot, where the customizable body panel corresponds with themed audio data included in the audible content.
  • The robot may be configured to operate in at least first and second modes. The first mode corresponds to a normal robot operating state of the performing a primary function. The second mode corresponds to a training mode, where the speaker emits an audible training instructional program. In the second mode, the indicia of the robot displays according to a training pattern in timed coordination with the audible training/instructional program, where the training pattern displayed on the indicia is different from an operative pattern corresponding to an actual state of the home robot.
  • In another aspect, a robot system includes a mobile robot and a wireless communication system for communicating with the robot. The wireless communication system includes a network interface unit configured to communicably interface with a first network and to wirelessly transmit data to the robot. The wireless communication system also includes a server configured to communicate with the network interface unit via the first network. The robot is configured to wirelessly transmit data to the network interface unit, which is configured to convert the data from a wireless protocol to a network protocol used by the first network. The network interface unit transmits the data to the server. The server may be configured to produce robot usage, robot behavior, and/or customer information based on the data transmitted to the server. Also, a user terminal configured to communicably interface with the first network and to control at least one function of the robot may be provided. The user terminal transmits a command corresponding to at least one robot function to the network interface unit via the first network. The network interface unit wirelessly transmits the command to the robot. User interaction is performed through this user interface, allowing further usage data to be collected. This offloaded interface also allows the robots to coordinate actions without needing to communicate directly with one another. The robot systems are functionally independent of one another, but are tied together via the server through a single user interface/data logging/usage information collecting server.
  • In one example, the wireless communication system includes audible content stored at the server. The server is configured to transmit the audible content to the network interface unit, which is configured to wirelessly transmit the audible content to the robot. Alternatively, audible content may be stored at the user terminal, which is configured to transmit the audible content to the network interface unit via the first network. The network interface unit is configured to wireless transmit the audible content to the robot. Furthermore, content may be stored at a base station to which the robot docks for recharging and/or servicing.
  • Robot-generated data may include theme data corresponding to audible content, in which the server transmits the audible content to the robot via the network interface unit in response to the theme data. The data may alternatively include a behavior theme configured to cause the robot to behave according to a theme. The audible content may include voice data. Other robot behavioral changes may be implemented based on long-term monitoring and analysis of the robot-generated data. (For example, if the robot does not make it back to the dock before the battery gives out three times in a row, the server modifies the behavior of the robot to start looking for the dock/base station earlier. This modifies the robot behavior to be “more conservative.”)
  • Behaviors are parameterized and can be modified, or even disabled/activated based on analysis of usage/sensor information. Robot performance can be autonomously modified by the learned effects of the actual customer home. This can take place after the robot has been purchased and server is updated to provide a better model of robot/home performance characteristics. The wireless reporting infrastructure allows a modification of behavior based telemetry to provide the best performance for a particular customer. The learning process is dynamic and can change as an understanding of the data increases.
  • In one implementation, the wireless communication system includes a second user terminal which is configured to communicably interface with the first network. A theme may be stored at the first user terminal, which transmits the theme to the second user terminal via the first network. The first network may include UDP, TCP/IP, and/or Ethernet, as examples.
  • In another aspect, a content distribution system for distributing data to a robot includes a first server configured to communicably interface with a first network and a user-side node configured to transmit data to the robot. The robot receives customizable content via the user-side node. In one example, the content distribution system further includes a network hub configured to use a protocol compatible with the first network and a network adapter configured to communicably connect the network hub with the first network. The user-side node is configured to detachably interface with the network hub. In another example, a data slot is installed on the robot and configured to receive the user-side node. In yet another example, the content distribution system further includes a content server configured to communicably interface with the first network and to transmit the audible content to the robot via the user-side node using the first network. The content server transmits content to the user-side node based on information received from the first server (e.g., the content served by the content server may include licensed content such as music or sound, images, “dance” moves or patterns performable by an appropriate type of mobile robot such as a wheeled robot—also referred to herein as “robo-motions”, and the like, for which the copyright is held by a third party; alternatively, the copyright holder of the content may be the manufacturer or any other entity). Also, the user-side node of the content distribution system may be configured to receive content from the server via the first network, and the user-side node may be configured to transmit the content to the robot via a wireless communication protocol.
  • In some instances, the content distribution system further includes a user terminal configured to communicate via the first network and a content selection display presented on the user terminal. The customizable content is transmitted to the robot when selected from the content selection display on the user terminal. The user-side node includes an Ethernet dongle or a USB dongle (or “network bridge”) configured to detachably connect to an Ethernet hub. The user-side node is configured to receive content via the Ethernet hub and is configured to transmit the content to the robot via a second protocol different from the first network. (As used herein, the term “data bridge” is understood to refer to all such dongles and/or pocketable and/or portable devices capable of appropriately communicating with a robot, either via wireless, wired, or direct physical connection, or any other suitable modality for such a portable device to communicate and/or transmit data to the robot.) Also, the user-side node may receive content from the data bridge or from a remote site, with no client application located on the user terminal, just a web browser. Alternatively, a specific client application may be provided. The user-side node may be configured to operate using power supplied via the first network. The customizable content may include audible content, which may be organized into a theme of related discrete sounds.
  • In other instances, the robot transmits information corresponding to a theme to the server via the user-side node and receives customizable content including thematically related audio data corresponding to the theme. In one implementation, a main body of the robot includes a detachable body panel having an audio/theme identification unit. The robot is configured to identify audio content and/or a theme corresponding to the detachable body panel via the theme identification unit. The second protocol may include a wireless transmission protocol (e.g. ZigBee, 802.11a/b, wireless USB, serial-over-RF, AMPS, CDMA, GSM, Bluetooth, a simplistic or proprietary scheme, etc.).
  • The content distribution system may further include a voice synthesizer installed to the robot, in which the audio data includes voice synthesis parameters (for altering the perceived “personality” of a robot, or to better accommodate someone who has hearing loss in certain frequency ranges, for example).
  • Also, the robot may further comprise a robot firmware which is customized based on user feedback or robot sensor data processed by a server, in which the robot firmware is downloaded to the robot from the server.
  • The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
  • DESCRIPTION OF DRAWINGS
  • FIG. 1A is schematic diagram showing an example of a power-saving robot system.
  • FIG. 1B is a sectional view showing an example of a mobile robot.
  • FIG. 1C is schematic diagram showing an example of a peripheral device.
  • FIG. 2 is a schematic diagram showing an example of a robot system.
  • FIG. 3 is a block diagram showing an example of a network data bridge.
  • FIG. 4 is a schematic diagram showing an example of a robot system including mobile robots, in which a computer transmits themes to the mobile robots.
  • FIG. 5 is a schematic diagram showing an example of body panel themes for a mobile robot.
  • FIG. 6A is a schematic diagram showing an example of a mobile robot that includes a network data bridge.
  • FIG. 6B is a schematic diagram showing an example of a mobile robot and an example of a network data bridge which connects to other networks via a network that runs over power lines in a building.
  • FIG. 7 is a block diagram showing an example of a robot system including a manufacturer server and a licensed content provider server.
  • FIG. 8 is a schematic diagram showing an example of a robot system including a vendor and a manufacturer server.
  • FIG. 9A is a state diagram showing an example of a state machine for a mobile robot.
  • FIG. 9B is a state diagram showing an example of a state machine for a mobile robot.
  • FIG. 9C is a state diagram showing an example of a state machine for a mobile robot.
  • Like reference symbols in the various drawings indicate like elements.
  • DETAILED DESCRIPTION
  • FIG. 1A is schematic diagram showing an example of a power-saving robot system 100. The system 100 includes a peripheral device 102 and a mobile robot 104. In this example, the mobile robot 104 is a cleaning robot, such as a vacuum, brushing, or mopping robot. The peripheral device 102 transmits wireless commands to control the movement of the mobile robot 104. When the mobile robot 104 is out of range of the peripheral device 102, the peripheral device 102 enters a hibernation mode or low power consumption state. When the mobile robot 104 is in range of the peripheral device 104, a wireless command transmitted by the mobile robot 104 activates the peripheral device 102 from the hibernation mode. In certain implementations, the mobile robot 104 and the peripheral device 102 use a point to point protocol while communicating to one another. In certain implementations, the peripheral device 102 is a base station, such as a device to recharge the mobile robot 104 or a receptacle to empty debris from the mobile robot 104.
  • Referring to FIG. 1B, the mobile robot 104 includes a drive system 1042, a wireless communication component 1044, and a controller 1046. The drive system 1042 moves the mobile robot 104 about an environment, such as a floor to be cleaned. The wireless communication component 1044 communicates with the peripheral device 102. For example, the wireless communication component 1044 may receive signal beams from the peripheral device 102, such as infrared (IR), radio frequency (RF), and/or audio signals. In certain implementations, RF signals may be used to provide communication when the peripheral device 102 and the mobile robot 104 are outside of one another's line of sight. In certain implementations, IR signals may be used to provide communication when the peripheral device 102 and the mobile robot 104 are inside of one another's line of sight. In addition, the mobile robot 104 may use the signal strength to determine a distance to the peripheral device 102. The signals may prohibit movement of the mobile robot 104 through a particular area or guide the movement of the mobile robot 104 to a particular area. In addition, the controller 1046 uses the wireless communication component 1044 to temporarily activate the peripheral device 102 from a hibernation state, such as a state consuming a low amount of power. In certain implementations, the mobile robot 104 uses an IR signal, or line of sight form of communication, to activate the peripheral device 102 from the hibernation mode. In certain implementations, the mobile robot 104 sends the activation command in response to a query from the peripheral device 102. In certain implementations, the mobile robot 104 occasionally sends the activation command, such as continuously or periodically.
  • Referring to FIG. 1C, the peripheral device 102 includes a power supply 1022, a wireless communication component 1024, and a controller 1026. The power supply 1022 may be, for example, an electric battery. The power supply 1022 provides power to the various functions of the peripheral device 102, such as generating navigational signal beams 106 a-c. The wireless communication component 1024 generates a fence beam 106 a, a left guide (or directed) beam 106 b, and a right guide (or directed) beam 106 c. The wireless communication component 1024 also receives wireless signals from the mobile robot 104. The controller 1026 activates one or more of the beams 106 a-c during the active mode and disables beams 106 a-c in the hibernation mode. In certain implementations, the peripheral device 102 occasionally listens for an activation command from the mobile robot 104. In certain implementations, the peripheral device 102 sends an activation poll to the mobile robot 104 to determine if it should become active. In this example, the fence or barrier beam 106 a prevents the mobile robot 104 from passing through the area where the mobile robot 104 detects the fence beam 106 a. Beams 106 b-c aid the navigation of the mobile robot 104.
  • In certain implementations, the robot 104 includes a display panel 105 in electrical communication with the controller board 1046. The display panel 105 includes indicia 1052 and an audio output device 1054. In one example, the indicia 1052 include a segmented illuminable maintenance display substantially mimicking the appearance of the robot. In other examples, the indicia 1052 include themed displays, which will be described later in further detail. The controller board 1046 controls the illumination of indicia 1052 and the audio responses from the audio output device 1054.
  • The peripheral device 104 may perform in several capacities. For example, the peripheral device 102 may act as a fence. The peripheral device 102 may use the fence beam 106 a to prevent the mobile robot 104 form passing through an area, such as a doorway. The peripheral device 102 may also act as a gate. The fence beam 106 a may provide a gate that prevents passage during a particular time interval, such as when the mobile robot 104 is in the process of cleaning a room. The peripheral device 102 may deactivates the fence beam 106 a when the mobile robot 104 has finished cleaning the room and grants passage to the mobile robot 104. The mobile robot 104 uses the beams 106 b-c to guide its way through the area covered by the gate. In addition, the peripheral device 102 may act as a trail marker or navigation beacon. For example, as described above the mobile robot 104 may use the beams 106 b-c to navigate through areas, such as doorways. The beams 106 a-c may contain information, such as an identifier (ID) of the peripheral device 102, an identifier of the type of beam, and an indication of whether the peripheral device 102 is a gate or a fence. If it is a gate, the beam identification allows the robot 104 to determine whether it is detecting the left or right guide beams 106 b and 106 c, respectively. The peripheral device identifier allows the mobile robot 104 to distinguish the beams 106 a-c of the peripheral device 102 from beams transmitted by another peripheral device. The mobile robot 104 may be taught (or may itself learn) a path to an area, such as a back room of a house, by following a pattern of peripheral device identifiers. The beam type identifier indicates whether the beam is a fence beam 106 a, a left side navigation beam 106 b, or a right side navigation beam 106 c. If the beam is a fence beam 106 a, the beam information may also indicate whether the beam is acting as a gate that may be opened, given the proper command, or a barrier that remains closed. In any case, while the mobile robot 104 is out of range, the peripheral device 102 hibernates and the beams 106 a-c remain inactive.
  • The wireless communication component 1024 of the peripheral device 102 receives a signal from the wireless communication component 1044 of the mobile robot 104 to activate the peripheral device 102 from a hibernation state. In certain implementations, the mobile robot 104 transmits a first activation signal 108 a to activate a first set of peripheral device beams, such as the fence beam 106 a while cleaning is in progress. In certain implementations, the mobile robot 104 transmits a second activation signal 108 b to activate a second set of peripheral device beams, such as the navigation beams 106 b-c when the mobile robot 104 moves to another room. In certain implementations, the signals 108 a-b include a mobile robot identifier. The peripheral device 102 may use the mobile robot identifier to activate, for example, a first set of beams, such as the fence beam 106 a, in response to an activation request from the mobile robot 104 and a second set of beams, such as the beams 106 b-c in response to an activation request from a second mobile robot. In this example, the mobile robot identifiers allow the peripheral device 102 to activate beams based on the mobile robot requesting the activation, such as by providing a fence to the mobile robot 104 and a gate to a second mobile robot.
  • FIG. 2 is a schematic diagram showing an example of a robot system 200. The robot system 200 includes the mobile robot 104 and a network data bridge 202. In this example, the wireless communication component 1044 of the mobile robot 104 receives serial commands from the network data bridge 202, such as radio-frequency (RF) signals. Typically, these signals may be transmitted by the network data bridge 202 or other such user-side node, which is in turn connected to an Ethernet router/switch/hub 204 along with several other Ethernet-connected devices such as a home computer 206, a laptop computer 208, a cable/DSL/satellite/broadband-adapter 210 or modem, and e.g. one or more other computing devices such as a personal digital assistant 212.
  • In one example, the network data bridge 202 which attaches to an Ethernet port on the Internet-connected router 204 or switch may automatically download a script from a predetermined Internet or local server (e.g., via BOOTP, DHCP, HTTP, FTP, and/or TFTP) thereby providing automatic commands, such as device configuration or diagnostic testing, to be performed. Alternatively or additionally, a user may manage the mobile robot 104 using a device, such as the computer 206. The Ethernet-attached network data bridge 202 may provide for configuration and operational functionality via a small, embedded HTTP server built into the firmware of the network data bridge 202. Devices other than the computer 206 may also be used to interface with the network data bridge 202, such as a set-top box, a game console, the PDA 212, a cell phone 214, or a home server that is programmed to communicate using web or other networked interfaces.
  • As an alternative, access to broadband is provided via a USB port, as may be provided by the computer 206. For example, a user may insert a driver CD-ROM into the computer 206 upon plugging in a USB-based wireless transceiver, in order to install a driver therefore. Another connection, such as IEEE 1394/Firewire, RS-232, parallel port connections, and/or X10, may be used. These, however, may not necessarily be network data bridges.
  • Once a network data bridge 202 is attached to the network-accessible device 204, it can contact a server.
  • FIG. 7 is a block diagram showing an example of a robot system 700 including a manufacturer server 702 and a licensed content provider server 704. The manufacturer server 702 and the content provider server 704 may be connected to the broadband modem 210 via the Internet 706 or another appropriate network. The mobile robot 104 may report information to the server 702, such as the status of the mobile robot 104 or usage data regarding the mobile robot 104. The server 702 may store the reported data in a repository 708. The reported data may be associated with information regarding the user of the mobile robot 104. The user information may be stored in a repository 710.
  • Further, the network data bridge 202 may connect wirelessly to the mobile robot 104 and initiate communications therewith. While the Ethernet hub 204 includes four wired Ethernet ports as well as 802.11 wireless Ethernet connectivity, and although 802.11 or other such wireless networking protocol may be used to communicate with a mobile robot 104 from the base station other than via a network data bridge, in certain implementations, the mobile robot 104 and the network data bridge 202 use a simple, serialized RF protocol in order to exchange information between the mobile robot 104 and the base station, rather than the full-weight networking protocols.
  • In certain implementations, the mobile robot 104 may be further simplified by providing receive-only functionality on the mobile robot 104, instead of bi-directional wireless communication support. However, as an alternative, the mobile robot 104 may include full bi-directional wireless communications support in order to transmit information from the mobile robot 104 to the base station (and e.g., to the user, the manufacturer, etc.).
  • The manufacturer may receive real-world mobile robot data for product refinement and R & D. For example, the mobile robot 104 may collect data regarding behavioral patterns (e.g., a number of errors encountered, a number of times the mobile robot 104 has become stuck, or how frequently the mobile robot 104 is used) and forward such information to the mobile robot's manufacturer for refining market research and producing future models of the mobile robot 104, for example, by correcting design flaws or device problems. Moreover, customer information such as frequency of robot use, name, customer ID, etc., may also be correlated using information forwarded to the manufacturer's website from the mobile robot 104 via wireless and wired networking.
  • In addition, instead of the user having to locate and e.g., tote the mobile robot 104 to the base station in order to physically connect the mobile robot 104 thereto for software upgrades, software updates, and the like, a wireless update function may be provided by the network data bridge 202 in order to update the robot's firmware or other on-board software, personality, sounds, and/or displayed pictures. Also, a user may design themes or other content and have this content transmitted to the mobile robot 104 via the wireless communication channel provided by the network data bridge 202.
  • FIG. 3 is a block diagram showing an example of a network data bridge. The network data bridge 202 includes a network connector 302, such as an RJ-11-style male Ethernet connector. Also, the network data bridge 202 includes an antenna 304, such as an enclosed, internal antenna, operatively driven by a wireless command interface 306, which is in turn connected to a data bridge component 308 (the mobile 104 robot may likewise include an enclosed, internal antenna; alternatively, either the network data bridge 202 and/or the mobile robot 104 may either one or both include one or more external antennas, either in addition to or in lieu of an internal antenna, for example). The data bridge component 308 is connected to a broadband network interface 310 for managing and converting inbound and outbound broadband-side data (such as Ethernet, 802.11b, and/or TCP/IP packets) to and from to a wireless-side simplified networking protocol. The data bridge component 308 extracts serial commands received by the broadband network interface 310 and broadcasts the commands via the wireless command interface 306 and the antenna 304, using the RPAN protocol.
  • The network data bridge 202 is plugged directly into the owner's broadband router 204. The network data bridge 202 acquires network information from a DHCP server or optionally configured by an advanced user. The network data bridge 202 calls home (i.e., a home robot manufacturer's or reseller's Internet server) with local configuration information (serial number, local network properties, etc.). The network data bridge 202 begins polling a pre-configured URL with periodic HTTP POSTs. Each post contains status information on the mobile robot(s) 104 in the customer's home. This data can be robot/firmware specific—the network data bridge 202 need not understand the data itself (although it may well do so in certain implementations).
  • A CGI script receiving the POSTS processes this sensor report and updates an internal database creating a historical view of the robot system. Software-based virtual sensors examine this database (on a per-robot basis) and trigger events such as virtually pressing a button on the robot or triggering an email to its owner.
  • The owner may visit the home robot manufacturer's web presence using a modern, i.e.; JavaScript-enabled (or any other suitable scripting language such as Visual Basic, python, PERL, Php, etc.) web browser, and creates a user account. As part of the registration process, the customer enters the unique key as shipped with the wireless data bridge—this unique key pairs the incoming sensor stream with this user's account.
  • After registration, the user may be forwarded to their portal page. This page is dynamically generated using the information already provided by the robot gateway and product information and tie-ins provided by the back end infrastructure of the manufacturer's server(s).
  • Owner browses to theme or content store and purchases an audio theme with immediate online delivery. Theme or content store contacts robot sensor database and adds to the command queue: “download this content to robot # 2” When the gateway device next posts sensor data, the HTTP response is the command to download the attached content data to the specified robot. The wireless data bridge begins forwarding this binary stream to the robot via RF. When completed, the gateway may sends a download acknowledgement with the next sensor report.
  • During this transaction, the javascript (or other suitable script) embedded into the owners' web interface has been polling the back-end servers for status updates. A progress bar has been drawn and animated using javascript and DHTML (or Ruby on Rails, a JAVA applet, or any other suitable display technology). The user may feel that s/he is interacting directly with the robot via the web page, despite the levels of software and communication indirection laying therebetween.
  • In one implementation, the wireless data bridge 202 may include a female port into which an Ethernet patch cable (or other such networking cord) plugs into from a suitable network connection point, and/or into which an interface portion of a home robot attaches, for example. As examples of such a system as described hereinabove, these communication channels provides a mechanism for retrieving sensor data and sending commands to robots in the field by piggy-backing on their broadband connection.
  • Such a bi-directional communication system allows deployment of online services and to retrieve sensor data from a manufacturer's installed base for improved customer service and system characterizations. It may further increase the manufacturer's comprehension of how robots and individual subsystems perform in the field.
  • Interaction the network-enabled mobile robot(s) 104 in a customer's home may take place through a web browser, in accordance with certain embodiments. Web browser access provides support for robot interaction via non-PC devices (e.g., cell phones, and PDAs) with compliant browsers.
  • FIG. 6A is a schematic diagram showing an example of the mobile robot 104 that includes the network data bridge 202. In this example, the network data bridge 202 is a card that is inserted into an interface slot 602 in the mobile robot 104. This type of network data bridge may be self-contained and transport data on constituent RAM, ROM, Flash, or EEPROM, type storage devices (which might be loaded with software, video, or audio content either at a user's computer equipped with a special writing unit or at the manufacturer in order to provide content such as themed content, for example); or can be loaded with code number(s) that authorizes a wireless download to the network data bridge 202; or, alternatively, may be connected to a network via a wire or by wireless Ethernet, for example.
  • A “Memory stick”-type (serial port interface), network data bridge 202 may provide content to mobile robot users who lack an Ethernet hub or Internet connection, or for users who are unable to purchase content online via credit card, or who simply come across a set of content while at a store and wish to make an impulse purchase or gift purchase for another. Furthermore, similar to the network data bridge implementation discussed above, personal computer use is not necessarily required because the user may plug the “memory stick”-type network data bridge 202 directly into a receptacle 602 defined by the mobile robot 104, and content on the network data bridge 202 may be automatically uploaded to the mobile robot 104. See, e.g., U.S. patent application Ser. No. 11/166,518, incorporated herein by reference in its entirety.
  • FIG. 6B is a schematic diagram showing an example of the mobile robot 104 and an example of the network data bridge 202 which connects to other networks via a network that runs over power lines in a building. The network data bridge 202 may be configured to plug into a standard power outlet 604 and to participate with a home power-line network, for example, in homes or markets where Ethernet networking components are not available. Alternatively, the network data bridge 202 may plug into a standard telephone wall jack in order to communicate via a home telephone wiring network, for example. In certain implementations, the network data bridge 202 might be plugged into any of an Ethernet port, the power socket 604 or a telephone wall jack, and auto-negotiate a connection to the Internet (if available) and/or to the mobile robot(s) 104. To this end, many “Ethernet-over-home power lines” and similar schemes or products are widely produced and well known in the art; for example, as an early commercial endeavor in this technology area, the X10 communication standard permits communication over power lines by encoding a single bit of information at each zero-point in the 120 V(RMS) @60 Hz power cycle common in North America, for example, and many more modern Ethernet-like power line networking systems are commercially available, in which each networked device connects to the network typically via an electrical socket on a wall. A common feature is that the network data bridge extracts the serial commands and data from encapsulating broadband protocols (Ethernet, TCP/IP, 802.11x) for transmission on the local wireless robot network (RPAN), and similarly encapsulates such commands and data from the RPAN for transmission on the broadband network.
  • The wireless data bridge 202 may provide web server functionality and serve static or dynamic web content corresponding to enabled mobile robots 104 belonging to the mobile robot user. Such web server functionality may be provided on the mobile robot user's local broadband network and e.g., be broadcast discoverable using TCP/IP, UDP, Ethernet, SNMP, NetBEUI, IPX, SMB or uPnP broadcast network announcing, for example, in order to be found by mobile robot users when browsing the local area network; alternatively, a static network address (such as a standard, pre-set IP address) may be assigned to the data bridge 202 such that users may simply type the static network address into a web browser to reach the web server on the network data bridge 202. The web content may be active or static, and may be tailored to the functionality to be provided and/or may be updated via the Internet or local network.
  • FIG. 9 is a schematic diagram showing an example of the robot system 200 with a content serving system for transmitting content to a mobile robot. The system 200 for accessing home robot-related content and controlling a home robot via the Internet may include an embedded web-server; an online presence accessible as a service/content provider; and a web-based user interface specific to the robots 104 in the customer's home. These components may be used to tunnel events across the Internet to an online “robot presence” generated by, for example, a home robot manufacturer. This “robot presence” may provide interactivity with the user's home robot (audible content or other types of theme and/or content downloads, remote button presses, etc.) via a hosted web service. The events thus tunneled may include: changes in sensor values, user interaction, commands to the robot, and state changes, inter alia. Use of a bi-directional communication channel (such as a wireless robot network communication channel) allows melding between a robot in someone's home, procedural and informational repositories on a remote server, and a web-based robot user interface, to produce powerful capabilities and forge new functionalities such as adding offloaded “intelligence” to otherwise simple robots (by, for example, performing the bulk of number-crunching or compute-intensive tasks on a separate computer or server, and simply uploading and/or downloading results and/or sensor input to and from the home robot itself). In effect, by tunneling the local robot system's communication fabric across the Internet or other suitable network, it is possible to allow back-end servers to interact with robots in users' homes.
  • The data bridge 202 may send local network information to the Internet server. As a non-limiting example, the user may connect to the Internet 706 and may be redirected to the local bridge as appropriate. By publishing a well known Internet address that both bridge and/or the user may access, the need to know the user's local information may be eliminated.
  • In addition to the network data bridge 202, a wireless remote control may offer several similar wireless functions for controlling or managing the mobile robot 104. The wireless remote control may communicate directly with the mobile robot 104 via an infrared (IR) or RF protocol, or may relay commands through the network data bridge 202, for example, when the mobile robot 104 is not within sight but the remote control is within IR signaling range of the network data bridge 202. The network data bridge 202 may thus also be provided with an IR sensor for receiving mobile robot control commands from the wireless remote control, and then relay the commands wirelessly to the mobile robot 104—for example, the embedded web-server may bridge a proprietary or ad-hoc communication method used internally by the mobile robot 104 (and also used by accessory items added to the mobile robot 104) with a persistent online presence by translating the internal communication protocol(s) into HTTP POST and GET transactions.
  • The online presence may generate a web-based user interface that incorporates javascript components to asynchronously poll the mobile robot 104 for state changes (e.g., battery voltage). This javascript may asynchronously fetch changes in the robot properties and rewrite the content in the page. Sensor values, etc., can be refreshed by the web browser without the customer needing to click refresh on the browser, for example.
  • The web-based interface may use customer tracking and persistence robot sensor data to pair the mobile robot 104 with the customer account and present user interfaces for equipment the customer owns.
  • Further, if a series of the peripheral devices 102 are arranged throughout a home or other location and set up as a relay network stemming from the base station, for example, then the commands relayed from the remote control may also be relayed throughout the beacon network to reach a home robot that may be quite distant from the remote control.
  • Wireless bandwidth (especially in unlicensed bands such as 900 MHz, 2.5 GHz, or any other such suitable public RF band) is by its nature limited, and because the presence of multiple RF devices (such as, for example, multiple mobile robots and/or network data bridges; WiFi, BlueTooth, X10, mobile or portable telephone or other common wireless devices; and/or interference from sources such as solar flares, RF discharge from electrical lines, florescent lights, or any other RF-interfering entity) may further restrict the effective amount of bandwidth or the degree of reliability of bandwidth available for wireless mobile robot communications, reliability and postponement measures may be taken to enhance the functionality of the network data bridge 202 and/or the mobile robot 104; conversely, the network data bridge 202 and/or the mobile robot 104 may be configured to reduce their consumption of available bandwidth in order to give priority to other wireless devices. For example, regarding the reliability of the wireless robot network communications, techniques such as cyclic redundancy checking (CRC) and/or hash routines (such as, MD5 sums or CRAM) or other appropriate reliability techniques (such as parity or error correcting codes (ECC)) may be employed on either the data bridge-to-robot channel and/or the Internet-connected channel (e.g., on the Ethernet-to-data bridge channel). Furthermore, to limit the use of valuable bandwidth during business or other peak usage times, the network data bridge 202 and/or the mobile robot 104 may be scheduled to transmit theme content, usage/behavior data, or any other such communication during night-time or off-peak times; alternatively, for example, the network data bridge 202 and/or the mobile robot 104 (and/or the manufacturer's server) may be scheduled to perform their communication (or the bulk of their communication) at an automatically detected off-peak usage time, by detecting when bandwidth usage is lowest (either in real-time or by collecting data of bandwidth usage-per-time-of-day over a series of days or weeks and then determining the generally least used times of day, as non-limiting examples). Reliability measures may be taken at either the network or application layer or both, for example, or at any other suitable layer in a communication stack (such as the data bridge using UDP on the Internet for simplicity and non-critical communications, but the web server using full error-checking, reliability and/or error correction measures, windowing, etc.
  • Also, the web server functionality in such a data bridge can communicate with a known network address or location (such as a fixed IP address or uniform resource locator (URL)) in view of issues that arise with DHCP and dynamic IP address assignment, for example; the web server on the network data bridge 202 may thus behave in a manner similar to a client for a significant portion of time in order to actively access and/or poll “server”-like resources available on the mobile robot 104 (via wireless connection, for example), as in many examples the mobile robot 104 maintains relatively little network functionality in the mobile robot 104 itself (such capabilities being offloaded largely onto the network data bridge 202).
  • The web server functionality may establish network communications with the mobile robot 104 and/or Internet server(s) via a suitable protocol or standard, such as FTP, FTPS, TFTP, HTTP, HTTPS, GOPHER, TELNET, DICT, FILE and LDAP, HTTP POST, HTTP PUT, FTP uploading, HTTP form based upload, proxies, cookies, user+password authentication (Basic, Digest, NTLM, Negotiate, Kerberos4), file transfer resume, http proxy tunneling, and/or other suitable network methods (such as a method supported by libcurl, for example). The network data bridge 202 may employ network announcement techniques such as uPnP, dynamic DNS, reverse ARP, Ethernet or UDP or TCP/IP broadcasting, or another suitable method of broadcasting the existence of the network data bridge 202 to other devices on the same network.
  • By offloading much of the server functionality from the mobile robot 104 to the network data bridge 202, and using the network data bridge 202 as a communications proxy, mirror and gateway, the mobile robot 104 is also shielded from excessive client requests that might otherwise tax its processing and/or bandwidth resources. For example, the mobile robot 104 may in one time period (e.g., ten minutes) produce thirty visual snapshots from an on-board camera. Then, if several entities were to attempt to download the snapshots from the mobile robot 104 simultaneously, the mobile robot 104 might quickly be overwhelmed as the wireless network became bogged with service request traffic. As an alternative, however, the mobile robot 104 may be accessed by just one entity, the network data bridge 202, at a known regimen of polling requests, thus preserving the mobile robot's bandwidth and processing capability while still permitting replication of any such collected data by copying it to Internet servers for broader access, for example.
  • In addition to RF-band wireless communication, the network data bridge 202 (and/or the mobile robot 104 or the peripheral device 102) may transmit via other suitable frequencies and/or bands in the electromagnetic spectrum, such as the 900 MHz, 2.4 GHz, microwave frequencies, or other suitable bands. To alleviate interference that may occur in these or the RF or another band, the mobile robot 104 and/or the network data bridge 202 may employ frequency shifting, spread spectrum, sub-channel technologies, and/or other such interference-avoidance schemes or techniques for avoiding interference with other unlicensed RF applications (phones, baby monitors, etc.).
  • In addition, robot commands might be sent by the network data bridge 202. Additional functionality may be provided to the user in the form of issuing remote commands while away from home. Accordingly, if a home robot owner were to forget to schedule or activate the mobile robot 104 prior to leaving on a business trip, the mobile robot user might still program or activate the mobile robot 104 remotely via a command generated by (for example) a mobile robot interaction website provided by the mobile robot manufacturer, which would be relayed through the Internet or other suitable network to the network data bridge 202, which would in turn convert the information received from the Internet into a corresponding wireless robot network command and transmit the command wirelessly to the mobile robot 104 for execution.
  • In certain implementations, a series of robot commands corresponding to timing and execution of movements, etc., may be compiled into a “dance” routine and transmitted to the mobile robot 104 after a user selects the “dance” from a website maintained on the mobile robot manufacturer's server; alternatively, the “dance” might be combined with audible content such as music or sounds, and/or commands to control the indicia (such as light-emitting diodes (LEDs), liquid-crystal displays, and/or backlights, inter alia) to provide a multimedia “dance,” music and lightshow. A further non-limiting example includes live trouble-shooting or technical support provided to mobile robot users, e.g., initiated through a telephone call or the Internet, or e.g., through a microphone and speaker installed as part of the mobile robot 104 along with the appropriate computing, recording, mixing and transceiving hardware and software (and bandwidth, both wireless and over the Internet, as well as proper latency and synchronization). Additionally, for example, a camera might be included for enhancing such virtual interaction, and/or the proximity sensor normally put to use in obstacle detection may be employed during alternative modes as a general-purpose observation camera in those implementations in which the proximity sensor is configured to function as a visual-spectrum camera, with encoding and transmission of streaming video from the robot via the wireless link to the network data bridge 202 and onto a networked destination, inter alia.
  • Similarly, for transmitting robot usage and behavior information to the mobile robot manufacturer's server, the mobile robot 104 may collect certain data regarding battery use, recharging frequency, amount of time spent performing its primary task, the amount of time spent idle, the frequency with which the robot becomes stuck, etc., and periodically transmit this data to the mobile robot manufacturer's servers via the network data bridge 202.
  • Moreover, the ability to transmit audible content to the mobile robot 104, either via the network data bridge 202 or via a “memory stick”-type data bridge, permits the mobile robot 104 to “speak” instructions directly to the user of the mobile robot 104 at the time and place of use. For example, the mobile robot 104 may speak directions when in a demo mode that is initially run to demonstrate various features the mobile robot 104 can perform. Voice instruction to the mobile robot user can be accomplished by transmitting encoded audible content to the mobile robot 104 (either by installing such audible content on read-only memory (ROM) in the home robot at the time of manufacture, or by transmitting wirelessly or otherwise and storing the audible content in flash RAM, for example) and playing it back over an on-board decoder and/or synthesizer and speaker installed in the mobile robot 104. Synthesized speech encoded for decoding on speech synthesis hardware may require less on-board storage than non-synthesized speech; however, as an alternative, natural or computer speech may be recorded as wave-form encoded (and/or psycho-acoustically encoded) sound data and transmitted to the mobile robot 104 for storage and later playback. Alternatively, however, speech for playback on the mobile robot 104 may also be encoded as WAV files or compressed sound files (e.g., employing compression such as Lempel-Zev-Welch (LZW) or other techniques that are less computer-resource-intensive than, for example, MP3 or Windows Media (WMV) decoding).
  • As another example, by using a synthesizer, a phoneme string file to be downloaded to the mobile robot 104 may include and/or be thematically associated with, for example, an animation storyboard file including tags that trigger synchronized or asynchronous parallel movement events, lights (or other indicia) and/or non-synthesized sound Using such a phoneme pattern and storyboard, a string such as “he-llo ha-w [which may here represent a tag to start a “bowing” trajectory in, trajectory out movement as an asynchronous ballistic behavior] a-re y-ou” may thus trigger the associated “bowing” robo-motion (e.g., thematic “dance” or emotive behavior performable by the mobile robot 104). Further, if sound recording hardware such as a microphone and sound processing hardware are installed in the mobile robot 104, as well as sufficient processing or transmitting capability, then the mobile robot 104 may include speech-recognition functionality in order to recognize spoken commands or other interaction from mobile robot users; also, the storyboarding capability as discussed above may encompass and encode responses and references to any of the functionalities or capabilities performable by the mobile robot 104.
  • An RF system used by the mobile robot 104, the network data bridge 202, the remote control, and/or the peripheral device 102 may include four radio transceiver modules that are located in the mobile robot 104, the remote control, the peripheral device 102, and the network data bridge 202. The remote control may use RF to transmit control signals to the mobile robot 104 using a bidirectional protocol or unidirectional protocol; also, the remote control unit may allow the user to “drive” the mobile robot 104 around as well as sending scheduling data created on the remote control unit. The mobile robot 104 may use RF to wake-up and power-manage the peripheral deice 102 using a bidirectional protocol. The network data bridge 202 may use RF to transmit data and code updates to the mobile robot 104 as well as to upload diagnostic data from the mobile robot 104 using a bidirectional protocol. Furthermore, when there are multiple peripheral devices as well as the network data bridge 202 in operation, in which the peripheral devices and the network data bridge 202 can maintain an RF or other communication channel in a relayed fashion, the wireless robot network communication between the network data bridge 202 and the mobile robot 104 may be propagated along the chain of peripheral devices even when the mobile robot 104 is beyond the direct RF range of the network data bridge 202. The effective range of the wireless robot network can be extended by the linking of peripheral devices.
  • The 2.4 GHz ISM band may be used with either direct-sequence or frequency-hopping spread-spectrum transmission techniques. In addition, either a custom proprietary protocol based on some implementation of a standard 7-layer OSI model may be used, or the ZigBee 802.15.4 standard protocol may alternatively be used, inter alia. The custom protocol may allow for proper regulatory compliance in all countries of interest, for example, or alternatively, may be suited for each anticipated national market.
  • The following single chip, integrated RF transceiver radio modules are examples of chipsets that may be used to implement the RF system: Chipcon CC2500; Chipcon CC2420; Freescale MC13191; Freescale MC13192. A printed circuit “F” style antenna design may be used with either no external RF power amplification or a suitable RF power amplification depending on the range and power requirements.
  • Regarding a proprietary robot-net RF protocol, such a protocol may be simpler than Zigbee, for example, in that Zigbee has two parts—signaling (IEEE 802.15.4) and application (routing, etc.). As an alternative, the proprietary robot-net protocol may use 802.15.4 because the standard has driven down the cost of goods for antennas, microcontrollers, etc. The contemplated robot-net may however deviate from Zigbee (a meshed network with routing) at least in that it may be a point-to-point network. Under Zigbee, nodes would be required (in some cases) to route traffic for other nodes; this behavior may place excessive responsibility on Lighthouses, Remote controls, and RF data bridges, etc. Robot-net RF may include a sparse protocol that simply has robot or beacon control and reporting messages like WAKEUP, GO_CLEAN(robot-n), ERROR(robot-n, i-am-stuck), etc.
  • The savings in complexity may enable small amounts of memory (e.g., 8K) on some elements of the network. As an example, a Lighthouse may have 8 KByte of program memory. The point-to-point protocol may be simpler than Zigbee because it does not support routing of traffic from endpoints other than the home robot products, encryption of data packets, or many other features needed for meshing. Above this packet transport layer, robot-net may define messages that are specific to robot control and monitoring which are unique (lighthouses may also be configured to use the protocol, although they may be turned on and off by the robot extra-protocol). This control is unique even if implemented such that ZigBee forms a portion of the application layer, as a non-limiting example.
  • At least one of the endpoints may be mobile. Instantaneous signal strength, or signal strength over time can be used to help the robot navigate or correct beacon-based navigation, e.g., by providing additional data informing the robot that it is proceeding in the correct direction or in a failure mode, as non-limiting examples.
  • With regard to a vocal and multimedia demonstration mode executed e.g., just once when the mobile robot 104 is first used (and then the accompanying data being e.g., discarded to liberate system resources), or at any time when an appropriate “demo” button is pushed, the demo mode may include several speech files may be scripted in sequence; in which the script is not necessarily an interpreted script, but may simply represent a linear routine coded in any suitable manner. The script may flash the lights and buttons visible on the mobile robot 104, make sounds and cause the mobile robot 104 to do the things it is supposed to demonstrate (such as spot cleaning) The demo script may flash the lights or other indicia directly and run the behaviors directly, or could generate phantom presses/sensor events within the robot's computer control system to make the appropriate indicia and/or behaviors occur. For example, to start the spot cleaning demo, the voice routine could tell the user to press spot clean now (or could send a phantom button press to the UI control, which would flash the button as usual and start as usual. Other demos may be triggered by fake signals forwarded to a virtual sensor, for example—demo of stasis/stuck response by telling the mobile robot 104 it is stuck, etc.), then wait a certain period before reasserting control for the remainder of the demo. The demo could detect that the user pressed the wrong button and redirect him, as well, for example.
  • Examples of “robo-motions” (interchangeably, “animotions”) which may be transmitted either alone or as part of a theme or bundle may include new functional robot motions or behaviors such as spot-coverage, wall-following, and bounce operational modes, which may pertain to at least certain implementations of mobile robots in accordance with the present invention are specifically described in U.S. Pat. No. 6,809,490, by Jones et al., entitled, Method and System for Multi-Mode Coverage for an Autonomous Robot, the entire disclosure of which is herein incorporated by reference in its entirety.
  • In addition, according to one example, the mobile robot 104 may be provided with a speaker for playback of audible content, a wireless or direct link to the network data bridge 202 for receiving the audible content, and a processor (for example, a speech synthesizer, MIDI chipset and/or frequency modulation (FM) unit, etc.) for replaying the audible content. The audible content may have significant functionality—in a non-limiting example, a warning siren sound may be downloaded to provide a clear signal when the mobile robot 104 detects a potentially hazardous condition such as overheating of a vacuum motor, or a series of slowly-spoken instructions may provide hard-of-hearing or disabled mobile robot users with a more understandable tutorial on the use of the mobile robot 104. Furthermore, the audible content and/or theme may provide instructions or other speech in any of a variety of human languages or dialects; in addition, any behavioral or movement-based content such as may be associated with or included in a regional, national, linguistic, cultural, occupational, character or other such theme may also be appropriately correlated. For example, a “ballerina” theme might include spoken instructions affecting an accent reminiscent of a French accent, and a motion profile that causes the mobile robot 104 to perform pirouettes, spirals, figure eights, and other movements reminiscent of a dancer performing ballet, inter alia; this might also be associated with a body cladding set that would suggest a leotard, for example, to enhance the thematic effect.
  • The specific tying of certain content to certain behaviors is also made possible. For example, whenever the mobile robot 104 performs a certain “robo-motion” or trick (or less sanguinely, gets stuck, for example) such as a game of chase, it might play the “William Tell Overture;” alternatively, it may issue plaintive wails for help when the mobile robot 104 detects that it is lost, cut off from communication with any beacon, the network data bridge 202 or a home base, or is otherwise stuck or stymied.
  • FIG. 5 is a schematic diagram showing an example of body panel themes for the mobile robot 104. The mobile robot 104 may include customizable, snap-on or otherwise interchangeable exterior panels 502 a-b which may be “themed” for permitting mobile robot users to individualize their mobile robots. As an example, body panels may be molded from plastic and thereafter painted, dyed, or covered with an adhesive material; any suitable modality for coloring, designing or drawing patterns thereon may be used, as appropriate. As an example, a design may be applied to the interior of a transparent sheet-like polymer material, and then the polymer sheet or body panel may be applied to a molded plastic piece as a body panel; as a result, the design is protected by the transparent polymer sheet, while rapid theming of body panels in a “just-in-time” (JIT) distribution strategy may be achieved. The panels may also be customized by user content, e.g., printed by ink jet onto an appropriate material. For example, the user may upload a photo, which can be adapted to a template, and the JIT-made shell may be made and delivered at the appropriate time (e.g., x-mas panel with sounds of a user's own family singing Christmas Carols, e.g. uploaded to the server by the user earlier for inclusion into a modified or customized theme).
  • Furthermore, the interchangeable body panels 502 a-b may include an identification system corresponding to audible or other thematic content that may be transmitted to the home robot to complete the theming effect. For example, the body panels include an electrical contact 504 which is positioned along the interior edge of the panels 502 a-b so as to contact a corresponding electrical contact on the mobile robot 104 when installed thereon. The electrical contact 504 on the body panels 502 a-b is operatively connected to an appropriate electronic identification unit, such as an integrated circuit (IC) 506 that outputs a voltage pattern corresponding to a unique theme ID number; and/or a specific resistance 508 which likewise corresponds to particular theme IDs 510 a-b. Alternatively, the body panels 502 a-b may include an RFID or passive magnetic device; a mechanical ID mechanism such as a punch-card like series of holes or peaks; an optical ID system such as a barcode or characteristic color; or any other modality suitable for identifying a body panel's corresponding theme. The ID can be transmitted by the mobile robot 104 back to the network data bridge 202 as authorization or identification to download corresponding themed firmware, multimedia, etc. to the mobile robot 104 as discussed herein.
  • As a default behavior, if no identification of the body panel can be made by the sensors of the mobile robot 104, the mobile robot 104 may e.g., reject theme content as potentially unauthorized; or, conversely, accept any theme material if there is little concern regarding unlicensed theme content.
  • FIG. 8 is a schematic diagram showing an example of a robot system 800 including a vendor 802 (as a type of audible or other content) and a manufacturer server 804. The system 800 acts as a content distribution system, in which the vendor 802 distributes licensed content to mobile robots (“consumer robots”) under the supervision of licensing and security-checking systems (“big brother” 806, “CRM” 808) as a back-end to a consumer-oriented website administered by a robot manufacturer (“E-Commerce Site” 810). In this example, “Rtoon” may signify distributable content, whether audio or other thematic material, for example.
  • Also, once an identification of the theme corresponding to an installed body panel is determined, the mobile robot 104 may wirelessly transmit information regarding the detected theme ID to the mobile robot manufacturer's server via the wireless robot network data bridge 202 and Internet, for example. The server may then determine whether audible or other content corresponding to the transmitted theme ID is available, and if so whether the corresponding content is properly paid for, licensed, etc. If all determinations are affirmative, the server may transmit the corresponding content (such as a set of audio data arranged as a sound theme and/or a set of robot “dance” commands, indicia patterns, etc.) to the mobile robot 104 via the Internet and the network data bridge 202, for example; alternatively, the server may transmit an “unlock code” or cryptographic key for decoding encrypted and/or otherwise restricted content already present at the mobile robot 104; or, for example, the mobile robot manufacturer's server may cause a separate content server (e.g., belonging to a third party and under licensing and electronic distribution agreement with the mobile robot manufacturer, for example) to transmit such data to the appropriate mobile robot which sent the theme ID.
  • FIG. 4 is a schematic diagram showing an example of a robot system 400 including mobile robots 104 a-c, in which the computer 206 transmits themes to the mobile robots 104 a-c. Mobile robot users may receive new or updated musical, sound, visual, choreographic or other such thematic content which corresponds to the themed body panels installed on their mobile robots. A website 402 displayed on the personal computer (PC) 206 offers a choice of three sets of music contents, ‘A’ 404 a, ‘B’ 404 b, or ‘C’ 404 c, for transmittal to or activation on the mobile robots 104 a-c).
  • Also, the theming may even extend to the content within themes—e.g., if a robot has several audio files or “earcons” loaded (e.g., in a format such as MIDI), and then selects a “steel drum” theme, the theme might include musical instrument elements (e.g., also encoded as MIDI instruments or other suitable format) which replace the standard instruments that would normally be played in the earcons or sound files; as such, a rock ballad may be “themed” into a Caribbean anthem, as a non-limiting example.
  • With regards to the themed content, combinations of various interdependent (or independent) content types (e.g., including—but not necessarily limited to—sounds, body cladding, choreographed “dance” moves, behavioral response profiles, or the like, as non-limiting examples) are possible to permit a high degree of thoroughness in the impact themes may have on users. Sounds such as background music to be played while the home robot either sits idle or performs tasks; “earcons”—that is, sounds that convey meaning and which are played back when triggered by certain events or behaviors, such as the robot playing a car-crash “earcon” when the robot bump sensor detects a collision with an obstacle, or the phrase “feed me!” as an earcon when the robot's detergent or other consumable bin is empty, inter alia; daily or monthly activity or activation schedules such that a “family dog” themed robot may cease hibernation or recharging mode when a sound corresponding to the delivery of the morning newspaper is detected, and then proceed to the user's bedroom to “bark” and cavort about in figure “s” or semi-random movement patterns (or to “wag its tail” by rotating the hind portion of the robot repeatedly back and forth) adjacent the user's bed to wake the user or to get the user's attention in a manner reminiscent of an excited dog; a “listening” behavioral routine which may cause the robot to, for example, behave as a parrot (e.g., in combination with other parrot-themed content such as plumage-like body cladding, “whistling” sounds and a parrot-like gait for movement) and repeat back recently spoken words that are detected by an on-board microphone (e.g., in a distorted, squawking manner reminiscent of a true parrot, for example); and/or network-access patterns for robots equipped to communicate via a wireless network (for example, a “spy” theme might, in combination with various other thematic content, include a network access profile that might cease all network access for various periods of time when the “spy” robot is expected to maintain “complete radio silence,” for example; or conversely may be conditioned to frequently retrieve updated information from a network source in order to fulfill a role as a trivia quizmaster by downloading questions and/or answers to be posed to guests of the user while playing a party game, for example—indeed, such quiz questions and answers or the rules of a game might themselves be bundled into a theme in static format, as a further example of the broad extent of theme-able content types). Also, content such as the “robo-motions” (“dance” moves or distinctive motions performed by wheeled or otherwise mobile home robots) may be triggered on command by way of voice command recognition, etc., on the robot such that the user may clap her hands or verbally instruct the robot to “beg” or “stand still” or “dance the Lindy Hop,” and the robot would comply by performing the associated robo-motion, for example.
  • Functional themes may enhance the primary purpose (or any other purpose) of the mobile robot, as well—for a non-limiting example, a “super robot cleaner” theme might include behavioral patterns that cause the home robot to detect spots on the floor and to spend a particular proportion of cleaning time vacuuming or washing the spots discovered as a result of the theme.
  • User commands to initiate actions such as power on/off, start, stop or to change a cleaning mode, set a cleaning duration, program cleaning parameters such as start time and duration, and or many other user initiated commands, functions, and/or components contemplated for use with the present invention are specifically described in U.S. patent application Ser. No. 11/166,891, by Dubrovsky et al., filed on Jun. 24, 2005, entitled Remote Control Scheduler and Method for Autonomous Robotic Device, the entire disclosure of which is herein incorporated by reference it its entirety.
  • For another example of a type of theme which encompasses a variety of behavioral, audio, visual and other types of eclectic content, a mobile robot may be themed as a chess piece, such theme to include not only distinctive body cladding (with different types possible such as “knight,” “rook,” “pawn,” etc.) and e.g., chess-themed music and sounds, but also e.g., a network behavior so as to coordinate with a central server (or possible to “swarm” with several other home robots also acting as chess pieces) so as to adopt the role of a particular piece on a chessboard, in which a user or users bring a plurality of home robots and arrange them in an environment simulating a chess board and command the home robots to move as chess pieces during a chess game; this high-level “chess” theme thus may include also the rules of chess and behaviors and movement patterns (as well as network routines and functions) of various chess pieces, as well as visual and/or audio content and the like, for example.
  • As illustrated by the above-discussed non-limiting examples, the content types that may be used and combined into theme packages may encompass a broad range of material, virtually as broad as the range of potential capabilities performable by the mobile robot 104, for example. The present inventors intend that the examples of associated themed content given herein can be generalized for the purposes of the invention according to their readily recognized type:
  • The chess and trivia game examples are examples of providing associated themed content linking at least two of a predetermined game rule set, game piece or paraphernalia set, game appearance, and game sounds.
  • The parrot and dog examples are examples of providing associated themed content linking at least two of a predetermined entity (i.e., animal or person) motion set, appearance, and sounds. This would extend to celebrities, so called “licensed properties” linked to well-known entertainment programs or books, characters and the like.
  • The ballet example is an example of providing associated themed content linking at least two of a predetermined dance move set, paraphernalia, appearance, music, and sounds.
  • The country-and-western example below is an example of providing associated themed content linking at least two of a musical genre move set, paraphernalia, appearance, music, and sounds.
  • Mobile robot users with Internet-capable personal computers, cell phones, PDAs, and other devices may also browse the home robot manufacturer's server via a web site and select themes, sounds, tones, “dances,” software, or other suitable mobile robot content for download and/or purchase. (For example, a user interested in quelling potential sources of RF interference in her home, or for conserving bandwidth for other tasks, might purchase a low-RF-noise network profile content from a manufacturer's website, for example.) The user interface presented to the user may also be customized to match the robot theme as well—that is, a theme may include multimedia content that can be manifested on the robot but also on an online interface that is associated with the robot having the theme, and with which the user interacts when using the online interface and/or the robot.
  • Also, users may select themed body panels, base stations, batteries, accessories, new home robots, data bridges, etc., from the web site, and have the items shipped to their home. Items such as body panels may then be ordered in bulk in blank form by the manufacturer or reseller who operates the web site, and then apply themed designs rapidly and “just-in-time” after (or before, when sales prediction analysis is properly applied) receiving an order from a home robot user.
  • Furthermore, themed items may be accompanied by a CD-ROM, floppy disk, “memory stick”-type data bridge, or other data medium in order to transmit the appropriate corresponding themed content to the home robot upon installation of the ordered themed item. Alternatively, the mobile robot manufacturer or reseller may omit shipping data media along with physical items, and instead offer Internet-based transmission of the corresponding themed content (via the wireless robot network data bridge, for example), or do so when orders are received from customers who the manufacturer or reseller has a record of having previously bought the network data bridge 202, for example (or when records show that the customer already has the most up-to-date version of the appropriate themed content). The mobile robot manufacturer or reseller may reduce shipping charges when it is known that the ordering customer has the ability to update the mobile robot 104 via the network data bridge 202, for example.
  • Moreover, by virtue of the online ordering system and manufacturer's or reseller's website, customers may be offered a variety of functional and thematic combinations for body paneling, sounds and music, “dance” routines, and indicia flash patterns (and/or one-off or single-item offerings in a “mix-'n′-match” mode, such as a Country/Western paneling-themed robot with a rock'n′roll “dance” routine and a classical piano sound theme, in a non-limiting example). For example, the County/Western theme body panel 502 a is linked to music content ‘A’ 510 a; and the piano theme body panel 502 b is linked to music content ‘B’ 510 b (which would usually be piano-related). Additionally, accessory replacement and service reminders tied to usage can be contemplated—e.g., reminders to replace the batteries after a certain number of recharge cycles or hours expended. The online service may be configured to enter a recommended replacement part (to replace a part recorded as having accumulated sufficient cycles or time to be worn according to the uploaded data) or a consumable material such as detergent, cat food, lubricant or any other such material (to augment the stock of the consumable material recorded as needing replenishment) into the user's online shopping cart or one-click purchase queue, as non-limiting examples.
  • Other aspects of such a website may be handled in a conventional manner, by permitting online credit card or check payment, etc. As an advantage, customers may place orders for a customized home robot with their choice of complete theme or a “mix-'n'-match” robot (e.g., a male lion vs. a female lion) personalized to the users' own variegated tastes and styles. Moreover, by using laser printing or other modality for applying digital images and/or writing to the polymer sheet panel coverings discussed above, users may be offered the option to apply slogans, names, or any arbitrary writing and/or images to be printed on their home robots, for example.
  • A further example permits the user to create or record his or her own sounds or music content and to transmit this custom content to his or her home robot. In order to address licensing and unauthorized duplication concerns, the home robot manufacturer may employ a media and/or authoring software protection scheme, for example, such that only licensed copies of the authoring software will function properly and such that only content produced on a properly licensed copy of the manufacturer-provided software will correctly play back on that manufacturer's home robots, for example. As a non-limiting example, public-key encryption techniques may be applied in which each robot receives a public key known to the user (such as a serial number, for example), and a private key known only by the manufacturer. Accordingly, when a home robot user purchases a copy of the content authoring software from the manufacturer, the copy that the home robot user receives may “watermark” its output content with the encryption key such that only the particular user's home robot can pay back the output content, as a non-limiting example. Other encryption or protection schemes may be employed to allow wider or narrow distribution, as appropriate to business and license/copyright protection concerns.
  • As a further example, users may be offered a content subscription service in which a number of themes and/or audible or other content are made available per month or other time period to the user who purchases the subscription. As an advantage, users can be assured of the integrity of the content they download and copyright concerns can be addressed.
  • FIGS. 9A-C are state diagrams showing examples of state machines 900, 930, and 960 for the mobile robot 104, the lighthouse peripheral device 102, and a remote control peripheral device, respectively. The Robot Personal Area Network (RPAN) protocol used by the network data bridge 202, the mobile robot 104, and the peripheral device 102 can be used in many ways as defined by applications.
  • FIG. 9A shows a high level state diagram that serves as a reference for the following discussion. The mobile robot 104 is an RPAN master responsible for several tasks, such as providing a unique address to isolate communications with its peripherals from other RPAN systems, deciding on a radio channel to use, operating on the common channel as necessary to report this operational channel, and transmitting a beacon which defines time windows that peripherals should use to communicate.
  • When the mobile robot 104 is conserving power in its dormant state 902 or charging, the RF network is inactive, meaning that no beacon is transmitted. While in this state 902, the mobile robot 104 can be woken up over RF by executing the following steps in a constant loop.
  • 1. Turn on radio on the Common Signaling Channel (CSC).
  • 2. Send “Activate Invite” broadcast message.
  • 3. Listen for “Activate Request” message for up to 30 milliseconds.
  • 4. Receive “Activate Request” message and leave Dormant state. Or, turn off radio and sleep for 970 milliseconds.
  • Therefore, every second the mobile robot 104 invites peripheral devices, such as the peripheral device 102, to wake it up. A peripheral wanting to wake up the mobile robot 104 will listen for a second for the “Activate Invite” message and respond promptly with the “Activate Request” message which wakes up the mobile robot 104.
  • When the mobile robot 104 has been woken up to active scan state 904, it checks if its radio channel is still valid. If the robot sleeps for more than 10 minutes, the radio channel will be reselected. This time is chosen to safely exceed any session oriented timers. The first step in reselecting a channel is to actively scan for other RPAN masters and exclude their channels from the set of acceptable channels.
  • An active scan is performed by sending two “Ping” messages on the CSC to the broadcast RPAN address. The mobile robot 104 listens for 30 ms after each message for “Ping Response”. Each “Ping” message is separated by 360 ms.
  • After ruling out radio channels through active scanning the mobile robot 104 moves to energy scan state 906, candidate channels are scanned for energy levels in order of preference. On a given channel, 100 energy level samples are obtained in about 100 ms of time. The first channel to have an average energy level below an acceptance threshold is chosen as the new operational channel. In the unlikely event that no channels meet these criteria, one is randomly chosen.
  • When the mobile robot 104 is operating its RF network normally, then it is in normal state 908 and it transmits a beacon every 720 ms which is called the “beacon period”. In that beacon message, a window of time following the beacon which is valid for devices to communicate is advertised. This “contention access period” is set to 220 ms in the normal mode. While not in the contention access period, the robot operates on the common channel to answer “Ping” messages with “Ping Responses” advertising the radio channel on which the robot is operating.
  • The motivations behind the specific beacon and contention access periods chosen are as follows: to keep beacon tracking overhead low, to keep radio power consumption low, and to allow peripherals with very inaccurate clocks to reliably find robots. This final goal is satisfied by defining one more time constant which is the “ping separation period”. If a peripheral sends two pings separated by 360 ms, the real time assuming the clock is plus or minus 30% is anywhere between 252 ms and 468 ms. On the low side, the 252 ms is sufficiently high so that both pings will not occur while the mobile robot 104 is on the operational channel. On the high side, the 468 ms is smaller than the 500 ms that the mobile robot 104 is listening on the common channel guaranteeing that one of them will be receiving during that time. There are other combinations of values that work. Also, with higher clock accuracy the contention access period duty cycle can be higher. These values can be recalculated for other systems based on those needs.
  • The 500 ms when the mobile robot 104 is operating on the common channel represent a dead time that can be unacceptable at times. One such time is when the mobile robot 104 is being driven remotely. Another is when the mobile robot 104 sensors are being monitored for diagnostic purposes. When low latency state 910 is needed, a peripheral may send a “Low Latency Request” message which contains a byte representing the number of seconds that low latency mode should be used. The low latency time can be refreshed with subsequent messages. Also, the mobile robot 104 itself may switch to low latency mode.
  • FIG. 9B shows the state diagram 930 that serves as a reference for the following discussion. In this section, message flows between the mobile robot 104 and the lighthouse peripheral device 102 are illustrated. A peripheral device, such as the lighthouse peripheral device 102, may be a simple slave device.
  • The slave 102 begins in a low power consumption state 932 designated as “Free” in the state diagram 930. In this state 932, it wakes up periodically and attempts to join a robot network. It does this by setting its channel to the common signaling channel (CSC is the 5th channel). It then sends a broadcast message to ask any robots who are listening on this channel to respond. The response from a robot hearing this message advertises a network with an ID on an appropriate channel (zero based numbering). This is the same active scanning process described above. The lighthouse 102 will get 0 or more responses in the two 30 ms windows of time it listens after sending the requests. If none are received, it will go back to sleep and perform another active scan in 4 seconds. If one or more are received, it will choose to join the network of a mobile robot whose response message was received with the greatest signal strength value.
  • If the lighthouse 102 has ever received a Join Accept message from a robot, that robot's RPAN ID is used instead of the broadcast address in the ping message. In this way, the lighthouse 102 will not waste power waking up for a robot that is in RF range but not its owner, e.g. the neighbor's mobile robot.
  • If the lighthouse 102 wants to join a robot's network and does not have an assigned address, the lighthouse 102 will randomly select a MAC address (marked as “Soft” in the MAC header) to use temporarily until the robot assigns one to it.
  • In “Seeking” state 934, the lighthouse 102 changes channels and listens for the beacon emitted periodically by the mobile robot 104. It should pick this up within a few seconds at most. If this does not happen, a timeout (30 seconds) will send it back to the “Free” state 932.
  • If all goes well and the beacon is found, the lighthouse 102 will advance to “Binding” state 936. In the “Binding” state 936 and subsequent states, the lighthouse 102 will filter packets from other robots and monitor its link to the RPAN network from the MAC layer beacon tracking. These are shown in the state diagram as “Link Up” and “Link Down” events.
  • Upon entering this state 936, the robot will send a “join request” message. This starts a timer on the lighthouse 102 getting accepted into the network within 5 minutes. If that expires, the lighthouse 102 will return to “Free” 932. (This 5 minute time period is known to both the robot 104 and the lighthouse 102 so that each can expire their pending Whenever the robot 104 receives a join request that causes a collision of soft MAC addresses in its table, it will send a join rejection message that does not need to be acknowledged, and the entry will not go into the table. The lighthouse 102 (and perhaps the other lighthouse with the colliding MAC address) will follow the Join Fail event on the state diagram which will result in regenerating a MAC address and trying the bind again.
  • When the robot 104 receives a join request message and wants to delay the binding until another handshake is performed as is the case with lighthouses, it sends a join pending message. A join pending message is needed if an acceptance or rejection will not be sent within 3500 ms.
  • While acceptance is pending, the lighthouse 102 will transmit a 4-bit code in the confinement beam (11) which indicates that it has not bound to the robot. When the robot 104 runs into a code 11 beam, it stops and looks at its list of lighthouses requesting bindings. For each entry, it issues a command to wink the code to 12. If that command is not acknowledged or the beam change is not seen, the lighthouse 102 is not in range, and the robot 104 moves on to the next entry in the list. If the robot 104 succeeds in seeing the beam, it sends a join accept message which moves the lighthouse 102 into Active state 938 where it obeys beam commands requested by the master. The beam command message contains the state of beams as well as the 4-bit code that should be in the beam.
  • While a lighthouse is in the binding state 936, it will probably lose contact with the robot 104 as it moves around a room and throughout a house. Losing the beacon for over 2 minutes returns the lighthouse 102 to the “Free” state 932 where the beams are off and power is being saved. When the robot 104 is back in range, the binding procedure is skipped since the assigned address is still valid.
  • After the lighthouse 102 has been bound to the robot 104, it will probably lose contact with the robot 104 as it moves around a room and throughout a house. A “Roam Recover” state is designed so that the binding process does not have to be repeated following each of these expected losses of communication. A gross timeout of 90 minutes is shown in the state diagram which puts the lighthouse back in a state where re-binding is necessary. The MAC address assigned is now considered expired.
  • The binding process is designed to obviate the need to assign static MAC addresses to simple devices of which there can be multiple talking to a robot at once. The assignment of addresses by the robot 104 can simply amount to cycling through a list of valid addresses. If the assigned MAC addresses are to expire some time after the bind, it greatly reduces the chance that the user could cause a configuration error.
  • For example, if there were a procedure the user needed to follow to assign MAC addresses to the lighthouse 102 (e.g. install the batteries, place in front of robot, and hit button sequence on robot), he might do this successfully for the two included in the initial package. If the robot 104 ever forgot the last one assigned due to a code update or software problem, he might assign a conflicting address in the future if the user purchased an additional one later. Or, if the user replaces the robot 104 and then uses it to configure a new lighthouse, a conflict is very possible. Having the lighthouse MAC addresses expire tends to heal all such problems. One drawback to expiring addresses is that memories of what lighthouses the robot 104 encountered while cleaning are forgotten. These memories are potentially useful in having the robot 104 clean different rooms on different days. In either case, the age of a MAC address is specified in the “join accept” message giving the robot 104 (hence future software revisions of the robot 104) the freedom to make such decisions.
  • FIG. 9C shows the state diagram 960 for the remote control. The remote is used to drive the robot 104 around program its schedule. The remote control has a group address and does not require a numeric address.
  • From power saving state 962, the pressing of a button triggers seeking state 934 and the search for robots on the common channel. The search is performed at a very low power setting if the RPAN ID stored in non-volatile memory is blank. Otherwise, full power is used. In this way, a robot in very close proximity will respond to an unpaired remote. The search can be described by the following loop which is executed continually until a robot is found or until the remote puts itself back to sleep due to inactivity.
  • 1. Operate radio on CSC responding to Activate Invite messages (1 second).
  • 2. Perform 1 active scan (360 milliseconds).
  • If the active scan collects responses, the remote moves to binding state 936 and the robot with the highest signal strength is selected. The remote switches to the robots channel and gets link by tracking the beacon. It then sends a ping message to itself. If it gets a response, then that means another remote control is using the group address. If no response is received, the remote is in active state 938 and is allowed to control the robot 104.
  • If the remote successfully communicates with the robot 104 on the operational channel, that robots RPAN ID is programmed into the remote controls non-volatile memory. The remote control communicates with the robot 104 as long as it is awake and buttons have been pressed recently (60 seconds). If the beacon is lost for over 10 seconds which is how Link Down is configured on the remote, it tried to find a robot again.
  • A paired remote control can be unpaired by installing the batteries with the left drive button depressed and keeping it held down for three seconds. It is then paired as part of the robot discovery algorithm described above.
  • Driving the robot 104 and operating its user interface remotely is accomplished by sending button states to the robot 104 and receiving LED states from the robot 104. These are updated when they change as well as at a refresh interval. In this way, the remote can be thought of as a dumb terminal.
  • The following describes the design of RF communications system for a robot system, such as the robot systems 100 and 200. The communications system performs the following actions: wake to RF for lighthouses and robots, remote control and lighthouse beam control commands, low power consumes a low amount of power, occupies a small RAM/ROM footprint, code and sound download, coexists with common interferers found in such environments, coexists with other robot systems in proximity as will be common in the mobile robot 104 development labs and some home environments, provides a simple growth path at each layer of the networking hierarchy.
  • The RF communications stack to be used on the robot systems 100 and 200 is discussed in a layer oriented approach starting from lowest and ending with the highest. The approach is based on the seven layer Open Systems Interconnection (OSI) Reference Model.
  • The physical layer uses the 2.4 GHz direct sequence spread spectrum (DSSS) modem as is specified in IEEE 802.15.4. The physical layer supports the following features: 16 available channels; energy detection (ED) provided on demand; clear channel assessment (CCA) using energy, carrier sense or both; and link quality indication (LQI) provided with packet reception.
  • The MAC layer provides the ability for a device to transmit broadcast and uni-cast messages to other devices within radio range. This does not preclude any topology from being supported in the future. However, layers above this MAC layer will impose restrictions. The MAC layer supports the following features: single master and multiple slaves, master sends beacon containing the beacon period and active period which allows a slave device to track the beacon knowing when to listen and when to save power, slave tracks beacon to establish link status, master can be told by higher layers to listen on the network establishment channel during idle periods of the beacon, a 16-bit Robot Personal Area Network Identifier (RPAN ID) to allow devices to filter packets not on the robot network of interest when channel is shared, group identifier in addresses include allow broadcast to specific device types and obviate need for unique MAC addresses for many types of peripherals, collision avoidance algorithm using CCA and random back-off, and reliability through acknowledge requests and automatic retry.
  • Including acknowledgement in the MAC layer was done for the IEEE 802.15.4. This may bring the MAC layer up to par with wired media such as half duplex Ethernet where collision detection can be used to give the sender a high level of confidence that the packet arrived at the destination. Network layer acknowledgement schemes may be needed when bridges and routers between the sender and receiver have the potential to drop packets due to resource constraints. Either MAC layer or network layer acknowledgement can be made to suit the needs of this network.
  • The MAC layer acknowledge is time sensitive since there is no addressing information contained in the packet. If the acknowledgement is sent very quickly, it is unlikely to collide with a new data packet or be confused as an acknowledgement to the new data packet. The sequence number reduces the chances of processing the wrong ACK.
  • An acknowledgement at the network layer is not as time sensitive since the packet contains addressing information. However, more time is wasted sending this extra information and the latency is worse as information is passed between layers. More state information is potentially needed to remember which packets have not been acknowledged unless head of line blocking is used.
  • Avoiding time critical processing of packets is not desirable, but there may be situations in which it is used. If another robot or an IEEE 802.15.4 device is operating on the same channel, the receiver may need to promptly parse and discard a valid packet not intended for it. To the extent it delays, it risks not listening when a packet intended for it is received. After factoring this in, it may be appropriate to include the ACK and retry feature at the MAC layer and take steps to mitigate the imposed real time constraints.
  • Again, an acknowledgement scheme implemented at the MAC or network layers can be made to work. If the MAC layer proves problematic, due to any of the concerns expressed above, the acknowledgment scheme can be implemented at the network layer.
  • The network layer is responsible for establishing membership in a network. The role of a master device and a slave device are different at this layer. The network layer supports the following slave features: network discovery using low power active scanning on common channel, can issue requests to join a network using a temporary random MAC address, and can participate in a network without any joining transaction if MAC address is known. The network layer supports the following master features: channel selection when network is started based on best available channel, and management of join requests sent on the common channel including assignment of MAC addresses to slaves using temporary ones.
  • The 16 available channels are discussed in a zero based manner (0-15). Channel 4 does not get 802.11b interference in the USA or Europe. As such, it is chosen as the common signaling channel used for network joining procedures.
  • The defined MAC layer draws on IEEE 802.15.4. Some concepts borrowed include the CSMA-CD algorithm, the reliability feature, and the beacon concept to some extent. The PAN coordination features are replaced with a method more targeted to the more limited needs of the higher layers.
  • The MAC layer is based on the presence of a master who generates beacons which define a period of active communications during which any device can talk to a device. Slave devices track this beacon to determine if the robot is present and when it can save power. The mobile robot 104 is the master device and is responsible for transmitting the beacon and managing slave devices. Slave devices track the beacon of the master so they know when they should listen for the next beacon, when they can communicate with other devices, and when they should turn off their RF modems to save power.
  • The MAC layer header includes a field designed to conflict with the IEEE 802.15.4 frame type field so that such a MAC device should reject it as an invalid frame type, and is otherwise designed to allow multiple RPANs to share a single channel. The RPAN ID field is in a fixed location in the packet, so a receiver can filter on a particular RPAN much like a Virtual LAN (VLAN) in Ethernet.
  • Beacons are transmitted by a master at periodic intervals. One reason is to imbed information about when the slave devices should expect to exchange messages with the master. This duty cycle control allows some level of power saving even during active operational modes. The second reason for transmitting beacons is to provide a constant status on the proximity of the robot. The goal is to unburden application layer software from doing this task.
  • A beacon is sent periodically as specified by the Beacon Period which is specified in the beacon itself. So, a slave receiving a beacon knows when to expect the next one. An Access Period is specified in the beacon, as well. This dictates the period of time during which the master will be active on the channel. Slaves should pay attention during this time and may shut down their receivers at other times. The sequence number in the beacon allows the slave to detect one or more missing beacons.
  • When a master specifies a small active period relative to the beacon period, it gives it the opportunity to spend the idle time listening on the CSC to admit new peripherals into the network. As such, the beacon periods may be set in a manner related to the period that peripherals use to wake up and try to join a network.
  • A typical beacon period may be on the order of a second. The jitter of the beacon message is relatively high considering the random nature of the back-off algorithm. Also, the slaves should not be burdened with having to manage events with a high level of temporal precision. Subject to the clocking requirements discussed later, the slave should define a “beacon window” which is a time period centered on the next expected time a beacon will be received. The slave should listen for the beacon during this window. The window ends when the expected beacon is received, ideally. If no beacon is received, the window ends, but the slave operates during the access period as if it received one. When a beacon is missed in this way, the window is lengthened for the next beacon since clock inaccuracies add. Once too many beacons have been missed, a loss of beacon is declared and the slave just listens constantly until it reacquires it. The loss of beacon condition is analogous in the Ethernet world to losing link. The master transmits beacons with a time accuracy of less than 0.1%.
  • The MAC engine is based on a 250 microsecond process tick in order to simplify the management of state timers and avoid busy waiting. It should be a design goal of the implementation to insure that the processing in a single tick never exceeds 125 microseconds in order to leave plenty of processor available for other more critical tasks. In 250 microseconds, 7.8 characters can be transmitted at the fixed baud rate of 250 kbps. Including the preamble and PHY header, the smallest possible packet is 8 characters long. This means that two CCA functions performed in consecutive ticks will almost certainly detect an ACK in flight.
  • The collision avoidance algorithm is invoked whenever there is a packet ready to transmit. The transmitter will delay a random number of back-off periods before running the CCA function. On the tick where the CCA function has completed, the transmitter will start sending if the CCA returned saying that the channel is clear.
  • The dead time between a packet reception ending and an ACK starting is between one and two ticks. So, a CCA function that does its best to prevent stepping on the ACK is one which performs two CCA measurements spaced a tick apart and declaring the channel clear if both pass. The back-off period is designed to be longer than the transmission time of a small packet such as an ACK, so two ticks is chosen.
  • If a data frame is received with acknowledgement requested with a matching destination address, the receiver prepares to send an acknowledge packet provided that it will be able to pass the buffer along to the application. The receiver waits one tick to give the sender time to switch its transceiver into receive mode, then transmits an acknowledgement which is the first 2 bytes of the MAC header echoed with the frame type changed to an the ACK value. The sender expecting an ACK will wait for up to five ticks (1.25 ms) to receive the reply before retrying the transmission. Up to three retries are performed. If an acknowledgement is requested, the sender should postpone sending the packet if there is not enough time remaining in the current active period for the receiver to send the acknowledgement.
  • Data payloads in this network begin with the Transport Header which consists of a byte specifying the Service Access Point (SAP). This multiplexes different types of services onto the same device address. Previously, this has been accomplished using the “opcodes”.
  • Device Control, Device Status Request, and Device Status SAPs are related in that the payload messages use the same code points on a per device basis. That is to say that devices will have a published set of control and status information elements consisting of an element code followed by a known number of element payload bytes. If controllable over RF, the Device Control SAP is used to set values. Controllable and observable items can be queried with a Device Status Request. The actual status is delivered using the Device Status SAP whether solicited, i.e. requested over the Device Status Request SAP, or unsolicited, i.e. sent spontaneously. Alarms and other indications may be delivered in this way.
  • The reason to use multiple SAP codes for this related functionality is that it may a major portion of the overall RF traffic. As such, the smaller the packets can be made, the more reliable the transmission. So, for critical control and status messages, having a two byte header <Device_SAP><Control_Cmd> or <Device_SAP><Status_Cmd> keeps the PHY and MAC headers as small as possible.
  • “ROBOT OBSTACLE DETECTION SYSTEM”, U.S. Pat. No. 6,594,844, disclosing proximity sensors such as cliff sensors and wall following sensors; “AUTONOMOUS FLOOR-CLEANING ROBOT”, U.S. Pat. No. 6,883,201, disclosing a general structure of an iRobot Roomba coverage/cleaning robot and main and edge cleaning heads in detail; “METHOD AND SYSTEM FOR MULTI-MODE COVERAGE FOR AN AUTONOMOUS ROBOT”, U.S. Pat. No. 6,809,490, disclosing motion control and coverage behaviors, including escape behaviors, selected by an arbiter according to the principles of behavior based robotics; and “METHOD AND SYSTEM FOR ROBOT LOCALIZATION AND CONFINEMENT”, U.S. Pat. No. 6,781,338, disclosing virtual walls, i.e., robot confinement using wall-simulating directed beams, are each incorporated by reference herein in their entireties.
  • Other robot details and features combinable with those described herein may be found in the following U.S. patent applications filed concurrently herewith, entitled “AUTONOMOUS COVERAGE ROBOT NAVIGATION SYSTEM” having assigned Ser. No. 11/633,869; “MODULAR ROBOT” having assigned Ser. No. 11/633,886; and “COVERAGE ROBOT MOBILITY” having assigned Ser. No. 11/633,885, the entire contents of the aforementioned applications are hereby incorporated by reference.
  • A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the following claims. Accordingly, other implementations are within the scope of the following claims.

Claims (15)

1. A method of communicating with a mobile robot using a network data bridge, the method comprising:
receiving a first communication on a broadband network interface connected to an internet protocol network, wherein the first communication is transferred in compliance with an internet protocol;
extracting a serial command from the received first communication;
forming a second communication including the serial command in compliance with a command protocol distinct from the internet protocol; and
broadcasting the second communication to the mobile robot using a wireless command interface connected to a wireless command protocol network.
2. The method of claim 1, wherein the internet protocol specifies internet protocol header information, and wherein the command protocol lacks the internet protocol header information.
3. The method of claim 1, wherein the mobile robot comprises:
a drive system that moves the robot about an environment; and
a wireless command communication component that receives the serial command broadcasted from the network data bridge.
4. The method of claim 1, further comprising:
sending local configuration information to a home server using the broadband network interface.
5. The method of claim 1, further comprising:
polling a pre-configured uniform resource locator (URL) with periodic hypertext transfer protocol (HTTP) posts using the broadband network interface, wherein each post contains status information for the mobile robot.
6. The method of claim 5, further comprising:
using the broadband network interface, receiving from software-based virtual sensors information for the mobile robot; and
using the wireless command interface, sending the information to the mobile robot, wherein the mobile robot uses the information to trigger an event.
7. The method of claim 1, further comprising:
using the wireless command interface, receiving from the mobile robot information corresponding to a theme;
using the broadband network interface, sending the information corresponding to the theme to a server and receiving customizable content from the server; and
using the wireless command interface, sending the customizable content to the mobile robot.
8. The method of claim 7, wherein the customizable content includes audible content organized into one or more related discrete sounds.
9. The method of claim 7, wherein the mobile robot includes a detachable body panel having a theme identification unit, wherein the theme corresponds to the detachable body panel, and wherein the mobile robot is configured to identify the theme using the theme identification unit.
10. The method of claim 1, further comprising:
using the broadband network interface, receiving customizable content from a content distribution system, wherein the customizable content was selected from a content selection display on a user terminal; and
using the wireless command interface, sending the customizable content to the mobile robot.
11. The method of claim 1, wherein the serial command is related to one or more of: robot usage information, robot behavior information, and customer information.
12. A method of communicating with a mobile robot using a network data bridge, the method comprising:
receiving a first communication on a wireless command interface from a mobile robot, wherein the wireless command interface is connected to a wireless command protocol network, and wherein the first communication is broadcasted in compliance with a command protocol;
sending a second communication using a broadband network interface connected to an internet protocol network, wherein the second communication is transferred in compliance with an internet protocol distinct from the command protocol, and wherein the second communication includes the first communication and additional internet protocol header information.
13. The method of claim 12, wherein the first communication comprises state information for the mobile robot.
14. The method of claim 12, wherein the first communication comprises debugging information for the mobile robot.
15. The method of claim 12, wherein sending the second communication comprises sending the second communication to a monitoring service.
US12/959,879 2005-12-02 2010-12-03 Robot System Abandoned US20110077802A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/959,879 US20110077802A1 (en) 2005-12-02 2010-12-03 Robot System
US13/893,905 US8761931B2 (en) 2005-12-02 2013-05-14 Robot system
US14/275,355 US9392920B2 (en) 2005-12-02 2014-05-12 Robot system
US15/182,849 US9599990B2 (en) 2005-12-02 2016-06-15 Robot system
US15/417,997 US9901236B2 (en) 2005-12-02 2017-01-27 Robot system
US15/880,767 US10182695B2 (en) 2005-12-02 2018-01-26 Robot system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US74144205P 2005-12-02 2005-12-02
EP06839009A EP1963941B1 (en) 2005-12-02 2006-12-04 Robot system
US11/633,883 US8374721B2 (en) 2005-12-02 2006-12-04 Robot system
US12/959,879 US20110077802A1 (en) 2005-12-02 2010-12-03 Robot System

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/633,883 Continuation US8374721B2 (en) 2005-12-02 2006-12-04 Robot system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/893,905 Continuation US8761931B2 (en) 2005-12-02 2013-05-14 Robot system

Publications (1)

Publication Number Publication Date
US20110077802A1 true US20110077802A1 (en) 2011-03-31

Family

ID=55409643

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/633,883 Active 2029-06-08 US8374721B2 (en) 2005-12-02 2006-12-04 Robot system
US12/959,879 Abandoned US20110077802A1 (en) 2005-12-02 2010-12-03 Robot System
US13/893,905 Active US8761931B2 (en) 2005-12-02 2013-05-14 Robot system
US14/275,355 Active US9392920B2 (en) 2005-12-02 2014-05-12 Robot system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/633,883 Active 2029-06-08 US8374721B2 (en) 2005-12-02 2006-12-04 Robot system

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/893,905 Active US8761931B2 (en) 2005-12-02 2013-05-14 Robot system
US14/275,355 Active US9392920B2 (en) 2005-12-02 2014-05-12 Robot system

Country Status (4)

Country Link
US (4) US8374721B2 (en)
EP (4) EP2544066B1 (en)
JP (5) JP5451795B2 (en)
KR (1) KR101099808B1 (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100017026A1 (en) * 2008-07-21 2010-01-21 Honeywell International Inc. Robotic system with simulation and mission partitions
US20100162121A1 (en) * 2008-12-22 2010-06-24 Nortel Networks Limited Dynamic customization of a virtual world
US8078349B1 (en) 2011-05-11 2011-12-13 Google Inc. Transitioning a mixed-mode vehicle to autonomous mode
US20120291810A1 (en) * 2011-05-17 2012-11-22 Shui-Shih Chen Cleaning systems and control methods thereof
US20130003111A1 (en) * 2011-06-30 2013-01-03 Konica Minolta Laboratory U.S.A., Inc. Method and system for network diagnostics which shows possible causes on a display of an image forming apparatus
US8380349B1 (en) 2011-05-06 2013-02-19 Google Inc. Methods and systems for providing instructions to a robotic device
US20130061416A1 (en) * 2011-09-09 2013-03-14 Dyson Technology Limited Autonomous surface treating appliance
US20130117412A1 (en) * 2008-09-17 2013-05-09 Weibo Wang Management Device, Management Method, And Recording Medium
US20130137366A1 (en) * 2011-11-28 2013-05-30 Telefonaktiebolaget L M Ericsson (Publ) APP Driven Base Station Man-Machine Interface
US20130138266A1 (en) * 2011-11-30 2013-05-30 Futaba Corporation Steering Communication Device, Steered-Object Communication Device And Steering Communication System
US8606401B2 (en) 2005-12-02 2013-12-10 Irobot Corporation Autonomous coverage robot navigation system
US20140115492A1 (en) * 2012-05-18 2014-04-24 Mehdi Tehranchi System and method for transposing an external user interface on a mobile device
WO2014066690A2 (en) * 2012-10-24 2014-05-01 Robotex Inc. Infrastructure for robots in human-centric environments
WO2014113806A1 (en) * 2013-01-18 2014-07-24 Irobot Corporation Mobile robot providing environmental mapping for household environmental control
WO2014133977A1 (en) * 2013-03-01 2014-09-04 Robotex Inc. Low latency data link system and method
WO2014175592A1 (en) * 2013-04-23 2014-10-30 Samsung Electronics Co., Ltd. Moving robot, user terminal apparatus and control method thereof
WO2014085587A3 (en) * 2012-11-30 2015-03-19 Tennant Company Dynamic maintenance scheduling system for surface cleaning machines
US9044863B2 (en) 2013-02-06 2015-06-02 Steelcase Inc. Polarized enhanced confidentiality in mobile camera applications
US9197772B2 (en) 2012-05-18 2015-11-24 Nuance Communications, Inc. Dynamic multilingual print driver
US9233472B2 (en) 2013-01-18 2016-01-12 Irobot Corporation Mobile robot providing environmental mapping for household environmental control
CN105476555A (en) * 2015-12-29 2016-04-13 深圳市鼎泰智能装备股份有限公司 Novel intelligent cleaning robot
US9320409B1 (en) 2015-03-16 2016-04-26 Irobot Corporation Autonomous floor cleaning with removable pad
US9375847B2 (en) 2013-01-18 2016-06-28 Irobot Corporation Environmental management systems including mobile robots and methods using same
US9402518B2 (en) 2012-02-09 2016-08-02 Samsung Electronics Co., Ltd. Apparatus and method for controlling cleaning in robotic cleaner
CN106805851A (en) * 2015-08-17 2017-06-09 美国iRobot公司 Autonomous floor-cleaning with detachable pad
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US9907449B2 (en) 2015-03-16 2018-03-06 Irobot Corporation Autonomous floor cleaning with a removable pad
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US20180267528A1 (en) * 2017-03-16 2018-09-20 Vorwerk & Co. Interholding Gmbh Method for operating a self-traveling floor treatment apparatus
US10149077B1 (en) * 2012-10-04 2018-12-04 Amazon Technologies, Inc. Audio themes
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
US10360565B2 (en) 2012-05-18 2019-07-23 Kofax, Inc. System and method for providing a universal endpoint address schema to route documents and manage document workflows
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10518416B2 (en) 2014-07-10 2019-12-31 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
US10595698B2 (en) 2017-06-02 2020-03-24 Irobot Corporation Cleaning pad for cleaning robot
US10599159B2 (en) * 2004-07-07 2020-03-24 Irobot Corporation Celestial navigation system for an autonomous vehicle
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US10678251B2 (en) 2014-12-16 2020-06-09 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
US11106124B2 (en) 2018-02-27 2021-08-31 Steelcase Inc. Multiple-polarization cloaking for projected and writing surface view screens
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
US11157009B2 (en) 2016-12-02 2021-10-26 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for controlling floor cleaning robots
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
US11209833B2 (en) 2004-07-07 2021-12-28 Irobot Corporation Celestial navigation system for an autonomous vehicle
US11221497B2 (en) 2017-06-05 2022-01-11 Steelcase Inc. Multiple-polarization cloaking
US11360484B2 (en) 2004-07-07 2022-06-14 Irobot Corporation Celestial navigation system for an autonomous vehicle
US11381903B2 (en) 2014-02-14 2022-07-05 Sonic Blocks Inc. Modular quick-connect A/V system and methods thereof
US11412906B2 (en) * 2019-07-05 2022-08-16 Lg Electronics Inc. Cleaning robot traveling using region-based human activity data and method of driving cleaning robot
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
US11921517B2 (en) 2017-09-26 2024-03-05 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device

Families Citing this family (261)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US6956348B2 (en) 2004-01-28 2005-10-18 Irobot Corporation Debris sensor for cleaning apparatus
US7571511B2 (en) 2002-01-03 2009-08-11 Irobot Corporation Autonomous floor-cleaning robot
US6690134B1 (en) 2001-01-24 2004-02-10 Irobot Corporation Method and system for robot localization and confinement
US7429843B2 (en) 2001-06-12 2008-09-30 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US6925357B2 (en) 2002-07-25 2005-08-02 Intouch Health, Inc. Medical tele-robotic system
US20040162637A1 (en) 2002-07-25 2004-08-19 Yulun Wang Medical tele-robotic system with a master remote station with an arbitrator
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US7813836B2 (en) 2003-12-09 2010-10-12 Intouch Technologies, Inc. Protocol for a remotely controlled videoconferencing robot
SE0303445L (en) * 2003-12-17 2005-06-18 Abb Research Ltd Tools for an industrial robot
US7332890B2 (en) 2004-01-21 2008-02-19 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US20050204438A1 (en) 2004-02-26 2005-09-15 Yulun Wang Graphical interface for a remote presence system
US7720554B2 (en) 2004-03-29 2010-05-18 Evolution Robotics, Inc. Methods and apparatus for position estimation using reflected light sources
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US8077963B2 (en) 2004-07-13 2011-12-13 Yulun Wang Mobile robot with a head-based movement mapping scheme
MX2007006208A (en) 2004-11-23 2008-01-22 Johnson & Son Inc S C Device and methods of providing air purification in combination with cleaning of surfaces.
JP2006217167A (en) * 2005-02-02 2006-08-17 Sharp Corp Ip telephone device and ip adapter device
US7620476B2 (en) 2005-02-18 2009-11-17 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
ES2346343T3 (en) 2005-02-18 2010-10-14 Irobot Corporation AUTONOMOUS SURFACE CLEANING ROBOT FOR DRY AND WET CLEANING.
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
ATE394204T1 (en) * 2005-04-19 2008-05-15 Comau Spa METHOD FOR CONTROLLING INDUSTRIAL ROBOTS AND CORRESPONDINGLY CONTROLLED ROBOTS, ROBOT SYSTEMS AND COMPUTER PROGRAMS
US9198728B2 (en) 2005-09-30 2015-12-01 Intouch Technologies, Inc. Multi-camera mobile teleconferencing platform
EP2251757B1 (en) 2005-12-02 2011-11-23 iRobot Corporation Coverage robot mobility
JP5255448B2 (en) 2005-12-02 2013-08-07 アイロボット コーポレイション Autonomous coverage robot navigation system
EP2544066B1 (en) 2005-12-02 2018-10-17 iRobot Corporation Robot system
EP2116914B1 (en) 2005-12-02 2013-03-13 iRobot Corporation Modular robot
EP2816434A3 (en) 2005-12-02 2015-01-28 iRobot Corporation Autonomous coverage robot
WO2007109627A2 (en) 2006-03-17 2007-09-27 Irobot Corporation Lawn care robot
US8214474B2 (en) * 2006-04-18 2012-07-03 International Business Machines Corporation Autonomic computing system with model transfer
EP2023788B1 (en) 2006-05-19 2011-09-07 iRobot Corporation Removing debris from cleaning robots
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8849679B2 (en) 2006-06-15 2014-09-30 Intouch Technologies, Inc. Remote controlled robot system that provides medical images
KR100818297B1 (en) * 2006-06-23 2008-03-31 한국전자통신연구원 Method and Apparatus for performing wireless sensor network communicating selectively using Infrared and Radio Frequency Communication
US20080004751A1 (en) * 2006-06-28 2008-01-03 Samsung Electronics Co., Ltd. Robot cleaner system and method of controlling the same
US20080105110A1 (en) * 2006-09-05 2008-05-08 Villanova University Embodied music system
US8156433B2 (en) * 2006-09-05 2012-04-10 Villanova University Embodied music system
WO2008083481A1 (en) * 2007-01-10 2008-07-17 Smart Technologies Ulc Participant response system with facilitated communications bandwidth
CN103433923A (en) * 2007-01-12 2013-12-11 汉斯乔格·巴尔特斯 Method and system for robot generation
US8265793B2 (en) 2007-03-20 2012-09-11 Irobot Corporation Mobile robot for telecommunication
US20080281470A1 (en) 2007-05-09 2008-11-13 Irobot Corporation Autonomous coverage robot sensing
US9160783B2 (en) 2007-05-09 2015-10-13 Intouch Technologies, Inc. Robot system that operates through a network firewall
US20080299906A1 (en) * 2007-06-04 2008-12-04 Topway Electrical Appliance Company Emulating playing apparatus of simulating games
US8157640B2 (en) * 2007-06-27 2012-04-17 Wms Gaming Inc. Swarming behavior in wagering game machines
US20090029744A1 (en) * 2007-07-26 2009-01-29 Sony Ericsson Mobile Communications Ab Electronic device for hands-free operation of a portable communication device
US8572102B2 (en) * 2007-08-31 2013-10-29 Disney Enterprises, Inc. Method and system for making dynamic graphical web content searchable
ITUD20070190A1 (en) * 2007-10-12 2009-04-13 Tommasi & Tommasi S R L "CONTROL AND SERVO-CONTROL INTERCOMMUNICATOR SYSTEM"
US20090248200A1 (en) * 2007-10-22 2009-10-01 North End Technologies Method & apparatus for remotely operating a robotic device linked to a communications network
US20090138638A1 (en) 2007-11-27 2009-05-28 Microsoft Corporation Serial Peripheral Interface for a Transceiver Integrated Circuit
KR100971408B1 (en) 2008-01-14 2010-07-21 모스트아이텍 주식회사 Remote activation method of a urc client
US20130293396A1 (en) 2008-03-15 2013-11-07 James R. Selevan Sequenced guiding systems for vehicles and pedestrians
US10875182B2 (en) 2008-03-20 2020-12-29 Teladoc Health, Inc. Remote presence system mounted to operating room hardware
US8179418B2 (en) 2008-04-14 2012-05-15 Intouch Technologies, Inc. Robotic based health care system
US10895898B2 (en) * 2008-04-16 2021-01-19 Deka Products Limited Partnership Management of remotely controlled devices
US8170241B2 (en) 2008-04-17 2012-05-01 Intouch Technologies, Inc. Mobile tele-presence system with a microphone system
US9193065B2 (en) 2008-07-10 2015-11-24 Intouch Technologies, Inc. Docking system for a tele-presence robot
US9842192B2 (en) 2008-07-11 2017-12-12 Intouch Technologies, Inc. Tele-presence robot system with multi-cast features
US20100042357A1 (en) * 2008-08-15 2010-02-18 Oceaneering International, Inc. Manipulator Position Sensor System
US9807849B2 (en) * 2008-09-10 2017-10-31 Enlighted, Inc. Automatically commissioning lighting controls using sensing parameters of the lighting controls
KR101481443B1 (en) * 2008-09-12 2015-01-12 삼성전자주식회사 A method for management device in a communication network and a system thereof
US8340819B2 (en) 2008-09-18 2012-12-25 Intouch Technologies, Inc. Mobile videoconferencing robot system with network adaptive driving
US20100093274A1 (en) * 2008-10-15 2010-04-15 Jian Xu Fault-tolerant non-random signal repeating system for building electric control
US8996165B2 (en) 2008-10-21 2015-03-31 Intouch Technologies, Inc. Telepresence robot with a camera boom
US8463435B2 (en) * 2008-11-25 2013-06-11 Intouch Technologies, Inc. Server connectivity control for tele-presence robot
US9138891B2 (en) * 2008-11-25 2015-09-22 Intouch Technologies, Inc. Server connectivity control for tele-presence robot
CN102710544A (en) * 2008-12-31 2012-10-03 北京华旗资讯数码科技有限公司 Three-dimensional interactive instant communication device
US8849680B2 (en) 2009-01-29 2014-09-30 Intouch Technologies, Inc. Documentation through a remote presence robot
KR20100100134A (en) * 2009-03-05 2010-09-15 한국전자통신연구원 Method and apparatus for providing security service for network robot service
US8897920B2 (en) 2009-04-17 2014-11-25 Intouch Technologies, Inc. Tele-presence robot system with software modularity, projector and laser pointer
US8922163B2 (en) 2009-04-24 2014-12-30 Murray MacDonald Automated battery and data delivery system
EP2581797B1 (en) * 2009-05-15 2021-08-18 Samsung Electronics Co., Ltd. Beacon collision avoidance method for a mobile robot system
US8774970B2 (en) 2009-06-11 2014-07-08 S.C. Johnson & Son, Inc. Trainable multi-mode floor cleaning device
US8384755B2 (en) 2009-08-26 2013-02-26 Intouch Technologies, Inc. Portable remote presence robot
US11399153B2 (en) 2009-08-26 2022-07-26 Teladoc Health, Inc. Portable telepresence apparatus
US8532989B2 (en) * 2009-09-03 2013-09-10 Honda Motor Co., Ltd. Command recognition device, command recognition method, and command recognition robot
US8879426B1 (en) * 2009-09-03 2014-11-04 Lockheed Martin Corporation Opportunistic connectivity edge detection
KR20110054472A (en) * 2009-11-17 2011-05-25 엘지전자 주식회사 Robot cleaner and controlling method thereof
DE102010004473A1 (en) * 2010-01-13 2011-07-14 KUKA Laboratories GmbH, 86165 System of development environments and machine controls
US11154981B2 (en) 2010-02-04 2021-10-26 Teladoc Health, Inc. Robot user interface for telepresence robot system
CN105147193B (en) 2010-02-16 2018-06-12 艾罗伯特公司 Vacuum brush
US8670017B2 (en) 2010-03-04 2014-03-11 Intouch Technologies, Inc. Remote presence system including a cart that supports a robot face and an overhead camera
JP5595084B2 (en) * 2010-03-31 2014-09-24 ニチユ三菱フォークリフト株式会社 Consumable parts sales system, electronic store providing apparatus, control method, and program
US8935005B2 (en) 2010-05-20 2015-01-13 Irobot Corporation Operating a mobile robot
US9014848B2 (en) 2010-05-20 2015-04-21 Irobot Corporation Mobile robot system
US8918213B2 (en) 2010-05-20 2014-12-23 Irobot Corporation Mobile human interface robot
US10343283B2 (en) 2010-05-24 2019-07-09 Intouch Technologies, Inc. Telepresence robot system that can be accessed by a cellular phone
US10808882B2 (en) 2010-05-26 2020-10-20 Intouch Technologies, Inc. Tele-robotic system with a robot face placed on a chair
US8744626B2 (en) 2010-05-27 2014-06-03 Deere & Company Managing autonomous machines across multiple areas
JP4866470B2 (en) * 2010-05-31 2012-02-01 株式会社エナリス Power demand management apparatus and power demand management system
US9129502B2 (en) * 2010-07-12 2015-09-08 Dsp Group Ltd. Remote unit link quality monitoring
US9264664B2 (en) 2010-12-03 2016-02-16 Intouch Technologies, Inc. Systems and methods for dynamic bandwidth allocation
US8930019B2 (en) 2010-12-30 2015-01-06 Irobot Corporation Mobile human interface robot
JP5905031B2 (en) 2011-01-28 2016-04-20 インタッチ テクノロジーズ インコーポレイテッド Interfacing with mobile telepresence robot
US9323250B2 (en) 2011-01-28 2016-04-26 Intouch Technologies, Inc. Time-dependent navigation of telepresence robots
DE102011000816B4 (en) 2011-02-18 2023-04-27 Vorwerk & Co. Interholding Gmbh Automatically moveable device
US10769739B2 (en) 2011-04-25 2020-09-08 Intouch Technologies, Inc. Systems and methods for management of information among medical providers and facilities
US20140139616A1 (en) 2012-01-27 2014-05-22 Intouch Technologies, Inc. Enhanced Diagnostics for a Telepresence Robot
US9098611B2 (en) 2012-11-26 2015-08-04 Intouch Technologies, Inc. Enhanced video interaction for a user interface of a telepresence network
TW201247157A (en) * 2011-05-27 2012-12-01 Hon Hai Prec Ind Co Ltd Object searching system and method, sweeper with the system
US10476554B2 (en) * 2011-06-13 2019-11-12 Avaya Inc. Method and system for proximity-based content sharing
US20130031010A1 (en) * 2011-07-28 2013-01-31 VGO Communications, Inc. Method & apparatus for configuring a remote product management service
US9471063B2 (en) * 2011-08-11 2016-10-18 Chien Ouyang Robotic lawn mower with network sensors
US11048268B2 (en) * 2011-08-11 2021-06-29 Chien Ouyang Mapping and tracking system for robots
KR101287474B1 (en) * 2011-09-07 2013-07-18 엘지전자 주식회사 Mobile robot, and system and method for remotely controlling the same
JP5895420B2 (en) * 2011-09-21 2016-03-30 セイコーエプソン株式会社 Robot control device and robot system
US20130085602A1 (en) * 2011-10-04 2013-04-04 Hei Tao Fung Office Robot System
US20130094459A1 (en) 2011-10-14 2013-04-18 Texas Instruments Incorporated Beacon Slot Allocation in Prime
WO2013059513A1 (en) * 2011-10-18 2013-04-25 Reconrobotics, Inc. Robot control translation and gateway system
US8836751B2 (en) 2011-11-08 2014-09-16 Intouch Technologies, Inc. Tele-presence system with a user interface that displays different communication links
US11093722B2 (en) 2011-12-05 2021-08-17 Adasa Inc. Holonomic RFID reader
US10846497B2 (en) 2011-12-05 2020-11-24 Adasa Inc. Holonomic RFID reader
ES2812568T3 (en) * 2012-01-25 2021-03-17 Omron Tateisi Electronics Co Autonomous mobile robot to execute work assignments in a physical environment in which there are stationary and non-stationary obstacles
JP5979910B2 (en) * 2012-02-27 2016-08-31 キヤノン株式会社 COMMUNICATION DEVICE, ITS CONTROL METHOD, PROGRAM
US9344935B2 (en) * 2012-04-06 2016-05-17 Suitable Technologies, Inc. System for wireless connectivity continuity and quality
US9307568B2 (en) 2012-04-06 2016-04-05 Suitable Technologies, Inc. System for wireless connectivity continuity and quality
US20130279411A1 (en) 2012-04-06 2013-10-24 Suitable Technologies, Inc. Method for wireless connectivity continuity and quality
US20130279487A1 (en) 2012-04-06 2013-10-24 Suitable Technologies, Inc. System for wireless connectivity continuity and quality
US20130279472A1 (en) 2012-04-06 2013-10-24 Suitable Technologies, Inc. System for wireless connectivity continuity and quality
WO2013152360A1 (en) 2012-04-06 2013-10-10 Suitable Technologies, Inc. System for wireless connectivity continuity and quality
US20130279479A1 (en) 2012-04-06 2013-10-24 Suitable Technologies, Inc. Method for wireless connectivity continuity and quality
US20130343344A1 (en) 2012-04-06 2013-12-26 Suitable Technologies, Inc. Method for wireless connectivity continuity and quality
US9320074B2 (en) 2012-04-06 2016-04-19 Suitable Technologies, Inc. Method for wireless connectivity continuity and quality
US9320076B2 (en) 2012-04-06 2016-04-19 Suitable Technologies, Inc. System for wireless connectivity continuity and quality
US20130279473A1 (en) 2012-04-06 2013-10-24 Suitable Technologies, Inc. Method for wireless connectivity continuity and quality
US20130265885A1 (en) 2012-04-06 2013-10-10 Suitable Technologies, Inc. Method for wireless connectivity continuity and quality
US9251313B2 (en) 2012-04-11 2016-02-02 Intouch Technologies, Inc. Systems and methods for visualizing and managing telepresence devices in healthcare networks
US8902278B2 (en) 2012-04-11 2014-12-02 Intouch Technologies, Inc. Systems and methods for visualizing and managing telepresence devices in healthcare networks
US8744662B2 (en) * 2012-05-07 2014-06-03 Joseph Y. Ko Method for operating autonomous moving cleaning apparatus
US9361021B2 (en) 2012-05-22 2016-06-07 Irobot Corporation Graphical user interfaces including touchpad driving interfaces for telemedicine devices
EP2852475A4 (en) 2012-05-22 2016-01-20 Intouch Technologies Inc Social behavior rules for a medical telepresence robot
CN102819500B (en) * 2012-07-20 2016-01-20 腾讯科技(深圳)有限公司 A kind of method and device creating peripheral equipment control interface
KR101362384B1 (en) * 2012-08-09 2014-02-21 한국과학기술원 The method and system for browsing things of internet of things on ip using web platform
NL2009410C2 (en) * 2012-09-04 2014-03-05 Lely Patent Nv SYSTEM AND METHOD FOR PERFORMING AN ANIMAL-RELATED ACT.
US20160164976A1 (en) 2012-09-24 2016-06-09 Suitable Technologies, Inc. Systems and methods for remote presence
KR101893152B1 (en) * 2012-10-26 2018-08-31 엘지전자 주식회사 robot cleaner system and a control method of the same
US9675226B2 (en) 2012-10-26 2017-06-13 Lg Electronics Inc. Robot cleaner system and control method of the same
AU2013204965B2 (en) * 2012-11-12 2016-07-28 C2 Systems Limited A system, method, computer program and data signal for the registration, monitoring and control of machines and devices
EP2928649A4 (en) 2012-12-06 2016-08-10 Int Electronic Machines Corp Human augmentation of robotic work
KR20140089241A (en) * 2013-01-04 2014-07-14 한국전자통신연구원 Apparatus and Method for Creating Radio Map based on Probability for Cooperative Intelligent Robots
EP2959349B1 (en) * 2013-02-20 2021-01-27 Husqvarna AB A robotic work tool configured for improved turning in a slope, a robotic work tool system, and a method for use in the robotic work tool
KR20140121581A (en) * 2013-04-08 2014-10-16 삼성전자주식회사 Surgical robot system
KR101799977B1 (en) * 2013-07-05 2017-11-22 한국기술교육대학교 산학협력단 Method and apparatus for controlling driving of robot
US9310800B1 (en) * 2013-07-30 2016-04-12 The Boeing Company Robotic platform evaluation system
EP2870852A1 (en) * 2013-11-11 2015-05-13 Honda Research Institute Europe GmbH Lawn mower with network communication
WO2015072623A1 (en) * 2013-11-13 2015-05-21 엘지전자 주식회사 Cleaning device and control method therefor
CN104385273B (en) * 2013-11-22 2016-06-22 嘉兴市德宝威微电子有限公司 Robot system and simultaneously perform control method
CA2932398C (en) 2013-12-02 2019-03-05 Austin Star Detonator Company Method and apparatus for wireless blasting
CN105874394B (en) * 2013-12-13 2019-01-01 东芝生活电器株式会社 Mobile body device
KR102118049B1 (en) * 2013-12-19 2020-06-09 엘지전자 주식회사 robot cleaner, robot cleaner system and a control method of the same
US10078712B2 (en) * 2014-01-14 2018-09-18 Energid Technologies Corporation Digital proxy simulation of robotic hardware
US9503476B2 (en) * 2014-01-28 2016-11-22 Vivint, Inc. Anti-takeover systems and methods for network attached peripherals
KR20150104917A (en) * 2014-03-07 2015-09-16 이상돈 Electronic doll system controlled by transmitting smart phone via receiving smart phone
CN112220406A (en) * 2014-03-24 2021-01-15 智能清洁设备控股有限公司 Floor cleaning machine with intelligent system
US10800038B1 (en) * 2014-05-13 2020-10-13 Al Incorporated System and method for confinement of a robotic device
US20150366422A1 (en) * 2014-06-24 2015-12-24 John Hoce Monitored Hazardous Liquid Spill Recovery System
KR20160026514A (en) 2014-09-01 2016-03-09 삼성전자주식회사 Method and apparatus for activating a scan function
US9510505B2 (en) 2014-10-10 2016-12-06 Irobot Corporation Autonomous robot localization
US10789543B1 (en) * 2014-10-24 2020-09-29 University Of South Florida Functional object-oriented networks for manipulation learning
CN105629972B (en) * 2014-11-07 2018-05-18 科沃斯机器人股份有限公司 Guiding virtual wall system
US11313546B2 (en) 2014-11-15 2022-04-26 James R. Selevan Sequential and coordinated flashing of electronic roadside flares with active energy conservation
US9623560B1 (en) * 2014-11-26 2017-04-18 Daniel Theobald Methods of operating a mechanism and systems related therewith
US9465796B2 (en) * 2014-12-01 2016-10-11 Symbol Technologies, Llc Apparatus and method for dynamically updating landmarks in a space during execution of natural language instructions
US11263161B2 (en) * 2014-12-02 2022-03-01 Hamilton Sundstrand Corporation Smart test link dongle
CN105640443B (en) * 2014-12-03 2018-09-04 小米科技有限责任公司 The mute working method and device of automatic cleaning equipment, electronic equipment
JP6408371B2 (en) * 2014-12-17 2018-10-17 株式会社マキタ Electric tools and dust collectors
US10028220B2 (en) 2015-01-27 2018-07-17 Locix, Inc. Systems and methods for providing wireless asymmetric network architectures of wireless devices with power management features
CN112019593A (en) * 2015-01-29 2020-12-01 苏州宝时得电动工具有限公司 Data transmission system of electric tool
US20170173485A1 (en) * 2015-02-12 2017-06-22 Geeknet, Inc. Reconfigurable brick building system and structure
KR101659037B1 (en) * 2015-02-16 2016-09-23 엘지전자 주식회사 Robot cleaner, remote controlling system and method of the same
US10958081B1 (en) * 2015-03-15 2021-03-23 AI Incorporated Built in robotic floor cleaning system
US9868211B2 (en) 2015-04-09 2018-01-16 Irobot Corporation Restricting movement of a mobile robot
US20190381665A1 (en) * 2015-05-08 2019-12-19 C2 Systems Limited System, method, computer program and data signal for the registration, monitoring and control of machines and devices
KR102448412B1 (en) 2015-05-19 2022-09-28 마코 서지컬 코포레이션 Systems and Methods for Demonstrating Planned Automated Manipulation of Anatomy
TWI558121B (en) * 2015-05-21 2016-11-11 金寶電子工業股份有限公司 Automatic recognizing method for Beacon device
GB2538779B (en) * 2015-05-28 2017-08-30 Dyson Technology Ltd A method of controlling a mobile robot
US10124757B1 (en) * 2015-07-23 2018-11-13 Traffic Safety Specialists Inc. Vehicle collision avoidance system
US11115798B2 (en) * 2015-07-23 2021-09-07 Irobot Corporation Pairing a beacon with a mobile robot
US9828094B2 (en) * 2015-07-26 2017-11-28 John B. McMillion Autonomous cleaning system
US9625571B1 (en) * 2015-08-06 2017-04-18 X Development Llc Disabling robot sensors
US10307909B1 (en) * 2015-10-05 2019-06-04 X Development Llc Selectively uploading operational data generated by robot based on physical communication link attribute
WO2017060138A1 (en) * 2015-10-06 2017-04-13 Philips Lighting Holding B.V. Control application for automatized maintenance device
EP3156873B2 (en) * 2015-10-15 2023-04-05 Honda Research Institute Europe GmbH Autonomous vehicle with improved simultaneous localization and mapping function
US10504364B2 (en) 2016-01-05 2019-12-10 Locix, Inc. Systems and methods for using radio frequency signals and sensors to monitor environments
US10156852B2 (en) * 2016-01-05 2018-12-18 Locix, Inc. Systems and methods for using radio frequency signals and sensors to monitor environments
US11030902B2 (en) 2016-01-05 2021-06-08 Locix, Inc. Systems and methods for using radio frequency signals and sensors to monitor environments
US10459063B2 (en) 2016-02-16 2019-10-29 Irobot Corporation Ranging and angle of arrival antenna system for a mobile robot
US10386847B1 (en) * 2016-02-19 2019-08-20 AI Incorporated System and method for guiding heading of a mobile robotic device
US10901431B1 (en) * 2017-01-19 2021-01-26 AI Incorporated System and method for guiding heading of a mobile robotic device
US11726490B1 (en) 2016-02-19 2023-08-15 AI Incorporated System and method for guiding heading of a mobile robotic device
US10368711B1 (en) * 2016-03-03 2019-08-06 AI Incorporated Method for developing navigation plan in a robotic floor-cleaning device
US10496063B1 (en) * 2016-03-03 2019-12-03 AI Incorporated Method for devising a schedule based on user input
US10070403B2 (en) * 2016-03-09 2018-09-04 Mueller International, Llc Time beacons
US9817403B2 (en) 2016-03-31 2017-11-14 Intel Corporation Enabling dynamic sensor discovery in autonomous devices
US10582347B2 (en) 2016-04-14 2020-03-03 Mueller International, Llc SMS communication for cellular node
CN107398899A (en) * 2016-05-20 2017-11-28 富泰华工业(深圳)有限公司 Wireless signal strength positioning guidance system and method
US10097411B2 (en) 2016-05-23 2018-10-09 Mueller International, Llc Node migration
EP3471924A4 (en) * 2016-06-15 2020-07-29 iRobot Corporation Systems and methods to control an autonomous mobile robot
GB2552019B (en) * 2016-07-08 2020-01-08 Rolls Royce Plc Methods and apparatus for controlling at least one of a first robot and a second robot to collaborate within a system
US10455350B2 (en) 2016-07-10 2019-10-22 ZaiNar, Inc. Method and system for radiolocation asset tracking via a mesh network
DE112017003497B4 (en) 2016-07-11 2020-12-03 Groove X, Inc. Independently acting robot with a controlled amount of activity
US10200947B2 (en) 2016-07-11 2019-02-05 Mueller International, Llc Asymmetrical hail timing
US10405440B2 (en) 2017-04-10 2019-09-03 Romello Burdoucci System and method for interactive protection of a mobile electronic device
CN106328132A (en) * 2016-08-15 2017-01-11 歌尔股份有限公司 Voice interaction control method and device for intelligent equipment
US10118292B2 (en) * 2016-08-18 2018-11-06 Saudi Arabian Oil Company Systems and methods for configuring field devices using a configuration device
CN109195751B (en) 2016-09-14 2022-12-06 艾罗伯特公司 System and method for configurable operation of zone-based robots
GB2568638A (en) * 2016-09-20 2019-05-22 Walmart Apollo Llc Systems and methods for autonomous item identification
CN107957504B (en) * 2016-10-18 2020-09-22 苏州宝时得电动工具有限公司 Collision direction detection method and device
US10987804B2 (en) * 2016-10-19 2021-04-27 Fuji Xerox Co., Ltd. Robot device and non-transitory computer readable medium
CN106691316A (en) * 2016-11-23 2017-05-24 河池学院 Multi-function intelligent cleaning robot
US10723018B2 (en) * 2016-11-28 2020-07-28 Brain Corporation Systems and methods for remote operating and/or monitoring of a robot
KR102639716B1 (en) 2017-01-03 2024-02-23 한화에어로스페이스 주식회사 Robot management method and robot management system
KR20180079877A (en) 2017-01-03 2018-07-11 코웨이 주식회사 Robot purifier capable of rotating vertically and horizontally
US10159181B2 (en) * 2017-02-02 2018-12-25 Robin Technologies, Inc. Automated secure door for robotic mower
US10551014B2 (en) * 2017-02-10 2020-02-04 James R. Selevan Portable electronic flare carrying case and system
US11725785B2 (en) 2017-02-10 2023-08-15 James R. Selevan Portable electronic flare carrying case and system
US10265844B2 (en) * 2017-03-24 2019-04-23 International Business Machines Corporation Creating assembly plans based on triggering events
US10468013B2 (en) * 2017-03-31 2019-11-05 Intel Corporation Methods, apparatus, and articles of manufacture to generate voices for artificial speech based on an identifier represented by frequency dependent bits
US11862302B2 (en) 2017-04-24 2024-01-02 Teladoc Health, Inc. Automated transcription and documentation of tele-health encounters
DE102017109219A1 (en) * 2017-04-28 2018-10-31 RobArt GmbH Method for robot navigation
US10664502B2 (en) 2017-05-05 2020-05-26 Irobot Corporation Methods, systems, and devices for mapping wireless communication signals for mobile robot guidance
US20180344116A1 (en) 2017-06-02 2018-12-06 Irobot Corporation Scheduling and control system for autonomous robots
DE102017113285A1 (en) * 2017-06-16 2018-12-20 Vorwerk & Co. Interholding Gmbh System with at least two cleaning devices
JP7376475B2 (en) 2017-07-06 2023-11-08 アール. セレバン、ジェームズ Device and method for synchronized signal of the position of a moving pedestrian or vehicle
US10483007B2 (en) 2017-07-25 2019-11-19 Intouch Technologies, Inc. Modular telehealth cart with thermal imaging and touch screen user interface
CN107688344B (en) * 2017-08-22 2021-04-23 广东美的智能机器人有限公司 Robot dormancy control method and device
US11636944B2 (en) 2017-08-25 2023-04-25 Teladoc Health, Inc. Connectivity infrastructure for a telehealth platform
KR102366796B1 (en) * 2017-09-14 2022-02-24 삼성전자주식회사 Mobile robot, controlling method of mobile robot and mobile robot system
JP2019059004A (en) * 2017-09-28 2019-04-18 セイコーエプソン株式会社 Robot system
US10293489B1 (en) * 2017-12-15 2019-05-21 Ankobot (Shanghai) Smart Technologies Co., Ltd. Control method and system, and cleaning robot using the same
US11614746B2 (en) * 2018-01-05 2023-03-28 Irobot Corporation Mobile cleaning robot teaming and persistent mapping
WO2019136019A1 (en) 2018-01-05 2019-07-11 Irobot Corporation Mapping, controlling, and displaying networked devices with a mobile cleaning robot
US10267652B1 (en) 2018-01-23 2019-04-23 Mueller International, Llc Node communication with unknown network ID
US11568236B2 (en) 2018-01-25 2023-01-31 The Research Foundation For The State University Of New York Framework and methods of diverse exploration for fast and safe policy improvement
US11154170B2 (en) * 2018-02-07 2021-10-26 Techtronic Floor Care Technology Limited Autonomous vacuum operation in response to dirt detection
US10617299B2 (en) 2018-04-27 2020-04-14 Intouch Technologies, Inc. Telehealth cart that supports a removable tablet with seamless audio/video switching
GB2573294B (en) * 2018-04-30 2021-10-06 Sony Interactive Entertainment Inc System and Method of robot control
WO2019213269A1 (en) 2018-05-01 2019-11-07 Sharkninja Operating Llc Docking station for robotic cleaner
EP3823507A4 (en) 2018-07-20 2022-06-08 SharkNinja Operating LLC Robotic cleaner debris removal docking station
US11185207B2 (en) * 2018-07-24 2021-11-30 Qualcomm Incorporated Managing cleaning robot behavior
US20200097012A1 (en) * 2018-09-20 2020-03-26 Samsung Electronics Co., Ltd. Cleaning robot and method for performing task thereof
US11481197B1 (en) 2018-10-05 2022-10-25 Cigna Intellectual Property, Inc. Distributed software development pipeline for coherent graphical user interface
EP3878336B1 (en) * 2018-11-06 2023-08-02 Nihon Business Data Processing Center Co., Ltd. Self-propelled cleaning robot
KR102153956B1 (en) * 2018-11-21 2020-09-09 (주)로보티즈 Robot serial nterface device and method
CN109782762B (en) * 2019-01-16 2022-07-15 云南兆讯科技有限责任公司 Power inspection robot control system and method based on wide-narrow heterogeneous communication technology
US11335341B1 (en) * 2019-01-29 2022-05-17 Ezlo Innovation Llc Voice orchestrated infrastructure system
US11191407B2 (en) 2019-01-31 2021-12-07 Irobot Corporation Cleaning of pet areas by autonomous cleaning robots
WO2020166731A1 (en) * 2019-02-11 2020-08-20 엘지전자 주식회사 Action robot terminal and operating method therefor
WO2020184757A1 (en) * 2019-03-13 2020-09-17 엘지전자 주식회사 Robot
US11654552B2 (en) * 2019-07-29 2023-05-23 TruPhysics GmbH Backup control based continuous training of robots
US11663999B2 (en) * 2019-12-27 2023-05-30 Roland Corporation Wireless communication device, wireless communication method, and non-transitory computer-readable storage medium
US11426770B2 (en) * 2020-05-11 2022-08-30 Todd Bentley Scrub plate system, vacuum rail system, control system, irregular surface cleaning system, process, and methods of use
CN111697683B (en) * 2020-06-10 2022-06-14 杭州凯尔达焊接机器人股份有限公司 Power supply with power-off protection function
CN112073913A (en) * 2020-09-11 2020-12-11 江苏工程职业技术学院 Robot inspection system and method
WO2023014526A1 (en) * 2021-08-06 2023-02-09 Todd Bentley Scrub plate system, vacuum rail system, control system, irregular surface cleaning system, process, and methods of use
US11663567B2 (en) * 2021-08-19 2023-05-30 Bank Of America Corporation Automated teller machine (ATM) pre-stage robotic technology
US20230137440A1 (en) * 2021-10-28 2023-05-04 Snap Inc. Point and clean
WO2023147202A1 (en) * 2022-01-30 2023-08-03 Xtend Ai Inc. Method of offline operation of an intelligent, multi-function robot

Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3119369A (en) * 1960-12-28 1964-01-28 Ametek Inc Device for indicating fluid flow
US3166138A (en) * 1961-10-26 1965-01-19 Jr Edward D Dunn Stair climbing conveyance
US3375375A (en) * 1965-01-08 1968-03-26 Honeywell Inc Orientation sensing means comprising photodetectors and projected fans of light
US3569727A (en) * 1968-09-30 1971-03-09 Bendix Corp Control means for pulse generating apparatus
US4012681A (en) * 1975-01-03 1977-03-15 Curtis Instruments, Inc. Battery control system for battery operated vehicles
US4070170A (en) * 1975-08-20 1978-01-24 Aktiebolaget Electrolux Combination dust container for vacuum cleaner and signalling device
US4309758A (en) * 1978-08-01 1982-01-05 Imperial Chemical Industries Limited Driverless vehicle autoguided by light signals and three non-directional detectors
US4367403A (en) * 1980-01-21 1983-01-04 Rca Corporation Array positioning system with out-of-focus solar cells
US4492058A (en) * 1980-02-14 1985-01-08 Adolph E. Goldfarb Ultracompact miniature toy vehicle with four-wheel drive and unusual climbing capability
US4575211A (en) * 1983-04-18 1986-03-11 Canon Kabushiki Kaisha Distance measuring device
US4638445A (en) * 1984-06-08 1987-01-20 Mattaboni Paul J Autonomous mobile robot
US4644156A (en) * 1984-01-18 1987-02-17 Alps Electric Co., Ltd. Code wheel for reflective optical rotary encoders
US4649504A (en) * 1984-05-22 1987-03-10 Cae Electronics, Ltd. Optical position and orientation measurement techniques
US4652917A (en) * 1981-10-28 1987-03-24 Honeywell Inc. Remote attitude sensor using single camera and spiral patterns
US4654492A (en) * 1984-04-12 1987-03-31 Bbc Aktiengesellschaft Brown, Boverie & Cie Switch drive
US4728801A (en) * 1985-01-31 1988-03-01 Thorn Emi Protech Limited Light scattering smoke detector having conical and concave surfaces
US4733343A (en) * 1985-02-18 1988-03-22 Toyoda Koki Kabushiki Kaisha Machine tool numerical controller with a trouble stop function
US4796198A (en) * 1986-10-17 1989-01-03 The United States Of America As Represented By The United States Department Of Energy Method for laser-based two-dimensional navigation system in a structured environment
US4806751A (en) * 1985-09-30 1989-02-21 Alps Electric Co., Ltd. Code wheel for a reflective type optical rotary encoder
US4813906A (en) * 1985-10-19 1989-03-21 Tomy Kogyo Co., Inc. Pivotable running toy
US4817000A (en) * 1986-03-10 1989-03-28 Si Handling Systems, Inc. Automatic guided vehicle system
US4891762A (en) * 1988-02-09 1990-01-02 Chotiros Nicholas P Method and apparatus for tracking, mapping and recognition of spatial patterns
US4905151A (en) * 1988-03-07 1990-02-27 Transitions Research Corporation One dimensional image visual system for a moving vehicle
US4986663A (en) * 1988-12-21 1991-01-22 Societa' Cavi Pirelli S.P.A. Method and apparatus for determining the position of a mobile body
US5084934A (en) * 1990-01-24 1992-02-04 Black & Decker Inc. Vacuum cleaners
US5094311A (en) * 1991-02-22 1992-03-10 Gmfanuc Robotics Corporation Limited mobility transporter
US5182833A (en) * 1989-05-11 1993-02-02 Matsushita Electric Industrial Co., Ltd. Vacuum cleaner
US5276618A (en) * 1992-02-26 1994-01-04 The United States Of America As Represented By The Secretary Of The Navy Doorway transit navigational referencing system
US5277064A (en) * 1992-04-08 1994-01-11 General Motors Corporation Thick film accelerometer
US5276939A (en) * 1991-02-14 1994-01-11 Sanyo Electric Co., Ltd. Electric vacuum cleaner with suction power responsive to nozzle conditions
US5284452A (en) * 1993-01-15 1994-02-08 Atlantic Richfield Company Mooring buoy with hawser tension indicator system
US5386862A (en) * 1992-10-02 1995-02-07 The Goodyear Tire & Rubber Company Pneumatic tire having improved wet traction
US5399951A (en) * 1992-05-12 1995-03-21 Universite Joseph Fourier Robot for guiding movements and control method thereof
US5432907A (en) * 1992-05-12 1995-07-11 Network Resources Corporation Network hub with integrated bridge
US5548649A (en) * 1995-03-28 1996-08-20 Iowa State University Research Foundation Network security bridge and associated method
US5710506A (en) * 1995-02-07 1998-01-20 Benchmarq Microelectronics, Inc. Lead acid charger
US5714119A (en) * 1994-03-24 1998-02-03 Minolta Co., Ltd. Sterilizer
US5717484A (en) * 1994-03-22 1998-02-10 Minolta Co., Ltd. Position detecting system
US5720077A (en) * 1994-05-30 1998-02-24 Minolta Co., Ltd. Running robot carrying out prescribed work using working member and method of working using the same
US5869910A (en) * 1994-02-11 1999-02-09 Colens; Andre Power supply system for self-contained mobile robots
US6006275A (en) * 1992-05-12 1999-12-21 Compaq Computer Corporation Network connector operable in bridge mode and bypass mode
US6021545A (en) * 1995-04-21 2000-02-08 Vorwerk & Co. Interholding Gmbh Vacuum cleaner attachment for the wet cleaning of surfaces
US6025687A (en) * 1997-09-26 2000-02-15 Minolta Co., Ltd. Mobile unit and controller for mobile unit
US6023813A (en) * 1998-04-07 2000-02-15 Spectrum Industrial Products, Inc. Powered floor scrubber and buffer
US6023814A (en) * 1997-09-15 2000-02-15 Imamura; Nobuo Vacuum cleaner
US6026539A (en) * 1998-03-04 2000-02-22 Bissell Homecare, Inc. Upright vacuum cleaner with full bag and clogged filter indicators thereon
US6030465A (en) * 1996-06-26 2000-02-29 Matsushita Electric Corporation Of America Extractor with twin, counterrotating agitators
US6167587B1 (en) * 1997-07-09 2001-01-02 Bissell Homecare, Inc. Upright extraction cleaning machine
US6192548B1 (en) * 1997-07-09 2001-02-27 Bissell Homecare, Inc. Upright extraction cleaning machine with flow rate indicator
US6339735B1 (en) * 1998-12-29 2002-01-15 Friendly Robotics Ltd. Method for operating a robot
US20020011367A1 (en) * 2000-07-27 2002-01-31 Marina Kolesnik Autonomously navigating robot system
US20020021219A1 (en) * 2000-08-08 2002-02-21 Marlena Edwards Animal collar including tracking and location device
US6502657B2 (en) * 2000-09-22 2003-01-07 The Charles Stark Draper Laboratory, Inc. Transformable vehicle
US6510893B1 (en) * 1998-12-30 2003-01-28 Valeo Clamatisation Heating, ventilation and/or air-conditioning device including a thermal loop equipped with a heat exchanger
US20030023356A1 (en) * 2000-02-02 2003-01-30 Keable Stephen J. Autonomous mobile apparatus for performing work within a predefined area
US20030025472A1 (en) * 2001-06-12 2003-02-06 Jones Joseph L. Method and system for multi-mode coverage for an autonomous robot
US20030024986A1 (en) * 2001-06-15 2003-02-06 Thomas Mazz Molded imager optical package and miniaturized linear sensor-based code reading engines
US20030030399A1 (en) * 2001-08-13 2003-02-13 Stephen Jacobs Robot touch shield
US20040016077A1 (en) * 2002-07-26 2004-01-29 Samsung Gwangju Electronics Co., Ltd. Robot cleaner, robot cleaning system and method of controlling same
US20040020000A1 (en) * 2000-01-24 2004-02-05 Jones Joseph L. Robot obstacle detection system
US6690993B2 (en) * 2000-10-12 2004-02-10 R. Foulke Development Company, Llc Reticle storage system
US20040030449A1 (en) * 2002-04-22 2004-02-12 Neal Solomon Methods and apparatus for multi robotic system involving coordination of weaponized unmanned underwater vehicles
US20040030570A1 (en) * 2002-04-22 2004-02-12 Neal Solomon System, methods and apparatus for leader-follower model of mobile robotic system aggregation
US20040031113A1 (en) * 2002-08-14 2004-02-19 Wosewick Robert T. Robotic surface treating device with non-circular housing
US6697147B2 (en) * 2002-06-29 2004-02-24 Samsung Electronics Co., Ltd. Position measurement apparatus and method using laser
US20050021181A1 (en) * 2003-07-24 2005-01-27 Samsung Gwangju Electronics Co., Ltd. Robot cleaner
US6859010B2 (en) * 2003-03-14 2005-02-22 Lg Electronics Inc. Automatic charging system and method of robot cleaner
US6859682B2 (en) * 2002-03-28 2005-02-22 Fuji Photo Film Co., Ltd. Pet robot charging system
US20050144437A1 (en) * 1994-12-30 2005-06-30 Ransom Douglas S. System and method for assigning an identity to an intelligent electronic device
US20060000050A1 (en) * 2004-07-01 2006-01-05 Royal Appliance Mfg. Co. Hard floor cleaner
US6985556B2 (en) * 2002-12-27 2006-01-10 Ge Medical Systems Global Technology Company, Llc Proximity detector and radiography system
US20060010638A1 (en) * 2004-07-14 2006-01-19 Sanyo Electric Co. Ltd. Cleaner
US20060020369A1 (en) * 2004-03-11 2006-01-26 Taylor Charles E Robot vacuum cleaner
US20060020370A1 (en) * 2004-07-22 2006-01-26 Shai Abramson System and method for confining a robot
US20060021168A1 (en) * 2004-07-29 2006-02-02 Sanyo Electric Co., Ltd. Self-traveling cleaner
US20060025134A1 (en) * 2004-06-25 2006-02-02 Lg Electronics Inc. Method of communicating data in a wireless mobile communication system
US6993954B1 (en) * 2004-07-27 2006-02-07 Tekscan, Incorporated Sensor equilibration and calibration system and method
US20060037170A1 (en) * 2004-02-10 2006-02-23 Funai Electric Co., Ltd. Self-propelling cleaner
US20060161301A1 (en) * 2005-01-10 2006-07-20 Io.Tek Co., Ltd Processing method for playing multimedia content including motion control information in network-based robot system
US20070006404A1 (en) * 2005-07-08 2007-01-11 Gooten Innolife Corporation Remote control sweeper
US20070017061A1 (en) * 2005-07-20 2007-01-25 Jason Yan Steering control sensor for an automatic vacuum cleaner
US7171265B2 (en) * 1998-07-31 2007-01-30 Harbinger Medical, Inc. Apparatus and method for detecting lead adequacy and quality
US7174238B1 (en) * 2003-09-02 2007-02-06 Stephen Eliot Zweig Mobile robotic system with web server and digital radio links
US20070032904A1 (en) * 2003-10-08 2007-02-08 Nobukazu Kawagoe Self-propelled working robot
US20070028574A1 (en) * 2005-08-02 2007-02-08 Jason Yan Dust collector for autonomous floor-cleaning device
US20070043459A1 (en) * 1999-12-15 2007-02-22 Tangis Corporation Storing and recalling information to augment human memories
US7188003B2 (en) * 1994-12-30 2007-03-06 Power Measurement Ltd. System and method for securing energy management systems
US20080007203A1 (en) * 2004-01-21 2008-01-10 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US7318248B1 (en) * 2006-11-13 2008-01-15 Jason Yan Cleaner having structures for jumping obstacles
US7320149B1 (en) * 2002-11-22 2008-01-22 Bissell Homecare, Inc. Robotic extraction cleaner with dusting pad
US7324870B2 (en) * 2004-01-06 2008-01-29 Samsung Electronics Co., Ltd. Cleaning robot and control method thereof
US7328196B2 (en) * 2003-12-31 2008-02-05 Vanderbilt University Architecture for multiple interacting robot intelligences
US20080039974A1 (en) * 2006-03-17 2008-02-14 Irobot Corporation Robot Confinement
US20090007366A1 (en) * 2005-12-02 2009-01-08 Irobot Corporation Coverage Robot Mobility
US20090038089A1 (en) * 2004-01-28 2009-02-12 Irobot Corporation Debris Sensor for Cleaning Apparatus
US20090055022A1 (en) * 2000-01-24 2009-02-26 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US20090049640A1 (en) * 2007-08-24 2009-02-26 Samsung Electronics Co., Ltd. Robot cleaner system having robot cleaner and docking station
US7647144B2 (en) * 2001-02-28 2010-01-12 Aktiebolaget Electrolux Obstacle sensing system for an autonomous cleaning apparatus
US20100011529A1 (en) * 2006-05-19 2010-01-21 Chikyung Won Removing debris from cleaning robots
US7650666B2 (en) * 2005-12-22 2010-01-26 Kyungmin Mechatronics Co., Ltd. Robot cleaner
US20100049365A1 (en) * 2001-06-12 2010-02-25 Irobot Corporation Method and System for Multi-Mode Coverage For An Autonomous Robot

Family Cites Families (1144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL28010C (en) 1928-01-03
US1780221A (en) 1930-05-08 1930-11-04 Buchmann John Brush
FR722755A (en) 1930-09-09 1932-03-25 Machine for dusting, stain removal and cleaning of laid floors and carpets
GB381622A (en) 1931-07-16 1932-10-13 Frederick Aubrey Norris Improvements in or connected with vacuum cleaner installations
US1970302A (en) 1932-09-13 1934-08-14 Charles C Gerhardt Brush
US2136324A (en) 1934-09-05 1938-11-08 Simon Louis John Apparatus for cleansing floors and like surfaces
GB449815A (en) 1935-02-21 1936-07-06 Richard Norman Booth Improvements in and relating to vacuum cleaning installations
US2302111A (en) 1940-11-26 1942-11-17 Air Way Electric Appl Corp Vacuum cleaner
US2353621A (en) 1941-10-13 1944-07-11 Ohio Citizens Trust Company Dust indicator for air-method cleaning systems
US2770825A (en) 1951-09-10 1956-11-20 Bissell Carpet Sweeper Co Carpet sweeper and brush cleaning combs therefor
GB702426A (en) 1951-12-28 1954-01-13 Bissell Carpet Sweeper Co Improvements in or relating to carpet sweepers
US2930055A (en) 1957-12-16 1960-03-29 Burke R Fallen Floor wax dispensing and spreading unit
US3888181A (en) 1959-09-10 1975-06-10 Us Army Munition control system
US3333565A (en) 1964-08-27 1967-08-01 Hughes Aircraft Co Display system
US3550714A (en) 1964-10-20 1970-12-29 Mowbot Inc Lawn mower
US3381652A (en) 1965-10-21 1968-05-07 Nat Union Electric Corp Visual-audible alarm for a vacuum cleaner
DE1503746B1 (en) 1965-12-23 1970-01-22 Bissell Gmbh Carpet sweeper
US3333564A (en) 1966-06-28 1967-08-01 Sunbeam Corp Vacuum bag indicator
SE320779B (en) 1968-11-08 1970-02-16 Electrolux Ab
US3649981A (en) 1970-02-25 1972-03-21 Wayne Manufacturing Co Curb travelling sweeper vehicle
US3989311A (en) 1970-05-14 1976-11-02 Debrey Robert J Particle monitoring apparatus
US3674316A (en) 1970-05-14 1972-07-04 Robert J De Brey Particle monitor
US3845831A (en) 1970-08-11 1974-11-05 Martin C Vehicle for rough and muddy terrain
US3690559A (en) 1970-09-16 1972-09-12 Robert H Rudloff Tractor mounted pavement washer
DE2049136A1 (en) 1970-10-07 1972-04-13 Bosch Gmbh Robert vehicle
CA908697A (en) 1971-01-21 1972-08-29 Bombardier Jerome Suspension for tracked vehicles
ES403465A1 (en) 1971-05-26 1975-05-01 Tecneco Spa Device for measuring the opacity of smokes
US3678882A (en) 1971-05-28 1972-07-25 Nat Union Electric Corp Combination alarm and filter bypass device for a suction cleaner
DE2128842C3 (en) 1971-06-11 1980-12-18 Robert Bosch Gmbh, 7000 Stuttgart Fuel electrode for electrochemical fuel elements
SE362784B (en) 1972-02-11 1973-12-27 Electrolux Ab
US4175892A (en) 1972-05-10 1979-11-27 Brey Robert J De Particle monitor
US3809004A (en) 1972-09-18 1974-05-07 W Leonheart All terrain vehicle
FR2211202B3 (en) 1972-12-21 1976-10-15 Haaga Hermann
US3863285A (en) 1973-07-05 1975-02-04 Hiroshi Hukuba Carpet sweeper
US3851349A (en) 1973-09-26 1974-12-03 Clarke Gravely Corp Floor scrubber flow divider
GB1473109A (en) 1973-10-05 1977-05-11
US4119900A (en) 1973-12-21 1978-10-10 Ito Patent-Ag Method and system for the automatic orientation and control of a robot
IT1021244B (en) 1974-09-10 1978-01-30 Ceccato & Co ROTARY BRUSH WITH VERTICAL SHAFT FOR VEHICLE WASHING SYSTEMS IN GENERAL
JPS5321869Y2 (en) 1974-11-08 1978-06-07
US3989931A (en) 1975-05-19 1976-11-02 Rockwell International Corporation Pulse count generator for wide range digital phase detector
JPS5933511B2 (en) 1976-02-19 1984-08-16 増田 将翁 Internal grinding machine for cylindrical workpieces
US4099284A (en) 1976-02-20 1978-07-11 Tanita Corporation Hand sweeper for carpets
JPS5316183A (en) 1976-07-28 1978-02-14 Hitachi Ltd Fluid pressure driving device
JPS5321869U (en) 1976-07-31 1978-02-23
JPS53110257U (en) 1977-02-07 1978-09-04
JPS53110257A (en) 1977-03-08 1978-09-26 Matsushita Electric Ind Co Ltd Automatic vacuum cleaner
US4618213A (en) 1977-03-17 1986-10-21 Applied Elastomerics, Incorporated Gelatinous elastomeric optical lens, light pipe, comprising a specific block copolymer and an oil plasticizer
SE407738B (en) 1977-09-15 1979-04-23 Electrolux Ab VACUUM CLEANER INDICATOR DEVICE
US4198727A (en) 1978-01-19 1980-04-22 Farmer Gary L Baseboard dusters for vacuum cleaners
FR2416480A1 (en) 1978-02-03 1979-08-31 Thomson Csf RADIANT SOURCE LOCATION DEVICE AND STEERING TRACKING SYSTEM INCLUDING SUCH A DEVICE
US4196727A (en) 1978-05-19 1980-04-08 Becton, Dickinson And Company See-through anesthesia mask
EP0007789B1 (en) 1978-08-01 1984-03-14 Imperial Chemical Industries Plc Driverless vehicle carrying directional detectors auto-guided by light signals
USD258901S (en) 1978-10-16 1981-04-14 Douglas Keyworth Wheeled figure toy
JPS595315B2 (en) 1978-10-31 1984-02-03 東和精工株式会社 Lower tag attaching device
GB2038615B (en) 1978-12-31 1983-04-13 Nintendo Co Ltd Self-moving type vacuum cleaner
US5164579A (en) 1979-04-30 1992-11-17 Diffracto Ltd. Method and apparatus for electro-optically determining the dimension, location and attitude of objects including light spot centroid determination
US4373804A (en) 1979-04-30 1983-02-15 Diffracto Ltd. Method and apparatus for electro-optically determining the dimension, location and attitude of objects
US4297578A (en) 1980-01-09 1981-10-27 Carter William R Airborne dust monitor
US4305234A (en) 1980-02-04 1981-12-15 Flo-Pac Corporation Composite brush
US4369543A (en) 1980-04-14 1983-01-25 Jen Chen Remote-control radio vacuum cleaner
JPS5714726A (en) 1980-07-01 1982-01-26 Minolta Camera Co Ltd Measuring device for quantity of light
JPS595315Y2 (en) 1980-09-13 1984-02-17 講三 鈴木 Nose ring for friend fishing
JPS6031611Y2 (en) 1980-10-03 1985-09-21 株式会社徳寿工作所 Short pipe connecting device
JPS5764217A (en) 1980-10-07 1982-04-19 Canon Inc Automatic focusing camera
JPS5771968A (en) 1980-10-21 1982-05-06 Nagasawa Seisakusho Button lock
US4401909A (en) 1981-04-03 1983-08-30 Dickey-John Corporation Grain sensor using a piezoelectric element
US4769700A (en) 1981-11-20 1988-09-06 Diffracto Ltd. Robot tractors
US4482960A (en) 1981-11-20 1984-11-13 Diffracto Ltd. Robot tractors
JPS5814730A (en) 1981-07-20 1983-01-27 Shin Etsu Polymer Co Ltd Silicone rubber molded body
USD278732S (en) 1981-08-25 1985-05-07 Tomy Kogyo Company, Incorporated Animal-like figure toy
US4416033A (en) 1981-10-08 1983-11-22 The Hoover Company Full bag indicator
JPS58100840A (en) 1981-12-12 1983-06-15 Canon Inc Finder of camera
CH656665A5 (en) 1982-07-05 1986-07-15 Sommer Schenk Ag METHOD AND CLEANING DEVICE FOR CLEANING A WATER BASIN.
JPS5914711A (en) 1982-07-13 1984-01-25 株式会社クボタ Unmanned running working vehicle
GB2128842B (en) 1982-08-06 1986-04-16 Univ London Method of presenting visual information
US4445245A (en) 1982-08-23 1984-05-01 Lu Ning K Surface sweeper
JPS5933511U (en) 1982-08-24 1984-03-01 三菱電機株式会社 Safety device for self-driving trolleys
US4624026A (en) 1982-09-10 1986-11-25 Tennant Company Surface maintenance machine with rotary lip
US4556313A (en) 1982-10-18 1985-12-03 United States Of America As Represented By The Secretary Of The Army Short range optical rangefinder
JPS5994005A (en) 1982-11-22 1984-05-30 Mitsubishi Electric Corp Position detector for unmanned self-travelling truck
JPS5994005U (en) 1982-12-16 1984-06-26 株式会社古川製作所 Device that manipulates bags with multiple suction cups
JPS5999308U (en) 1982-12-23 1984-07-05 三菱電機株式会社 Fasteners for lighting fixture covers
JPS59120124A (en) 1982-12-28 1984-07-11 松下電器産業株式会社 Electric cleaner
JPS59112311U (en) 1983-01-17 1984-07-28 九州日立マクセル株式会社 Cassette type cleaning device for magnetic heads
CH646044A5 (en) 1983-01-26 1984-11-15 Gottfried Gremminger SURFACE CLEANING DEVICE.
JPS59120124U (en) 1983-02-02 1984-08-13 三菱鉛筆株式会社 injection mold
JPS59131668U (en) 1983-02-24 1984-09-04 日本原子力研究所 piezoelectric valve
JPS59164973A (en) 1983-03-10 1984-09-18 Nippon Tsushin Gijutsu Kk Pair type measuring head for robot
US4481692A (en) 1983-03-29 1984-11-13 Gerhard Kurz Operating-condition indicator for vacuum cleaners
JPS59184917A (en) 1983-04-05 1984-10-20 Tsubakimoto Chain Co Guiding method of unmanned truck
JPS59164973U (en) 1983-04-20 1984-11-05 株式会社 ミタチ音響製作所 Drive mechanism of linear tracking arm
DE3317376A1 (en) 1983-05-13 1984-11-15 Diehl GmbH & Co, 8500 Nürnberg Safety circuit for a projectile fuzing circuit
JPS59212924A (en) 1983-05-17 1984-12-01 Mitsubishi Electric Corp Position detector for traveling object
US4477998A (en) 1983-05-31 1984-10-23 You Yun Long Fantastic wall-climbing toy
JPS59226909A (en) 1983-06-07 1984-12-20 Kobe Steel Ltd Positioning method of automotive robot
US4513469A (en) 1983-06-13 1985-04-30 Godfrey James O Radio controlled vacuum cleaner
JPS6089213A (en) 1983-10-19 1985-05-20 Komatsu Ltd Detecting method for position and direction of unmanned truck
US4674048A (en) 1983-10-26 1987-06-16 Automax Kabushiki-Kaisha Multiple robot control system using grid coordinate system for tracking and completing travel over a mapped region containing obstructions
US4700301A (en) 1983-11-02 1987-10-13 Dyke Howard L Method of automatically steering agricultural type vehicles
JPS6089213U (en) 1983-11-26 1985-06-19 小畑 邦夫 thin film gloves
US4674047A (en) 1984-01-31 1987-06-16 The Curators Of The University Of Missouri Integrated detonator delay circuits and firing console
DE3404202A1 (en) 1984-02-07 1987-05-14 Wegmann & Co Device for the remotely controlled guidance of armoured combat vehicles
DE3431175C2 (en) 1984-02-08 1986-01-09 Gerhard 7262 Althengstett Kurz Protective device for dust collection devices
DE3431164A1 (en) 1984-02-08 1985-08-14 Gerhard 7262 Althengstett Kurz VACUUM CLEANER
US4712740A (en) 1984-03-02 1987-12-15 The Regina Co., Inc. Venturi spray nozzle for a cleaning device
HU191301B (en) 1984-03-23 1987-02-27 Richter Gedeon Vegyeszeti Gyar Rt,Hu Process for preparing 1-/hydroxy-methyl/-1,6,7,11b-tetrahydro-2h,4h-/1,3/-oxazino- or -thiazino/4,3-a/isoquinoline -derivatives
US4626995A (en) 1984-03-26 1986-12-02 Ndc Technologies, Inc. Apparatus and method for optical guidance system for automatic guided vehicle
JPS60162832U (en) 1984-04-04 1985-10-29 楯 節男 Exhaust duct
JPS60211510A (en) 1984-04-05 1985-10-23 Komatsu Ltd Position detecting method of mobile body
JPS60217576A (en) 1984-04-12 1985-10-31 Nippon Gakki Seizo Kk Disc case
US4832098A (en) 1984-04-16 1989-05-23 The Uniroyal Goodrich Tire Company Non-pneumatic tire with supporting and cushioning members
US4620285A (en) 1984-04-24 1986-10-28 Heath Company Sonar ranging/light detection system for use in a robot
ZA853615B (en) 1984-05-31 1986-02-26 Ici Plc Vehicle guidance means
JPS60259895A (en) 1984-06-04 1985-12-21 Toshiba Corp Multi tube type super heat steam returning device
JPS6170407A (en) 1984-08-08 1986-04-11 Canon Inc Instrument for measuring distance
JPS6190697A (en) 1984-10-09 1986-05-08 松下電器産業株式会社 Clothing dryer
JPS6197711A (en) 1984-10-18 1986-05-16 Casio Comput Co Ltd Infrared-ray tracking robot system
JPS6197712A (en) 1984-10-18 1986-05-16 Casio Comput Co Ltd Target of infrared-ray tracking robot
IT8423851V0 (en) 1984-11-21 1984-11-21 Cavalli Alfredo MULTI-PURPOSE HOUSEHOLD APPLIANCE PARTICULARLY FOR CLEANING FLOORS, CARPETS AND CARPETS ON THE WORK AND SIMILAR.
US4679152A (en) 1985-02-20 1987-07-07 Heath Company Navigation system and method for a mobile robot
JPH0535330Y2 (en) 1985-03-25 1993-09-08
JPS61160366U (en) 1985-03-27 1986-10-04
DE3676221D1 (en) 1985-05-01 1991-01-31 Nippon Denso Co OPTICAL DUST DETECTOR.
USD292223S (en) 1985-05-17 1987-10-06 Showscan Film Corporation Toy robot or the like
FR2583701B1 (en) 1985-06-21 1990-03-23 Commissariat Energie Atomique VARIABLE GEOMETRY CRAWLER VEHICLE
JPS6215336A (en) 1985-06-21 1987-01-23 Murata Mach Ltd Automatically running type cleaning truck
WO1987000265A1 (en) 1985-06-28 1987-01-15 Moorhouse, D., J. Detonator actuator
US4662854A (en) 1985-07-12 1987-05-05 Union Electric Corp. Self-propellable toy and arrangement for and method of controlling the movement thereof
IT206218Z2 (en) 1985-07-26 1987-07-13 Dulevo Spa MOTOR SWEEPER WITH REMOVABLE CONTAINER
JPS6255760A (en) 1985-09-04 1987-03-11 Fujitsu Ltd Transaction system for reenter transmission of transfer accumulation closing data
SE451770B (en) 1985-09-17 1987-10-26 Hyypae Ilkka Kalevi KIT FOR NAVIGATION OF A LARGE VESSEL IN ONE PLAN, EXTRA A TRUCK, AND TRUCK FOR EXTENDING THE KIT
JPS6274018A (en) 1985-09-27 1987-04-04 Kawasaki Heavy Ind Ltd Operating method for converter waste gas treatment device
DE3534621A1 (en) 1985-09-28 1987-04-02 Interlava Ag VACUUM CLEANER
NO864109L (en) 1985-10-17 1987-04-21 Knepper Hans Reinhard PROCEDURE FOR AUTOMATIC LINING OF AUTOMATIC FLOOR CLEANING MACHINES AND FLOOR CLEANING MACHINE FOR PERFORMING THE PROCEDURE.
JPS6270709U (en) 1985-10-22 1987-05-06
JPS62120510A (en) 1985-11-21 1987-06-01 Hitachi Ltd Control method for automatic cleaner
US4909972A (en) 1985-12-02 1990-03-20 Britz Johannes H Method and apparatus for making a solid foamed tire core
DE3642051A1 (en) 1985-12-10 1987-06-11 Canon Kk METHOD FOR THREE-DIMENSIONAL INFORMATION PROCESSING AND DEVICE FOR RECEIVING THREE-DIMENSIONAL INFORMATION ABOUT AN OBJECT
US4654924A (en) 1985-12-31 1987-04-07 Whirlpool Corporation Microcomputer control system for a canister vacuum cleaner
EP0231419A1 (en) 1986-02-05 1987-08-12 Interlava AG Indicating and function controlling optical unit for a vacuum cleaner
JPS62154008U (en) 1986-03-19 1987-09-30
GB8607365D0 (en) 1986-03-25 1986-04-30 Roneo Alcatel Ltd Electromechanical drives
JPS62164431U (en) 1986-04-08 1987-10-19
USD298766S (en) 1986-04-11 1988-11-29 Playtime Products, Inc. Toy robot
JPS62263508A (en) 1986-05-12 1987-11-16 Sanyo Electric Co Ltd Autonomous type work track
JPH0782385B2 (en) 1986-05-12 1995-09-06 三洋電機株式会社 Mobile guidance device
US4829442A (en) * 1986-05-16 1989-05-09 Denning Mobile Robotics, Inc. Beacon navigation system and method for guiding a vehicle
US4710020A (en) 1986-05-16 1987-12-01 Denning Mobil Robotics, Inc. Beacon proximity detection system for a vehicle
US4777416A (en) 1986-05-16 1988-10-11 Denning Mobile Robotics, Inc. Recharge docking system for mobile robot
JPS62189057U (en) 1986-05-22 1987-12-01
US4955714A (en) 1986-06-26 1990-09-11 Stotler James G System for simulating the appearance of the night sky inside a room
US4752799A (en) 1986-07-07 1988-06-21 Honeywell Inc. Optical proximity sensing optics
FR2601443B1 (en) 1986-07-10 1991-11-29 Centre Nat Etd Spatiales POSITION SENSOR AND ITS APPLICATION TO TELEMETRY, ESPECIALLY FOR SPATIAL ROBOTICS
JPH07102204B2 (en) 1986-09-25 1995-11-08 株式会社マキタ Brush cleaner
FI74829C (en) 1986-10-01 1988-03-10 Allaway Oy Method for controlling a plant such as vacuum cleaner, central vacuum cleaner, mechanical air conditioning system or the like.
KR940002923B1 (en) 1986-10-08 1994-04-07 가부시키가이샤 히타치세이사쿠쇼 Method and apparatus for operating vacuum cleaner
US4920060A (en) 1986-10-14 1990-04-24 Hercules Incorporated Device and process for mixing a sample and a diluent
JPS6371857U (en) 1986-10-28 1988-05-13
EP0265542A1 (en) 1986-10-28 1988-05-04 Richard R. Rathbone Optical navigation system
IE59553B1 (en) 1986-10-30 1994-03-09 Inst For Ind Res & Standards Position sensing apparatus
US4884506A (en) 1986-11-06 1989-12-05 Electronic Warfare Associates, Inc. Remote detonation of explosive charges
US4733431A (en) 1986-12-09 1988-03-29 Whirlpool Corporation Vacuum cleaner with performance monitoring system
US4733430A (en) 1986-12-09 1988-03-29 Whirlpool Corporation Vacuum cleaner with operating condition indicator system
FR2620070A2 (en) 1986-12-11 1989-03-10 Jonas Andre AUTOBULATED MOBILE UNIT AND CLEANING APPARATUS SUCH AS A VACUUM COMPRISING SUCH A UNIT
JPS63158032A (en) 1986-12-22 1988-07-01 三洋電機株式会社 Moving working vehicle with cord reel
US4735136A (en) 1986-12-23 1988-04-05 Whirlpool Corporation Full receptacle indicator for compactor
CA1311852C (en) 1987-01-09 1992-12-22 James R. Allard Knowledge acquisition tool for automated knowledge extraction
JPS63192414A (en) * 1987-02-05 1988-08-09 オ−トマツクス株式会社 Floor surface cleaning robot
JPS63203483A (en) 1987-02-18 1988-08-23 Res Dev Corp Of Japan Active adaptation type crawler travel vehicle
US4855915A (en) 1987-03-13 1989-08-08 Dallaire Rodney J Autoguided vehicle using reflective materials
KR900003080B1 (en) 1987-03-30 1990-05-07 마쓰시다덴기산교 가부시기가이샤 Nozzle of electric-cleaners
JPH0786767B2 (en) 1987-03-30 1995-09-20 株式会社日立製作所 Travel control method for self-propelled robot
US4818875A (en) 1987-03-30 1989-04-04 The Foxboro Company Portable battery-operated ambient air analyzer
DK172087A (en) 1987-04-03 1988-10-04 Rotowash Scandinavia APPLIANCES FOR WATER CLEANING OF FLOOR OR WALL SURFACES
JPS63158032U (en) 1987-04-03 1988-10-17
JP2606842B2 (en) 1987-05-30 1997-05-07 株式会社東芝 Electric vacuum cleaner
IL82731A (en) 1987-06-01 1991-04-15 El Op Electro Optic Ind Limite System for measuring the angular displacement of an object
SE464837B (en) 1987-06-22 1991-06-17 Arnex Hb PROCEDURE AND DEVICE FOR LASER OPTICAL NAVIGATION
JPH0759702B2 (en) 1987-09-07 1995-06-28 三菱電機株式会社 Guest-host liquid crystal composition
US4858132A (en) 1987-09-11 1989-08-15 Ndc Technologies, Inc. Optical navigation system for an automatic guided vehicle, and method
KR910009450B1 (en) 1987-10-16 1991-11-16 문수정 Superconducting coils and method of manufacturing the same
GB8728508D0 (en) 1987-12-05 1988-01-13 Brougham Pickard J G Accessory unit for vacuum cleaner
EP0321592B1 (en) 1987-12-16 1992-06-03 Hako-Werke GMBH &amp; Co. Hand-controlled sweeping apparatus
JPH01162454A (en) 1987-12-18 1989-06-26 Fujitsu Ltd Sub-rate exchanging system
JPH01180010A (en) 1988-01-08 1989-07-18 Sanyo Electric Co Ltd Moving vehicle
US5002145A (en) 1988-01-29 1991-03-26 Nec Corporation Method and apparatus for controlling automated guided vehicle
US5024529A (en) 1988-01-29 1991-06-18 Synthetic Vision Systems, Inc. Method and system for high-speed, high-resolution, 3-D imaging of an object at a vision station
DE3803824A1 (en) 1988-02-09 1989-08-17 Gerhard Kurz INSTALLATION DEVICE FOR SENSORS AND SENSORS
US4782550A (en) 1988-02-12 1988-11-08 Von Schrader Company Automatic surface-treating apparatus
US4851661A (en) 1988-02-26 1989-07-25 The United States Of America As Represented By The Secretary Of The Navy Programmable near-infrared ranging system
DE3812633A1 (en) 1988-04-15 1989-10-26 Daimler Benz Ag METHOD FOR CONTACTLESS RESISTANCE MEASUREMENT
JP2583958B2 (en) 1988-04-20 1997-02-19 松下電器産業株式会社 Floor nozzle for vacuum cleaner
US4919489A (en) 1988-04-20 1990-04-24 Grumman Aerospace Corporation Cog-augmented wheel for obstacle negotiation
US4977618A (en) 1988-04-21 1990-12-11 Photonics Corporation Infrared data communications
US4919224A (en) 1988-05-16 1990-04-24 Industrial Technology Research Institute Automatic working vehicular system
JPH01175669U (en) 1988-05-23 1989-12-14
US4887415A (en) 1988-06-10 1989-12-19 Martin Robert L Automated lawn mower or floor polisher
KR910006887B1 (en) 1988-06-15 1991-09-10 마쯔시다덴기산교 가부시기가이샤 Dust detector for vacuum cleaner
JPH026312U (en) 1988-06-27 1990-01-17
JPH0540519Y2 (en) 1988-07-15 1993-10-14
GB8817039D0 (en) 1988-07-18 1988-08-24 Martecon Uk Ltd Improvements in/relating to polymer filled tyres
US4857912A (en) 1988-07-27 1989-08-15 The United States Of America As Represented By The Secretary Of The Navy Intelligent security assessment system
USD318500S (en) 1988-08-08 1991-07-23 Monster Robots Inc. Monster toy robot
KR910006885B1 (en) 1988-08-15 1991-09-10 미쯔비시 덴끼 가부시기가이샤 Floor detector for vacuum cleaners
US5040116A (en) 1988-09-06 1991-08-13 Transitions Research Corporation Visual navigation and obstacle avoidance structured light system
US4954962A (en) 1988-09-06 1990-09-04 Transitions Research Corporation Visual navigation and obstacle avoidance structured light system
US4932831A (en) 1988-09-26 1990-06-12 Remotec, Inc. All terrain mobile robot
US4933864A (en) 1988-10-04 1990-06-12 Transitions Research Corporation Mobile robot navigation employing ceiling light fixtures
US5155684A (en) 1988-10-25 1992-10-13 Tennant Company Guiding an unmanned vehicle by reference to overhead features
JPH0546239Y2 (en) 1988-10-31 1993-12-02
US4962453A (en) 1989-02-07 1990-10-09 Transitions Research Corporation Autonomous vehicle for working on a surface and method of controlling same
JPH0779791B2 (en) 1988-11-07 1995-08-30 松下電器産業株式会社 Vacuum cleaner
GB2225221A (en) 1988-11-16 1990-05-30 Unilever Plc Nozzle arrangement on robot vacuum cleaning machine
JPH0824652B2 (en) 1988-12-06 1996-03-13 松下電器産業株式会社 Electric vacuum cleaner
JPH063251Y2 (en) 1988-12-13 1994-01-26 極東工業株式会社 Pipe support
DE3914306A1 (en) 1988-12-16 1990-06-28 Interlava Ag DEVICE FOR REGULATING AND / OR DISPLAYING THE OPERATION OF VACUUM CLEANERS
US4918441A (en) 1988-12-22 1990-04-17 Ford New Holland, Inc. Non-contact sensing unit for row crop harvester guidance system
US4893025A (en) 1988-12-30 1990-01-09 Us Administrat Distributed proximity sensor system having embedded light emitters and detectors
US4967862A (en) 1989-03-13 1990-11-06 Transitions Research Corporation Tether-guided vehicle and method of controlling same
JPH06105781B2 (en) 1989-04-25 1994-12-21 住友電気工業株式会社 Method of manufacturing integrated circuit
US4971591A (en) 1989-04-25 1990-11-20 Roni Raviv Vehicle with vacuum traction
JP2815606B2 (en) 1989-04-25 1998-10-27 株式会社トキメック Control method of concrete floor finishing robot
JP2520732B2 (en) 1989-04-25 1996-07-31 株式会社テック Vacuum cleaner suction body
US5154617A (en) 1989-05-09 1992-10-13 Prince Corporation Modular vehicle electronic system
JPH0313611A (en) 1989-06-07 1991-01-22 Toshiba Corp Automatic cleaner
FR2648071B1 (en) 1989-06-07 1995-05-19 Onet SELF-CONTAINED METHOD AND APPARATUS FOR AUTOMATIC FLOOR CLEANING BY EXECUTING PROGRAMMED MISSIONS
US5051906A (en) 1989-06-07 1991-09-24 Transitions Research Corporation Mobile robot navigation employing retroreflective ceiling features
JPH03129328A (en) 1989-06-27 1991-06-03 Victor Co Of Japan Ltd Electromagnetic radiation flux scanning device and display device
US4961303A (en) 1989-07-10 1990-10-09 Ford New Holland, Inc. Apparatus for opening conditioning rolls
US5127128A (en) 1989-07-27 1992-07-07 Goldstar Co., Ltd. Cleaner head
JPH0744911B2 (en) * 1989-08-09 1995-05-17 東京コスモス電機株式会社 Vacuum cleaner
US5144715A (en) 1989-08-18 1992-09-08 Matsushita Electric Industrial Co., Ltd. Vacuum cleaner and method of determining type of floor surface being cleaned thereby
US5157222A (en) 1989-10-10 1992-10-20 Joanell Laboratories, Inc. Pyrotechnic ignition apparatus and method
US4961304A (en) 1989-10-20 1990-10-09 J. I. Case Company Cotton flow monitoring system for a cotton harvester
US5045769A (en) 1989-11-14 1991-09-03 The United States Of America As Represented By The Secretary Of The Navy Intelligent battery charging system
US5033291A (en) 1989-12-11 1991-07-23 Tekscan, Inc. Flexible tactile sensor for measuring foot pressure distributions and for gaskets
JP2714588B2 (en) 1989-12-13 1998-02-16 株式会社ブリヂストン Tire inspection device
IL92720A (en) 1989-12-15 1993-02-21 Neta Holland Toothbrush
JPH03186243A (en) 1989-12-15 1991-08-14 Matsushita Electric Ind Co Ltd Upright type vacuum cleaner
US5063846A (en) 1989-12-21 1991-11-12 Hughes Aircraft Company Modular, electronic safe-arm device
JPH03197758A (en) 1989-12-25 1991-08-29 Yokohama Rubber Co Ltd:The Soundproof double floor
JPH03201903A (en) 1989-12-28 1991-09-03 Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko Autonomic traveling system for field working vehicle
US5093956A (en) 1990-01-12 1992-03-10 Royal Appliance Mfg. Co. Snap-together housing
US5647554A (en) 1990-01-23 1997-07-15 Sanyo Electric Co., Ltd. Electric working apparatus supplied with electric power through power supply cord
US5020186A (en) 1990-01-24 1991-06-04 Black & Decker Inc. Vacuum cleaners
US5187662A (en) 1990-01-24 1993-02-16 Honda Giken Kogyo Kabushiki Kaisha Steering control system for moving vehicle
US5115538A (en) 1990-01-24 1992-05-26 Black & Decker Inc. Vacuum cleaners
US4956891A (en) 1990-02-21 1990-09-18 Castex Industries, Inc. Floor cleaner
JP3149430B2 (en) 1990-02-22 2001-03-26 松下電器産業株式会社 Upright vacuum cleaner
US5049802A (en) 1990-03-01 1991-09-17 Caterpillar Industrial Inc. Charging system for a vehicle
US5233682A (en) 1990-04-10 1993-08-03 Matsushita Electric Industrial Co., Ltd. Vacuum cleaner with fuzzy control
US5018240A (en) 1990-04-27 1991-05-28 Cimex Limited Carpet cleaner
US5170352A (en) 1990-05-07 1992-12-08 Fmc Corporation Multi-purpose autonomous vehicle with path plotting
US5111401A (en) 1990-05-19 1992-05-05 The United States Of America As Represented By The Secretary Of The Navy Navigational control system for an autonomous vehicle
JPH08393Y2 (en) 1990-06-01 1996-01-10 株式会社豊田自動織機製作所 Air supply device in jet loom
US5142985A (en) 1990-06-04 1992-09-01 Motorola, Inc. Optical detection device
US5109566A (en) 1990-06-28 1992-05-05 Matsushita Electric Industrial Co., Ltd. Self-running cleaning apparatus
JPH04227507A (en) 1990-07-02 1992-08-17 Nec Corp Method for forming and keeping map for moving robot
JPH0484921A (en) 1990-07-27 1992-03-18 Mitsubishi Electric Corp Vacuum cleaner
US5307273A (en) 1990-08-29 1994-04-26 Goldstar Co., Ltd. Apparatus and method for recognizing carpets and stairs by cleaning robot
US5093955A (en) 1990-08-29 1992-03-10 Tennant Company Combined sweeper and scrubber
ATE146028T1 (en) 1990-09-24 1996-12-15 Andre Colens CONTINUOUS AUTONOMOUS MOWING DEVICE
US5202742A (en) 1990-10-03 1993-04-13 Aisin Seiki Kabushiki Kaisha Laser radar for a vehicle lateral guidance system
US5086535A (en) 1990-10-22 1992-02-11 Racine Industries, Inc. Machine and method using graphic data for treating a surface
US5204814A (en) 1990-11-13 1993-04-20 Mobot, Inc. Autonomous lawn mower
US5216777A (en) 1990-11-26 1993-06-08 Matsushita Electric Industrial Co., Ltd. Fuzzy control apparatus generating a plurality of membership functions for determining a drive condition of an electric vacuum cleaner
JPH0824655B2 (en) 1990-11-26 1996-03-13 松下電器産業株式会社 Electric vacuum cleaner
KR930000081B1 (en) 1990-12-07 1993-01-08 주식회사 금성사 Cleansing method of electric vacuum cleaner
US5136675A (en) 1990-12-20 1992-08-04 General Electric Company Slewable projection system with fiber-optic elements
US5098262A (en) 1990-12-28 1992-03-24 Abbott Laboratories Solution pumping system with compressible pump cassette
US5062819A (en) 1991-01-28 1991-11-05 Mallory Mitchell K Toy vehicle apparatus
US5173881A (en) 1991-03-19 1992-12-22 Sindle Thomas J Vehicular proximity sensing system
US5165064A (en) 1991-03-22 1992-11-17 Cyberotics, Inc. Mobile robot guidance and navigation system
US5105550A (en) 1991-03-25 1992-04-21 Wilson Sporting Goods Co. Apparatus for measuring golf clubs
US5321614A (en) 1991-06-06 1994-06-14 Ashworth Guy T D Navigational control apparatus and method for autonomus vehicles
KR930005714B1 (en) 1991-06-25 1993-06-24 주식회사 금성사 Attratus and method for controlling speed of suction motor in vacuum cleaner
US5400244A (en) 1991-06-25 1995-03-21 Kabushiki Kaisha Toshiba Running control system for mobile robot provided with multiple sensor information integration system
US5560065A (en) 1991-07-03 1996-10-01 Tymco, Inc. Broom assisted pick-up head
US5152202A (en) 1991-07-03 1992-10-06 The Ingersoll Milling Machine Company Turning machine with pivoted armature
DE4122280C2 (en) 1991-07-05 1994-08-18 Henkel Kgaa Mobile floor cleaning machine
DE69129407T2 (en) 1991-07-10 1998-11-19 Samsung Electronics Co Ltd Movable monitor
JP2999861B2 (en) * 1991-07-31 2000-01-17 三洋電機株式会社 Autonomous vehicles
KR930003937Y1 (en) 1991-08-14 1993-06-25 주식회사 금성사 Apparatus for detecting suction dirt for vacuum cleaner
US5442358A (en) 1991-08-16 1995-08-15 Kaman Aerospace Corporation Imaging lidar transmitter downlink for command guidance of underwater vehicle
US5227985A (en) 1991-08-19 1993-07-13 University Of Maryland Computer vision system for position monitoring in three dimensions using non-coplanar light sources attached to a monitored object
JP2738610B2 (en) 1991-09-07 1998-04-08 富士重工業株式会社 Travel control device for self-propelled bogie
JP2901112B2 (en) 1991-09-19 1999-06-07 矢崎総業株式会社 Vehicle periphery monitoring device
DE4131667C2 (en) 1991-09-23 2002-07-18 Schlafhorst & Co W Device for removing thread remnants
US5239720A (en) 1991-10-24 1993-08-31 Advance Machine Company Mobile surface cleaning machine
JP2555263Y2 (en) 1991-10-28 1997-11-19 日本電気ホームエレクトロニクス株式会社 Cleaning robot
WO1993009018A1 (en) 1991-11-05 1993-05-13 Seiko Epson Corporation Micro-robot
JPH05150827A (en) 1991-11-29 1993-06-18 Suzuki Motor Corp Guide system for unattended vehicle
JPH05150829A (en) 1991-11-29 1993-06-18 Suzuki Motor Corp Guide system for automatic vehicle
KR940006561B1 (en) 1991-12-30 1994-07-22 주식회사 금성사 Auto-drive sensor for vacuum cleaner
US5222786A (en) 1992-01-10 1993-06-29 Royal Appliance Mfg. Co. Wheel construction for vacuum cleaner
IL123225A (en) 1992-01-12 1999-07-14 Israel State Large area movement robot
JP3076122B2 (en) 1992-01-13 2000-08-14 オリンパス光学工業株式会社 camera
DE4201596C2 (en) 1992-01-22 2001-07-05 Gerhard Kurz Floor nozzle for vacuum cleaners
CA2087485A1 (en) 1992-01-22 1993-07-23 William Gobush Monitoring system to measure flight characteristics of moving sports object
US5502638A (en) 1992-02-10 1996-03-26 Honda Giken Kogyo Kabushiki Kaisha System for obstacle avoidance path planning for multiple-degree-of-freedom mechanism
US5568589A (en) 1992-03-09 1996-10-22 Hwang; Jin S. Self-propelled cleaning machine with fuzzy logic control
JPH05257533A (en) 1992-03-12 1993-10-08 Tokimec Inc Method and device for sweeping floor surface by moving robot
JP3397336B2 (en) 1992-03-13 2003-04-14 神鋼電機株式会社 Unmanned vehicle position / direction detection method
KR940004375B1 (en) 1992-03-25 1994-05-23 삼성전자 주식회사 Drive system for automatic vacuum cleaner
JPH05285861A (en) 1992-04-07 1993-11-02 Fujita Corp Marking method for ceiling
GB2267360B (en) 1992-05-22 1995-12-06 Octec Ltd Method and system for interacting with floating objects
DE4217093C1 (en) 1992-05-22 1993-07-01 Siemens Ag, 8000 Muenchen, De
US5206500A (en) 1992-05-28 1993-04-27 Cincinnati Microwave, Inc. Pulsed-laser detection with pulse stretcher and noise averaging
US5637973A (en) 1992-06-18 1997-06-10 Kabushiki Kaisha Yaskawa Denki Noncontacting electric power transfer apparatus, noncontacting signal transfer apparatus, split-type mechanical apparatus employing these transfer apparatus and a control method for controlling same
JPH064130A (en) 1992-06-23 1994-01-14 Sanyo Electric Co Ltd Cleaning robot
US6615434B1 (en) 1992-06-23 2003-09-09 The Kegel Company, Inc. Bowling lane cleaning machine and method
US5279672A (en) 1992-06-29 1994-01-18 Windsor Industries, Inc. Automatic controlled cleaning machine
US5303448A (en) 1992-07-08 1994-04-19 Tennant Company Hopper and filter chamber for direct forward throw sweeper
US5331713A (en) 1992-07-13 1994-07-26 White Consolidated Industries, Inc. Floor scrubber with recycled cleaning solution
US5410479A (en) 1992-08-17 1995-04-25 Coker; William B. Ultrasonic furrow or crop row following sensor
JPH0662991A (en) 1992-08-21 1994-03-08 Yashima Denki Co Ltd Vacuum cleaner
US5613269A (en) 1992-10-26 1997-03-25 Miwa Science Laboratory Inc. Recirculating type cleaner
US5324948A (en) 1992-10-27 1994-06-28 The United States Of America As Represented By The United States Department Of Energy Autonomous mobile robot for radiologic surveys
US5548511A (en) 1992-10-29 1996-08-20 White Consolidated Industries, Inc. Method for controlling self-running cleaning apparatus
JPH06137828A (en) 1992-10-29 1994-05-20 Kajima Corp Detecting method for position of obstacle
JPH06149350A (en) 1992-10-30 1994-05-27 Johnson Kk Guidance system for self-traveling car
US5319828A (en) 1992-11-04 1994-06-14 Tennant Company Low profile scrubber
US5369838A (en) 1992-11-16 1994-12-06 Advance Machine Company Automatic floor scrubber
US5261139A (en) 1992-11-23 1993-11-16 Lewis Steven D Raised baseboard brush for powered floor sweeper
USD345707S (en) 1992-12-18 1994-04-05 U.S. Philips Corporation Dust sensor device
GB2273865A (en) 1992-12-19 1994-07-06 Fedag A vacuum cleaner with an electrically driven brush roller
US5491670A (en) * 1993-01-21 1996-02-13 Weber; T. Jerome System and method for sonic positioning
US5315227A (en) 1993-01-29 1994-05-24 Pierson Mark V Solar recharge station for electric vehicles
US5310379A (en) 1993-02-03 1994-05-10 Mattel, Inc. Multiple configuration toy vehicle
DE9303254U1 (en) 1993-03-05 1993-09-30 Raimondi Srl Machine for washing tiled surfaces
US5451135A (en) 1993-04-02 1995-09-19 Carnegie Mellon University Collapsible mobile vehicle
JP2551316B2 (en) 1993-04-09 1996-11-06 株式会社日立製作所 panel
US5345649A (en) 1993-04-21 1994-09-13 Whitlow William T Fan brake for textile cleaning machine
US5352901A (en) 1993-04-26 1994-10-04 Cummins Electronics Company, Inc. Forward and back scattering loss compensated smoke detector
US5363935A (en) 1993-05-14 1994-11-15 Carnegie Mellon University Reconfigurable mobile vehicle with magnetic tracks
US5435405A (en) 1993-05-14 1995-07-25 Carnegie Mellon University Reconfigurable mobile vehicle with magnetic tracks
JPH06327598A (en) 1993-05-21 1994-11-29 Tokyo Electric Co Ltd Intake port body for vacuum cleaner
US5440216A (en) 1993-06-08 1995-08-08 Samsung Electronics Co., Ltd. Robot cleaner
US5460124A (en) 1993-07-15 1995-10-24 Perimeter Technologies Incorporated Receiver for an electronic animal confinement system
IT1264951B1 (en) 1993-07-20 1996-10-17 Anna Maria Boesi ASPIRATING APPARATUS FOR CLEANING SURFACES
US5410754A (en) * 1993-07-22 1995-04-25 Minute Makers, Inc. Bi-directional wire-line to local area network interface and method
KR0140499B1 (en) 1993-08-07 1998-07-01 김광호 Vacuum cleaner and control method
US5510893A (en) 1993-08-18 1996-04-23 Digital Stream Corporation Optical-type position and posture detecting device
US5586063A (en) 1993-09-01 1996-12-17 Hardin; Larry C. Optical range and speed detection system
CA2128676C (en) 1993-09-08 1997-12-23 John D. Sotack Capacitive sensor
KR0161031B1 (en) 1993-09-09 1998-12-15 김광호 Position error correction device of robot
KR100197676B1 (en) 1993-09-27 1999-06-15 윤종용 Robot cleaner
JP3319093B2 (en) 1993-11-08 2002-08-26 松下電器産業株式会社 Mobile work robot
GB9323316D0 (en) 1993-11-11 1994-01-05 Crowe Gordon M Motorized carrier
DE4338841C2 (en) 1993-11-13 1999-08-05 Axel Dickmann lamp
GB2284957B (en) 1993-12-14 1998-02-18 Gec Marconi Avionics Holdings Optical systems for the remote tracking of the position and/or orientation of an object
JP2594880B2 (en) 1993-12-29 1997-03-26 西松建設株式会社 Autonomous traveling intelligent work robot
JP3229476B2 (en) * 1993-12-30 2001-11-19 東京瓦斯株式会社 Communication method of robot in pipe
US5511147A (en) 1994-01-12 1996-04-23 Uti Corporation Graphical interface for robot
JPH07222705A (en) 1994-02-10 1995-08-22 Fujitsu General Ltd Floor cleaning robot
SE502428C2 (en) 1994-02-21 1995-10-16 Electrolux Ab Nozzle
US5608306A (en) 1994-03-15 1997-03-04 Ericsson Inc. Rechargeable battery pack with identification circuit, real time clock and authentication capability
JPH07262025A (en) 1994-03-18 1995-10-13 Fujitsu Ltd Execution control system
JP3201903B2 (en) 1994-03-18 2001-08-27 富士通株式会社 Semiconductor logic circuit and semiconductor integrated circuit device using the same
US5646494A (en) 1994-03-29 1997-07-08 Samsung Electronics Co., Ltd. Charge induction apparatus of robot cleaner and method thereof
SE502834C2 (en) 1994-03-29 1996-01-29 Electrolux Ab Method and apparatus for detecting obstacles in self-propelled apparatus
JPH07265240A (en) 1994-03-31 1995-10-17 Hookii:Kk Wall side cleaning body for floor cleaner
JPH07270518A (en) 1994-03-31 1995-10-20 Komatsu Ltd Distance measuring instrument
KR970000582B1 (en) 1994-03-31 1997-01-14 삼성전자 주식회사 Method for controlling driving of a robot cleaner
JP3293314B2 (en) 1994-04-14 2002-06-17 ミノルタ株式会社 Cleaning robot
DE4414683A1 (en) 1994-04-15 1995-10-19 Vorwerk Co Interholding Cleaning device
US5455982A (en) 1994-04-22 1995-10-10 Advance Machine Company Hard and soft floor surface cleaning apparatus
US5485653A (en) 1994-04-25 1996-01-23 Windsor Industries, Inc. Floor cleaning apparatus
US5802665A (en) 1994-04-25 1998-09-08 Widsor Industries, Inc. Floor cleaning apparatus with two brooms
AU2447795A (en) 1994-05-10 1995-11-29 Heinrich Iglseder Method of detecting particles in a two-phase stream, vacuum cleaner and a method of controlling or adjusting a vacuum cleaner
US5507067A (en) 1994-05-12 1996-04-16 Newtronics Pty Ltd. Electronic vacuum cleaner control system
JPH07313417A (en) 1994-05-30 1995-12-05 Minolta Co Ltd Self-running working car
SE514791C2 (en) 1994-06-06 2001-04-23 Electrolux Ab Improved method for locating lighthouses in self-propelled equipment
JP3051023B2 (en) 1994-06-10 2000-06-12 東芝セラミックス株式会社 Processing method and apparatus for high-precision analysis of impurities in siliconaceous analysis sample
US5735959A (en) 1994-06-15 1998-04-07 Minolta Co, Ltd. Apparatus spreading fluid on floor while moving
JPH08322774A (en) 1995-03-24 1996-12-10 Minolta Co Ltd Working apparatus
US5636402A (en) 1994-06-15 1997-06-10 Minolta Co., Ltd. Apparatus spreading fluid on floor while moving
JP3346513B2 (en) 1994-07-01 2002-11-18 ミノルタ株式会社 Map storage method and route creation method using the map
BE1008470A3 (en) 1994-07-04 1996-05-07 Colens Andre Device and automatic system and equipment dedusting sol y adapted.
JPH0822322A (en) 1994-07-07 1996-01-23 Johnson Kk Method and device for controlling floor surface cleaning car
JP2569279B2 (en) 1994-08-01 1997-01-08 コナミ株式会社 Non-contact position detection device for moving objects
CA2137706C (en) 1994-12-09 2001-03-20 Murray Evans Cutting mechanism
US5551525A (en) 1994-08-19 1996-09-03 Vanderbilt University Climber robot
JP3296105B2 (en) 1994-08-26 2002-06-24 ミノルタ株式会社 Autonomous mobile robot
US5454129A (en) 1994-09-01 1995-10-03 Kell; Richard T. Self-powered pool vacuum with remote controlled capabilities
JP3197758B2 (en) 1994-09-13 2001-08-13 日本電信電話株式会社 Optical coupling device and method of manufacturing the same
JP3188116B2 (en) 1994-09-26 2001-07-16 日本輸送機株式会社 Self-propelled vacuum cleaner
JPH0889449A (en) 1994-09-27 1996-04-09 Kunihiro Michihashi Suctional structure
US6188643B1 (en) 1994-10-13 2001-02-13 Schlumberger Technology Corporation Method and apparatus for inspecting well bore casing
US5498948A (en) 1994-10-14 1996-03-12 Delco Electornics Self-aligning inductive charger
JPH08125767A (en) * 1994-10-24 1996-05-17 Matsushita Electric Ind Co Ltd Terminal network controller
JPH08123548A (en) 1994-10-24 1996-05-17 Minolta Co Ltd Autonomous traveling vehicle
US5546631A (en) 1994-10-31 1996-08-20 Chambon; Michael D. Waterless container cleaner monitoring system
GB9422911D0 (en) 1994-11-14 1995-01-04 Moonstone Technology Ltd Capacitive touch detectors
US5505072A (en) 1994-11-15 1996-04-09 Tekscan, Inc. Scanning circuit for pressure responsive array
US5560077A (en) 1994-11-25 1996-10-01 Crotchett; Diane L. Vacuum dustpan apparatus
GB9500943D0 (en) 1994-12-01 1995-03-08 Popovich Milan M Optical position sensing system
KR100384194B1 (en) 1995-03-22 2003-08-21 혼다 기켄 고교 가부시키가이샤 Adsorption wall walking device
JP3201208B2 (en) 1995-03-23 2001-08-20 ミノルタ株式会社 Autonomous vehicles
US5634237A (en) 1995-03-29 1997-06-03 Paranjpe; Ajit P. Self-guided, self-propelled, convertible cleaning apparatus
IT236779Y1 (en) 1995-03-31 2000-08-17 Dulevo Int Spa SUCTION AND FILTER SWEEPER MACHINE
US5947225A (en) 1995-04-14 1999-09-07 Minolta Co., Ltd. Automatic vehicle
GB2300082B (en) 1995-04-21 1999-09-22 British Aerospace Altitude measuring methods
US5537711A (en) 1995-05-05 1996-07-23 Tseng; Yu-Che Electric board cleaner
SE9501810D0 (en) 1995-05-16 1995-05-16 Electrolux Ab Scratch of elastic material
IL113913A (en) 1995-05-30 2000-02-29 Friendly Machines Ltd Navigation method and system
US5655658A (en) 1995-05-31 1997-08-12 Eastman Kodak Company Cassette container having effective centering capability
US5781697A (en) 1995-06-02 1998-07-14 Samsung Electronics Co., Ltd. Method and apparatus for automatic running control of a robot
US5608944A (en) 1995-06-05 1997-03-11 The Hoover Company Vacuum cleaner with dirt detection
US5935333A (en) 1995-06-07 1999-08-10 The Kegel Company Variable speed bowling lane maintenance machine
IT1275326B (en) 1995-06-07 1997-08-05 Bticino Spa MECHANICAL AND ELECTRIC CONNECTION SYSTEM BETWEEN ELECTRONIC DEVICES SUITABLE FOR INTEGRATION IN BUILT-IN ELECTRICAL EQUIPMENT
JPH08335112A (en) 1995-06-08 1996-12-17 Minolta Co Ltd Mobile working robot system
JP2640736B2 (en) 1995-07-13 1997-08-13 株式会社エイシン技研 Cleaning and bowling lane maintenance machines
US5555587A (en) 1995-07-20 1996-09-17 The Scott Fetzer Company Floor mopping machine
US5764888A (en) 1995-07-20 1998-06-09 Dallas Semiconductor Corporation Electronic micro identification circuit that is inherently bonded to someone or something
JPH0943901A (en) 1995-07-28 1997-02-14 Dainippon Ink & Chem Inc Manufacture of electrophotographic toner
JPH0944240A (en) 1995-08-01 1997-02-14 Kubota Corp Guide device for moving vehicle
JPH0947413A (en) 1995-08-08 1997-02-18 Minolta Co Ltd Cleaning robot
US5814808A (en) 1995-08-28 1998-09-29 Matsushita Electric Works, Ltd. Optical displacement measuring system using a triangulation including a processing of position signals in a time sharing manner
USD375592S (en) 1995-08-29 1996-11-12 Aktiebolaget Electrolux Vacuum cleaner
JPH0966855A (en) 1995-09-04 1997-03-11 Minolta Co Ltd Crawler vehicle
JP4014662B2 (en) 1995-09-18 2007-11-28 ファナック株式会社 Robot teaching operation panel
JP3152622B2 (en) 1995-09-19 2001-04-03 光雄 藤井 Wiper cleaning method and device
US5819008A (en) * 1995-10-18 1998-10-06 Rikagaku Kenkyusho Mobile robot sensor system
WO1997014869A1 (en) 1995-10-20 1997-04-24 Baker Hughes Incorporated Method and apparatus for improved communication in a wellbore utilizing acoustic signals
SE505115C2 (en) 1995-10-27 1997-06-30 Electrolux Ab Vacuum cleaner nozzle comprising a brush nozzle and method for effecting suction along the front edge of the brush nozzle, seen in the direction of movement
KR0133745B1 (en) 1995-10-31 1998-04-24 배순훈 Dust meter device of a vacuum cleaner
US6041472A (en) 1995-11-06 2000-03-28 Bissell Homecare, Inc. Upright water extraction cleaning machine
US5867861A (en) 1995-11-13 1999-02-09 Kasen; Timothy E. Upright water extraction cleaning machine with two suction nozzles
US5777596A (en) 1995-11-13 1998-07-07 Symbios, Inc. Touch sensitive flat panel display
US5996167A (en) 1995-11-16 1999-12-07 3M Innovative Properties Company Surface treating articles and method of making same
JPH09145309A (en) 1995-11-20 1997-06-06 Kenichi Suzuki Position detection system
JP3025348U (en) 1995-11-30 1996-06-11 株式会社トミー Traveling body
JPH09160644A (en) 1995-12-06 1997-06-20 Fujitsu General Ltd Control method for floor cleaning robot
US6049620A (en) 1995-12-15 2000-04-11 Veridicom, Inc. Capacitive fingerprint sensor with adjustable gain
KR970032722A (en) 1995-12-19 1997-07-22 최진호 Cordless cleaner
JPH09179625A (en) 1995-12-26 1997-07-11 Hitachi Electric Syst:Kk Method for controlling traveling of autonomous traveling vehicle and controller therefor
JPH09179100A (en) 1995-12-27 1997-07-11 Sharp Corp Picture display device
US5793900A (en) 1995-12-29 1998-08-11 Stanford University Generating categorical depth maps using passive defocus sensing
US6373573B1 (en) 2000-03-13 2002-04-16 Lj Laboratories L.L.C. Apparatus for measuring optical characteristics of a substrate and pigments applied thereto
US5989700A (en) 1996-01-05 1999-11-23 Tekscan Incorporated Pressure sensitive ink means, and methods of use
JPH09185410A (en) 1996-01-08 1997-07-15 Hitachi Electric Syst:Kk Method and device for controlling traveling of autonomous traveling vehicle
US5784755A (en) 1996-01-18 1998-07-28 White Consolidated Industries, Inc. Wet extractor system
US5611106A (en) 1996-01-19 1997-03-18 Castex Incorporated Carpet maintainer
US6220865B1 (en) 1996-01-22 2001-04-24 Vincent J. Macri Instruction for groups of users interactively controlling groups of images to make idiosyncratic, simulated, physical movements
US6830120B1 (en) 1996-01-25 2004-12-14 Penguin Wax Co., Ltd. Floor working machine with a working implement mounted on a self-propelled vehicle for acting on floor
JPH10113318A (en) 1996-10-15 1998-05-06 Penguin Wax Kk Working machine for floor
US6574536B1 (en) 1996-01-29 2003-06-03 Minolta Co., Ltd. Moving apparatus for efficiently moving on floor with obstacle
JP3660042B2 (en) 1996-02-01 2005-06-15 富士重工業株式会社 Cleaning robot control method
DE19605573C2 (en) 1996-02-15 2000-08-24 Eurocopter Deutschland Three-axis rotary control stick
DE19605780A1 (en) 1996-02-16 1997-08-21 Branofilter Gmbh Detection device for filter bags in vacuum cleaners
US5828770A (en) 1996-02-20 1998-10-27 Northern Digital Inc. System for determining the spatial position and angular orientation of an object
JP3697768B2 (en) 1996-02-21 2005-09-21 神鋼電機株式会社 Automatic charging system
US5659918A (en) 1996-02-23 1997-08-26 Breuer Electric Mfg. Co. Vacuum cleaner and method
ATE185006T1 (en) 1996-03-06 1999-10-15 Gmd Gmbh AUTONOMOUS MOBILE ROBOT SYSTEM FOR SENSOR AND CARD-BASED NAVIGATION IN A LINE NETWORK
JPH09244730A (en) 1996-03-11 1997-09-19 Komatsu Ltd Robot system and controller for robot
JPH09251318A (en) 1996-03-18 1997-09-22 Minolta Co Ltd Level difference sensor
BE1013948A3 (en) 1996-03-26 2003-01-14 Egemin Naanloze Vennootschap MEASURING SYSTEM FOR POSITION OF THE KEYS OF A VEHICLE AND ABOVE sensing device.
JPH09263140A (en) 1996-03-27 1997-10-07 Minolta Co Ltd Unmanned service car
JPH09265319A (en) 1996-03-28 1997-10-07 Minolta Co Ltd Autonomously traveling vehicle
US5735017A (en) 1996-03-29 1998-04-07 Bissell Inc. Compact wet/dry vacuum cleaner with flexible bladder
JPH09269807A (en) 1996-03-29 1997-10-14 Minolta Co Ltd Traveling object controller
US5732401A (en) 1996-03-29 1998-03-24 Intellitecs International Ltd. Activity based cost tracking systems
JPH09269810A (en) 1996-03-29 1997-10-14 Minolta Co Ltd Traveling object controller
SE509317C2 (en) 1996-04-25 1999-01-11 Electrolux Ab Nozzle arrangement for a self-propelled vacuum cleaner
US5935179A (en) 1996-04-30 1999-08-10 Aktiebolaget Electrolux System and device for a self orienting device
SE506907C2 (en) 1996-04-30 1998-03-02 Electrolux Ab Self-orientating device system and device
SE506372C2 (en) 1996-04-30 1997-12-08 Electrolux Ab Self-propelled device
DE19617986B4 (en) 1996-05-04 2004-02-26 Ing. Haaga Werkzeugbau Kg sweeper
US5742975A (en) 1996-05-06 1998-04-28 Windsor Industries, Inc. Articulated floor scrubber
SE9601742L (en) 1996-05-07 1997-11-08 Besam Ab Ways to determine the distance and position of an object
JP3343027B2 (en) 1996-05-17 2002-11-11 アマノ株式会社 Squeegee for floor washer
US5831597A (en) 1996-05-24 1998-11-03 Tanisys Technology, Inc. Computer input device for use in conjunction with a mouse input device
FR2749073B1 (en) 1996-05-24 1998-08-14 Davey Bickford PROCEDURE FOR ORDERING DETONATORS OF THE TYPE WITH ELECTRONIC IGNITION MODULE, FIRE CONTROL CODE ASSEMBLY AND IGNITION MODULE FOR ITS IMPLEMENTATION
JPH09319432A (en) 1996-06-03 1997-12-12 Minolta Co Ltd Mobile robot
JPH09319434A (en) 1996-06-03 1997-12-12 Minolta Co Ltd Movable robot
JP3493539B2 (en) 1996-06-03 2004-02-03 ミノルタ株式会社 Traveling work robot
JPH09324875A (en) 1996-06-03 1997-12-16 Minolta Co Ltd Tank
JPH09319431A (en) 1996-06-03 1997-12-12 Minolta Co Ltd Movable robot
JPH09315061A (en) 1996-06-03 1997-12-09 Minolta Co Ltd Ic card and ic card-mounting apparatus
JPH09325812A (en) 1996-06-05 1997-12-16 Minolta Co Ltd Autonomous mobile robot
US5983448A (en) 1996-06-07 1999-11-16 Royal Appliance Mfg. Co. Cordless wet mop and vacuum assembly
US6065182A (en) 1996-06-07 2000-05-23 Royal Appliance Mfg. Co. Cordless wet mop and vacuum assembly
US6101671A (en) 1996-06-07 2000-08-15 Royal Appliance Mfg. Co. Wet mop and vacuum assembly
JP3581911B2 (en) 1996-06-07 2004-10-27 コニカミノルタホールディングス株式会社 Mobile vehicle
US5709007A (en) 1996-06-10 1998-01-20 Chiang; Wayne Remote control vacuum cleaner
US5767960A (en) 1996-06-14 1998-06-16 Ascension Technology Corporation Optical 6D measurement system with three fan-shaped beams rotating around one axis
US6052821A (en) 1996-06-26 2000-04-18 U.S. Philips Corporation Trellis coded QAM using rate compatible, punctured, convolutional codes
US5812267A (en) 1996-07-10 1998-09-22 The United States Of America As Represented By The Secretary Of The Navy Optically based position location system for an autonomous guided vehicle
US6142252A (en) 1996-07-11 2000-11-07 Minolta Co., Ltd. Autonomous vehicle that runs while recognizing work area configuration, and method of selecting route
JP3395874B2 (en) 1996-08-12 2003-04-14 ミノルタ株式会社 Mobile vehicle
US5926909A (en) 1996-08-28 1999-07-27 Mcgee; Daniel Remote control vacuum cleaner and charging system
US5756904A (en) 1996-08-30 1998-05-26 Tekscan, Inc. Pressure responsive sensor having controlled scanning speed
JPH10105236A (en) 1996-09-30 1998-04-24 Minolta Co Ltd Positioning device for traveling object and its method
US5829095A (en) 1996-10-17 1998-11-03 Nilfisk-Advance, Inc. Floor surface cleaning machine
DE19643465C2 (en) 1996-10-22 1999-08-05 Bosch Gmbh Robert Control device for an optical sensor, in particular a rain sensor
JPH10117973A (en) 1996-10-23 1998-05-12 Minolta Co Ltd Autonomous moving vehicle
JPH10118963A (en) 1996-10-23 1998-05-12 Minolta Co Ltd Autonomous mobil vehicle
DE19644570C2 (en) 1996-10-26 1999-11-18 Kaercher Gmbh & Co Alfred Mobile floor cleaning device
US5815884A (en) 1996-11-27 1998-10-06 Yashima Electric Co., Ltd. Dust indication system for vacuum cleaner
DE69607629T2 (en) 1996-11-29 2000-10-19 Yashima Electric Co vacuum cleaner
JP3525658B2 (en) 1996-12-12 2004-05-10 松下電器産業株式会社 Operation controller for air purifier
US5940346A (en) * 1996-12-13 1999-08-17 Arizona Board Of Regents Modular robotic platform with acoustic navigation system
US5974348A (en) 1996-12-13 1999-10-26 Rocks; James K. System and method for performing mobile robotic work operations
JPH10177414A (en) 1996-12-16 1998-06-30 Matsushita Electric Ind Co Ltd Device for recognizing traveling state by ceiling picture
US5987696A (en) 1996-12-24 1999-11-23 Wang; Kevin W. Carpet cleaning machine
US6146278A (en) 1997-01-10 2000-11-14 Konami Co., Ltd. Shooting video game machine
DE59805410D1 (en) 1997-01-22 2002-10-10 Siemens Ag METHOD AND ARRANGEMENT FOR DOCKING AN AUTONOMOUS MOBILE UNIT
US6076226A (en) 1997-01-27 2000-06-20 Robert J. Schaap Controlled self operated vacuum cleaning system
JP3375843B2 (en) 1997-01-29 2003-02-10 本田技研工業株式会社 Robot autonomous traveling method and autonomous traveling robot control device
JP3731021B2 (en) 1997-01-31 2006-01-05 株式会社トプコン Position detection surveying instrument
US5942869A (en) 1997-02-13 1999-08-24 Honda Giken Kogyo Kabushiki Kaisha Mobile robot control device
US5819367A (en) 1997-02-25 1998-10-13 Yashima Electric Co., Ltd. Vacuum cleaner with optical sensor
JPH10240343A (en) 1997-02-27 1998-09-11 Minolta Co Ltd Autonomously traveling vehicle
JPH10240342A (en) 1997-02-28 1998-09-11 Minolta Co Ltd Autonomous traveling vehicle
AU723440B2 (en) 1997-02-28 2000-08-24 E.I. Du Pont De Nemours And Company Apparatus having a belt agitator for agitating a cleaning agent into a carpet
DE19708955A1 (en) 1997-03-05 1998-09-10 Bosch Siemens Hausgeraete Multifunctional suction cleaning device
US5995884A (en) 1997-03-07 1999-11-30 Allen; Timothy P. Computer peripheral floor cleaning system and navigation method
US5860707A (en) 1997-03-13 1999-01-19 Rollerblade, Inc. In-line skate wheel
EP1009212B1 (en) 1997-03-18 2003-08-13 Solar and Robotics S.A. Improvements to self-propelled lawn mower
WO1998041822A1 (en) 1997-03-20 1998-09-24 Crotzer David R Dust sensor apparatus
US5767437A (en) 1997-03-20 1998-06-16 Rogers; Donald L. Digital remote pyrotactic firing mechanism
JPH10260727A (en) 1997-03-21 1998-09-29 Minolta Co Ltd Automatic traveling working vehicle
US6587573B1 (en) 2000-03-20 2003-07-01 Gentex Corporation System for controlling exterior vehicle lights
JPH10295595A (en) 1997-04-23 1998-11-10 Minolta Co Ltd Autonomously moving work wagon
US5987383C1 (en) 1997-04-28 2006-06-13 Trimble Navigation Ltd Form line following guidance system
US6557104B2 (en) 1997-05-02 2003-04-29 Phoenix Technologies Ltd. Method and apparatus for secure processing of cryptographic keys
US6108031A (en) 1997-05-08 2000-08-22 Kaman Sciences Corporation Virtual reality teleoperated remote control vehicle
KR200155821Y1 (en) 1997-05-12 1999-10-01 최진호 Remote controller of vacuum cleaner
JPH10314088A (en) 1997-05-15 1998-12-02 Fuji Heavy Ind Ltd Self-advancing type cleaner
AU7349898A (en) 1997-05-19 1998-12-11 Creator Ltd. Apparatus and methods for controlling household appliances
US6070290A (en) 1997-05-27 2000-06-06 Schwarze Industries, Inc. High maneuverability riding turf sweeper and surface cleaning apparatus
US5994998A (en) * 1997-05-29 1999-11-30 3Com Corporation Power transfer apparatus for concurrently transmitting data and power over data wires
DE69831181T2 (en) 1997-05-30 2006-05-18 British Broadcasting Corp. location
GB2326353B (en) 1997-06-20 2001-02-28 Wong T K Ass Ltd Toy
JPH1115941A (en) 1997-06-24 1999-01-22 Minolta Co Ltd Ic card, and ic card system including the same
US6009358A (en) 1997-06-25 1999-12-28 Thomas G. Xydis Programmable lawn mower
US6032542A (en) 1997-07-07 2000-03-07 Tekscan, Inc. Prepressured force/pressure sensor and method for the fabrication thereof
US6131237A (en) 1997-07-09 2000-10-17 Bissell Homecare, Inc. Upright extraction cleaning machine
US6438793B1 (en) 1997-07-09 2002-08-27 Bissell Homecare, Inc. Upright extraction cleaning machine
US5905209A (en) 1997-07-22 1999-05-18 Tekscan, Inc. Output circuit for pressure sensor
WO1999005580A2 (en) 1997-07-23 1999-02-04 Duschek Horst Juergen Method for controlling an unmanned transport vehicle and unmanned transport vehicle system therefor
US5950408A (en) 1997-07-25 1999-09-14 Mtd Products Inc Bag-full indicator mechanism
US5821730A (en) 1997-08-18 1998-10-13 International Components Corp. Low cost battery sensing technique
US6226830B1 (en) 1997-08-20 2001-05-08 Philips Electronics North America Corp. Vacuum cleaner with obstacle avoidance
US5998953A (en) 1997-08-22 1999-12-07 Minolta Co., Ltd. Control apparatus of mobile that applies fluid on floor
DE69832957T3 (en) 1997-08-25 2013-11-21 Koninklijke Philips Electronics N.V. ELECTRIC SURFACE TREATMENT DEVICE WITH ACOUSTIC DETECTOR OF SURFACE MATERIAL
TW410593U (en) 1997-08-29 2000-11-01 Sanyo Electric Co Suction head for electric vacuum cleaner
IL126149A (en) 1997-09-09 2003-07-31 Sanctum Ltd Method and system for protecting operations of trusted internal networks
WO1999016078A1 (en) 1997-09-19 1999-04-01 Hitachi, Ltd. Synchronous integrated circuit device
SE510524C2 (en) 1997-09-19 1999-05-31 Electrolux Ab Electronic demarcation system
KR19990025888A (en) 1997-09-19 1999-04-06 손욱 Manufacturing Method of Anode Plate for Lithium-Based Secondary Battery
US5933102A (en) 1997-09-24 1999-08-03 Tanisys Technology, Inc. Capacitive sensitive switch method and system
JPH11102220A (en) 1997-09-26 1999-04-13 Minolta Co Ltd Controller for moving body
US6076026A (en) 1997-09-30 2000-06-13 Motorola, Inc. Method and device for vehicle control events data recording and securing
US20010032278A1 (en) 1997-10-07 2001-10-18 Brown Stephen J. Remote generation and distribution of command programs for programmable devices
SE511504C2 (en) 1997-10-17 1999-10-11 Apogeum Ab Method and apparatus for associating anonymous reflectors to detected angular positions
US5974365A (en) 1997-10-23 1999-10-26 The United States Of America As Represented By The Secretary Of The Army System for measuring the location and orientation of an object
DE19747318C1 (en) 1997-10-27 1999-05-27 Kaercher Gmbh & Co Alfred Cleaning device
US5943730A (en) 1997-11-24 1999-08-31 Tennant Company Scrubber vac-fan seal
US6532404B2 (en) 1997-11-27 2003-03-11 Colens Andre Mobile robots and their control system
WO1999028800A1 (en) 1997-11-27 1999-06-10 Solar & Robotics Improvements to mobile robots and their control system
US6125498A (en) 1997-12-05 2000-10-03 Bissell Homecare, Inc. Handheld extraction cleaner
GB2332283A (en) 1997-12-10 1999-06-16 Nec Technologies Coulometric battery state of charge metering
JPH11175149A (en) 1997-12-10 1999-07-02 Minolta Co Ltd Autonomous traveling vehicle
JPH11174145A (en) 1997-12-11 1999-07-02 Minolta Co Ltd Ultrasonic range finding sensor and autonomous driving vehicle
US6055042A (en) 1997-12-16 2000-04-25 Caterpillar Inc. Method and apparatus for detecting obstacles using multiple sensors for range selective detection
JP3426487B2 (en) 1997-12-22 2003-07-14 本田技研工業株式会社 Cleaning robot
JPH11178764A (en) 1997-12-22 1999-07-06 Honda Motor Co Ltd Traveling robot
SE523080C2 (en) 1998-01-08 2004-03-23 Electrolux Ab Docking system for self-propelled work tools
SE511254C2 (en) 1998-01-08 1999-09-06 Electrolux Ab Electronic search system for work tools
US6003196A (en) 1998-01-09 1999-12-21 Royal Appliance Mfg. Co. Upright vacuum cleaner with cyclonic airflow
US6099091A (en) 1998-01-20 2000-08-08 Letro Products, Inc. Traction enhanced wheel apparatus
US5984880A (en) 1998-01-20 1999-11-16 Lander; Ralph H Tactile feedback controlled by various medium
US5967747A (en) 1998-01-20 1999-10-19 Tennant Company Low noise fan
JP3479212B2 (en) 1998-01-21 2003-12-15 本田技研工業株式会社 Control method and device for self-propelled robot
CA2251295C (en) 1998-01-27 2002-08-20 Sharp Kabushiki Kaisha Electric vacuum cleaner
US6030464A (en) 1998-01-28 2000-02-29 Azevedo; Steven Method for diagnosing, cleaning and preserving carpeting and other fabrics
JPH11213157A (en) 1998-01-29 1999-08-06 Minolta Co Ltd Camera mounted mobile object
DE19804195A1 (en) 1998-02-03 1999-08-05 Siemens Ag Path planning procedure for a mobile unit for surface processing
US6272936B1 (en) 1998-02-20 2001-08-14 Tekscan, Inc Pressure sensor
SE9800583D0 (en) 1998-02-26 1998-02-26 Electrolux Ab Nozzle
US6036572A (en) 1998-03-04 2000-03-14 Sze; Chau-King Drive for toy with suction cup feet
ITTO980209A1 (en) 1998-03-12 1998-06-12 Cavanna Spa PROCEDURE FOR COMMANDING THE OPERATION OF MACHINES FOR THE TREATMENT OF ARTICLES, FOR EXAMPLE FOR THE PACKAGING OF PRODUCTS
JPH11282533A (en) 1998-03-26 1999-10-15 Sharp Corp Mobile robot system
JP3479215B2 (en) 1998-03-27 2003-12-15 本田技研工業株式会社 Self-propelled robot control method and device by mark detection
US6263989B1 (en) 1998-03-27 2001-07-24 Irobot Corporation Robotic platform
US6490977B1 (en) 1998-03-30 2002-12-10 Magicfire, Inc. Precision pyrotechnic display system and method having increased safety and timing accuracy
KR100384980B1 (en) 1998-04-03 2003-06-02 마츠시타 덴끼 산교 가부시키가이샤 Rotational brush device and electric instrument using same
US6041471A (en) 1998-04-09 2000-03-28 Madvac International Inc. Mobile walk-behind sweeper
JPH11295412A (en) 1998-04-09 1999-10-29 Minolta Co Ltd Apparatus for recognizing position of mobile
US6154279A (en) 1998-04-09 2000-11-28 John W. Newman Method and apparatus for determining shapes of countersunk holes
AUPP299498A0 (en) 1998-04-15 1998-05-07 Commonwealth Scientific And Industrial Research Organisation Method of tracking and sensing position of objects
US6233504B1 (en) 1998-04-16 2001-05-15 California Institute Of Technology Tool actuation and force feedback on robot-assisted microsurgery system
US6504941B2 (en) * 1998-04-30 2003-01-07 Hewlett-Packard Company Method and apparatus for digital watermarking of images
DE19820628C1 (en) 1998-05-08 1999-09-23 Kaercher Gmbh & Co Alfred Roller mounting or carpet sweeper
IL124413A (en) 1998-05-11 2001-05-20 Friendly Robotics Ltd System and method for area coverage with an autonomous robot
JP3895464B2 (en) 1998-05-11 2007-03-22 株式会社東海理化電機製作所 Data carrier system
EP1006386B1 (en) 1998-05-25 2011-05-04 Panasonic Corporation Range finder and camera
US6279001B1 (en) * 1998-05-29 2001-08-21 Webspective Software, Inc. Web service
AU4999899A (en) 1998-07-20 2000-02-07 Procter & Gamble Company, The Robotic system
US6941199B1 (en) 1998-07-20 2005-09-06 The Procter & Gamble Company Robotic system
JP2000047728A (en) 1998-07-28 2000-02-18 Denso Corp Electric charging controller in moving robot system
US6108859A (en) 1998-07-29 2000-08-29 Alto U. S. Inc. High efficiency squeegee
WO2000007492A1 (en) 1998-07-31 2000-02-17 Volker Sommer Household robot for the automatic suction of dust from the floor surfaces
US6112143A (en) 1998-08-06 2000-08-29 Caterpillar Inc. Method and apparatus for establishing a perimeter defining an area to be traversed by a mobile machine
JP2002522839A (en) 1998-08-10 2002-07-23 シーメンス アクチエンゲゼルシヤフト Method and apparatus for detecting a path around a predetermined reference position
US6088020A (en) 1998-08-12 2000-07-11 Mitsubishi Electric Information Technology Center America, Inc. (Ita) Haptic device
JP2000056831A (en) 1998-08-12 2000-02-25 Minolta Co Ltd Moving travel vehicle
US6491127B1 (en) 1998-08-14 2002-12-10 3Com Corporation Powered caster wheel module for use on omnidirectional drive systems
JP2000056006A (en) 1998-08-14 2000-02-25 Minolta Co Ltd Position recognizing device for mobile
JP3478476B2 (en) 1998-08-18 2003-12-15 シャープ株式会社 Cleaning robot
JP2000066722A (en) 1998-08-19 2000-03-03 Minolta Co Ltd Autonomously traveling vehicle and rotation angle detection method
JP2000075925A (en) 1998-08-28 2000-03-14 Minolta Co Ltd Autonomous traveling vehicle
US6216307B1 (en) 1998-09-25 2001-04-17 Cma Manufacturing Co. Hand held cleaning device
US20020104963A1 (en) 1998-09-26 2002-08-08 Vladimir Mancevski Multidimensional sensing system for atomic force microscopy
JP2000102499A (en) 1998-09-30 2000-04-11 Kankyo Co Ltd Vacuum cleaner with rotary brush
US6108269A (en) 1998-10-01 2000-08-22 Garmin Corporation Method for elimination of passive noise interference in sonar
CA2251243C (en) 1998-10-21 2006-12-19 Robert Dworkowski Distance tracking control system for single pass topographical mapping
DE19849978C2 (en) 1998-10-29 2001-02-08 Erwin Prasler Self-propelled cleaning device
JP2000135186A (en) 1998-10-30 2000-05-16 Ym Creation:Kk Cleaning toy
US6374157B1 (en) 1998-11-30 2002-04-16 Sony Corporation Robot device and control method thereof
JP3980205B2 (en) 1998-12-17 2007-09-26 コニカミノルタホールディングス株式会社 Work robot
GB2344884A (en) 1998-12-18 2000-06-21 Notetry Ltd Light Detection Apparatus - eg for a robotic cleaning device
GB2344888A (en) 1998-12-18 2000-06-21 Notetry Ltd Obstacle detection system
GB9827779D0 (en) 1998-12-18 1999-02-10 Notetry Ltd Improvements in or relating to appliances
GB2344751B (en) 1998-12-18 2002-01-09 Notetry Ltd Vacuum cleaner
GB2344750B (en) 1998-12-18 2002-06-26 Notetry Ltd Vacuum cleaner
GB2344747B (en) 1998-12-18 2002-05-29 Notetry Ltd Autonomous vacuum cleaner
GB2344745B (en) 1998-12-18 2002-06-05 Notetry Ltd Vacuum cleaner
US6108076A (en) 1998-12-21 2000-08-22 Trimble Navigation Limited Method and apparatus for accurately positioning a tool on a mobile machine using on-board laser and positioning system
KR200211751Y1 (en) 1998-12-31 2001-02-01 송영소 Dust collection tester for vacuum cleaner
US6154917A (en) 1999-01-08 2000-12-05 Royal Appliance Mfg. Co. Carpet extractor housing
DE19900484A1 (en) 1999-01-08 2000-08-10 Wap Reinigungssysteme Measuring system for residual dust monitoring for safety vacuums
US6238451B1 (en) 1999-01-08 2001-05-29 Fantom Technologies Inc. Vacuum cleaner
US6282526B1 (en) 1999-01-20 2001-08-28 The United States Of America As Represented By The Secretary Of The Navy Fuzzy logic based system and method for information processing with uncertain input data
US6167332A (en) 1999-01-28 2000-12-26 International Business Machines Corporation Method and apparatus suitable for optimizing an operation of a self-guided vehicle
JP2000235416A (en) 1999-02-17 2000-08-29 Sharp Corp Autonomously traveling robot
US6124694A (en) 1999-03-18 2000-09-26 Bancroft; Allen J. Wide area navigation for a robot scrubber
JP3513419B2 (en) 1999-03-19 2004-03-31 キヤノン株式会社 Coordinate input device, control method therefor, and computer-readable memory
JP2000275321A (en) 1999-03-25 2000-10-06 Ushio U-Tech Inc Method and system for measuring position coordinate of traveling object
JP4198262B2 (en) 1999-03-29 2008-12-17 富士重工業株式会社 Position adjustment mechanism of dust absorber in floor cleaning robot
EP1112821A4 (en) 1999-05-10 2005-10-12 Sony Corp Toboy device and method for controlling the same
US6737591B1 (en) 1999-05-25 2004-05-18 Silverbrook Research Pty Ltd Orientation sensing device
US6202243B1 (en) 1999-05-26 2001-03-20 Tennant Company Surface cleaning machine with multiple control positions
GB2350696A (en) 1999-05-28 2000-12-06 Notetry Ltd Visual status indicator for a robotic machine, eg a vacuum cleaner
US6261379B1 (en) 1999-06-01 2001-07-17 Fantom Technologies Inc. Floating agitator housing for a vacuum cleaner head
US6446192B1 (en) * 1999-06-04 2002-09-03 Embrace Networks, Inc. Remote monitoring and control of equipment over computer networks using a single web interfacing chip
CN1630484A (en) 1999-06-08 2005-06-22 S.C.约翰逊商业市场公司 Floor cleaning apparatus
JP3598881B2 (en) 1999-06-09 2004-12-08 株式会社豊田自動織機 Cleaning robot
JP2000342498A (en) 1999-06-09 2000-12-12 Toyota Autom Loom Works Ltd Cleaning robot
JP4132415B2 (en) 1999-06-09 2008-08-13 株式会社豊田自動織機 Cleaning robot
JP2000342496A (en) * 1999-06-09 2000-12-12 Toyota Autom Loom Works Ltd Cleaning robot
JP4415422B2 (en) 1999-06-09 2010-02-17 株式会社豊田自動織機 Cleaning robot
JP2003502993A (en) 1999-06-11 2003-01-21 アーベーベー・リサーチ・リミテッド Method and apparatus for powering multiple actuators without using wires, actuators and primary windings for this purpose, and systems for machines with multiple actuators
US6446302B1 (en) 1999-06-14 2002-09-10 Bissell Homecare, Inc. Extraction cleaning machine with cleaning control
ES2222906T3 (en) 1999-06-17 2005-02-16 SOLAR &amp; ROBOTICS S.A. AUTOMATIC OBJECT COLLECTION DEVICE.
WO2001000079A2 (en) 1999-06-30 2001-01-04 Nilfisk-Advance, Inc. Riding floor scrubber
JP4165965B2 (en) 1999-07-09 2008-10-15 フィグラ株式会社 Autonomous work vehicle
US6611738B2 (en) * 1999-07-12 2003-08-26 Bryan J. Ruffner Multifunctional mobile appliance
GB9917232D0 (en) 1999-07-23 1999-09-22 Notetry Ltd Method of operating a floor cleaning device
GB9917348D0 (en) 1999-07-24 1999-09-22 Procter & Gamble Robotic system
US6283034B1 (en) 1999-07-30 2001-09-04 D. Wayne Miles, Jr. Remotely armed ammunition
US6677938B1 (en) 1999-08-04 2004-01-13 Trimble Navigation, Ltd. Generating positional reality using RTK integrated with scanning lasers
JP3700487B2 (en) 1999-08-30 2005-09-28 トヨタ自動車株式会社 Vehicle position detection device
EP1091273B1 (en) 1999-08-31 2005-10-05 Swisscom AG Mobile robot and method for controlling a mobile robot
JP2001087182A (en) 1999-09-20 2001-04-03 Mitsubishi Electric Corp Vacuum cleaner
US6480762B1 (en) 1999-09-27 2002-11-12 Olympus Optical Co., Ltd. Medical apparatus supporting system
DE19948974A1 (en) 1999-10-11 2001-04-12 Nokia Mobile Phones Ltd Method for recognizing and selecting a tone sequence, in particular a piece of music
US6530102B1 (en) 1999-10-20 2003-03-11 Tennant Company Scrubber head anti-vibration mounting
JP2001121455A (en) 1999-10-29 2001-05-08 Sony Corp Charge system of and charge control method for mobile robot, charge station, mobile robot and its control method
JP4207336B2 (en) 1999-10-29 2009-01-14 ソニー株式会社 Charging system for mobile robot, method for searching for charging station, mobile robot, connector, and electrical connection structure
JP2001216482A (en) 1999-11-10 2001-08-10 Matsushita Electric Ind Co Ltd Electric equipment and portable recording medium
US6459955B1 (en) 1999-11-18 2002-10-01 The Procter & Gamble Company Home cleaning robot
US6548982B1 (en) 1999-11-19 2003-04-15 Regents Of The University Of Minnesota Miniature robotic vehicles and methods of controlling same
US6374155B1 (en) * 1999-11-24 2002-04-16 Personal Robotics, Inc. Autonomous multi-platform robot system
US6362875B1 (en) 1999-12-10 2002-03-26 Cognax Technology And Investment Corp. Machine vision system and method for inspection, homing, guidance and docking with respect to remote objects
US6263539B1 (en) 1999-12-23 2001-07-24 Taf Baig Carpet/floor cleaning wand and machine
JP4019586B2 (en) 1999-12-27 2007-12-12 富士電機リテイルシステムズ株式会社 Store management system, information management method, and computer-readable recording medium recording a program for causing a computer to execute the method
JP2001197008A (en) 2000-01-13 2001-07-19 Tsubakimoto Chain Co Mobile optical communication system, photodetection device, optical communication device, and carrier device
US6467122B2 (en) 2000-01-14 2002-10-22 Bissell Homecare, Inc. Deep cleaner with tool mount
US6146041A (en) 2000-01-19 2000-11-14 Chen; He-Jin Sponge mop with cleaning tank attached thereto
JP2001203744A (en) 2000-01-19 2001-07-27 Soriton Syst:Kk Communication equipment
US6332400B1 (en) 2000-01-24 2001-12-25 The United States Of America As Represented By The Secretary Of The Navy Initiating device for use with telemetry systems
US6594844B2 (en) 2000-01-24 2003-07-22 Irobot Corporation Robot obstacle detection system
WO2001055879A1 (en) 2000-01-28 2001-08-02 Ibeam Broadcasting Corporation A system and method for determining optimal server in a distributed network for serving content streams
JP2001289939A (en) 2000-02-02 2001-10-19 Mitsubishi Electric Corp Ultrasonic wave transmitter/receiver and peripheral obstacle detector for vehicle
US6418586B2 (en) 2000-02-02 2002-07-16 Alto U.S., Inc. Liquid extraction machine
US6421870B1 (en) 2000-02-04 2002-07-23 Tennant Company Stacked tools for overthrow sweeping
WO2001059643A1 (en) * 2000-02-10 2001-08-16 Sony Corporation Automatic device, information providing device, robot device, and transaction method
DE10006493C2 (en) 2000-02-14 2002-02-07 Hilti Ag Method and device for optoelectronic distance measurement
US6276478B1 (en) 2000-02-16 2001-08-21 Kathleen Garrubba Hopkins Adherent robot
DE10007864A1 (en) 2000-02-21 2001-08-30 Wittenstein Gmbh & Co Kg Detecting, determining, locating at least one object and/or space involves transmitting spatial coordinates and/or coordinates of any object in space to robot to orient it
US20010025183A1 (en) 2000-02-25 2001-09-27 Ramin Shahidi Methods and apparatuses for maintaining a trajectory in sterotaxi for tracking a target inside a body
US6285930B1 (en) 2000-02-28 2001-09-04 Case Corporation Tracking improvement for a vision guidance system
US6490539B1 (en) 2000-02-28 2002-12-03 Case Corporation Region of interest selection for varying distances between crop rows for a vision guidance system
US6278918B1 (en) 2000-02-28 2001-08-21 Case Corporation Region of interest selection for a vision guidance system
JP2001258807A (en) 2000-03-16 2001-09-25 Sharp Corp Self-traveling vacuum cleaner
JP2001265437A (en) 2000-03-16 2001-09-28 Figla Co Ltd Traveling object controller
US6443509B1 (en) 2000-03-21 2002-09-03 Friendly Robotics Ltd. Tactile sensor
US6540424B1 (en) 2000-03-24 2003-04-01 The Clorox Company Advanced cleaning system
JP2001275908A (en) 2000-03-30 2001-10-09 Matsushita Seiko Co Ltd Cleaning device
JP4032603B2 (en) 2000-03-31 2008-01-16 コニカミノルタセンシング株式会社 3D measuring device
US20010045883A1 (en) 2000-04-03 2001-11-29 Holdaway Charles R. Wireless digital launch or firing system
JP4480843B2 (en) 2000-04-03 2010-06-16 ソニー株式会社 Legged mobile robot, control method therefor, and relative movement measurement sensor for legged mobile robot
JP2001277163A (en) 2000-04-03 2001-10-09 Sony Corp Device and method for controlling robot
US6870792B2 (en) 2000-04-04 2005-03-22 Irobot Corporation Sonar Scanner
WO2001074652A2 (en) 2000-04-04 2001-10-11 Irobot Corporation Wheeled platforms
KR100332984B1 (en) 2000-04-24 2002-04-15 이충전 Combine structure of edge brush in a vaccum cleaner type upright
DE10020503A1 (en) 2000-04-26 2001-10-31 Bsh Bosch Siemens Hausgeraete Machining appliance incorporates vacuum generator between machining appliance and machined surface, with support and working appliance
US6769004B2 (en) 2000-04-27 2004-07-27 Irobot Corporation Method and system for incremental stack scanning
JP2001306170A (en) 2000-04-27 2001-11-02 Canon Inc Image processing device, image processing system, method for restricting use of image processing device and storage medium
US6845297B2 (en) 2000-05-01 2005-01-18 Irobot Corporation Method and system for remote control of mobile robot
EP2363774B1 (en) 2000-05-01 2017-06-21 iRobot Corporation Method and system for remote control of mobile robot
US6633150B1 (en) 2000-05-02 2003-10-14 Personal Robotics, Inc. Apparatus and method for improving traction for a mobile robot
WO2001082766A2 (en) 2000-05-02 2001-11-08 Personal Robotics, Inc. Autonomous floor mopping apparatus
JP2001320781A (en) 2000-05-10 2001-11-16 Inst Of Physical & Chemical Res Support system using data carrier system
US6454036B1 (en) 2000-05-15 2002-09-24 ′Bots, Inc. Autonomous vehicle navigation system and method
US6854148B1 (en) 2000-05-26 2005-02-15 Poolvernguegen Four-wheel-drive automatic swimming pool cleaner
US6481515B1 (en) 2000-05-30 2002-11-19 The Procter & Gamble Company Autonomous mobile surface treating apparatus
JP2001344161A (en) * 2000-06-01 2001-12-14 Matsushita Electric Ind Co Ltd Network apparatus management system
JP4810051B2 (en) 2000-06-07 2011-11-09 コネクサント システムズ,アイエヌシー. Method and apparatus for media access control in power line communication network system
US6385515B1 (en) 2000-06-15 2002-05-07 Case Corporation Trajectory path planner for a vision guidance system
US6629028B2 (en) 2000-06-29 2003-09-30 Riken Method and system of optical guidance of mobile body
US6397429B1 (en) 2000-06-30 2002-06-04 Nilfisk-Advance, Inc. Riding floor scrubber
US6659947B1 (en) * 2000-07-13 2003-12-09 Ge Medical Systems Information Technologies, Inc. Wireless LAN architecture for integrated time-critical and non-time-critical services within medical facilities
US6539284B2 (en) 2000-07-25 2003-03-25 Axonn Robotics, Llc Socially interactive autonomous robot
US6571422B1 (en) 2000-08-01 2003-06-03 The Hoover Company Vacuum cleaner with a microprocessor-based dirt detection circuit
KR100391179B1 (en) 2000-08-02 2003-07-12 한국전력공사 Teleoperated mobile cleanup device for highly radioactive fine waste
US6832407B2 (en) 2000-08-25 2004-12-21 The Hoover Company Moisture indicator for wet pick-up suction cleaner
JP2002073170A (en) 2000-08-25 2002-03-12 Matsushita Electric Ind Co Ltd Movable working robot
CN100380324C (en) 2000-08-28 2008-04-09 索尼公司 Communication device and communication method, network system, and robot apparatus
JP3674481B2 (en) 2000-09-08 2005-07-20 松下電器産業株式会社 Self-propelled vacuum cleaner
US7040869B2 (en) 2000-09-14 2006-05-09 Jan W. Beenker Method and device for conveying media
KR20020022444A (en) 2000-09-20 2002-03-27 김대홍 Fuselage and wings and model plane using the same
US20050255425A1 (en) 2000-09-21 2005-11-17 Pierson Paul R Mixing tip for dental materials
EP1191166A1 (en) 2000-09-26 2002-03-27 The Procter & Gamble Company Process of cleaning the inner surface of a water-containing vessel
US6674259B1 (en) 2000-10-06 2004-01-06 Innovation First, Inc. System and method for managing and controlling a robot competition
USD458318S1 (en) 2000-10-10 2002-06-04 Sharper Image Corporation Robot
US6658693B1 (en) 2000-10-12 2003-12-09 Bissell Homecare, Inc. Hand-held extraction cleaner with turbine-driven brush
US6457206B1 (en) 2000-10-20 2002-10-01 Scott H. Judson Remote-controlled vacuum cleaner
NO313533B1 (en) 2000-10-30 2002-10-21 Torbjoern Aasen Mobile robot
US6615885B1 (en) 2000-10-31 2003-09-09 Irobot Corporation Resilient wheel structure
JP2002307354A (en) 2000-11-07 2002-10-23 Sega Toys:Kk Electronic toy
KR20020037618A (en) * 2000-11-15 2002-05-22 윤종용 Digital companion robot and system thereof
AUPR154400A0 (en) 2000-11-17 2000-12-14 Duplex Cleaning Machines Pty. Limited Robot machine
US6496754B2 (en) 2000-11-17 2002-12-17 Samsung Kwangju Electronics Co., Ltd. Mobile robot and course adjusting method thereof
US6571415B2 (en) 2000-12-01 2003-06-03 The Hoover Company Random motion cleaner
US6572711B2 (en) 2000-12-01 2003-06-03 The Hoover Company Multi-purpose position sensitive floor cleaning device
SE0004465D0 (en) 2000-12-04 2000-12-04 Abb Ab Robot system
US6684511B2 (en) 2000-12-14 2004-02-03 Wahl Clipper Corporation Hair clipping device with rotating bladeset having multiple cutting edges
JP3946499B2 (en) 2000-12-27 2007-07-18 フジノン株式会社 Method for detecting posture of object to be observed and apparatus using the same
US6661239B1 (en) 2001-01-02 2003-12-09 Irobot Corporation Capacitive sensor systems and methods with increased resolution and automatic calibration
US6388013B1 (en) 2001-01-04 2002-05-14 Equistar Chemicals, Lp Polyolefin fiber compositions
US6444003B1 (en) 2001-01-08 2002-09-03 Terry Lee Sutcliffe Filter apparatus for sweeper truck hopper
JP4479101B2 (en) 2001-01-12 2010-06-09 パナソニック株式会社 Self-propelled vacuum cleaner
JP2002204768A (en) 2001-01-12 2002-07-23 Matsushita Electric Ind Co Ltd Self-propelled cleaner
KR20020061341A (en) * 2001-01-16 2002-07-24 조승환 The remote gaming system with various microrobot on internet
US6658325B2 (en) 2001-01-16 2003-12-02 Stephen Eliot Zweig Mobile robotic with web server and digital radio links
US7571511B2 (en) 2002-01-03 2009-08-11 Irobot Corporation Autonomous floor-cleaning robot
US6690134B1 (en) 2001-01-24 2004-02-10 Irobot Corporation Method and system for robot localization and confinement
US6883201B2 (en) 2002-01-03 2005-04-26 Irobot Corporation Autonomous floor-cleaning robot
KR100845473B1 (en) 2001-01-25 2008-07-11 코닌클리케 필립스 일렉트로닉스 엔.브이. Robot for vacuum cleaning surfaces via a cycloid movement
FR2820216B1 (en) 2001-01-26 2003-04-25 Wany Sa METHOD AND DEVICE FOR DETECTING OBSTACLE AND MEASURING DISTANCE BY INFRARED RADIATION
ITMI20010193A1 (en) 2001-02-01 2002-08-01 Pierangelo Bertola CRUSHER COLLECTION BRUSH WITH MEANS PERFECTED FOR THE HOLDING OF DIRT COLLECTION
ITFI20010021A1 (en) 2001-02-07 2002-08-07 Zucchetti Ct Sistemi S P A AUTOMATIC VACUUM CLEANING APPARATUS FOR FLOORS
USD471243S1 (en) 2001-02-09 2003-03-04 Irobot Corporation Robot
US6530117B2 (en) 2001-02-12 2003-03-11 Robert A. Peterson Wet vacuum
US6810305B2 (en) 2001-02-16 2004-10-26 The Procter & Gamble Company Obstruction management system for robots
JP2002312275A (en) 2001-04-12 2002-10-25 Sanyo Electric Co Ltd System for automatically delivering motion program for robot, and robot device
JP4438237B2 (en) 2001-02-22 2010-03-24 ソニー株式会社 Receiving apparatus and method, recording medium, and program
ES2225775T5 (en) 2001-02-24 2008-04-01 Dyson Technology Limited CAMERA COLLECTOR FOR VACUUM CLEANER.
SE518483C2 (en) 2001-02-28 2002-10-15 Electrolux Ab Wheel suspension for a self-cleaning cleaner
DE10110905A1 (en) 2001-03-07 2002-10-02 Kaercher Gmbh & Co Alfred Soil cultivation device, in particular floor cleaning device
DE10110906A1 (en) 2001-03-07 2002-09-19 Kaercher Gmbh & Co Alfred sweeper
DE10110907A1 (en) 2001-03-07 2002-09-19 Kaercher Gmbh & Co Alfred Floor cleaning device
SE0100924D0 (en) 2001-03-15 2001-03-15 Electrolux Ab Energy-efficient navigation of an autonomous surface treatment apparatus
SE518395C2 (en) 2001-03-15 2002-10-01 Electrolux Ab Proximity sensing system for an autonomous device and ultrasonic sensor
SE518683C2 (en) 2001-03-15 2002-11-05 Electrolux Ab Method and apparatus for determining the position of an autonomous apparatus
CN1271967C (en) 2001-03-16 2006-08-30 幻影自动化机械公司 Automatic mobile box vacuum cleaner
SE523318C2 (en) 2001-03-20 2004-04-13 Ingenjoers N D C Netzler & Dah Camera based distance and angle gauges
JP3849442B2 (en) 2001-03-27 2006-11-22 株式会社日立製作所 Self-propelled vacuum cleaner
DE10116892A1 (en) 2001-04-04 2002-10-17 Outokumpu Oy Process for conveying granular solids
JP2002369778A (en) 2001-04-13 2002-12-24 Yashima Denki Co Ltd Dust detecting device and vacuum cleaner
RU2220643C2 (en) 2001-04-18 2004-01-10 Самсунг Гванджу Электроникс Ко., Лтд. Automatic cleaning apparatus, automatic cleaning system and method for controlling of system (versions)
AU767561B2 (en) 2001-04-18 2003-11-13 Samsung Kwangju Electronics Co., Ltd. Robot cleaner, system employing the same and method for reconnecting to external recharging device
KR100437372B1 (en) 2001-04-18 2004-06-25 삼성광주전자 주식회사 Robot cleaning System using by mobile communication network
US6929548B2 (en) 2002-04-23 2005-08-16 Xiaoling Wang Apparatus and a method for more realistic shooting video games on computers or similar devices
US6408226B1 (en) 2001-04-24 2002-06-18 Sandia Corporation Cooperative system and method using mobile robots for testing a cooperative search controller
US6687571B1 (en) 2001-04-24 2004-02-03 Sandia Corporation Cooperating mobile robots
JP2002321180A (en) 2001-04-24 2002-11-05 Matsushita Electric Ind Co Ltd Robot control system
US6438456B1 (en) 2001-04-24 2002-08-20 Sandia Corporation Portable control device for networked mobile robots
FR2823842B1 (en) 2001-04-24 2003-09-05 Romain Granger MEASURING METHOD FOR DETERMINING THE POSITION AND ORIENTATION OF A MOBILE ASSEMBLY, AND DEVICE FOR CARRYING OUT SAID METHOD
JP2002323925A (en) 2001-04-26 2002-11-08 Matsushita Electric Ind Co Ltd Moving working robot
US6540607B2 (en) 2001-04-26 2003-04-01 Midway Games West Video game position and orientation detection system
US20020159051A1 (en) 2001-04-30 2002-10-31 Mingxian Guo Method for optical wavelength position searching and tracking
US7809944B2 (en) 2001-05-02 2010-10-05 Sony Corporation Method and apparatus for providing information for decrypting content, and program executed on information processor
US6487474B1 (en) 2001-05-10 2002-11-26 International Business Machines Corporation Automated data storage library with multipurpose slots providing user-selected control path to shared robotic device
JP2002333920A (en) 2001-05-11 2002-11-22 Figla Co Ltd Movement controller for traveling object for work
JP2002341937A (en) * 2001-05-18 2002-11-29 Hitachi Ltd Method for moving work robot
US6711280B2 (en) 2001-05-25 2004-03-23 Oscar M. Stafsudd Method and apparatus for intelligent ranging via image subtraction
WO2002096184A1 (en) 2001-05-28 2002-12-05 Solar & Robotics Sa Improvement to a robotic lawnmower
JP4802397B2 (en) 2001-05-30 2011-10-26 コニカミノルタホールディングス株式会社 Image photographing system and operation device
JP2002355206A (en) 2001-06-04 2002-12-10 Matsushita Electric Ind Co Ltd Traveling vacuum cleaner
US6763282B2 (en) * 2001-06-04 2004-07-13 Time Domain Corp. Method and system for controlling a robot
JP4017840B2 (en) 2001-06-05 2007-12-05 松下電器産業株式会社 Self-propelled vacuum cleaner
JP3356170B1 (en) 2001-06-05 2002-12-09 松下電器産業株式会社 Cleaning robot
JP2002366227A (en) 2001-06-05 2002-12-20 Matsushita Electric Ind Co Ltd Movable working robot
US6901624B2 (en) 2001-06-05 2005-06-07 Matsushita Electric Industrial Co., Ltd. Self-moving cleaner
US6670817B2 (en) 2001-06-07 2003-12-30 Heidelberger Druckmaschinen Ag Capacitive toner level detection
WO2002101018A2 (en) 2001-06-11 2002-12-19 Fred Hutchinson Cancer Research Center Methods for inducing reversible stasis
US6507773B2 (en) 2001-06-14 2003-01-14 Sharper Image Corporation Multi-functional robot with remote and video system
US6473167B1 (en) 2001-06-14 2002-10-29 Ascension Technology Corporation Position and orientation determination using stationary fan beam sources and rotating mirrors to sweep fan beams
JP2003005296A (en) 2001-06-18 2003-01-08 Noritsu Koki Co Ltd Photographic processing device
US6604021B2 (en) 2001-06-21 2003-08-05 Advanced Telecommunications Research Institute International Communication robot
JP2003006532A (en) * 2001-06-27 2003-01-10 Fujitsu Ltd Movable robot and service providing system through server using the acquired image
JP2003016203A (en) 2001-06-27 2003-01-17 Casio Comput Co Ltd System and method for preparing operating program, system, method and server device for vending operating program
JP2003010076A (en) 2001-06-27 2003-01-14 Figla Co Ltd Vacuum cleaner
JP4553524B2 (en) 2001-06-27 2010-09-29 フィグラ株式会社 Liquid application method
JP4765209B2 (en) 2001-07-03 2011-09-07 パナソニック株式会社 Remote control system
JP2003015740A (en) 2001-07-04 2003-01-17 Figla Co Ltd Traveling controller for traveling object for work
US6622465B2 (en) 2001-07-10 2003-09-23 Deere & Company Apparatus and method for a material collection fill indicator
JP4601215B2 (en) 2001-07-16 2010-12-22 三洋電機株式会社 Cryogenic refrigerator
US20030233870A1 (en) 2001-07-18 2003-12-25 Xidex Corporation Multidimensional sensing system for atomic force microscopy
US20030015232A1 (en) 2001-07-23 2003-01-23 Thomas Nguyen Portable car port
JP2003036116A (en) 2001-07-25 2003-02-07 Toshiba Tec Corp Autonomous travel robot
US6671925B2 (en) 2001-07-30 2004-01-06 Tennant Company Chemical dispenser for a hard floor surface cleaner
US6585827B2 (en) 2001-07-30 2003-07-01 Tennant Company Apparatus and method of use for cleaning a hard floor surface utilizing an aerated cleaning liquid
US7051399B2 (en) 2001-07-30 2006-05-30 Tennant Company Cleaner cartridge
US6735811B2 (en) 2001-07-30 2004-05-18 Tennant Company Cleaning liquid dispensing system for a hard floor surface cleaner
JP2003038401A (en) 2001-08-01 2003-02-12 Toshiba Tec Corp Cleaner
JP2003038402A (en) 2001-08-02 2003-02-12 Toshiba Tec Corp Cleaner
JP2003047579A (en) 2001-08-06 2003-02-18 Toshiba Tec Corp Vacuum cleaner
FR2828589B1 (en) 2001-08-07 2003-12-05 France Telecom ELECTRIC CONNECTION SYSTEM BETWEEN A VEHICLE AND A CHARGING STATION OR THE LIKE
KR100420171B1 (en) 2001-08-07 2004-03-02 삼성광주전자 주식회사 Robot cleaner and system therewith and method of driving thereof
JP2003061882A (en) 2001-08-28 2003-03-04 Matsushita Electric Ind Co Ltd Self-propelled vacuum cleaner
US20030168081A1 (en) 2001-09-06 2003-09-11 Timbucktoo Mfg., Inc. Motor-driven, portable, adjustable spray system for cleaning hard surfaces
JP2003084994A (en) 2001-09-12 2003-03-20 Olympus Optical Co Ltd Medical system
CN100466958C (en) 2001-09-14 2009-03-11 沃维克股份有限公司 Automatically displaceable floor-type dust collector and combination of said collector and a base station
DE10242257C5 (en) 2001-09-14 2017-05-11 Vorwerk & Co. Interholding Gmbh Automatically movable floor dust collecting device, and combination of such a collecting device and a base station
US7302469B2 (en) * 2001-09-17 2007-11-27 Ricoh Company, Ltd. System, method, and computer program product for transferring remote device support data to a monitor using e-mail
JP2003179556A (en) 2001-09-21 2003-06-27 Casio Comput Co Ltd Information transmission method, information transmission system, imaging apparatus and information transmission method
WO2003026474A2 (en) 2001-09-26 2003-04-03 Friendly Robotics Ltd. Robotic vacuum cleaner
IL145680A0 (en) 2001-09-26 2002-06-30 Friendly Robotics Ltd Robotic vacuum cleaner
US6624744B1 (en) 2001-10-05 2003-09-23 William Neil Wilson Golf cart keyless control system
US6980229B1 (en) 2001-10-16 2005-12-27 Ebersole Jr John F System for precise rotational and positional tracking
GB0126492D0 (en) 2001-11-03 2002-01-02 Dyson Ltd An autonomous machine
GB0126497D0 (en) 2001-11-03 2002-01-02 Dyson Ltd An autonomous machine
DE10155271A1 (en) 2001-11-09 2003-05-28 Bosch Gmbh Robert Common rail injector
US6776817B2 (en) 2001-11-26 2004-08-17 Honeywell International Inc. Airflow sensor, system and method for detecting airflow within an air handling system
JP2003167628A (en) 2001-11-28 2003-06-13 Figla Co Ltd Autonomous traveling service car
KR100449710B1 (en) 2001-12-10 2004-09-22 삼성전자주식회사 Remote pointing method and apparatus therefor
JP3626724B2 (en) 2001-12-14 2005-03-09 株式会社日立製作所 Self-propelled vacuum cleaner
US6860206B1 (en) 2001-12-14 2005-03-01 Irobot Corporation Remote digital firing system
JP3986310B2 (en) 2001-12-19 2007-10-03 シャープ株式会社 Parent-child type vacuum cleaner
JP3907169B2 (en) 2001-12-21 2007-04-18 富士フイルム株式会社 Mobile robot
JP2003190064A (en) 2001-12-25 2003-07-08 Duskin Co Ltd Self-traveling vacuum cleaner
US7335271B2 (en) 2002-01-02 2008-02-26 Lewis & Clark College Adhesive microstructure and method of forming same
US6886651B1 (en) 2002-01-07 2005-05-03 Massachusetts Institute Of Technology Material transportation system
USD474312S1 (en) 2002-01-11 2003-05-06 The Hoover Company Robotic vacuum cleaner
JP4088589B2 (en) 2002-01-18 2008-05-21 株式会社日立製作所 Radar equipment
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
DE60301148T2 (en) 2002-01-24 2006-06-01 Irobot Corp., Burlington Method and system for robot localization and limitation of the work area
US6674687B2 (en) 2002-01-25 2004-01-06 Navcom Technology, Inc. System and method for navigation using two-way ultrasonic positioning
US7315821B2 (en) * 2002-01-31 2008-01-01 Sanyo Electric Co., Ltd. System and method for health care information processing based on acoustic features
US6856811B2 (en) 2002-02-01 2005-02-15 Warren L. Burdue Autonomous portable communication network
US6844606B2 (en) 2002-02-04 2005-01-18 Delphi Technologies, Inc. Surface-mount package for an optical sensing device and method of manufacture
JP2003241836A (en) 2002-02-19 2003-08-29 Keio Gijuku Control method and apparatus for free-running mobile unit
US6735812B2 (en) 2002-02-22 2004-05-18 Tennant Company Dual mode carpet cleaning apparatus utilizing an extraction device and a soil transfer cleaning medium
US6756703B2 (en) 2002-02-27 2004-06-29 Chi Che Chang Trigger switch module
US7860680B2 (en) 2002-03-07 2010-12-28 Microstrain, Inc. Robotic system for powering and interrogating sensors
JP3812463B2 (en) 2002-03-08 2006-08-23 株式会社日立製作所 Direction detecting device and self-propelled cleaner equipped with the same
JP3863447B2 (en) 2002-03-08 2006-12-27 インターナショナル・ビジネス・マシーンズ・コーポレーション Authentication system, firmware device, electrical device, and authentication method
JP2002360482A (en) 2002-03-15 2002-12-17 Matsushita Electric Ind Co Ltd Self-propelled cleaner
US6658354B2 (en) 2002-03-15 2003-12-02 American Gnc Corporation Interruption free navigator
WO2003081392A2 (en) 2002-03-21 2003-10-02 Rapistan System Advertising Corp. Graphical system configuration program for material handling
JP4032793B2 (en) 2002-03-27 2008-01-16 ソニー株式会社 Charging system, charging control method, robot apparatus, charging control program, and recording medium
US7103457B2 (en) 2002-03-28 2006-09-05 Dean Technologies, Inc. Programmable lawn mower
JP2003296855A (en) 2002-03-29 2003-10-17 Toshiba Corp Monitoring device
KR20030082040A (en) 2002-04-16 2003-10-22 삼성광주전자 주식회사 Robot cleaner
JP2003304992A (en) 2002-04-17 2003-10-28 Hitachi Ltd Self-running type vacuum cleaner
US20040068416A1 (en) 2002-04-22 2004-04-08 Neal Solomon System, method and apparatus for implementing a mobile sensor network
US20040068415A1 (en) 2002-04-22 2004-04-08 Neal Solomon System, methods and apparatus for coordination of and targeting for mobile robotic vehicles
US20040030448A1 (en) 2002-04-22 2004-02-12 Neal Solomon System, methods and apparatus for managing external computation and sensor resources applied to mobile robotic network
US20040068351A1 (en) 2002-04-22 2004-04-08 Neal Solomon System, methods and apparatus for integrating behavior-based approach into hybrid control model for use with mobile robotic vehicles
US20040030571A1 (en) 2002-04-22 2004-02-12 Neal Solomon System, method and apparatus for automated collective mobile robotic vehicles used in remote sensing surveillance
JP2003310509A (en) 2002-04-23 2003-11-05 Hitachi Ltd Mobile cleaner
US6691058B2 (en) 2002-04-29 2004-02-10 Hewlett-Packard Development Company, L.P. Determination of pharmaceutical expiration date
US7113847B2 (en) 2002-05-07 2006-09-26 Royal Appliance Mfg. Co. Robotic vacuum with removable portable vacuum and semi-automated environment mapping
US6836701B2 (en) 2002-05-10 2004-12-28 Royal Appliance Mfg. Co. Autonomous multi-platform robotic system
FI20020904A0 (en) * 2002-05-14 2002-05-14 Nokia Corp A method and apparatus for updating an object apparatus
JP2003330543A (en) 2002-05-17 2003-11-21 Toshiba Tec Corp Charging type autonomous moving system
JP2003340759A (en) 2002-05-20 2003-12-02 Sony Corp Robot device and robot control method, recording medium and program
GB0211644D0 (en) * 2002-05-21 2002-07-03 Wesby Philip B System and method for remote asset management
AU2003245888A1 (en) 2002-06-06 2003-12-22 Instrumentarium Corporation Method and system for selectively tracking and monitoring activities
DE10226853B3 (en) 2002-06-15 2004-02-19 Kuka Roboter Gmbh Method for limiting the force of a robot part
US6967275B2 (en) 2002-06-25 2005-11-22 Irobot Corporation Song-matching system and method
JP4157731B2 (en) * 2002-07-01 2008-10-01 日立アプライアンス株式会社 Robot cleaner and robot cleaner control program
US20050150519A1 (en) 2002-07-08 2005-07-14 Alfred Kaercher Gmbh & Co. Kg Method for operating a floor cleaning system, and floor cleaning system for use of the method
DE10231387A1 (en) 2002-07-08 2004-02-12 Alfred Kärcher Gmbh & Co. Kg Floor cleaning device
DE10231386B4 (en) 2002-07-08 2004-05-06 Alfred Kärcher Gmbh & Co. Kg Sensor device and self-propelled floor cleaning device with a sensor device
DE10231390A1 (en) 2002-07-08 2004-02-05 Alfred Kärcher Gmbh & Co. Kg Suction device for cleaning purposes
DE10231388A1 (en) 2002-07-08 2004-02-05 Alfred Kärcher Gmbh & Co. Kg Tillage system
DE10231384A1 (en) 2002-07-08 2004-02-05 Alfred Kärcher Gmbh & Co. Kg Method for operating a floor cleaning system and floor cleaning system for applying the method
DE10231391A1 (en) 2002-07-08 2004-02-12 Alfred Kärcher Gmbh & Co. Kg Tillage system
US6925357B2 (en) 2002-07-25 2005-08-02 Intouch Health, Inc. Medical tele-robotic system
US6741364B2 (en) 2002-08-13 2004-05-25 Harris Corporation Apparatus for determining relative positioning of objects and related methods
US7085623B2 (en) 2002-08-15 2006-08-01 Asm International Nv Method and system for using short ranged wireless enabled computers as a service tool
AU2003256435A1 (en) 2002-08-16 2004-03-03 Evolution Robotics, Inc. Systems and methods for the automated sensing of motion in a mobile robot using visual data
USD478884S1 (en) 2002-08-23 2003-08-26 Motorola, Inc. Base for a cordless telephone
US7103447B2 (en) 2002-09-02 2006-09-05 Sony Corporation Robot apparatus, and behavior controlling method for robot apparatus
US7054716B2 (en) 2002-09-06 2006-05-30 Royal Appliance Mfg. Co. Sentry robot system
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US20040143919A1 (en) 2002-09-13 2004-07-29 Wildwood Industries, Inc. Floor sweeper having a viewable receptacle
WO2004025947A2 (en) 2002-09-13 2004-03-25 Irobot Corporation A navigational control system for a robotic device
JP3875941B2 (en) 2002-09-30 2007-01-31 三菱電機株式会社 Vehicle travel support device and method for providing vehicle travel support service
AU2002344061A1 (en) 2002-10-01 2004-04-23 Fujitsu Limited Robot
JP2004123040A (en) 2002-10-07 2004-04-22 Figla Co Ltd Omnidirectional moving vehicle
US7303010B2 (en) 2002-10-11 2007-12-04 Intelligent Robotic Corporation Apparatus and method for an autonomous robotic system for performing activities in a well
US6871115B2 (en) 2002-10-11 2005-03-22 Taiwan Semiconductor Manufacturing Co., Ltd Method and apparatus for monitoring the operation of a wafer handling robot
US7054718B2 (en) 2002-10-11 2006-05-30 Sony Corporation Motion editing apparatus and method for legged mobile robot and computer program
US6804579B1 (en) 2002-10-16 2004-10-12 Abb, Inc. Robotic wash cell using recycled pure water
JP2004135993A (en) 2002-10-21 2004-05-13 Hitachi Ltd Self-traveling cleaner
KR100492577B1 (en) 2002-10-22 2005-06-03 엘지전자 주식회사 Suction head of robot cleaner
KR100459465B1 (en) 2002-10-22 2004-12-03 엘지전자 주식회사 Dust suction structure of robot cleaner
US7069124B1 (en) 2002-10-28 2006-06-27 Workhorse Technologies, Llc Robotic modeling of voids
KR100468107B1 (en) 2002-10-31 2005-01-26 삼성광주전자 주식회사 Robot cleaner system having external charging apparatus and method for docking with the same apparatus
KR100466321B1 (en) 2002-10-31 2005-01-14 삼성광주전자 주식회사 Robot cleaner, system thereof and method for controlling the same
JP2004148021A (en) 2002-11-01 2004-05-27 Hitachi Home & Life Solutions Inc Self-traveling cleaner
US7079924B2 (en) 2002-11-07 2006-07-18 The Regents Of The University Of California Vision-based obstacle avoidance
JP2004160102A (en) 2002-11-11 2004-06-10 Figla Co Ltd Vacuum cleaner
GB2395261A (en) 2002-11-11 2004-05-19 Qinetiq Ltd Ranging apparatus
US7032469B2 (en) 2002-11-12 2006-04-25 Raytheon Company Three axes line-of-sight transducer
JP2004174228A (en) 2002-11-13 2004-06-24 Figla Co Ltd Self-propelled work robot
US20050209736A1 (en) 2002-11-13 2005-09-22 Figla Co., Ltd. Self-propelled working robot
KR100542340B1 (en) 2002-11-18 2006-01-11 삼성전자주식회사 home network system and method for controlling home network system
JP2004166968A (en) 2002-11-20 2004-06-17 Zojirushi Corp Self-propelled cleaning robot
US7346428B1 (en) 2002-11-22 2008-03-18 Bissell Homecare, Inc. Robotic sweeper cleaner with dusting pad
JP3885019B2 (en) 2002-11-29 2007-02-21 株式会社東芝 Security system and mobile robot
JP2004185586A (en) 2002-12-04 2004-07-02 Toshitoki Inoue Self-propelled robot and its control method
US7496665B2 (en) 2002-12-11 2009-02-24 Broadcom Corporation Personal access and control of media peripherals on a media exchange network
GB2396407A (en) 2002-12-19 2004-06-23 Nokia Corp Encoder
JP3731123B2 (en) 2002-12-20 2006-01-05 新菱冷熱工業株式会社 Object position detection method and apparatus
DE10261787B3 (en) 2002-12-23 2004-01-22 Alfred Kärcher Gmbh & Co. Kg Mobile tillage device
DE10261788B3 (en) 2002-12-23 2004-01-22 Alfred Kärcher Gmbh & Co. Kg Mobile tillage device
JP4261921B2 (en) 2003-01-14 2009-05-13 株式会社リコー Semiconductor integrated circuit
JP2004219185A (en) 2003-01-14 2004-08-05 Meidensha Corp Electrical inertia evaluation device for dynamometer and its method
US20040148419A1 (en) 2003-01-23 2004-07-29 Chen Yancy T. Apparatus and method for multi-user entertainment
US7146682B2 (en) 2003-01-31 2006-12-12 The Hoover Company Powered edge cleaner
JP2004237392A (en) 2003-02-05 2004-08-26 Sony Corp Robotic device and expression method of robotic device
JP2004237075A (en) 2003-02-06 2004-08-26 Samsung Kwangju Electronics Co Ltd Robot cleaner system provided with external charger and connection method for robot cleaner to external charger
KR100485696B1 (en) 2003-02-07 2005-04-28 삼성광주전자 주식회사 Location mark detecting method for a robot cleaner and a robot cleaner using the same method
GB2398394B (en) 2003-02-14 2006-05-17 Dyson Ltd An autonomous machine
JP2004267236A (en) 2003-03-05 2004-09-30 Hitachi Ltd Self-traveling type vacuum cleaner and charging device used for the same
US20040181706A1 (en) 2003-03-13 2004-09-16 Chen Yancy T. Time-controlled variable-function or multi-function apparatus and methods
US7801645B2 (en) 2003-03-14 2010-09-21 Sharper Image Acquisition Llc Robotic vacuum cleaner with edge and object detection system
US20040204792A1 (en) 2003-03-14 2004-10-14 Taylor Charles E. Robotic vacuum with localized cleaning algorithm
US20050010331A1 (en) 2003-03-14 2005-01-13 Taylor Charles E. Robot vacuum with floor type modes
US7805220B2 (en) 2003-03-14 2010-09-28 Sharper Image Acquisition Llc Robot vacuum with internal mapping system
US20040200505A1 (en) 2003-03-14 2004-10-14 Taylor Charles E. Robot vac with retractable power cord
JP2004275468A (en) 2003-03-17 2004-10-07 Hitachi Home & Life Solutions Inc Self-traveling vacuum cleaner and method of operating the same
JP3484188B1 (en) 2003-03-31 2004-01-06 貴幸 関島 Steam injection cleaning device
JP2004304714A (en) 2003-04-01 2004-10-28 Sony Corp Information processing system, information processing apparatus, information processing method, and program
KR20040086940A (en) 2003-04-03 2004-10-13 엘지전자 주식회사 Mobile robot in using image sensor and his mobile distance mesurement method
US7627197B2 (en) 2003-04-07 2009-12-01 Honda Motor Co., Ltd. Position measurement method, an apparatus, a computer program and a method for generating calibration information
KR100486737B1 (en) 2003-04-08 2005-05-03 삼성전자주식회사 Method and apparatus for generating and tracing cleaning trajectory for home cleaning robot
KR100488524B1 (en) 2003-04-09 2005-05-11 삼성전자주식회사 Charging equipment for robot
US7057120B2 (en) 2003-04-09 2006-06-06 Research In Motion Limited Shock absorbent roller thumb wheel
US20040221790A1 (en) 2003-05-02 2004-11-11 Sinclair Kenneth H. Method and apparatus for optical odometry
JP4251010B2 (en) * 2003-05-08 2009-04-08 ソニー株式会社 Wireless communication system
US6975246B1 (en) 2003-05-13 2005-12-13 Itt Manufacturing Enterprises, Inc. Collision avoidance using limited range gated video
US20040235468A1 (en) * 2003-05-19 2004-11-25 Luebke Charles J. Wireless network clustering communication system, wireless communication network, and access port for same
JP2004357187A (en) * 2003-05-30 2004-12-16 Hitachi Cable Ltd Wireless lan access point
US7250907B2 (en) * 2003-06-30 2007-07-31 Microsoft Corporation System and methods for determining the location dynamics of a portable computing device
US6888333B2 (en) 2003-07-02 2005-05-03 Intouch Health, Inc. Holonomic platform for a robot
JP2005025516A (en) * 2003-07-02 2005-01-27 Fujitsu Ltd Mobile robot capable of autonomously recovering radio wave status
US7133746B2 (en) 2003-07-11 2006-11-07 F Robotics Acquistions, Ltd. Autonomous machine for docking with a docking station and method for docking
DE10331874A1 (en) 2003-07-14 2005-03-03 Robert Bosch Gmbh Remote programming of a program-controlled device
DE10333395A1 (en) 2003-07-16 2005-02-17 Alfred Kärcher Gmbh & Co. Kg Floor Cleaning System
KR20050012047A (en) 2003-07-24 2005-01-31 삼성광주전자 주식회사 Robot cleaner having a rotating damp cloth
AU2004202836B2 (en) 2003-07-24 2006-03-09 Samsung Gwangju Electronics Co., Ltd. Dust Receptacle of Robot Cleaner
KR100478681B1 (en) 2003-07-29 2005-03-25 삼성광주전자 주식회사 an robot-cleaner equipped with floor-disinfecting function
CN2637136Y (en) 2003-08-11 2004-09-01 泰怡凯电器(苏州)有限公司 Self-positioning mechanism for robot
WO2005014242A1 (en) 2003-08-12 2005-02-17 Advanced Telecommunications Research Institute International Communication robot control system
US7027893B2 (en) 2003-08-25 2006-04-11 Ati Industrial Automation, Inc. Robotic tool coupler rapid-connect bus
US20070061041A1 (en) 2003-09-02 2007-03-15 Zweig Stephen E Mobile robot with wireless location sensing apparatus
WO2005025758A1 (en) 2003-09-05 2005-03-24 Brunswick Bowling & Billiards Corporation Apparatus and method for conditioning a bowling lane using precision delivery injectors
US7784147B2 (en) 2003-09-05 2010-08-31 Brunswick Bowling & Billiards Corporation Bowling lane conditioning machine
US7225501B2 (en) 2003-09-17 2007-06-05 The Hoover Company Brush assembly for a cleaning device
JP2005088179A (en) 2003-09-22 2005-04-07 Honda Motor Co Ltd Autonomous mobile robot system
JP2005101887A (en) * 2003-09-25 2005-04-14 Oki Electric Ind Co Ltd Remote control system
US7030768B2 (en) 2003-09-30 2006-04-18 Wanie Andrew J Water softener monitoring device
JP3960291B2 (en) 2003-10-07 2007-08-15 ヤマハ株式会社 Data transfer device and program
JP2005135400A (en) 2003-10-08 2005-05-26 Figla Co Ltd Self-propelled working robot
TWM247170U (en) 2003-10-09 2004-10-21 Cheng-Shiang Yan Self-moving vacuum floor cleaning device
JP2005118354A (en) 2003-10-17 2005-05-12 Matsushita Electric Ind Co Ltd House interior cleaning system and operation method
WO2005062066A2 (en) * 2003-10-22 2005-07-07 Awarepoint Corporation Wireless position location and tracking system
US7392566B2 (en) 2003-10-30 2008-07-01 Gordon Evan A Cleaning machine for cleaning a surface
JP2005142800A (en) 2003-11-06 2005-06-02 Nec Corp Terminal for monitoring and network monitor system
DE60319542T2 (en) 2003-11-07 2009-04-02 Harman Becker Automotive Systems Gmbh Methods and apparatus for access control to encrypted data services for an entertainment and information processing device in a vehicle
DE10357635B4 (en) 2003-12-10 2013-10-31 Vorwerk & Co. Interholding Gmbh Floor cleaning device
DE10357637A1 (en) 2003-12-10 2005-07-07 Vorwerk & Co. Interholding Gmbh Self-propelled or traveling sweeper and combination of a sweeper with a base station
DE10357636B4 (en) 2003-12-10 2013-05-08 Vorwerk & Co. Interholding Gmbh Automatically movable floor dust collecting device
US7201786B2 (en) 2003-12-19 2007-04-10 The Hoover Company Dust bin and filter for robotic vacuum cleaner
ITMI20032565A1 (en) 2003-12-22 2005-06-23 Calzoni Srl OPTICAL DEVICE INDICATOR OF PLANATA ANGLE FOR AIRCRAFT
KR20050063546A (en) 2003-12-22 2005-06-28 엘지전자 주식회사 Robot cleaner and operating method thereof
GB2409559A (en) 2003-12-24 2005-06-29 Peter Frost-Gaskin Fire alarm with separately powered smoke and heat detectors
EP1553472A1 (en) * 2003-12-31 2005-07-13 Alcatel Remotely controlled vehicle using wireless LAN
KR100552476B1 (en) 2004-01-05 2006-02-22 상 민 안 Flection­moving toy with RPM sensor
US7624473B2 (en) 2004-01-07 2009-12-01 The Hoover Company Adjustable flow rate valve for a cleaning apparatus
JP4244812B2 (en) * 2004-01-16 2009-03-25 ソニー株式会社 Action control system and action control method for robot apparatus
JP2005210199A (en) 2004-01-20 2005-08-04 Alps Electric Co Ltd Inter-terminal connection method in radio network
KR101214667B1 (en) 2004-01-21 2012-12-24 아이로보트 코퍼레이션 Method of docking an autonomous robot
DE102004004505B9 (en) 2004-01-22 2010-08-05 Alfred Kärcher Gmbh & Co. Kg Soil cultivation device and method for its control
WO2005083541A1 (en) 2004-01-28 2005-09-09 Irobot Corporation Debris sensor for cleaning apparatus
JP2005211365A (en) 2004-01-30 2005-08-11 Funai Electric Co Ltd Autonomous traveling robot cleaner
JP2005211493A (en) 2004-01-30 2005-08-11 Funai Electric Co Ltd Self-propelled cleaner
US20050183230A1 (en) 2004-01-30 2005-08-25 Funai Electric Co., Ltd. Self-propelling cleaner
JP2005211360A (en) 2004-01-30 2005-08-11 Funai Electric Co Ltd Self-propelled cleaner
JP2005211364A (en) 2004-01-30 2005-08-11 Funai Electric Co Ltd Self-propelled cleaner
WO2005074362A2 (en) 2004-02-03 2005-08-18 F. Robotics Aquisitions Ltd. Robot docking station
CA2554972C (en) 2004-02-04 2010-01-19 S. C. Johnson & Son, Inc. Surface treating device with cartridge-based cleaning system
JP2005218559A (en) 2004-02-04 2005-08-18 Funai Electric Co Ltd Self-propelled vacuum cleaner network system
ATE486480T1 (en) 2004-02-06 2010-11-15 Koninkl Philips Electronics Nv SYSTEM AND METHOD FOR A HIBERNATION MODE FOR BARK FACILITIES
JP2005224265A (en) 2004-02-10 2005-08-25 Funai Electric Co Ltd Self-traveling vacuum cleaner
DE102004007677B4 (en) 2004-02-16 2011-11-17 Miele & Cie. Kg Suction nozzle for a vacuum cleaner with a dust flow indicator
JP2005230032A (en) 2004-02-17 2005-09-02 Funai Electric Co Ltd Autonomous running robot cleaner
JP4263636B2 (en) * 2004-02-18 2009-05-13 Kddi株式会社 Robot content playback system, robot and program
KR100561863B1 (en) 2004-02-19 2006-03-16 삼성전자주식회사 Navigation method and navigation apparatus using virtual sensor for mobile robot
KR100571834B1 (en) 2004-02-27 2006-04-17 삼성전자주식회사 Method and apparatus of detecting dust on the floor in a robot for cleaning
DE102004010827B4 (en) 2004-02-27 2006-01-05 Alfred Kärcher Gmbh & Co. Kg Soil cultivation device and method for its control
JP4309785B2 (en) 2004-03-08 2009-08-05 フィグラ株式会社 Electric vacuum cleaner
US20050273967A1 (en) 2004-03-11 2005-12-15 Taylor Charles E Robot vacuum with boundary cones
US7360277B2 (en) 2004-03-24 2008-04-22 Oreck Holdings, Llc Vacuum cleaner fan unit and access aperture
US7228203B2 (en) * 2004-03-27 2007-06-05 Vision Robotics Corporation Autonomous personal service robot
US7148458B2 (en) 2004-03-29 2006-12-12 Evolution Robotics, Inc. Circuit for estimating position and orientation of a mobile object
US20050213109A1 (en) 2004-03-29 2005-09-29 Evolution Robotics, Inc. Sensing device and method for measuring position and orientation relative to multiple light sources
US7720554B2 (en) 2004-03-29 2010-05-18 Evolution Robotics, Inc. Methods and apparatus for position estimation using reflected light sources
US7535071B2 (en) 2004-03-29 2009-05-19 Evolution Robotics, Inc. System and method of integrating optics into an IC package
US7617557B2 (en) 2004-04-02 2009-11-17 Royal Appliance Mfg. Co. Powered cleaning appliance
US7603744B2 (en) 2004-04-02 2009-10-20 Royal Appliance Mfg. Co. Robotic appliance with on-board joystick sensor and associated methods of operation
JP2005296511A (en) 2004-04-15 2005-10-27 Funai Electric Co Ltd Self-propelled vacuum cleaner
JP2005296512A (en) 2004-04-15 2005-10-27 Funai Electric Co Ltd Self-traveling cleaner
US7640624B2 (en) 2004-04-16 2010-01-05 Panasonic Corporation Of North America Dirt cup with dump door in bottom wall and dump door actuator on top wall
TWI258259B (en) 2004-04-20 2006-07-11 Jason Yan Automatic charging system of mobile robotic electronic device
TWI262777B (en) 2004-04-21 2006-10-01 Jason Yan Robotic vacuum cleaner
US7041029B2 (en) 2004-04-23 2006-05-09 Alto U.S. Inc. Joystick controlled scrubber
USD510066S1 (en) 2004-05-05 2005-09-27 Irobot Corporation Base station for robot
JP2005346700A (en) 2004-05-07 2005-12-15 Figla Co Ltd Self-propelled working robot
JP4377744B2 (en) * 2004-05-13 2009-12-02 本田技研工業株式会社 Robot controller
US7208697B2 (en) * 2004-05-20 2007-04-24 Lincoln Global, Inc. System and method for monitoring and controlling energy usage
JP4163150B2 (en) 2004-06-10 2008-10-08 日立アプライアンス株式会社 Self-propelled vacuum cleaner
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
ATE434225T1 (en) * 2004-07-20 2009-07-15 Alcatel Lucent A METHOD, A NETWORK DOCUMENT DESCRIPTION LANGUAGE, A NETWORK DOCUMENT TRANSITION PROTOCOL AND A COMPUTER SOFTWARE PRODUCT FOR RECOVERING NETWORK DOCUMENTS
US7512079B2 (en) * 2004-07-28 2009-03-31 University Of South Florida System and method to assure node connectivity in an ad hoc network
KR20040072581A (en) 2004-07-29 2004-08-18 (주)제이씨 프로텍 An amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the above device
DE102004038074B3 (en) 2004-07-29 2005-06-30 Alfred Kärcher Gmbh & Co. Kg Self-propelled cleaning robot for floor surfaces has driven wheel rotated in arc about eccentric steering axis upon abutting obstacle in movement path of robot
KR100641113B1 (en) 2004-07-30 2006-11-02 엘지전자 주식회사 Mobile robot and his moving control method
JP4268911B2 (en) 2004-08-04 2009-05-27 日立アプライアンス株式会社 Self-propelled vacuum cleaner
KR100601960B1 (en) 2004-08-05 2006-07-14 삼성전자주식회사 Simultaneous localization and map building method for robot
DE102004041021B3 (en) 2004-08-17 2005-08-25 Alfred Kärcher Gmbh & Co. Kg Floor cleaning system with self-propelled, automatically-controlled roller brush sweeper and central dirt collection station, reverses roller brush rotation during dirt transfer and battery charging
GB0418376D0 (en) 2004-08-18 2004-09-22 Loc8Tor Ltd Locating system
US20060042042A1 (en) 2004-08-26 2006-03-02 Mertes Richard H Hair ingestion device and dust protector for vacuum cleaner
CA2578525A1 (en) 2004-08-27 2006-03-09 Sharper Image Corporation Robot cleaner with improved vacuum unit
KR100664053B1 (en) 2004-09-23 2007-01-03 엘지전자 주식회사 Cleaning tool auto change system and method for robot cleaner
KR100677252B1 (en) 2004-09-23 2007-02-02 엘지전자 주식회사 Remote observation system and method in using robot cleaner
DE102004046383B4 (en) 2004-09-24 2009-06-18 Stein & Co Gmbh Device for brushing roller of floor care appliances
DE102005044617A1 (en) 2004-10-01 2006-04-13 Vorwerk & Co. Interholding Gmbh Method for the care and / or cleaning of a floor covering and flooring and Bodenpflege- and or cleaning device for this purpose
US7430462B2 (en) 2004-10-20 2008-09-30 Infinite Electronics Inc. Automatic charging station for autonomous mobile machine
US8078338B2 (en) 2004-10-22 2011-12-13 Irobot Corporation System and method for behavior based control of an autonomous vehicle
KR100656701B1 (en) 2004-10-27 2006-12-13 삼성광주전자 주식회사 Robot cleaner system and Method for return to external charge apparatus
JP4485320B2 (en) 2004-10-29 2010-06-23 アイシン精機株式会社 Fuel cell system
KR100619758B1 (en) * 2004-11-10 2006-09-07 엘지전자 주식회사 Motion tracing apparatus and method for robot cleaner
KR100575708B1 (en) 2004-11-11 2006-05-03 엘지전자 주식회사 Distance detection apparatus and method for robot cleaner
KR20060059006A (en) 2004-11-26 2006-06-01 삼성전자주식회사 Method and apparatus of self-propelled mobile unit with obstacle avoidance during wall-following
JP4277214B2 (en) 2004-11-30 2009-06-10 日立アプライアンス株式会社 Self-propelled vacuum cleaner
KR100664059B1 (en) 2004-12-04 2007-01-03 엘지전자 주식회사 Obstacle position recognition apparatus and method in using robot cleaner
WO2006061133A1 (en) 2004-12-09 2006-06-15 Alfred Kärcher Gmbh & Co. Kg Cleaning robot
KR100588061B1 (en) 2004-12-22 2006-06-09 주식회사유진로보틱스 Cleaning robot having double suction device
US20060143295A1 (en) 2004-12-27 2006-06-29 Nokia Corporation System, method, mobile station and gateway for communicating with a universal plug and play network
KR100499770B1 (en) 2004-12-30 2005-07-07 주식회사 아이오. 테크 Network based robot control system
KR100588059B1 (en) 2005-01-03 2006-06-09 주식회사유진로보틱스 A non-contact close obstacle detection device for a cleaning robot
JP2006227673A (en) 2005-02-15 2006-08-31 Matsushita Electric Ind Co Ltd Autonomous travel device
US7389156B2 (en) 2005-02-18 2008-06-17 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US7620476B2 (en) 2005-02-18 2009-11-17 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
ES2346343T3 (en) 2005-02-18 2010-10-14 Irobot Corporation AUTONOMOUS SURFACE CLEANING ROBOT FOR DRY AND WET CLEANING.
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US20060200281A1 (en) 2005-02-18 2006-09-07 Andrew Ziegler Autonomous surface cleaning robot for wet and dry cleaning
KR100661339B1 (en) 2005-02-24 2006-12-27 삼성광주전자 주식회사 Automatic cleaning apparatus
ES2238196B1 (en) 2005-03-07 2006-11-16 Electrodomesticos Taurus, S.L. BASE STATION WITH VACUUM ROBOT.
KR100654676B1 (en) 2005-03-07 2006-12-08 삼성광주전자 주식회사 Mobile robot having body sensor
JP2006247467A (en) 2005-03-08 2006-09-21 Figla Co Ltd Self-travelling working vehicle
JP2006260161A (en) 2005-03-17 2006-09-28 Figla Co Ltd Self-propelled working robot
JP4533787B2 (en) 2005-04-11 2010-09-01 フィグラ株式会社 Work robot
JP2006296697A (en) 2005-04-20 2006-11-02 Figla Co Ltd Cleaning robot
TWI278731B (en) 2005-05-09 2007-04-11 Infinite Electronics Inc Self-propelled apparatus for virtual wall system
US20060259494A1 (en) 2005-05-13 2006-11-16 Microsoft Corporation System and method for simultaneous search service and email search
US7389166B2 (en) 2005-06-28 2008-06-17 S.C. Johnson & Son, Inc. Methods to prevent wheel slip in an autonomous floor cleaner
US7578020B2 (en) 2005-06-28 2009-08-25 S.C. Johnson & Son, Inc. Surface treating device with top load cartridge-based cleaning system
JP4492462B2 (en) 2005-06-30 2010-06-30 ソニー株式会社 Electronic device, video processing apparatus, and video processing method
JP4630146B2 (en) * 2005-07-11 2011-02-09 本田技研工業株式会社 Position management system and position management program
JP2007034866A (en) 2005-07-29 2007-02-08 Hitachi Appliances Inc Travel control method for moving body and self-propelled cleaner
US7456596B2 (en) 2005-08-19 2008-11-25 Cisco Technology, Inc. Automatic radio site survey using a robot
KR101323597B1 (en) 2005-09-02 2013-11-01 니토 로보틱스 인코퍼레이티드 Multi-function robotic device
US20070061403A1 (en) 2005-09-15 2007-03-15 Seaburg Stephen L Priority email alert system
DE102005046639A1 (en) 2005-09-29 2007-04-05 Vorwerk & Co. Interholding Gmbh Automatically displaceable floor dust collector, has passive wheel is monitored for its movement and measure is initiated when intensity of movement of passive wheel changes
DE102005046813A1 (en) 2005-09-30 2007-04-05 Vorwerk & Co. Interholding Gmbh Household appliance e.g. floor dust collecting device, operating method for room, involves arranging station units that transmit radio signals, in addition to base station, and orienting household appliance in room by processing signals
US8097414B2 (en) 2005-11-25 2012-01-17 K. K. Dnaform Method for detecting and amplifying nucleic acid
EP2267568B1 (en) 2005-12-02 2014-09-24 iRobot Corporation Autonomous coverage robot navigation system
EP2116914B1 (en) 2005-12-02 2013-03-13 iRobot Corporation Modular robot
EP2544066B1 (en) 2005-12-02 2018-10-17 iRobot Corporation Robot system
DE602006009148D1 (en) 2005-12-02 2009-10-22 Irobot Corp COVER ROBOT MOBILITY
US7568259B2 (en) 2005-12-13 2009-08-04 Jason Yan Robotic floor cleaner
TWI290881B (en) 2005-12-26 2007-12-11 Ind Tech Res Inst Mobile robot platform and method for sensing movement of the same
TWM294301U (en) 2005-12-27 2006-07-21 Supply Internat Co Ltd E Self-propelled vacuum cleaner with dust collecting structure
WO2008013568A2 (en) 2005-12-30 2008-01-31 Irobot Corporation Autonomous mobile robot
KR20070074146A (en) 2006-01-06 2007-07-12 삼성전자주식회사 Cleaner system
KR20070074147A (en) 2006-01-06 2007-07-12 삼성전자주식회사 Cleaner system
JP2007213180A (en) 2006-02-08 2007-08-23 Figla Co Ltd Movable body system
EP1836941B1 (en) 2006-03-14 2014-02-12 Toshiba TEC Kabushiki Kaisha Electric vacuum cleaner
CA2541635A1 (en) 2006-04-03 2007-10-03 Servo-Robot Inc. Hybrid sensing apparatus for adaptive robotic processes
US7861366B2 (en) 2006-04-04 2011-01-04 Samsung Electronics Co., Ltd. Robot cleaner system having robot cleaner and docking station
KR20070104989A (en) 2006-04-24 2007-10-30 삼성전자주식회사 Robot cleaner system and method to eliminate dust thereof
US7211980B1 (en) 2006-07-05 2007-05-01 Battelle Energy Alliance, Llc Robotic follow system and method
EP1897476B1 (en) 2006-09-05 2010-06-09 LG Electronics Inc. Cleaning robot
US7408157B2 (en) 2006-09-27 2008-08-05 Jason Yan Infrared sensor
WO2008085503A2 (en) 2007-01-05 2008-07-17 Powercast Corporation Powering cell phones and similar devices using rf energy harvesting
US20080281470A1 (en) 2007-05-09 2008-11-13 Irobot Corporation Autonomous coverage robot sensing
US20080302586A1 (en) 2007-06-06 2008-12-11 Jason Yan Wheel set for robot cleaner
JP2009015611A (en) 2007-07-05 2009-01-22 Figla Co Ltd Charging system, charging unit, and system for automatically charging moving robot
US20090048727A1 (en) 2007-08-17 2009-02-19 Samsung Electronics Co., Ltd. Robot cleaner and control method and medium of the same
JP5091604B2 (en) 2007-09-26 2012-12-05 株式会社東芝 Distribution evaluation method, product manufacturing method, distribution evaluation program, and distribution evaluation system
FR2923465B1 (en) 2007-11-13 2013-08-30 Valeo Systemes Thermiques Branche Thermique Habitacle LOADING AND UNLOADING DEVICE FOR HANDLING TROLLEY.
JP5150827B2 (en) 2008-01-07 2013-02-27 株式会社高尾 A gaming machine with speaker breakage detection function
JP5042076B2 (en) 2008-03-11 2012-10-03 新明和工業株式会社 Suction device and suction wheel
JP5054620B2 (en) 2008-06-17 2012-10-24 未来工業株式会社 Ventilation valve
JP2010198552A (en) 2009-02-27 2010-09-09 Konica Minolta Holdings Inc Driving state monitoring device
JP5046246B2 (en) 2009-03-31 2012-10-10 サミー株式会社 Pachinko machine
TWI399190B (en) 2009-05-21 2013-06-21 Ind Tech Res Inst Cleaning apparatus and detecting method thereof
JP5302836B2 (en) 2009-09-28 2013-10-02 黒崎播磨株式会社 Stopper control type immersion nozzle
JP5312514B2 (en) 2011-04-28 2013-10-09 上銀科技股▲分▼有限公司 Crossed roller bearing
JP5257533B2 (en) 2011-09-26 2013-08-07 ダイキン工業株式会社 Power converter

Patent Citations (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3119369A (en) * 1960-12-28 1964-01-28 Ametek Inc Device for indicating fluid flow
US3166138A (en) * 1961-10-26 1965-01-19 Jr Edward D Dunn Stair climbing conveyance
US3375375A (en) * 1965-01-08 1968-03-26 Honeywell Inc Orientation sensing means comprising photodetectors and projected fans of light
US3569727A (en) * 1968-09-30 1971-03-09 Bendix Corp Control means for pulse generating apparatus
US4012681A (en) * 1975-01-03 1977-03-15 Curtis Instruments, Inc. Battery control system for battery operated vehicles
US4070170A (en) * 1975-08-20 1978-01-24 Aktiebolaget Electrolux Combination dust container for vacuum cleaner and signalling device
US4309758A (en) * 1978-08-01 1982-01-05 Imperial Chemical Industries Limited Driverless vehicle autoguided by light signals and three non-directional detectors
US4367403A (en) * 1980-01-21 1983-01-04 Rca Corporation Array positioning system with out-of-focus solar cells
US4492058A (en) * 1980-02-14 1985-01-08 Adolph E. Goldfarb Ultracompact miniature toy vehicle with four-wheel drive and unusual climbing capability
US4652917A (en) * 1981-10-28 1987-03-24 Honeywell Inc. Remote attitude sensor using single camera and spiral patterns
US4575211A (en) * 1983-04-18 1986-03-11 Canon Kabushiki Kaisha Distance measuring device
US4644156A (en) * 1984-01-18 1987-02-17 Alps Electric Co., Ltd. Code wheel for reflective optical rotary encoders
US4654492A (en) * 1984-04-12 1987-03-31 Bbc Aktiengesellschaft Brown, Boverie & Cie Switch drive
US4649504A (en) * 1984-05-22 1987-03-10 Cae Electronics, Ltd. Optical position and orientation measurement techniques
US4638445A (en) * 1984-06-08 1987-01-20 Mattaboni Paul J Autonomous mobile robot
US4728801A (en) * 1985-01-31 1988-03-01 Thorn Emi Protech Limited Light scattering smoke detector having conical and concave surfaces
US4733343A (en) * 1985-02-18 1988-03-22 Toyoda Koki Kabushiki Kaisha Machine tool numerical controller with a trouble stop function
US4806751A (en) * 1985-09-30 1989-02-21 Alps Electric Co., Ltd. Code wheel for a reflective type optical rotary encoder
US4813906A (en) * 1985-10-19 1989-03-21 Tomy Kogyo Co., Inc. Pivotable running toy
US4817000A (en) * 1986-03-10 1989-03-28 Si Handling Systems, Inc. Automatic guided vehicle system
US4796198A (en) * 1986-10-17 1989-01-03 The United States Of America As Represented By The United States Department Of Energy Method for laser-based two-dimensional navigation system in a structured environment
US4891762A (en) * 1988-02-09 1990-01-02 Chotiros Nicholas P Method and apparatus for tracking, mapping and recognition of spatial patterns
US4905151A (en) * 1988-03-07 1990-02-27 Transitions Research Corporation One dimensional image visual system for a moving vehicle
US4986663A (en) * 1988-12-21 1991-01-22 Societa' Cavi Pirelli S.P.A. Method and apparatus for determining the position of a mobile body
US5182833A (en) * 1989-05-11 1993-02-02 Matsushita Electric Industrial Co., Ltd. Vacuum cleaner
US5084934A (en) * 1990-01-24 1992-02-04 Black & Decker Inc. Vacuum cleaners
US5276939A (en) * 1991-02-14 1994-01-11 Sanyo Electric Co., Ltd. Electric vacuum cleaner with suction power responsive to nozzle conditions
US5094311A (en) * 1991-02-22 1992-03-10 Gmfanuc Robotics Corporation Limited mobility transporter
US5276618A (en) * 1992-02-26 1994-01-04 The United States Of America As Represented By The Secretary Of The Navy Doorway transit navigational referencing system
US5277064A (en) * 1992-04-08 1994-01-11 General Motors Corporation Thick film accelerometer
US5432907A (en) * 1992-05-12 1995-07-11 Network Resources Corporation Network hub with integrated bridge
US6006275A (en) * 1992-05-12 1999-12-21 Compaq Computer Corporation Network connector operable in bridge mode and bypass mode
US5399951A (en) * 1992-05-12 1995-03-21 Universite Joseph Fourier Robot for guiding movements and control method thereof
US5386862A (en) * 1992-10-02 1995-02-07 The Goodyear Tire & Rubber Company Pneumatic tire having improved wet traction
US5284452A (en) * 1993-01-15 1994-02-08 Atlantic Richfield Company Mooring buoy with hawser tension indicator system
US5869910A (en) * 1994-02-11 1999-02-09 Colens; Andre Power supply system for self-contained mobile robots
US5717484A (en) * 1994-03-22 1998-02-10 Minolta Co., Ltd. Position detecting system
US5714119A (en) * 1994-03-24 1998-02-03 Minolta Co., Ltd. Sterilizer
US5720077A (en) * 1994-05-30 1998-02-24 Minolta Co., Ltd. Running robot carrying out prescribed work using working member and method of working using the same
US7761910B2 (en) * 1994-12-30 2010-07-20 Power Measurement Ltd. System and method for assigning an identity to an intelligent electronic device
US20050144437A1 (en) * 1994-12-30 2005-06-30 Ransom Douglas S. System and method for assigning an identity to an intelligent electronic device
US7188003B2 (en) * 1994-12-30 2007-03-06 Power Measurement Ltd. System and method for securing energy management systems
US5710506A (en) * 1995-02-07 1998-01-20 Benchmarq Microelectronics, Inc. Lead acid charger
US5548649A (en) * 1995-03-28 1996-08-20 Iowa State University Research Foundation Network security bridge and associated method
US6021545A (en) * 1995-04-21 2000-02-08 Vorwerk & Co. Interholding Gmbh Vacuum cleaner attachment for the wet cleaning of surfaces
US6030465A (en) * 1996-06-26 2000-02-29 Matsushita Electric Corporation Of America Extractor with twin, counterrotating agitators
US6192548B1 (en) * 1997-07-09 2001-02-27 Bissell Homecare, Inc. Upright extraction cleaning machine with flow rate indicator
US6167587B1 (en) * 1997-07-09 2001-01-02 Bissell Homecare, Inc. Upright extraction cleaning machine
US6023814A (en) * 1997-09-15 2000-02-15 Imamura; Nobuo Vacuum cleaner
US6025687A (en) * 1997-09-26 2000-02-15 Minolta Co., Ltd. Mobile unit and controller for mobile unit
US6026539A (en) * 1998-03-04 2000-02-22 Bissell Homecare, Inc. Upright vacuum cleaner with full bag and clogged filter indicators thereon
US6023813A (en) * 1998-04-07 2000-02-15 Spectrum Industrial Products, Inc. Powered floor scrubber and buffer
US7171265B2 (en) * 1998-07-31 2007-01-30 Harbinger Medical, Inc. Apparatus and method for detecting lead adequacy and quality
US6339735B1 (en) * 1998-12-29 2002-01-15 Friendly Robotics Ltd. Method for operating a robot
US6510893B1 (en) * 1998-12-30 2003-01-28 Valeo Clamatisation Heating, ventilation and/or air-conditioning device including a thermal loop equipped with a heat exchanger
US20070043459A1 (en) * 1999-12-15 2007-02-22 Tangis Corporation Storing and recalling information to augment human memories
US20090055022A1 (en) * 2000-01-24 2009-02-26 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US20040020000A1 (en) * 2000-01-24 2004-02-05 Jones Joseph L. Robot obstacle detection system
US20030023356A1 (en) * 2000-02-02 2003-01-30 Keable Stephen J. Autonomous mobile apparatus for performing work within a predefined area
US20020011367A1 (en) * 2000-07-27 2002-01-31 Marina Kolesnik Autonomously navigating robot system
US20020021219A1 (en) * 2000-08-08 2002-02-21 Marlena Edwards Animal collar including tracking and location device
US6502657B2 (en) * 2000-09-22 2003-01-07 The Charles Stark Draper Laboratory, Inc. Transformable vehicle
US6690993B2 (en) * 2000-10-12 2004-02-10 R. Foulke Development Company, Llc Reticle storage system
US7647144B2 (en) * 2001-02-28 2010-01-12 Aktiebolaget Electrolux Obstacle sensing system for an autonomous cleaning apparatus
US7173391B2 (en) * 2001-06-12 2007-02-06 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US20030025472A1 (en) * 2001-06-12 2003-02-06 Jones Joseph L. Method and system for multi-mode coverage for an autonomous robot
US20100049365A1 (en) * 2001-06-12 2010-02-25 Irobot Corporation Method and System for Multi-Mode Coverage For An Autonomous Robot
US20030024986A1 (en) * 2001-06-15 2003-02-06 Thomas Mazz Molded imager optical package and miniaturized linear sensor-based code reading engines
US20030030399A1 (en) * 2001-08-13 2003-02-13 Stephen Jacobs Robot touch shield
US6859682B2 (en) * 2002-03-28 2005-02-22 Fuji Photo Film Co., Ltd. Pet robot charging system
US20040030449A1 (en) * 2002-04-22 2004-02-12 Neal Solomon Methods and apparatus for multi robotic system involving coordination of weaponized unmanned underwater vehicles
US20040030570A1 (en) * 2002-04-22 2004-02-12 Neal Solomon System, methods and apparatus for leader-follower model of mobile robotic system aggregation
US20040030451A1 (en) * 2002-04-22 2004-02-12 Neal Solomon Methods and apparatus for decision making of system of mobile robotic vehicles
US6697147B2 (en) * 2002-06-29 2004-02-24 Samsung Electronics Co., Ltd. Position measurement apparatus and method using laser
US20040016077A1 (en) * 2002-07-26 2004-01-29 Samsung Gwangju Electronics Co., Ltd. Robot cleaner, robot cleaning system and method of controlling same
US20040031113A1 (en) * 2002-08-14 2004-02-19 Wosewick Robert T. Robotic surface treating device with non-circular housing
US7320149B1 (en) * 2002-11-22 2008-01-22 Bissell Homecare, Inc. Robotic extraction cleaner with dusting pad
US6985556B2 (en) * 2002-12-27 2006-01-10 Ge Medical Systems Global Technology Company, Llc Proximity detector and radiography system
US6859010B2 (en) * 2003-03-14 2005-02-22 Lg Electronics Inc. Automatic charging system and method of robot cleaner
US7474941B2 (en) * 2003-07-24 2009-01-06 Samsung Gwangju Electronics Co., Ltd. Robot cleaner
US20050021181A1 (en) * 2003-07-24 2005-01-27 Samsung Gwangju Electronics Co., Ltd. Robot cleaner
US7174238B1 (en) * 2003-09-02 2007-02-06 Stephen Eliot Zweig Mobile robotic system with web server and digital radio links
US20070032904A1 (en) * 2003-10-08 2007-02-08 Nobukazu Kawagoe Self-propelled working robot
US7660650B2 (en) * 2003-10-08 2010-02-09 Figla Co., Ltd. Self-propelled working robot having horizontally movable work assembly retracting in different speed based on contact sensor input on the assembly
US7328196B2 (en) * 2003-12-31 2008-02-05 Vanderbilt University Architecture for multiple interacting robot intelligences
US7324870B2 (en) * 2004-01-06 2008-01-29 Samsung Electronics Co., Ltd. Cleaning robot and control method thereof
US20080007203A1 (en) * 2004-01-21 2008-01-10 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US20090038089A1 (en) * 2004-01-28 2009-02-12 Irobot Corporation Debris Sensor for Cleaning Apparatus
US20060037170A1 (en) * 2004-02-10 2006-02-23 Funai Electric Co., Ltd. Self-propelling cleaner
US20060020369A1 (en) * 2004-03-11 2006-01-26 Taylor Charles E Robot vacuum cleaner
US20060025134A1 (en) * 2004-06-25 2006-02-02 Lg Electronics Inc. Method of communicating data in a wireless mobile communication system
US20060000050A1 (en) * 2004-07-01 2006-01-05 Royal Appliance Mfg. Co. Hard floor cleaner
US20060010638A1 (en) * 2004-07-14 2006-01-19 Sanyo Electric Co. Ltd. Cleaner
US20060020370A1 (en) * 2004-07-22 2006-01-26 Shai Abramson System and method for confining a robot
US6993954B1 (en) * 2004-07-27 2006-02-07 Tekscan, Incorporated Sensor equilibration and calibration system and method
US20060021168A1 (en) * 2004-07-29 2006-02-02 Sanyo Electric Co., Ltd. Self-traveling cleaner
US7751936B2 (en) * 2005-01-10 2010-07-06 Robomation Co., Ltd. Processing method for playing multimedia content including motion control information in network-based robot system
US20060161301A1 (en) * 2005-01-10 2006-07-20 Io.Tek Co., Ltd Processing method for playing multimedia content including motion control information in network-based robot system
US20070006404A1 (en) * 2005-07-08 2007-01-11 Gooten Innolife Corporation Remote control sweeper
US20070017061A1 (en) * 2005-07-20 2007-01-25 Jason Yan Steering control sensor for an automatic vacuum cleaner
US20070028574A1 (en) * 2005-08-02 2007-02-08 Jason Yan Dust collector for autonomous floor-cleaning device
US20090007366A1 (en) * 2005-12-02 2009-01-08 Irobot Corporation Coverage Robot Mobility
US7650666B2 (en) * 2005-12-22 2010-01-26 Kyungmin Mechatronics Co., Ltd. Robot cleaner
US20080039974A1 (en) * 2006-03-17 2008-02-14 Irobot Corporation Robot Confinement
US20100011529A1 (en) * 2006-05-19 2010-01-21 Chikyung Won Removing debris from cleaning robots
US7318248B1 (en) * 2006-11-13 2008-01-15 Jason Yan Cleaner having structures for jumping obstacles
US20090049640A1 (en) * 2007-08-24 2009-02-26 Samsung Electronics Co., Ltd. Robot cleaner system having robot cleaner and docking station

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11360484B2 (en) 2004-07-07 2022-06-14 Irobot Corporation Celestial navigation system for an autonomous vehicle
US11378973B2 (en) 2004-07-07 2022-07-05 Irobot Corporation Celestial navigation system for an autonomous vehicle
US11209833B2 (en) 2004-07-07 2021-12-28 Irobot Corporation Celestial navigation system for an autonomous vehicle
US10990110B2 (en) 2004-07-07 2021-04-27 Robot Corporation Celestial navigation system for an autonomous vehicle
US10599159B2 (en) * 2004-07-07 2020-03-24 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8606401B2 (en) 2005-12-02 2013-12-10 Irobot Corporation Autonomous coverage robot navigation system
US20100017026A1 (en) * 2008-07-21 2010-01-21 Honeywell International Inc. Robotic system with simulation and mission partitions
US20130117412A1 (en) * 2008-09-17 2013-05-09 Weibo Wang Management Device, Management Method, And Recording Medium
US9860105B2 (en) * 2008-09-17 2018-01-02 Ricoh Company, Limited Management device, management method, and recording medium
US20100162121A1 (en) * 2008-12-22 2010-06-24 Nortel Networks Limited Dynamic customization of a virtual world
US8380349B1 (en) 2011-05-06 2013-02-19 Google Inc. Methods and systems for providing instructions to a robotic device
US8078349B1 (en) 2011-05-11 2011-12-13 Google Inc. Transitioning a mixed-mode vehicle to autonomous mode
US20120291810A1 (en) * 2011-05-17 2012-11-22 Shui-Shih Chen Cleaning systems and control methods thereof
US20130003111A1 (en) * 2011-06-30 2013-01-03 Konica Minolta Laboratory U.S.A., Inc. Method and system for network diagnostics which shows possible causes on a display of an image forming apparatus
US10647366B2 (en) * 2011-09-09 2020-05-12 Dyson Technology Limited Autonomous surface treating appliance
US20140238756A1 (en) * 2011-09-09 2014-08-28 Dyson Technology Limited Autonomous surface treating appliance
US20130061416A1 (en) * 2011-09-09 2013-03-14 Dyson Technology Limited Autonomous surface treating appliance
EP2745547A4 (en) * 2011-11-28 2015-05-06 Ericsson Telefon Ab L M App driven base station man-machine interface
US20130137366A1 (en) * 2011-11-28 2013-05-30 Telefonaktiebolaget L M Ericsson (Publ) APP Driven Base Station Man-Machine Interface
US9180903B2 (en) * 2011-11-30 2015-11-10 Futaba Corporation Steering communication device, steered-object communication device and steering communication system
US20130138266A1 (en) * 2011-11-30 2013-05-30 Futaba Corporation Steering Communication Device, Steered-Object Communication Device And Steering Communication System
US9402518B2 (en) 2012-02-09 2016-08-02 Samsung Electronics Co., Ltd. Apparatus and method for controlling cleaning in robotic cleaner
US10360565B2 (en) 2012-05-18 2019-07-23 Kofax, Inc. System and method for providing a universal endpoint address schema to route documents and manage document workflows
US9197772B2 (en) 2012-05-18 2015-11-24 Nuance Communications, Inc. Dynamic multilingual print driver
US20140115492A1 (en) * 2012-05-18 2014-04-24 Mehdi Tehranchi System and method for transposing an external user interface on a mobile device
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
US10149077B1 (en) * 2012-10-04 2018-12-04 Amazon Technologies, Inc. Audio themes
WO2014066690A3 (en) * 2012-10-24 2014-06-19 Robotex Inc. Infrastructure for robots in human-centric environments
WO2014066690A2 (en) * 2012-10-24 2014-05-01 Robotex Inc. Infrastructure for robots in human-centric environments
WO2014085587A3 (en) * 2012-11-30 2015-03-19 Tennant Company Dynamic maintenance scheduling system for surface cleaning machines
US9568911B2 (en) 2012-11-30 2017-02-14 Tennant Company Dynamic maintenance scheduling system for surface cleaning machines
WO2014113806A1 (en) * 2013-01-18 2014-07-24 Irobot Corporation Mobile robot providing environmental mapping for household environmental control
US10391638B2 (en) 2013-01-18 2019-08-27 Irobot Corporation Mobile robot providing environmental mapping for household environmental control
US9380922B2 (en) 2013-01-18 2016-07-05 Irobot Corporation Environmental management systems including mobile robots and methods using same
US9802322B2 (en) 2013-01-18 2017-10-31 Irobot Corporation Mobile robot providing environmental mapping for household environmental control
US10488857B2 (en) 2013-01-18 2019-11-26 Irobot Corporation Environmental management systems including mobile robots and methods using same
US9375847B2 (en) 2013-01-18 2016-06-28 Irobot Corporation Environmental management systems including mobile robots and methods using same
US9874873B2 (en) 2013-01-18 2018-01-23 Irobot Corporation Environmental management systems including mobile robots and methods using same
US9233472B2 (en) 2013-01-18 2016-01-12 Irobot Corporation Mobile robot providing environmental mapping for household environmental control
US11648685B2 (en) 2013-01-18 2023-05-16 Irobot Corporation Mobile robot providing environmental mapping for household environmental control
US9885876B2 (en) 2013-02-06 2018-02-06 Steelcase, Inc. Polarized enhanced confidentiality
US9547112B2 (en) 2013-02-06 2017-01-17 Steelcase Inc. Polarized enhanced confidentiality
US9044863B2 (en) 2013-02-06 2015-06-02 Steelcase Inc. Polarized enhanced confidentiality in mobile camera applications
US10061138B2 (en) 2013-02-06 2018-08-28 Steelcase Inc. Polarized enhanced confidentiality
WO2014133977A1 (en) * 2013-03-01 2014-09-04 Robotex Inc. Low latency data link system and method
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
US9983592B2 (en) 2013-04-23 2018-05-29 Samsung Electronics Co., Ltd. Moving robot, user terminal apparatus and control method thereof
WO2014175592A1 (en) * 2013-04-23 2014-10-30 Samsung Electronics Co., Ltd. Moving robot, user terminal apparatus and control method thereof
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
US11381903B2 (en) 2014-02-14 2022-07-05 Sonic Blocks Inc. Modular quick-connect A/V system and methods thereof
US10518416B2 (en) 2014-07-10 2019-12-31 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
US10678251B2 (en) 2014-12-16 2020-06-09 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
US9320409B1 (en) 2015-03-16 2016-04-26 Irobot Corporation Autonomous floor cleaning with removable pad
US9565984B2 (en) 2015-03-16 2017-02-14 Irobot Corporation Autonomous floor cleaning with removable pad
AU2015387169B2 (en) * 2015-03-16 2020-10-01 Irobot Corporation Autonomous floor cleaning with removable pad
US10499783B2 (en) 2015-03-16 2019-12-10 Irobot Corporation Autonomous floor cleaning with a removable pad
US11324376B2 (en) * 2015-03-16 2022-05-10 Irobot Corporation Autonomous floor cleaning with a removable pad
US10064533B2 (en) 2015-03-16 2018-09-04 Irobot Corporation Autonomous floor cleaning with removable pad
US10952585B2 (en) 2015-03-16 2021-03-23 Robot Corporation Autonomous floor cleaning with removable pad
US9907449B2 (en) 2015-03-16 2018-03-06 Irobot Corporation Autonomous floor cleaning with a removable pad
US20220257080A1 (en) * 2015-03-16 2022-08-18 Irobot Corporation Autonomous floor cleaning with a removable pad
WO2016148745A1 (en) * 2015-03-16 2016-09-22 Irobot Corporation Autonomous floor cleaning with removable pad
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
CN106805851A (en) * 2015-08-17 2017-06-09 美国iRobot公司 Autonomous floor-cleaning with detachable pad
US11712142B2 (en) 2015-09-03 2023-08-01 Aktiebolaget Electrolux System of robotic cleaning devices
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
CN105476555A (en) * 2015-12-29 2016-04-13 深圳市鼎泰智能装备股份有限公司 Novel intelligent cleaning robot
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
US11157009B2 (en) 2016-12-02 2021-10-26 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for controlling floor cleaning robots
US11163301B2 (en) * 2017-03-16 2021-11-02 Vorwerk & Co. Interholding Gmbh Method for operating a self-traveling floor treatment apparatus
US20180267528A1 (en) * 2017-03-16 2018-09-20 Vorwerk & Co. Interholding Gmbh Method for operating a self-traveling floor treatment apparatus
US11571104B2 (en) 2017-06-02 2023-02-07 Irobot Corporation Cleaning pad for cleaning robot
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
US10595698B2 (en) 2017-06-02 2020-03-24 Irobot Corporation Cleaning pad for cleaning robot
US11221497B2 (en) 2017-06-05 2022-01-11 Steelcase Inc. Multiple-polarization cloaking
US11921517B2 (en) 2017-09-26 2024-03-05 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device
US11106124B2 (en) 2018-02-27 2021-08-31 Steelcase Inc. Multiple-polarization cloaking for projected and writing surface view screens
US11500280B2 (en) 2018-02-27 2022-11-15 Steelcase Inc. Multiple-polarization cloaking for projected and writing surface view screens
US11412906B2 (en) * 2019-07-05 2022-08-16 Lg Electronics Inc. Cleaning robot traveling using region-based human activity data and method of driving cleaning robot

Also Published As

Publication number Publication date
US9392920B2 (en) 2016-07-19
KR20080077244A (en) 2008-08-21
JP2014057863A (en) 2014-04-03
JP2012155729A (en) 2012-08-16
US8761931B2 (en) 2014-06-24
EP2544065A2 (en) 2013-01-09
US8374721B2 (en) 2013-02-12
EP2533120A2 (en) 2012-12-12
JP5511886B2 (en) 2014-06-04
EP2533120A3 (en) 2013-01-30
EP2544066A2 (en) 2013-01-09
EP2466411A3 (en) 2012-09-05
JP5451795B2 (en) 2014-03-26
EP2466411B1 (en) 2018-10-17
KR101099808B1 (en) 2011-12-27
JP2014193383A (en) 2014-10-09
JP2012185840A (en) 2012-09-27
US20070250212A1 (en) 2007-10-25
US20140249671A1 (en) 2014-09-04
EP2544065B1 (en) 2017-02-08
EP2466411A2 (en) 2012-06-20
EP2544065A3 (en) 2013-01-30
EP2533120B1 (en) 2019-01-16
EP2544066A3 (en) 2013-01-30
US20130253701A1 (en) 2013-09-26
JP2014131292A (en) 2014-07-10
JP5952320B2 (en) 2016-07-13
EP2544066B1 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
US10182695B2 (en) Robot system
US9392920B2 (en) Robot system
EP1963941B1 (en) Robot system
KR100738890B1 (en) Home networking system for using a moving robot
JP2003533123A (en) Modular RF communication module for automated home and vehicle systems
ES2694141T3 (en) Method to control an electronic device, control terminal, and system
CN105068540A (en) Indoor cleaning method and apparatus of intelligent household robot
KR20160084067A (en) System and method for position detection and contents operation of electronic moving vehicle based on rail using RFID
Shepherd A bluetooth-based communications architecture for lightweight mobile robots

Legal Events

Date Code Title Description
AS Assignment

Owner name: IROBOT CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HALLORAN, MICHAEL J.;MAMMEN, JEFFREY W.;CAMPBELL, TONY L.;AND OTHERS;SIGNING DATES FROM 20070614 TO 20070718;REEL/FRAME:025800/0677

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION