US20110171973A1 - System and Method for Mobile Location By Proximity Detection - Google Patents

System and Method for Mobile Location By Proximity Detection Download PDF

Info

Publication number
US20110171973A1
US20110171973A1 US12/986,452 US98645211A US2011171973A1 US 20110171973 A1 US20110171973 A1 US 20110171973A1 US 98645211 A US98645211 A US 98645211A US 2011171973 A1 US2011171973 A1 US 2011171973A1
Authority
US
United States
Prior art keywords
location
mobile device
detection system
proximity detection
pde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/986,452
Inventor
Andrew Beck
Thomas B. Gravely
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bison Patent Licensing LLC
Original Assignee
Andrew LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andrew LLC filed Critical Andrew LLC
Priority to US12/986,452 priority Critical patent/US20110171973A1/en
Priority to US12/986,439 priority patent/US9331798B2/en
Assigned to ANDREW, LLC reassignment ANDREW, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BECK, ANDRES, GRAVELY, THOMAS
Assigned to ANDREW, LLC reassignment ANDREW, LLC CORRECTIVE ASSIGNMENT TO CORRECT THE THE NAME OF ONE OF THE INVENTORS PREVIOUSLY RECORDED ON REEL 025616 FRAME 0525. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: BECK, ANDREW, GRAVELY, THOMAS
Publication of US20110171973A1 publication Critical patent/US20110171973A1/en
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT (ABL) Assignors: ALLEN TELECOM LLC, ANDREW LLC, COMMSCOPE, INC. OF NORTH CAROLINA
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT (TL) Assignors: ALLEN TELECOM LLC, ANDREW LLC, COMMSCOPE, INC. OF NORTH CAROLINA
Assigned to COMMSCOPE TECHNOLOGIES LLC reassignment COMMSCOPE TECHNOLOGIES LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ANDREW LLC
Assigned to WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALLEN TELECOM LLC, COMMSCOPE TECHNOLOGIES LLC, COMMSCOPE, INC. OF NORTH CAROLINA, REDWOOD SYSTEMS, INC.
Assigned to REDWOOD SYSTEMS, INC., ALLEN TELECOM LLC, COMMSCOPE, INC. OF NORTH CAROLINA, COMMSCOPE TECHNOLOGIES LLC reassignment REDWOOD SYSTEMS, INC. RELEASE OF SECURITY INTEREST PATENTS (RELEASES RF 036201/0283) Assignors: WILMINGTON TRUST, NATIONAL ASSOCIATION
Assigned to COMMSCOPE, INC. OF NORTH CAROLINA, ANDREW LLC, REDWOOD SYSTEMS, INC., COMMSCOPE TECHNOLOGIES LLC, ALLEN TELECOM LLC reassignment COMMSCOPE, INC. OF NORTH CAROLINA RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A.
Assigned to REDWOOD SYSTEMS, INC., ALLEN TELECOM LLC, COMMSCOPE TECHNOLOGIES LLC, COMMSCOPE, INC. OF NORTH CAROLINA, ANDREW LLC reassignment REDWOOD SYSTEMS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A.
Assigned to BISON PATENT LICENSING, LLC reassignment BISON PATENT LICENSING, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COMMSCOPE TECHNOLOGIES LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers
    • G01S5/02213Receivers arranged in a network for determining the position of a transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/26Monitoring; Testing of receivers using historical data, averaging values or statistics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/27Monitoring; Testing of receivers for locating or positioning the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/364Delay profiles

Definitions

  • Applicant's disclosure is generally directed towards the location of a mobile device within a communications network.
  • a mobile device There are many traditional methods of locating a mobile device including, but not limited to, handset-based techniques and network-based techniques. These techniques may include, but are not limited to, Assisted-Global Positioning Satellite (A-GPS), Uplink Time Difference of Arrival (U-TDOA), Observed TDOA (O-TDOA), Enhanced Observed Time Difference (E-OTD), Electronic Cell Identification (E-CID), Radio Frequency (RF) fingerprinting, and Multiple Range Estimation Location (MREL) techniques, to name a few.
  • A-GPS Assisted-Global Positioning Satellite
  • U-TDOA Uplink Time Difference of Arrival
  • O-TDOA Observed TDOA
  • E-OTD Enhanced Observed Time Difference
  • E-CID Electronic Cell Identification
  • RF Radio Frequency
  • MREL Multiple Range Estimation Location
  • one embodiment of the present subject matter provides a method of determining the location of a mobile device in a communications network having one or more proximity sensors.
  • the method may include receiving a request to locate the mobile device and tasking at least one of the proximity sensors to receive a signal transmission from the mobile device.
  • One or more signal characteristics of the signal transmission from the mobile device may be measured by each tasked proximity sensor.
  • a location of the mobile device may then be determined as a function of the measured characteristics by associating a fixed location with each tasked proximity sensor and determining the location of the mobile device as a function of one of the associated fixed locations.
  • Another embodiment of the present subject matter provides a method for determining a location of a mobile device in a communications network having a plurality of base station transceivers in communication with the mobile device.
  • the method may include the steps of determining the location of the mobile device without utilizing signals received or transmitted to the base station transceivers by using proximity detection sensors deployed in the network and by determining the location of the mobile device as a function of information provided by ones of the proximity detection sensors.
  • Yet another embodiment of the present subject matter provides a method for determining a location of a mobile device operating in a wireless communications network having an A-GPS positioning determining entity (PDE).
  • the method may include receiving a location request for the mobile device and determining if the request is for a region in the network having a proximity detection system. If the region has a proximity detection system, then both the proximity detection system and the A-GPS PDE may be tasked to determine a location of the mobile device. If at least one of the proximity detection system and the A-GPS PDE provide a location result for the mobile device, then the uncertainty of the respective location result may be determined and a location result returned having the lowest uncertainty as the location for the mobile device.
  • a cell-identification may be utilized as the location for the mobile device. If the region does not have a proximity detection system, then the A-GPS PDE may be tasked to determine a location of the mobile device. If the A-GPS PDE provides a location result for the mobile device, then this location result may be utilized as the location for the mobile device. If the A-GPS does not provide a location result for the mobile device, then a cell-identification may be utilized as the location for the mobile device.
  • One embodiment of the present subject matter may provide a method for determining a location of a mobile device operating in a wireless communications network having an A-GPS PDE.
  • the method may include receiving a location request for the mobile device and determining the location of the mobile device as a cell identification location if no location results are received from either the A-GPS PDE or a proximity detection system PDE.
  • the location of the mobile device may be determined as a location result from the A-GPS PDE if the A-GPS PDE provides a location result having a lower uncertainty than a location result from the proximity detection system PDE.
  • the location of the mobile device may be determined as a location result from the proximity detection system PDE if the proximity detection system PDE provides a location result having a lower uncertainty than a location result from the A-GPS PDE.
  • a further embodiment of the present subject matter provides a method for determining a location of a mobile device operating in a wireless communications network.
  • the method may comprise the steps of: receiving a location request for the mobile device and routing the request to a proximity detection system and a serving mobile location center (SMLC).
  • SMLC serving mobile location center
  • the following steps may then be performed substantially in tandem: (i) tasking both the proximity detection system and the SMLC to determine a location of the mobile device, (ii) if at least one of the proximity detection system and the SMLC provide a location result for the mobile device, then determining the uncertainty of the respective location result and returning the location result having the lowest uncertainty as the location for the mobile device, and (iii) if neither the proximity detection system nor the SMLC provide a location result for the mobile device, then using a cell-identification as the location for the mobile device.
  • FIG. 1 is a diagram of a basic architecture for an embodiment of the present subject matter.
  • FIG. 2 is a depiction of location uncertainty according to an embodiment of the present subject matter.
  • FIG. 3 is a depiction of one embodiment of the present subject matter.
  • FIG. 4 is a depiction of another embodiment of the present subject matter.
  • FIG. 5 is a depiction of an embodiment of the present subject matter.
  • FIG. 6 is a block diagram of one embodiment of the present subject matter.
  • FIG. 9 is a block diagram of another embodiment of the present subject matter.
  • Embodiments of the present subject may generally determine the location of a mobile device by proximity detection by recognizing the need for a mobile device to be located. This may be accomplished by, for example, a tasking message provided by cellular network equipment monitoring calls (e.g., 911 detection), by scanning receivers located in the proximity of a region of location coverage, by a user of the mobile device itself requesting a location.
  • cellular network equipment monitoring calls e.g., 911 detection
  • One or more proximity sensors in the network may then be tasked to receive the mobile transmission of interest and measure transmission signal quality. Measurements may then be compiled from the tasked proximity sensors and the location of the mobile device determined.
  • FIG. 1 is a diagram of a basic architecture for an embodiment of the present subject matter.
  • a mobile device 103 of interest may be in communication with a base station 106 in an exemplary communications network 100 .
  • a Geolocation Control System (GCS) 101 in the network 100 may receive tasking from a Tasking Server (TS) 104 .
  • the TS 104 may be operably connected to other components 105 of the communications network 100 .
  • the network 100 may also include one or more Proximity Sensors (PS) 102 . These PSs 102 may receive a location request from the GCS 101 and may attempt to detect the mobile device 103 of interest. Any one or each PS 102 may also report the quality of its detection measurements to the GCS 101 .
  • the GCS 101 may then utilize these reports to determine a location of the mobile device 103 .
  • PS Proximity Sensors
  • the TS 104 may be embedded in certain network core components (e.g., Serving Mobile Location Center (SMLC), etc.).
  • SMLC Serving Mobile Location Center
  • the TS 104 may also be embedded within one or more PSs 102 (to receive off-the-air tasking).
  • the TS 104 may be supplied by an independent receiver apparatus
  • the PS 102 may be embedded in a complementary repeater or Distributed Antenna System (DAS).
  • DAS Distributed Antenna System
  • the PS 102 may be provided by one or more apparatuses connected to the repeater or DAS, and/or the PS 102 supplied by an independent, standalone, receiver apparatus.
  • the PS 102 may be embedded in a repeater or DAS, this may be accomplished by adding software to an existing repeater/DAS to support the detection, and/or may be accomplished by adding receiver and/or processing hardware to perform any appropriate proximity detection functions.
  • the PS 102 may also comprise receiver/processor hardware and an inline or passive coupler interface to the repeater/DAS signaling path.
  • the PS 102 may include both receiver and processor hardware and/or an antenna interface if none exist.
  • a repeater/DAS system for new network installations where the embedded development has been completed and the repeater/DAS system has yet to be deployed.
  • most repeater/DAS systems deployed today do not have this capability; however, some systems may add this capability by exemplary software and/or hardware upgrade (e.g., the Andrew Solutions node-A repeater).
  • Other existing repeater/DAS systems may be more applicable to an independent PS 102 embodiment, e.g., in cases where no repeater/DAS system exists and proximity detection is desired, an independent receiver apparatus may be more applicable.
  • An exemplary PS 102 may utilize supplied RF signal parameters (e.g., channel number or frequency, timeslot, spreading code, etc.) and may also determine metrics upon received signals thereby, such as, but not limited to, signals transmitted by a mobile device 103 of interest.
  • Exemplary metrics may include, but are not limited to, signal quality information such as received signal strength indication (RSSI), signal to noise ratio (SNR), ratio of energy per bit over power spectral density of noise and interference (Eb/Io), ratio of received pilot energy over power spectral density of noise and interference (Ec/Io), etc.
  • RSSI received signal strength indication
  • SNR signal to noise ratio
  • Eb/Io ratio of energy per bit over power spectral density of noise and interference
  • Ec/Io ratio of received pilot energy over power spectral density of noise and interference
  • multiple proximity sensors may be coupled to multiple ports or antenna connections to localize a mobile device of interest to a desired geographic level of accuracy.
  • just detecting that the mobile device is connected to the repeater/DAS system is a suitable level of accuracy; however, knowing the coverage antenna to which the mobile device is connected may provide a suitable level of accuracy.
  • the utilization of measurements from multiple proximity sensors may provide a greater location accuracy than that of a traditional coverage antenna.
  • transmit time may be obtained directly by signals transmitted from a base station if such timing is embedded or derived from the signal, or from ancillary timing measurement equipment in the network (e.g., Location Measurement Unit). This may relieve a proximity sensor of additional overhead of measuring such signals; however, as in a previous embodiment, mobile device and/or repeater/DAS time delays should be subtracted to determine a true propagation range measurement.
  • ancillary timing measurement equipment e.g., Location Measurement Unit
  • FIG. 2 is a depiction of location uncertainty according to an embodiment of the present subject matter.
  • a DAS coverage antenna may provide uniform wireless service to a predetermined region 202 , such as an office having an area of 100 m 2 .
  • An exemplary proximity detection system may localize a target mobile device to a respective proximity detection antenna 210 with a 75% confidence and 4.9 m uncertainty region 204 by simple geometry, that is, a 4.9 m radius circle 206 covers 75% of the office region area 202 .
  • Such scanning receivers or other appropriate apparatuses may monitor mobile events at the physical RF layer and/or via a network connection such as, but not limited to, Abis or Lu.
  • a scanning receiver may provide a location tasking request to an exemplary GCS along with any necessary RF signal parameters for location sensor tasking.
  • the location center may task multiple location systems to locate the call.
  • the location center may task an A-GPS PDE as well as a proximity detection system PDE. If the mobile device is located outdoors with good receipt of GPS signals, an A-GPS location may be determined and utilized by the location center. If, however, the mobile devices were located indoors and GPS satellite signals are not obtainable, an exemplary proximity detection system location would be employed. Further, location centers may use serial or parallel logic for tasking multiple location systems.
  • both the proximity detection system and the A-GPS PDE may be tasked at steps 331 , 332 to determine a location of the mobile device.
  • This tasking may be performed as a function of a parameter such as, but not limited to, a dialed number from the mobile device, an identification of the mobile device, an IMSI, TMSI, MIN, ESN, IMEI, class mark indicator, overhead transmission indicator, and combinations thereof.
  • the tasking of the proximity detection system may include tasking one or more proximity sensors in the proximity detection system to receive a signal transmission from the mobile device, measuring one or more signal characteristics of the signal transmission from the mobile device by each tasked proximity sensor, and determining a location of the mobile device as a function of the measured characteristic where the measured characteristic includes range information.
  • FIG. 4 is a depiction of another embodiment of the present subject matter.
  • an exemplary method 400 is provided for determining a location of a mobile device operating in a wireless communications network having an A-GPS PDE.
  • the method 400 may include at step 410 receiving a location request for the mobile device and at step 420 , determining the location of the mobile device as a cell identification location if no location results are received from either the A-GPS PDE or a proximity detection system PDE.
  • the location of the mobile device may be determined as a location result from the A-GPS PDE if the A-GPS PDE provides a location result having a lower uncertainty than a location result from the proximity detection system PDE.
  • the location of the mobile device may be determined as a location result from the proximity detection system PDE if the proximity detection system PDE provides a location result having a lower uncertainty than a location result from the A-GPS PDE.
  • the exemplary system 500 may route a location request from a Base Station Controller 502 or other network component via appropriate interfaces 504 (e.g., Lb interface) to both a location center 510 (e.g., SMLC, e-SMLC, etc.) for non proximity detection location as well as to a proximity detection system GCS 520 in a “tandem” architecture.
  • This tandem function or architecture may thus receive location results from both systems and may determine which location result to utilize by a quality of service logic.
  • FIG. 6 is a block diagram of one embodiment of the present subject matter.
  • a method 600 for determining a location of a mobile device operating in a wireless communications network is provided.
  • a location request may be received for the mobile device and the request routed to a proximity detection system and a network device responsible for coordinating location information within the network (e.g., MPC, SMLC, eSMLC, SAS, etc.), at step 620 .
  • each of steps (i)-(iii) may be performed substantially in tandem: (i) tasking both the proximity detection system and the network device to determine a location of the mobile device, (ii) if at least one of the proximity detection system and the network device provide a location result for the mobile device, then the uncertainty of the respective location result may be determined and the location result returned having the lowest uncertainty as the location for the mobile device, and (iii) if neither the proximity detection system nor the network device provide a location result for the mobile device, then a cell-identification may be used as the location for the mobile device.
  • the method may include receiving location results from each of the network device and proximity detection system, and determining which received location results to use as a function of a quality of service.
  • Exemplary proximity sensors may be embedded in and/or connected to a repeater in the network, in a component of a distributed antenna system of the network, or in a core component of the network, and combinations thereof.
  • an exemplary proximity sensor may be an independent, standalone receiver apparatus.
  • FIG. 8 is a block diagram of an additional embodiment of the present subject matter.
  • a method 800 is provided for determining the location of a mobile device in a communications network having one or more proximity sensors.
  • a request to locate the mobile device may be received, and at step 820 , at least one of the proximity sensors may be tasked to receive a signal transmission from the mobile device.
  • one or more signal characteristics of the signal transmission from the mobile device may be measured by each tasked proximity sensor.
  • step 830 may include measuring by each tasked proximity sensor a transmit time of a signal transmitted from a base station transceiver, repeater or antenna, compensating by the proximity sensor for a receive time of the signal transmitted from the base station transceiver, repeater or antenna, compensating for transceiver processing delay of the mobile device, and determining flight time of the signal transmission from the mobile device as a function of the measured transmit time, the compensated receive time and compensated delay.
  • FIGS. 1-9 As shown by the various configurations and embodiments illustrated in FIGS. 1-9 , a system and method for mobile location by proximity detection have been described

Abstract

A system and method for determining a location of a mobile device operating in a wireless communications network having an assisted global positioning system (A-GPS) positioning determining entity (PDE). A location request may be received for the mobile device. The location of the mobile device may be determined as a cell identification location if no location results are received from either the A-GPS PDE or a proximity detection system PDE, or the location of the mobile device may be determined as a location result from the A-GPS PDE if the A-GPS PDE provides a location result having a lower uncertainty than a location result from the proximity detection system PDE, or the location of the mobile device may be determined as a location result from the proximity detection system PDE if the proximity detection system PDE provides a location result having a lower uncertainty than a location result from the A-GPS PDE.

Description

    CROSS REFERENCES
  • The present application is co-pending with and claims the priority benefit of the provisional application entitled “Mobile Location by Proximity Detection”, Application Ser. No. 61/293,502, filed on Jan. 8, 2010, the entirety of which is incorporated herein by reference.
  • The present application is related to and concurrently filed with the application entitled, “Mobile Location by Proximity Detection”, Application Ser. No. [AND01 155], filed on Jan. 7, 2011, the entirety of which is incorporated herein by reference.
  • BACKGROUND
  • Applicant's disclosure is generally directed towards the location of a mobile device within a communications network. There are many traditional methods of locating a mobile device including, but not limited to, handset-based techniques and network-based techniques. These techniques may include, but are not limited to, Assisted-Global Positioning Satellite (A-GPS), Uplink Time Difference of Arrival (U-TDOA), Observed TDOA (O-TDOA), Enhanced Observed Time Difference (E-OTD), Electronic Cell Identification (E-CID), Radio Frequency (RF) fingerprinting, and Multiple Range Estimation Location (MREL) techniques, to name a few. Such techniques, however, may be ineffective in locating mobile devices in certain environments, e.g., urban environments, indoor environments, etc.
  • Several telecommunications industry reports have indicated a higher usage of mobile devices in such challenging environments as well as higher usage of location based applications in recent years. Mobile devices operating in these environments may be blocked from receiving GPS signals due to the signal attenuation of the satellite signals by building infrastructure and/or other environmental aspects. This same infrastructure may also attenuate the signals transmitted by cellular towers such that cellular service may be unavailable. RF repeaters or a Distributed Antenna System (DAS) may therefore be installed and/or implemented to amplify and distribute the appropriate signals to provide adequate coverage. Repeater/DAS systems, however, introduce signal delay and gain into the respective transmission path thereby resulting in a deleterious effect of decreasing the accuracy of a location system or even preventing a location from being computed or determined.
  • Therefore, there is a need in the art for a system and method to remove the dependence of location systems upon GPS and/or base station signals and may also remove the effect of signal delay and gain introduced by repeater and/or DAS coverage products upon location determination for a mobile device. There is also a need in the art to detect a mobile device of interest by monitoring the device's signal transmissions and determining the proximity of the mobile device to a sensor performing the monitoring function. This proximity detection function may be performed by an RF sensor, e.g., an independent RF sensor or an RF sensor embedded in an existing network component or apparatus.
  • In view of these needs, one embodiment of the present subject matter provides a method of determining the location of a mobile device in a communications network having one or more proximity sensors. The method may include receiving a request to locate the mobile device and tasking at least one of the proximity sensors to receive a signal transmission from the mobile device. One or more signal characteristics of the signal transmission from the mobile device may be measured by each tasked proximity sensor. A location of the mobile device may then be determined as a function of the measured characteristics by associating a fixed location with each tasked proximity sensor and determining the location of the mobile device as a function of one of the associated fixed locations.
  • Another embodiment of the present subject matter provides a method for determining a location of a mobile device in a communications network having a plurality of base station transceivers in communication with the mobile device. The method may include the steps of determining the location of the mobile device without utilizing signals received or transmitted to the base station transceivers by using proximity detection sensors deployed in the network and by determining the location of the mobile device as a function of information provided by ones of the proximity detection sensors.
  • A further embodiment of the present subject matter may provide a method of determining the location of a mobile device in a communications network having one or more proximity sensors. The method may include receiving a request to locate the mobile device and tasking at least one of the proximity sensors to receive a signal transmission from the mobile device. One or more signal characteristics of the signal transmission from the mobile device may be measured by each tasked proximity sensor. A location of the mobile device may then be determined as a function of the measured characteristic, wherein the measured characteristic includes range information.
  • An additional embodiment of the present subject matter may provide a method of determining if a mobile device is operating in a predetermined region of a communications network. The method may include receiving a request to locate the mobile device and tasking one or more proximity sensors in the network to receive a signal transmission from the mobile device. One or more signal characteristics of the signal transmission from the mobile device may be measured by the tasked proximity sensor. A fixed location may then be associated with each tasked proximity sensor and the proximity of the mobile device determined in the predetermined region using the associated fixed locations.
  • Yet another embodiment of the present subject matter provides a method for determining a location of a mobile device operating in a wireless communications network having an A-GPS positioning determining entity (PDE). The method may include receiving a location request for the mobile device and determining if the request is for a region in the network having a proximity detection system. If the region has a proximity detection system, then both the proximity detection system and the A-GPS PDE may be tasked to determine a location of the mobile device. If at least one of the proximity detection system and the A-GPS PDE provide a location result for the mobile device, then the uncertainty of the respective location result may be determined and a location result returned having the lowest uncertainty as the location for the mobile device. If neither the proximity detection system nor the A-GPS provide a location result for the mobile device, then a cell-identification may be utilized as the location for the mobile device. If the region does not have a proximity detection system, then the A-GPS PDE may be tasked to determine a location of the mobile device. If the A-GPS PDE provides a location result for the mobile device, then this location result may be utilized as the location for the mobile device. If the A-GPS does not provide a location result for the mobile device, then a cell-identification may be utilized as the location for the mobile device.
  • One embodiment of the present subject matter may provide a method for determining a location of a mobile device operating in a wireless communications network having an A-GPS PDE. The method may include receiving a location request for the mobile device and determining the location of the mobile device as a cell identification location if no location results are received from either the A-GPS PDE or a proximity detection system PDE. The location of the mobile device may be determined as a location result from the A-GPS PDE if the A-GPS PDE provides a location result having a lower uncertainty than a location result from the proximity detection system PDE. Further, the location of the mobile device may be determined as a location result from the proximity detection system PDE if the proximity detection system PDE provides a location result having a lower uncertainty than a location result from the A-GPS PDE.
  • A further embodiment of the present subject matter provides a method for determining a location of a mobile device operating in a wireless communications network. The method may comprise the steps of: receiving a location request for the mobile device and routing the request to a proximity detection system and a serving mobile location center (SMLC). The following steps may then be performed substantially in tandem: (i) tasking both the proximity detection system and the SMLC to determine a location of the mobile device, (ii) if at least one of the proximity detection system and the SMLC provide a location result for the mobile device, then determining the uncertainty of the respective location result and returning the location result having the lowest uncertainty as the location for the mobile device, and (iii) if neither the proximity detection system nor the SMLC provide a location result for the mobile device, then using a cell-identification as the location for the mobile device.
  • These and other embodiments of the present subject matter will be readily apparent to one skilled in the art to which the disclosure pertains from a perusal or the claims, the appended drawings, and the following detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram of a basic architecture for an embodiment of the present subject matter.
  • FIG. 2 is a depiction of location uncertainty according to an embodiment of the present subject matter.
  • FIG. 3 is a depiction of one embodiment of the present subject matter.
  • FIG. 4 is a depiction of another embodiment of the present subject matter.
  • FIG. 5 is a depiction of an embodiment of the present subject matter.
  • FIG. 6 is a block diagram of one embodiment of the present subject matter.
  • FIG. 7 is a block diagram of a further embodiment of the present subject matter.
  • FIG. 8 is a block diagram of an additional embodiment of the present subject matter.
  • FIG. 9 is a block diagram of another embodiment of the present subject matter
  • DETAILED DESCRIPTION
  • With reference to the figures where like elements have been given like numerical designations to facilitate an understanding of the present subject matter, the various embodiments of a system and method for mobile location by proximity detection are described.
  • Embodiments of the present subject may generally determine the location of a mobile device by proximity detection by recognizing the need for a mobile device to be located. This may be accomplished by, for example, a tasking message provided by cellular network equipment monitoring calls (e.g., 911 detection), by scanning receivers located in the proximity of a region of location coverage, by a user of the mobile device itself requesting a location. One or more proximity sensors in the network may then be tasked to receive the mobile transmission of interest and measure transmission signal quality. Measurements may then be compiled from the tasked proximity sensors and the location of the mobile device determined.
  • FIG. 1 is a diagram of a basic architecture for an embodiment of the present subject matter. With reference to FIG. 1, a mobile device 103 of interest may be in communication with a base station 106 in an exemplary communications network 100. A Geolocation Control System (GCS) 101 in the network 100 may receive tasking from a Tasking Server (TS) 104. The TS 104 may be operably connected to other components 105 of the communications network 100. The network 100 may also include one or more Proximity Sensors (PS) 102. These PSs 102 may receive a location request from the GCS 101 and may attempt to detect the mobile device 103 of interest. Any one or each PS 102 may also report the quality of its detection measurements to the GCS 101. The GCS 101 may then utilize these reports to determine a location of the mobile device 103.
  • In other embodiments of the present subject matter, the TS 104 may be embedded in certain network core components (e.g., Serving Mobile Location Center (SMLC), etc.). The TS 104 may also be embedded within one or more PSs 102 (to receive off-the-air tasking). Alternatively, the TS 104 may be supplied by an independent receiver apparatus, the PS 102 may be embedded in a complementary repeater or Distributed Antenna System (DAS). In additional embodiments, the PS 102 may be provided by one or more apparatuses connected to the repeater or DAS, and/or the PS 102 supplied by an independent, standalone, receiver apparatus.
  • By way of example, in the embodiment where the PS 102 is embedded in a repeater or DAS, this may be accomplished by adding software to an existing repeater/DAS to support the detection, and/or may be accomplished by adding receiver and/or processing hardware to perform any appropriate proximity detection functions. Further, in the embodiment where the PS 102 is connected to a repeater/DAS system, the PS 102 may also comprise receiver/processor hardware and an inline or passive coupler interface to the repeater/DAS signaling path. Additionally, when the PS 102 is employed as an independent receiver, the PS 102 may include both receiver and processor hardware and/or an antenna interface if none exist.
  • In certain embodiments, one may embed the PS 102 in a repeater/DAS system for new network installations where the embedded development has been completed and the repeater/DAS system has yet to be deployed. Generally, most repeater/DAS systems deployed today do not have this capability; however, some systems may add this capability by exemplary software and/or hardware upgrade (e.g., the Andrew Solutions node-A repeater). Other existing repeater/DAS systems may be more applicable to an independent PS 102 embodiment, e.g., in cases where no repeater/DAS system exists and proximity detection is desired, an independent receiver apparatus may be more applicable.
  • An exemplary PS 102 according to an embodiment of the present subject matter may utilize supplied RF signal parameters (e.g., channel number or frequency, timeslot, spreading code, etc.) and may also determine metrics upon received signals thereby, such as, but not limited to, signals transmitted by a mobile device 103 of interest. Exemplary metrics may include, but are not limited to, signal quality information such as received signal strength indication (RSSI), signal to noise ratio (SNR), ratio of energy per bit over power spectral density of noise and interference (Eb/Io), ratio of received pilot energy over power spectral density of noise and interference (Ec/Io), etc. Generally, these metrics may indicate how well the applicable proximity sensor receives transmission from the mobile device. Thus, the closer in proximity the mobile device is to the proximity sensor, the better the RF signal path and thus the better the signal quality metrics.
  • Exemplary PSs 102 may be utilized in many embodiments of the present subject matter. For example, a PS may be a receiver apparatus may be coupled to an RF coverage antenna port of a repeater or DAS system (as opposed to the donor side), a PS may be a receiver apparatus may be coupled to a DAS or repeater coverage antenna, a PS may be an independent receiver apparatus may include its own antenna (not directly coupled to a repeater or DAS system), and/or the PS may be embedded as an integrated function within an existing repeater or DAS receiver.
  • In embodiments of the present subject matter employing plural repeaters or DAS coverage antennas (e.g., to supply signal coverage to a large area such as an airport, outdoor canyon roadway, convention center, etc.), multiple proximity sensors may be coupled to multiple ports or antenna connections to localize a mobile device of interest to a desired geographic level of accuracy. In certain embodiments, just detecting that the mobile device is connected to the repeater/DAS system is a suitable level of accuracy; however, knowing the coverage antenna to which the mobile device is connected may provide a suitable level of accuracy. In other embodiments, the utilization of measurements from multiple proximity sensors may provide a greater location accuracy than that of a traditional coverage antenna.
  • Proximity sensors according to embodiments of the present subject matter may also provide range information as a measurement by exploiting timing relationships of a communications network. By way of example, the proximity sensor may measure the transmit time of a cellular signal emitted from a known base station, repeater or DAS node antenna. This may then be coupled with the receive time measured by the proximity sensor at its location and the transceiver processing delay imposed by the mobile device and wireless network. By subtracting mobile processing delay and repeater/DAS time delays, and knowing the location of the cellular base station and the proximity sensor, the flight time of the signal from the mobile device to the proximity sensor may be determined, which generally represents the range from the proximity sensor to the mobile device. In a further embodiment, transmit time may be obtained directly by signals transmitted from a base station if such timing is embedded or derived from the signal, or from ancillary timing measurement equipment in the network (e.g., Location Measurement Unit). This may relieve a proximity sensor of additional overhead of measuring such signals; however, as in a previous embodiment, mobile device and/or repeater/DAS time delays should be subtracted to determine a true propagation range measurement.
  • An exemplary GCS 101 according to an embodiment of the present subject matter may utilize one or more proximity sensor measurements to determine a location for the mobile device 103 of interest. In one embodiment, a fixed location (e.g., latitude/longitude/altitude) may be associated with each PS 102. This may be the physical location of the sensor or antenna, the centroid of signal coverage for the sensor or antenna, or a location deemed to be the most probable mobile location given the surroundings of the sensor (e.g., waiting room, convention center, or other predetermined area), or other fixed location. Further embodiments of the present subject matter may also account for the physical boundaries around the sensor that limit possible locations for the mobile device of interest. For example, a subway tunnel provides a restricted linear coverage region, and any location outside of the tunnel would typically be unfeasible.
  • An exemplary GCS 101 may determine a fixed location to employ by utilizing measurements supplied by the PSs 102. By way of example, the GCS 101 may select the highest quality/strength measurement and provide a fixed location associated with the corresponding PS 102. In another embodiment where two or more PSs 102 returned results above a predetermined threshold, the GCS 101 may utilize the multiple results by, for example, employing a straight average of the fixed locations associated with the PSs 102 above the threshold. Exemplary thresholds may be determined such that they provide a statistical confidence of real signal detection thereby avoiding a false alarm. In another non-limiting example, the GCS 101 may utilize the multiple results by employing a weighted average of the fixed locations associated with the PSs 102 above the threshold with the results having higher strength or quality measurements having a greater weight than the results having lower strength or quality measurements to thereby bias the resultant location determination towards the higher quality measurements.
  • In embodiments of the present subject matter where range information is provided by the PS 102, the GCS 101 may utilize the same in determining a location of a mobile device 103 of interest. Further, if two or more PSs 102 are reporting measurements above a specified quality metric threshold, range information may be employed to determine a location of a mobile device along a straight line between the sensors. Physical boundaries may also be employed to refine a location of the mobile device along with the range. For example, in the previously described subway tunnel scenario, a range measurement along with the tunnel boundaries may be employed to determine the location of a mobile device. It should be noted that in this example, a range measurement from a single sensor may be utilized to provide a location within the tunnel boundary. RSSI or other signal quality information may also be used to estimate range. For example, through knowledge of the transmit power level of a mobile device (obtained by monitoring downlink transmission or via a network interface) and uplink power measurements, propagation path loss may be determined by a simple calculation. Through utilization of a traditional path loss model, the typical distance associated with the calculated path loss may be determined. This may correspond to a range calculation to thereby aid in refining a location estimate of the mobile device of interest.
  • In other embodiments, the GCS 101 may also determine a quality metric with each geographic location. This may be utilized by the location recipient or application to judge the approximate accuracy of the computed location of the mobile device 103. Generally, quality metrics are presented as values of confidence and uncertainty and may represent a probability that a location determination is within a certain region. In many geographic location technologies where multiple measurement surfaces are computed (e.g., Time Difference of Arrival (TDOA), Angle of Arrival (AOA), Time of Arrival (TOA), GPS, MREL, etc.), a circular error probability (CEP) may be utilized to represent quality. CEP generally represents a fixed probability or confidence that a location determination lies within a predetermined area. CEP, like quality metrics, may be determined in embodiments of the present subject matter but may also be determined utilizing signal coverage geometry.
  • FIG. 2 is a depiction of location uncertainty according to an embodiment of the present subject matter. With reference to FIG. 2, a DAS coverage antenna may provide uniform wireless service to a predetermined region 202, such as an office having an area of 100 m2. An exemplary proximity detection system may localize a target mobile device to a respective proximity detection antenna 210 with a 75% confidence and 4.9 m uncertainty region 204 by simple geometry, that is, a 4.9 m radius circle 206 covers 75% of the office region area 202.
  • An exemplary GCS may also manage one or more proximity sensors or proximity sensor networks. In one embodiment of the present subject matter, one GCS may manage all of the proximity sensors across a predetermined region, such as, but not limited to, a cellular network, a county, state, etc. In another embodiment, an exemplary GCS may manage one proximity sensor and/or may be embedded as a logical function within the proximity sensor apparatus itself. In embodiments where the GCS manages multiple proximity sensors, the GCS may also include knowledge of what cell site IDs act as serving sites for what proximity sensors and/or may task proximity sensors applicable to the cell serving a call of interest. This would minimize network traffic and sensor overhead.
  • In certain embodiments, an exemplary proximity detection system GCS function may receive tasking from another source to request a location computation. Thus, in one embodiment a scanning receiver may be employed to monitor mobile events and detect those events requiring or desiring a location for a mobile device of interest. Exemplary location logic may include, but is not limited to, the dialed number from a mobile (e.g., 911, 112, etc.), the identity of the mobile (international mobile subscriber identity (IMSI), temporary mobile subscriber identity (TMSI), mobile identification number (MIN), electronic serial number (ESN), international mobile equipment identity (IMEI), etc.), a class mark indicator, an overhead transmission indicator (e.g., emergency call or SMS message) and combinations thereof. Such scanning receivers or other appropriate apparatuses may monitor mobile events at the physical RF layer and/or via a network connection such as, but not limited to, Abis or Lu. Thus, when a target mobile device is detected, a scanning receiver may provide a location tasking request to an exemplary GCS along with any necessary RF signal parameters for location sensor tasking.
  • In other embodiments, core communications network devices may also be employed to task an exemplary proximity detection system. For example, serving mobile location center (SMLC), stand-alone SMLC (SAS), mobile positioning center (MPC), gateway mobile location center (GMLC), enhanced-SMLC (eSMLC) entities are defined in industry standards and may provide this function. Additional logic may be needed within or appended to these entities to support a proximity detection system according to embodiments of the present subject matter as neither the location center nor the core network may contain knowledge that a mobile device is locatable via an exemplary proximity detection system. The core network may, however, have knowledge that a mobile device is being served by a particular cell tower, and the cell tower may serve a repeater or DAS system as well as other mobile devices in the area that are not connected to a repeater or DAS system. For example, a cell tower near an airport may serve a DAS system with a donor antenna on the roof of the airport. This same cell tower may also serve mobile devices on an access road and in parking lots of the airport that are not served by the DAS system; therefore, to locate a mobile device in this scenario, an exemplary location center may attempt multiple location technologies or techniques. One embodiment of the present subject matter would embed knowledge in the location center of the existence of a proximity detection system and the serving cell site IDs. Thus, when a location request is made to the location center for a call served by a cell containing a proximity detection system, the location center may task multiple location systems to locate the call. The location center may task an A-GPS PDE as well as a proximity detection system PDE. If the mobile device is located outdoors with good receipt of GPS signals, an A-GPS location may be determined and utilized by the location center. If, however, the mobile devices were located indoors and GPS satellite signals are not obtainable, an exemplary proximity detection system location would be employed. Further, location centers may use serial or parallel logic for tasking multiple location systems.
  • FIG. 3 is a depiction of one embodiment of the present subject matter. With reference to FIG. 3, an exemplary method 300 is provided for determining a location of a mobile device operating in a wireless communications network having an A-GPS PDE. The method 300 may include receiving a location request for the mobile device at step 310. Such a request may be made by several devices or components including, but not limited to, the mobile device itself. Further, the request may be a tasking message provided by the network or by a scanning receiver located in proximity to the mobile device. At step 320, it may be determined whether the request is for a region in the network having a proximity detection system. In the event the region has a proximity detection system, then both the proximity detection system and the A-GPS PDE may be tasked at steps 331, 332 to determine a location of the mobile device. This tasking may be performed as a function of a parameter such as, but not limited to, a dialed number from the mobile device, an identification of the mobile device, an IMSI, TMSI, MIN, ESN, IMEI, class mark indicator, overhead transmission indicator, and combinations thereof. Further, the tasking of the proximity detection system may include tasking one or more proximity sensors in the proximity detection system to receive a signal transmission from the mobile device, measuring one or more signal characteristics of the signal transmission from the mobile device by each tasked proximity sensor, associating a fixed location with each tasked proximity sensor, and determining the location of the mobile device as a function of one of the associated fixed locations. The determination of location may be a function of a straight average, a weighted average, or combination of straight and weighed averages of the associated fixed locations. In yet a further embodiment, the tasking of the proximity detection system may include tasking one or more proximity sensors in the proximity detection system to receive a signal transmission from the mobile device, measuring one or more signal characteristics of the signal transmission from the mobile device by each tasked proximity sensor, and determining a location of the mobile device as a function of the measured characteristic where the measured characteristic includes range information.
  • If no location results are received at step 340 from either of the A-GPS PDE or the proximity detection system, then the cell-ID may be returned at step 352 as the location for the mobile device. If, however, at least one or both of the proximity detection system and the A-GPS PDE provide a location result for the mobile device, then the uncertainty of the respective location result may be determined at step 354 and the location result returned which provides the lowest uncertainty as the location for the mobile device at steps 362, 364. If, at step 320, it is determined that the region does not have a proximity detection system, then the A-GPS PDE may be tasked at step 333 to determine a location of the mobile device. If the A-GPS PDE provides a location result at step 342 for the mobile device, then this location result may be used as the location for the mobile device at step 362. If, however, the A-GPS does not provide a location result at step 342 for the mobile device, then a cell-identification may be utilized at step 352 as the location for the mobile device. In another embodiment of the present subject matter, the method 300 may include detecting an event requiring a determination for the location of the mobile device, and transmitting a location tasking request having RF signal parameters. The detection may be performed at a physical RF layer or via a network connection.
  • FIG. 4 is a depiction of another embodiment of the present subject matter. With reference to FIG. 4, an exemplary method 400 is provided for determining a location of a mobile device operating in a wireless communications network having an A-GPS PDE. The method 400 may include at step 410 receiving a location request for the mobile device and at step 420, determining the location of the mobile device as a cell identification location if no location results are received from either the A-GPS PDE or a proximity detection system PDE. At step 430, the location of the mobile device may be determined as a location result from the A-GPS PDE if the A-GPS PDE provides a location result having a lower uncertainty than a location result from the proximity detection system PDE. At step 440, the location of the mobile device may be determined as a location result from the proximity detection system PDE if the proximity detection system PDE provides a location result having a lower uncertainty than a location result from the A-GPS PDE.
  • In another embodiment of the present subject matter, the location system logic may not be embedded within the location center but rather as a separate function preceding the center. FIG. 5 is a depiction of such an embodiment of the present subject matter. With reference to FIG. 5, an exemplary system 500 may provide appropriate logic to recognize that a location request is for a mobile device served by a cell containing a proximity detection system according to the present subject matter. The exemplary system 500 may route a location request from a Base Station Controller 502 or other network component via appropriate interfaces 504 (e.g., Lb interface) to both a location center 510 (e.g., SMLC, e-SMLC, etc.) for non proximity detection location as well as to a proximity detection system GCS 520 in a “tandem” architecture. This tandem function or architecture may thus receive location results from both systems and may determine which location result to utilize by a quality of service logic.
  • FIG. 6 is a block diagram of one embodiment of the present subject matter. With reference to FIG. 6, a method 600 for determining a location of a mobile device operating in a wireless communications network is provided. At step 610, a location request may be received for the mobile device and the request routed to a proximity detection system and a network device responsible for coordinating location information within the network (e.g., MPC, SMLC, eSMLC, SAS, etc.), at step 620. At step 630, each of steps (i)-(iii) may be performed substantially in tandem: (i) tasking both the proximity detection system and the network device to determine a location of the mobile device, (ii) if at least one of the proximity detection system and the network device provide a location result for the mobile device, then the uncertainty of the respective location result may be determined and the location result returned having the lowest uncertainty as the location for the mobile device, and (iii) if neither the proximity detection system nor the network device provide a location result for the mobile device, then a cell-identification may be used as the location for the mobile device. In another embodiment, the method may include receiving location results from each of the network device and proximity detection system, and determining which received location results to use as a function of a quality of service.
  • FIG. 7 is a block diagram of a further embodiment of the present subject matter. With reference to FIG. 7, a method 700 is provided for determining the location of a mobile device in a communications network having one or more proximity sensors. At step 710 a request to locate the mobile device may be received, and at step 720, at least one of the proximity sensors may be tasked to receive a signal transmission from the mobile device. In one embodiment, the request may be provided by the mobile device. In another embodiment, the request may be a tasking message provided by the network or by a scanning receiver proximate to the mobile device. Exemplary proximity sensors may be embedded in and/or connected to a repeater in the network, in a component of a distributed antenna system of the network, or in a core component of the network, and combinations thereof. Of course, an exemplary proximity sensor may be an independent, standalone receiver apparatus.
  • At step 730, one or more signal characteristics of the signal transmission from the mobile device may be measured by each tasked proximity sensor. In one embodiment, this measuring may include utilizing RF signal parameters of the signal transmission from the mobile device, and determining metrics on the signal transmission from the mobile device. Exemplary RF signal parameters may be, but are not limited to, channel number, channel frequency, timeslot, network timing information, range information, spreading code, and combinations thereof. Exemplary metrics may be, but are not limited to, RSSI, SNR, Eb/Io, Ec/Io, and combinations thereof. At step 740, a location of the mobile device may be determined as a function of the measured characteristics. This determination may be accomplished by associating a fixed location with each tasked proximity sensor and then determining the location of the mobile device as a function of one of the associated fixed locations. In one embodiment, the fixed location may be a centroid of signal coverage for the proximity sensor, a most probable location determined as a function of proximity sensor surroundings, or a location determined as a function of physical boundaries around the proximity sensor limiting possible locations of the mobile device. In other embodiments, the location determination may be a function of a straight average, weighted average, or a combination of straight and weighted averages of the associated fixed locations. A further embodiment may include the step of determining a quality metric to judge an accuracy of the determined location of the mobile device. Thus, in certain embodiments of the present subject matter, the location of a mobile device may be determined without utilizing signals transmitted from base station transceivers by using proximity detection sensors deployed in the network and by determining the location of the mobile device as a function of information provided by ones of the proximity detection sensors.
  • FIG. 8 is a block diagram of an additional embodiment of the present subject matter. With reference to FIG. 8, a method 800 is provided for determining the location of a mobile device in a communications network having one or more proximity sensors. At step 810, a request to locate the mobile device may be received, and at step 820, at least one of the proximity sensors may be tasked to receive a signal transmission from the mobile device. At step 830, one or more signal characteristics of the signal transmission from the mobile device may be measured by each tasked proximity sensor. In one embodiment, step 830 may include measuring by each tasked proximity sensor a transmit time of a signal transmitted from a base station transceiver, repeater or antenna, compensating by the proximity sensor for a receive time of the signal transmitted from the base station transceiver, repeater or antenna, compensating for transceiver processing delay of the mobile device, and determining flight time of the signal transmission from the mobile device as a function of the measured transmit time, the compensated receive time and compensated delay. In another embodiment, step 830 may include receiving transmit time information of a signal transmitted from a base station transceiver, repeater or antenna, compensating for a receive time of the signal transmitted from the base station transceiver, repeater or antenna, compensating for transceiver processing delay of the mobile device, and determining flight time of the signal transmission from the mobile device as a function of the received transmit time information, the compensated receive time and compensated delay. At step 840, a location of the mobile device may be determined as a function of the measured characteristics where the measured characteristic includes range information.
  • FIG. 9 is a block diagram of another embodiment of the present subject matter. With reference to FIG. 9, a method 900 is provided for determining if a mobile device is operating in a predetermined region of a communications network. At step 910, a request to locate the mobile device may be received, and at step 920, at least one or more proximity sensors in the network may be tasked to receive a signal transmission from the mobile device. At step 930, one or more signal characteristics of the signal transmission from the mobile device may be measured by the tasked proximity sensor. At step 940, a fixed location may be associated with each tasked proximity sensor, and at step 950, the proximity of the mobile device in the predetermined region may be determined using the associated fixed locations.
  • As shown by the various configurations and embodiments illustrated in FIGS. 1-9, a system and method for mobile location by proximity detection have been described
  • While preferred embodiments of the present subject matter have been described, it is to be understood that the embodiments described are illustrative only and that the scope of the invention is to be defined solely by the appended claims when accorded a full range of equivalence, many variations and modifications naturally occurring to those of skill in the art from a perusal hereof.

Claims (14)

1. A method for determining a location of a mobile device operating in a wireless communications network having an assisted global positioning system (A-GPS) positioning determining entity (PDE), the method comprising the steps of:
(a) receiving a location request for the mobile device;
(b) determining if the request is for a region in the network having a proximity detection system;
(c) if the region has a proximity detection system, then tasking both the proximity detection system and the A-GPS PDE to determine a location of the mobile device,
(i) if at least one of the proximity detection system and the A-GPS PDE provide a location result for the mobile device, then determining the uncertainty of the respective location result and returning the location result having the lowest uncertainty as the location for the mobile device, and
(ii) if neither the proximity detection system nor the A-GPS provide a location result for the mobile device, then using a cell-identification as the location for the mobile device; and
(d) if the region does not have a proximity detection system, then tasking the A-GPS PDE to determine a location of the mobile device,
(i) if the A-GPS PDE provides a location result for the mobile device, using this location result as the location for the mobile device, and
(ii) if the A-GPS does not provide a location result for the mobile device, then using a cell-identification as the location for the mobile device.
2. The method of claim 1 further comprising the steps of:
(i) detecting an event requiring a determination for the location of the mobile device; and
(ii) transmitting a location tasking request having radio frequency (RF) signal parameters.
3. The method of claim 2 wherein the step of detecting is performed at a physical RF layer or via a network connection.
4. The method of claim 1 wherein the tasking is performed as a function of a parameter selected from the group consisting of: a dialed number from the mobile device, an identification of the mobile device, an international mobile subscriber identity (IMSI), a temporary mobile subscriber identity (TMSI), a mobile identification number (MIN), an electronic serial number (ESN), an international mobile equipment identity (IMEI), a class mark indicator, overhead transmission indicator, and combinations thereof.
5. The method of claim 1 wherein the step of tasking the proximity detection system further comprises:
(i) tasking one or more proximity sensors in the proximity detection system to receive a signal transmission from the mobile device,
(ii) measuring one or more signal characteristics of the signal transmission from the mobile device by each tasked proximity sensor,
(iii) associating a fixed location with each tasked proximity sensor, and
(iv) determining the location of the mobile device as a function of one of the associated fixed locations.
6. The method of claim 5 wherein step (iv) further comprises determining the location of the mobile device as a function of a straight average of the associated fixed locations.
7. The method of claim 5 wherein step (iv) further comprises determining the location of the mobile device as a function of a weighted average of the associated fixed locations.
8. The method of claim 5 wherein step (iv) further comprises determining the location of the mobile device as a function of a weighted average and a straight average of the associated fixed locations.
9. The method of claim 1 wherein the step of tasking the proximity detection system further comprises:
(i) tasking one or more proximity sensors in the proximity detection system to receive a signal transmission from the mobile device,
(ii) measuring one or more signal characteristics of the signal transmission from the mobile device by each tasked proximity sensor, and
(iii) determining a location of the mobile device as a function of the measured characteristic,
wherein the measured characteristic includes range information.
10. The method of claim 1 wherein the request is provided by the mobile device.
11. The method of claim 1 wherein the request is a tasking message provided by the network or by a scanning receiver located in proximity to the mobile device.
12. A method for determining a location of a mobile device operating in a wireless communications network having an assisted global positioning system (A-GPS) positioning determining entity (PDE), the method comprising the steps of:
(a) receiving a location request for the mobile device;
(b) determining the location of the mobile device as a cell identification location if no location results are received from either the A-GPS PDE or a proximity detection system PDE;
(c) determining the location of the mobile device as a location result from the A-GPS PDE if the A-GPS PDE provides a location result having a lower uncertainty than a location result from the proximity detection system PDE; and
(d) determining the location of the mobile device as a location result from the proximity detection system PDE if the proximity detection system PDE provides a location result having a lower uncertainty than a location result from the A-GPS PDE.
13. A method for determining a location of a mobile device operating in a wireless communications network comprising the steps of:
(a) receiving a location request for the mobile device;
(b) routing the request to a proximity detection system and a network device responsible for coordinating location information within the network; and
(c) performing the following steps substantially in tandem:
(i) tasking both the proximity detection system and the network device to determine a location of the mobile device,
(ii) if at least one of the proximity detection system and the network device provide a location result for the mobile device, then determining the uncertainty of the respective location result and returning the location result having the lowest uncertainty as the location for the mobile device, and
(iii) if neither the proximity detection system nor the network device provide a location result for the mobile device, then using a cell-identification as the location for the mobile device.
14. The method of claim 13 further comprising the steps of:
(d) receiving location results from each of the network device and proximity detection system; and
(e) determining which received location results to use as a function of a quality of service.
US12/986,452 2010-01-08 2011-01-07 System and Method for Mobile Location By Proximity Detection Abandoned US20110171973A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/986,452 US20110171973A1 (en) 2010-01-08 2011-01-07 System and Method for Mobile Location By Proximity Detection
US12/986,439 US9331798B2 (en) 2010-01-08 2011-01-07 System and method for mobile location by proximity detection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29350210P 2010-01-08 2010-01-08
US12/986,452 US20110171973A1 (en) 2010-01-08 2011-01-07 System and Method for Mobile Location By Proximity Detection

Publications (1)

Publication Number Publication Date
US20110171973A1 true US20110171973A1 (en) 2011-07-14

Family

ID=44258897

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/986,452 Abandoned US20110171973A1 (en) 2010-01-08 2011-01-07 System and Method for Mobile Location By Proximity Detection
US12/986,439 Active 2032-01-07 US9331798B2 (en) 2010-01-08 2011-01-07 System and method for mobile location by proximity detection

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/986,439 Active 2032-01-07 US9331798B2 (en) 2010-01-08 2011-01-07 System and method for mobile location by proximity detection

Country Status (1)

Country Link
US (2) US20110171973A1 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120264447A1 (en) * 2011-04-14 2012-10-18 Rieger Iii Charles J Location Tracking
US8447516B1 (en) 2012-08-31 2013-05-21 Google Inc. Efficient proximity detection
US20130172004A1 (en) * 2011-12-30 2013-07-04 Paramvir Bahl Computational Systems and Methods for Locating a Mobile Device
US8570914B2 (en) 2010-08-09 2013-10-29 Corning Cable Systems Llc Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US20130310081A1 (en) * 2012-05-18 2013-11-21 Winitech Co., Ltd. Indoor positioning service system usingbeacon nodes
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8718478B2 (en) 2007-10-12 2014-05-06 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8787944B2 (en) 2011-08-18 2014-07-22 Rivada Research, Llc Method and system for providing enhanced location based information for wireless handsets
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US20140349673A1 (en) * 2013-05-24 2014-11-27 Samsung Electronics Co., Ltd. Geo-proximate devices-coupling system and method
US8948782B2 (en) 2012-12-21 2015-02-03 Qualcomm Incorporated Proximity determination based on distance ratios
US8983301B2 (en) 2010-03-31 2015-03-17 Corning Optical Communications LLC Localization services in optical fiber-based distributed communications components and systems, and related methods
US20150181549A1 (en) * 2013-12-23 2015-06-25 Cellco Partnership D/B/A Verizon Wireless Mobile device locating using long term evolution signals
US9077321B2 (en) 2013-10-23 2015-07-07 Corning Optical Communications Wireless Ltd. Variable amplitude signal generators for generating a sinusoidal signal having limited direct current (DC) offset variation, and related devices, systems, and methods
US20150195725A1 (en) * 2014-01-06 2015-07-09 Silicon Laboratories Inc. Apparatus and Methods for Radio Frequency Ranging
WO2015130686A1 (en) * 2014-02-28 2015-09-03 Life360, Inc. Apparatus and method of determining fraudulent use of a mobile device based on behavioral abnormality
US9158864B2 (en) 2012-12-21 2015-10-13 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US20160033617A1 (en) * 2014-07-30 2016-02-04 Aruba Networks, Inc. System and Methods for Location Determination in MIMO Wireless Networks
US9294876B2 (en) 2013-09-10 2016-03-22 Life360, Inc. Apparatus and method for generating, displaying and implementing a geo-fence using location determination of mobile devices within a location-based group
US9332393B2 (en) 2011-12-23 2016-05-03 Elwha Llc Computational systems and methods for locating a mobile device
US9357496B2 (en) 2011-12-23 2016-05-31 Elwha Llc Computational systems and methods for locating a mobile device
US9485623B2 (en) 2011-08-18 2016-11-01 Rivada Research, Llc Method and system for providing enhanced location based trilateration
US9591437B2 (en) 2011-12-23 2017-03-07 Elwha Llc Computational systems and methods for locating a mobile device
US9590733B2 (en) 2009-07-24 2017-03-07 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US9641978B2 (en) 2011-08-18 2017-05-02 Rivada Research, Llc Method and system for providing enhanced location based information for wireless handsets
US9648580B1 (en) 2016-03-23 2017-05-09 Corning Optical Communications Wireless Ltd Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns
US9684060B2 (en) 2012-05-29 2017-06-20 CorningOptical Communications LLC Ultrasound-based localization of client devices with inertial navigation supplement in distributed communication systems and related devices and methods
US9715001B2 (en) 2011-06-13 2017-07-25 Commscope Technologies Llc Mobile location in a remote radio head environment
US20170257839A1 (en) * 2011-02-09 2017-09-07 Commscope Technologies Llc System and method for location boosting using proximity information
US9781553B2 (en) 2012-04-24 2017-10-03 Corning Optical Communications LLC Location based services in a distributed communication system, and related components and methods
US9788163B2 (en) 2013-07-02 2017-10-10 Life360, Inc. Apparatus and method for increasing accuracy of location determination of mobile devices within a location-based group
US9877299B2 (en) 2011-08-18 2018-01-23 Rivada Research, Llc Method and system for performing trilateration for fixed infrastructure nodes (FIN) based on enhanced location based information
US10045153B2 (en) 2011-08-18 2018-08-07 Rivada Research, Llc Enhanced location based information enabling self-realized leases
US10237688B2 (en) 2011-08-18 2019-03-19 Rivada Research, Llc Method and system for improving the location of fixed wireless CBSD nodes
US10337835B2 (en) 2016-05-11 2019-07-02 Rivada Research LLC Method and system for using enhanced location-based information to guide munitions
US10863452B2 (en) 2018-12-12 2020-12-08 Rohde & Schwarz Gmbh & Co. Kg Method and radio for setting the transmission power of a radio transmission

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8892112B2 (en) 2011-07-21 2014-11-18 At&T Mobility Ii Llc Selection of a radio access bearer resource based on radio access bearer resource historical information
US8326319B2 (en) 2009-01-23 2012-12-04 At&T Mobility Ii Llc Compensation of propagation delays of wireless signals
US8224349B2 (en) 2010-02-25 2012-07-17 At&T Mobility Ii Llc Timed fingerprint locating in wireless networks
US9196157B2 (en) 2010-02-25 2015-11-24 AT&T Mobolity II LLC Transportation analytics employing timed fingerprint location information
US9053513B2 (en) 2010-02-25 2015-06-09 At&T Mobility Ii Llc Fraud analysis for a location aware transaction
US9008684B2 (en) 2010-02-25 2015-04-14 At&T Mobility Ii Llc Sharing timed fingerprint location information
US8442554B2 (en) * 2010-06-17 2013-05-14 Samsung Electronics Co., Ltd. Method for identifying location of mobile device in wireless communication network
US8447328B2 (en) 2010-08-27 2013-05-21 At&T Mobility Ii Llc Location estimation of a mobile device in a UMTS network
US9009629B2 (en) 2010-12-01 2015-04-14 At&T Mobility Ii Llc Motion-based user interface feature subsets
US9462497B2 (en) 2011-07-01 2016-10-04 At&T Mobility Ii Llc Subscriber data analysis and graphical rendering
US8897802B2 (en) 2011-07-21 2014-11-25 At&T Mobility Ii Llc Selection of a radio access technology resource based on radio access technology resource historical information
US8761799B2 (en) 2011-07-21 2014-06-24 At&T Mobility Ii Llc Location analytics employing timed fingerprint location information
US9519043B2 (en) 2011-07-21 2016-12-13 At&T Mobility Ii Llc Estimating network based locating error in wireless networks
CN103891360A (en) * 2011-07-29 2014-06-25 国际壳牌研究有限公司 Sensor node location-based power optimization
US8923134B2 (en) 2011-08-29 2014-12-30 At&T Mobility Ii Llc Prioritizing network failure tickets using mobile location data
US8762048B2 (en) 2011-10-28 2014-06-24 At&T Mobility Ii Llc Automatic travel time and routing determinations in a wireless network
US8909247B2 (en) 2011-11-08 2014-12-09 At&T Mobility Ii Llc Location based sharing of a network access credential
US9026133B2 (en) 2011-11-28 2015-05-05 At&T Mobility Ii Llc Handset agent calibration for timing based locating systems
US8970432B2 (en) 2011-11-28 2015-03-03 At&T Mobility Ii Llc Femtocell calibration for timing based locating systems
US9503856B2 (en) 2012-03-05 2016-11-22 Qualcomm Incorporated Method for determining wireless device location based on proximate sensor devices
US8925104B2 (en) 2012-04-13 2014-12-30 At&T Mobility Ii Llc Event driven permissive sharing of information
US9094929B2 (en) 2012-06-12 2015-07-28 At&T Mobility Ii Llc Event tagging for mobile networks
US9326263B2 (en) 2012-06-13 2016-04-26 At&T Mobility Ii Llc Site location determination using crowd sourced propagation delay and location data
US9046592B2 (en) 2012-06-13 2015-06-02 At&T Mobility Ii Llc Timed fingerprint locating at user equipment
US8938258B2 (en) 2012-06-14 2015-01-20 At&T Mobility Ii Llc Reference based location information for a wireless network
US8897805B2 (en) 2012-06-15 2014-11-25 At&T Intellectual Property I, L.P. Geographic redundancy determination for time based location information in a wireless radio network
US9408174B2 (en) 2012-06-19 2016-08-02 At&T Mobility Ii Llc Facilitation of timed fingerprint mobile device locating
US8892054B2 (en) 2012-07-17 2014-11-18 At&T Mobility Ii Llc Facilitation of delay error correction in timing-based location systems
US9351223B2 (en) 2012-07-25 2016-05-24 At&T Mobility Ii Llc Assignment of hierarchical cell structures employing geolocation techniques
US9344989B2 (en) 2012-09-06 2016-05-17 Apple Inc. System with wireless messages to enhance location accuracy
US9595195B2 (en) 2012-09-06 2017-03-14 Apple Inc. Wireless vehicle system for enhancing situational awareness
US9515769B2 (en) * 2013-03-15 2016-12-06 Src, Inc. Methods and systems for exploiting sensors of opportunity
US9197998B2 (en) * 2013-05-16 2015-11-24 Marvell World Trade Ltd. Method and system for positioning wireless device
US9578618B2 (en) * 2013-10-18 2017-02-21 Marvell World Trade Ltd. Server-based positioning system architecture
CN105793724A (en) * 2013-12-26 2016-07-20 英特尔Ip公司 Method and apparatus to improve position accuracy for wi-fi technology
US9351111B1 (en) 2015-03-06 2016-05-24 At&T Mobility Ii Llc Access to mobile location related information
EP3208620B8 (en) * 2016-02-19 2023-03-01 Rohde & Schwarz GmbH & Co. KG Measuring system for over-the-air power measurements
US9661604B1 (en) * 2016-06-30 2017-05-23 HawkEye 360, Inc. Determining emitter locations
TWI637645B (en) * 2017-03-23 2018-10-01 臺灣高等法院檢察署 Method of positioning provided by base stations in mobile communication network
EP4138470A1 (en) 2017-06-30 2023-02-22 Hawkeye 360, Inc. Detecting radio signal emitter locations
US10516972B1 (en) 2018-06-01 2019-12-24 At&T Intellectual Property I, L.P. Employing an alternate identifier for subscription access to mobile location information
US11237277B2 (en) 2019-02-15 2022-02-01 Horizon Technologies Consultants, Ltd. Techniques for determining geolocations
SG10201907628VA (en) * 2019-08-19 2021-03-30 Kaha Pte Ltd A smart safety network system for tracking a mobile computing device in an emergency environment and a method thereof
US20210264907A1 (en) * 2020-02-20 2021-08-26 Lenovo (Singapore) Pte. Ltd. Optimization of voice input processing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030125046A1 (en) * 2001-12-27 2003-07-03 Wyatt Riley Use of mobile stations for determination of base station location parameters in a wireless mobile communication system
US20040203904A1 (en) * 2002-12-27 2004-10-14 Docomo Communications Laboratories Usa, Inc. Selective fusion location estimation (SELFLOC) for wireless access technologies
US20050280557A1 (en) * 2004-06-18 2005-12-22 Anjali Jha Tracking lost and stolen mobile devices using location technologies and equipment identifiers
US20060030339A1 (en) * 2004-08-04 2006-02-09 Igor Zhovnirovsky Implementation of serverless applications over wireless networks
US20070040895A1 (en) * 2005-08-19 2007-02-22 University Of South Florida Wireless Emergency-Reporting System
US20080045240A1 (en) * 2002-12-10 2008-02-21 International Business Machines Corporation High-rate proximity detection with the ability to provide notification
US20080200187A1 (en) * 2001-09-10 2008-08-21 Xiangdong Lin System and method for estimating cell center position for cell id based positioning

Family Cites Families (148)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150372A (en) 1959-06-23 1964-09-22 Motorola Inc Computing system
US3659085A (en) 1970-04-30 1972-04-25 Sierra Research Corp Computer determining the location of objects in a coordinate system
US4728959A (en) 1986-08-08 1988-03-01 Ventana Sciences Inc. Direction finding localization system
US4814751A (en) 1987-02-27 1989-03-21 Wildlife Materials, Inc. Patient tracking system
US4845504A (en) 1987-04-08 1989-07-04 M/A-Com, Inc. Mobile radio network for nationwide communications
US4891650A (en) 1988-05-16 1990-01-02 Trackmobile Inc. Vehicle location system
US5056106A (en) 1990-08-02 1991-10-08 Wang James J Golf course ranging and direction-finding system using spread-spectrum radiolocation techniques
US5218618A (en) 1990-11-07 1993-06-08 Hughes Aircraft Company Cellular telephone service using spread spectrum transmission
US5506864A (en) 1990-12-05 1996-04-09 Interdigital Technology Corporation CDMA communications and geolocation system and method
US5365544A (en) 1990-12-05 1994-11-15 Interdigital Technology Corporation CDMA communications and geolocation system and method
JPH0567996A (en) 1991-09-09 1993-03-19 Nec Corp Automobile telephone set system
US5515419A (en) 1992-06-01 1996-05-07 Trackmobile Tracking system and method for tracking a movable object carrying a cellular phone unit, and integrated personal protection system incorporating the tracking system
US5592180A (en) 1992-08-20 1997-01-07 Nexus1994 Limited Direction finding and mobile location system for trunked mobile radio systems
US5372144A (en) 1992-12-01 1994-12-13 Scimed Life Systems, Inc. Navigability improved guidewire construction and method of using same
US5317323A (en) 1993-03-05 1994-05-31 E-Systems, Inc. Passive high accuracy geolocation system and method
US5465289A (en) 1993-03-05 1995-11-07 E-Systems, Inc. Cellular based traffic sensor system
US5327144A (en) 1993-05-07 1994-07-05 Associated Rt, Inc. Cellular telephone location system
JP2630200B2 (en) 1993-06-07 1997-07-16 日本電気株式会社 Orientation measuring method and apparatus
AU7173694A (en) 1993-06-25 1995-01-17 Omniplex, Inc. Determination of location using time-synchronized cell site transmissions
US5506863A (en) 1993-08-25 1996-04-09 Motorola, Inc. Method and apparatus for operating with a hopping control channel in a communication system
US5404376A (en) 1993-09-09 1995-04-04 Ericsson-Ge Mobile Communications Inc. Navigation assistance for call handling in mobile telephone systems
US5519760A (en) 1994-06-22 1996-05-21 Gte Laboratories Incorporated Cellular network-based location system
US5512908A (en) 1994-07-08 1996-04-30 Lockheed Sanders, Inc. Apparatus and method for locating cellular telephones
US5614914A (en) 1994-09-06 1997-03-25 Interdigital Technology Corporation Wireless telephone distribution system with time and space diversity transmission for determining receiver location
US5602903A (en) 1994-09-28 1997-02-11 Us West Technologies, Inc. Positioning system and method
US5959580A (en) 1994-11-03 1999-09-28 Ksi Inc. Communications localization system
GB9508884D0 (en) 1995-05-02 1995-06-21 Telecom Sec Cellular Radio Ltd Cellular radio system
US5508708A (en) 1995-05-08 1996-04-16 Motorola, Inc. Method and apparatus for location finding in a CDMA system
US5825887A (en) 1995-12-28 1998-10-20 Trimble Navigation Limited Transmitting and receiving apparatus for full code correlation operation under encryption for satellite positioning system
US6047192A (en) 1996-05-13 2000-04-04 Ksi Inc. Robust, efficient, localization system
US6108555A (en) 1996-05-17 2000-08-22 Ksi, Inc. Enchanced time difference localization system
US5675344A (en) 1996-06-28 1997-10-07 Motorola, Inc. Method and apparatus for locating a mobile station in a spread spectrum communication system
US5870029A (en) 1996-07-08 1999-02-09 Harris Corporation Remote mobile monitoring and communication system
CA2302289C (en) 1996-08-29 2005-11-08 Gregory G. Raleigh Spatio-temporal processing for communication
JP2845228B2 (en) 1996-12-10 1999-01-13 日本電気株式会社 Neighbor cell synchronization detection method
US6233459B1 (en) 1997-04-10 2001-05-15 The Atlantis Company, Limited, Japan System for providing Geolocation of a mobile transceiver
US5973643A (en) 1997-04-11 1999-10-26 Corsair Communications, Inc. Method and apparatus for mobile emitter location
US5920278A (en) 1997-05-28 1999-07-06 Gregory D. Gibbons Method and apparatus for identifying, locating, tracking, or communicating with remote objects
US6101178A (en) 1997-07-10 2000-08-08 Ksi Inc. Pseudolite-augmented GPS for locating wireless telephones
US5987329A (en) * 1997-07-30 1999-11-16 Ericsson Inc System and method for mobile telephone location measurement using a hybrid technique
US5952969A (en) 1997-08-18 1999-09-14 Telefonakiebolaget L M Ericsson (Publ) Method and system for determining the position of mobile radio terminals
US6115605A (en) 1997-08-29 2000-09-05 Ppm, Inc. Communication system and device using dynamic receiver addressing
FR2771517B1 (en) 1997-11-27 2001-12-14 Dassault Electronique ELECTRO-OPTICAL DEVICE, PARTICULARLY FOR OPTICAL DISTRIBUTION
US6097959A (en) 1998-01-29 2000-08-01 Ericsson Inc. System and method for accurate positioning of mobile terminals
US6201499B1 (en) 1998-02-03 2001-03-13 Consair Communications Time difference of arrival measurement system
US6014102A (en) 1998-04-17 2000-01-11 Motorola, Inc. Method and apparatus for calibrating location finding equipment within a communication system
US6108558A (en) 1998-04-21 2000-08-22 Motorola, Inc. Method for calculating a location of a remote Unit utilizing observed time difference (OTD) and real time difference (RTD) measurements.
US6421009B2 (en) * 1998-05-08 2002-07-16 Peter Suprunov Mobile station position tracking system for public safety
US6449486B1 (en) 1998-05-27 2002-09-10 Polaris Wireless, Inc. Multiple location estimates in a cellular communication system
GB2338374A (en) * 1998-06-10 1999-12-15 Motorola Ltd Locating a mobile telephone using time of arrival measurements
US6188351B1 (en) 1998-08-13 2001-02-13 Ericsson Inc. Method for improving signal acquistion in a global positioning system receiver
US6246884B1 (en) 1998-08-19 2001-06-12 Sigmaone Communications Corporation System and method for measuring and locating a mobile station signal in a wireless communication system
US7257414B2 (en) 1998-09-22 2007-08-14 Polaris Wireless, Inc. Estimating the Location of a Wireless Terminal Based on Non-Uniform Probabilities of Movement
US6393294B1 (en) 1998-09-22 2002-05-21 Polaris Wireless, Inc. Location determination using RF fingerprinting
US6269246B1 (en) 1998-09-22 2001-07-31 Ppm, Inc. Location determination using RF fingerprinting
US7899467B2 (en) 1998-09-22 2011-03-01 Polaris Wireless, Inc. Estimating the location of a wireless terminal based on the traits of the multipath components of a signal
US7734298B2 (en) 1998-09-22 2010-06-08 Polaris Wireless, Inc. Estimating the location of a wireless terminal based on signal path impairment
US6944465B2 (en) 1998-09-22 2005-09-13 Polaris Wireless, Inc. Estimating the location of a mobile unit based on the elimination of improbable locations
US6311043B1 (en) 1998-10-27 2001-10-30 Siemens Aktiengesellschaft Method and measurement configuration for measuring the characteristics of radio channels
GB9828216D0 (en) 1998-12-21 1999-02-17 Northern Telecom Ltd A downlink beamforming approach for frequency division duplex cellular systems
US6765531B2 (en) 1999-01-08 2004-07-20 Trueposition, Inc. System and method for interference cancellation in a location calculation, for use in a wireless location system
US6184829B1 (en) 1999-01-08 2001-02-06 Trueposition, Inc. Calibration for wireless location system
AU2051300A (en) 1999-01-08 2000-07-24 Trueposition, Inc. Architecture for a signal collection system of a wireless location system
US6463290B1 (en) 1999-01-08 2002-10-08 Trueposition, Inc. Mobile-assisted network based techniques for improving accuracy of wireless location system
US6782264B2 (en) 1999-01-08 2004-08-24 Trueposition, Inc. Monitoring of call information in a wireless location system
US6873290B2 (en) 1999-01-08 2005-03-29 Trueposition, Inc. Multiple pass location processor
US6646604B2 (en) 1999-01-08 2003-11-11 Trueposition, Inc. Automatic synchronous tuning of narrowband receivers of a wireless location system for voice/traffic channel tracking
US6334059B1 (en) 1999-01-08 2001-12-25 Trueposition, Inc. Modified transmission method for improving accuracy for e-911 calls
US7783299B2 (en) 1999-01-08 2010-08-24 Trueposition, Inc. Advanced triggers for location-based service applications in a wireless location system
US6295455B1 (en) 1999-06-11 2001-09-25 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for locating a mobile telecommunications station
US6603761B1 (en) 1999-09-17 2003-08-05 Lucent Technologies Inc. Using internet and internet protocols to bypass PSTN, GSM map, and ANSI-41 networks for wireless telephone call delivery
US6553322B1 (en) 1999-09-29 2003-04-22 Honeywell International Inc. Apparatus and method for accurate pipeline surveying
US6191738B1 (en) 1999-09-30 2001-02-20 Motorola, Inc. Method and apparatus for locating a remote unit within a communication system
US6571082B1 (en) 1999-10-29 2003-05-27 Verizon Laboratories Inc. Wireless field test simulator
US6640106B2 (en) 2001-09-20 2003-10-28 Motorola, Inc. Method and system for verifying the position of a mobile station using checkpoints
US6677895B1 (en) * 1999-11-16 2004-01-13 Harris Corporation System and method for determining the location of a transmitting mobile unit
US6501955B1 (en) 2000-06-19 2002-12-31 Intel Corporation RF signal repeater, mobile unit position determination system using the RF signal repeater, and method of communication therefor
US6366241B2 (en) 2000-06-26 2002-04-02 Trueposition, Inc. Enhanced determination of position-dependent signal characteristics of a wireless transmitter
US6771969B1 (en) 2000-07-06 2004-08-03 Harris Corporation Apparatus and method for tracking and communicating with a mobile radio unit
US6407703B1 (en) 2000-08-07 2002-06-18 Lockheed Martin Corporation Multi-platform geolocation method and system
FI109839B (en) 2000-08-22 2002-10-15 Nokia Corp A method for locating a mobile station
US6470195B1 (en) 2000-10-31 2002-10-22 Raytheon Company Method and apparatus for modeling a smart antenna in a network planning tool
US6834234B2 (en) 2000-11-22 2004-12-21 Trimble Navigation, Limited AINS land surveyor system with reprocessing, AINS-LSSRP
US6952158B2 (en) 2000-12-11 2005-10-04 Kennedy Jr Joseph P Pseudolite positioning system and method
US6845240B2 (en) * 2000-12-11 2005-01-18 Grayson Wireless System and method for analog cellular radio geolocation
US6920329B2 (en) 2001-01-16 2005-07-19 Allen Telecom Method and system for applying wireless geolocation technology
US6876859B2 (en) 2001-07-18 2005-04-05 Trueposition, Inc. Method for estimating TDOA and FDOA in a wireless location system
US6871077B2 (en) 2001-10-09 2005-03-22 Grayson Wireless System and method for geolocating a wireless mobile unit from a single base station using repeatable ambiguous measurements
US6987979B2 (en) 2001-12-22 2006-01-17 Telefonaktiebolaget Lm Ericsson (Publ) Locating packet-switched mobile terminals using network initiated artificial cell hops
US6950664B2 (en) 2002-01-24 2005-09-27 Lucent Technologies Inc. Geolocation using enhanced timing advance techniques
US6922170B2 (en) 2002-01-24 2005-07-26 Motorola, Inc. Methods and apparatus for determining a direction of arrival in a wireless communication system
US6710740B2 (en) * 2002-03-04 2004-03-23 Intel Corporation Recording-location determination
US6973320B2 (en) 2002-04-29 2005-12-06 Motorola, Inc. Method and apparatus for locating a remote unit within a communication system
JP2003324383A (en) * 2002-05-07 2003-11-14 Kddi Corp Repeater device for radio system
US8032149B2 (en) 2002-08-29 2011-10-04 Andrew Llc Tasking and reporting method and implementation for wireless appliance location systems
US6996392B2 (en) 2002-09-03 2006-02-07 Trueposition, Inc. E911 overlay solution for GSM, for use in a wireless location system
US7546084B2 (en) * 2002-10-16 2009-06-09 Andrew Llc System and method of operation for network overlay geolocation system with repeaters
WO2004036924A2 (en) 2002-10-16 2004-04-29 Andrew Corporation Enhancing the accuracy of a location estimate
US7433695B2 (en) 2002-11-18 2008-10-07 Polaris Wireless, Inc. Computationally-efficient estimation of the location of a wireless terminal based on pattern matching
US6978124B2 (en) 2002-12-11 2005-12-20 Motorola, Inc. Method and mobile station for autonomously determining an angle of arrival (AOA) estimation
US7162252B2 (en) 2002-12-23 2007-01-09 Andrew Corporation Method and apparatus for supporting multiple wireless carrier mobile station location requirements with a common network overlay location system
US7405696B2 (en) 2003-01-31 2008-07-29 Andrew Corporation Method for calibrating and AOA location system for frequency hopping air interfaces
US7358898B2 (en) 2003-01-31 2008-04-15 Andrew Corporation Method for calibrating an AOA location system for all frequencies in a frequency hopping signal
US7379019B2 (en) 2003-01-31 2008-05-27 Andrew Corporation Method for angle of arrival determination on frequency hopping air interfaces
US7460505B2 (en) 2003-02-04 2008-12-02 Polaris Wireless, Inc. Location estimation of wireless terminals through pattern matching of signal-strength differentials
US6859172B2 (en) 2003-02-17 2005-02-22 Global Business Software Development Technologies, Inc. System and method for locating a mobile phone
US7233799B2 (en) 2003-02-24 2007-06-19 Polaris Wireless, Inc. Location estimation of wireless terminals based on combinations of signal strength measurements and geometry-of-arrival measurements
WO2004080091A1 (en) 2003-03-03 2004-09-16 Andrew Corporation Independently acquiring and tracking wireless communication system signaling channel assignments on communication links
US6944542B1 (en) * 2003-03-12 2005-09-13 Trimble Navigation, Ltd. Position determination system for movable objects or personnel
US20040203921A1 (en) 2003-03-21 2004-10-14 Nicholas Bromhead Sub-sector timing advance positions determinations
US7429914B2 (en) * 2003-06-04 2008-09-30 Andrew Corporation System and method for CDMA geolocation
US7623872B2 (en) 2003-06-24 2009-11-24 Andrew Corporation Method for sparse network deployment accuracy enhancements
US7250907B2 (en) 2003-06-30 2007-07-31 Microsoft Corporation System and methods for determining the location dynamics of a portable computing device
US7116987B2 (en) 2003-07-19 2006-10-03 Polaris Wireless, Inc. Location estimation of wireless terminals through pattern matching of deduced and empirical signal-strength measurements
US7925205B2 (en) * 2003-09-17 2011-04-12 Andrew Llc System and method of operation for network overlay geolocation system with repeaters
WO2005048610A2 (en) * 2003-09-26 2005-05-26 Andrew Corporation System and method of operation for network overlay geolocation system with repeaters using am golay hadamard signatures
US7627333B2 (en) 2003-12-19 2009-12-01 Andrew Llc E-OTD augmentation to U-TDOA location system
US7440762B2 (en) 2003-12-30 2008-10-21 Trueposition, Inc. TDOA/GPS hybrid wireless location system
US7433652B2 (en) 2005-03-07 2008-10-07 Polaris Wireless, Inc. Electro-magnetic propagation modeling
US7796966B2 (en) 2005-03-15 2010-09-14 Polaris Wireless, Inc. Estimating the location of a wireless terminal based on calibrated signal-strength measurements
US20060221864A1 (en) * 2005-03-30 2006-10-05 Feng Niu Method and apparatus for determining a best technique to use when locating a node
US7427952B2 (en) 2005-04-08 2008-09-23 Trueposition, Inc. Augmentation of commercial wireless location system (WLS) with moving and/or airborne sensors for enhanced location accuracy and use of real-time overhead imagery for identification of wireless device locations
US8463285B2 (en) * 2005-04-08 2013-06-11 Wavemarket, Inc. Systems and methods for mobile terminal location determination using profiles of radio signal parameter measurements
US7323991B1 (en) * 2005-05-12 2008-01-29 Exavera Technologies Incorporated System and method for locating and communicating with personnel and equipment in a facility
US7689240B2 (en) 2005-11-16 2010-03-30 Trueposition, Inc. Transmit-power control for wireless mobile services
US7593738B2 (en) 2005-12-29 2009-09-22 Trueposition, Inc. GPS synchronization for wireless communications stations
US20070155489A1 (en) 2005-12-30 2007-07-05 Frederic Beckley Device and network enabled geo-fencing for area sensitive gaming enablement
US20090005061A1 (en) * 2005-12-30 2009-01-01 Trueposition, Inc. Location quality of service indicator
US8150421B2 (en) 2005-12-30 2012-04-03 Trueposition, Inc. User plane uplink time difference of arrival (U-TDOA)
US7753278B2 (en) 2006-05-22 2010-07-13 Polaris Wireless, Inc. Estimating the location of a wireless terminal based on non-uniform locations
US7844280B2 (en) 2006-12-12 2010-11-30 Trueposition, Inc. Location of wideband OFDM transmitters with limited receiver bandwidth
US7797000B2 (en) 2006-12-01 2010-09-14 Trueposition, Inc. System for automatically determining cell transmitter parameters to facilitate the location of wireless devices
US7920875B2 (en) 2006-12-01 2011-04-05 Trueposition, Inc. Subscriptionless location of wireless devices
US7616155B2 (en) 2006-12-27 2009-11-10 Bull Jeffrey F Portable, iterative geolocation of RF emitters
US8010079B2 (en) 2006-12-28 2011-08-30 Trueposition, Inc. Emergency wireless location system including a wireless transceiver
US7848733B2 (en) 2006-12-28 2010-12-07 Trueposition, Inc. Emergency wireless location system including a location determining receiver
US8045506B2 (en) 2007-04-18 2011-10-25 Trueposition, Inc. Sparsed U-TDOA wireless location networks
US8140092B2 (en) 2007-04-18 2012-03-20 Trueposition, Inc. Sparsed U-TDOA wireless location networks
US8242959B2 (en) 2007-04-18 2012-08-14 Trueposition, Inc. Sparsed U-TDOA wireless location networks
US8041367B2 (en) 2007-04-18 2011-10-18 Trueposition, Inc. Sparsed U-TDOA wireless location networks
CN101910858B (en) * 2007-11-15 2014-02-12 高通股份有限公司 Gnss receiver and signal tracking circuit and system
US8160609B2 (en) * 2008-11-26 2012-04-17 Andrew Llc System and method for multiple range estimation location
US8311557B2 (en) * 2009-05-15 2012-11-13 T-Mobile Usa, Inc. Facility for selecting a mobile device location determination technique
US8797141B2 (en) * 2009-08-20 2014-08-05 Trimble Navigation Limited Reverse RFID location system
US8106818B2 (en) 2009-12-31 2012-01-31 Polaris Wireless, Inc. Positioning system and positioning method
US8106817B2 (en) 2009-12-31 2012-01-31 Polaris Wireless, Inc. Positioning system and positioning method
US8013785B2 (en) 2009-12-31 2011-09-06 Ntt Docomo, Inc. Positioning system and positioning method
US8155394B2 (en) 2010-07-13 2012-04-10 Polaris Wireless, Inc. Wireless location and facial/speaker recognition system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080200187A1 (en) * 2001-09-10 2008-08-21 Xiangdong Lin System and method for estimating cell center position for cell id based positioning
US20030125046A1 (en) * 2001-12-27 2003-07-03 Wyatt Riley Use of mobile stations for determination of base station location parameters in a wireless mobile communication system
US20080045240A1 (en) * 2002-12-10 2008-02-21 International Business Machines Corporation High-rate proximity detection with the ability to provide notification
US20040203904A1 (en) * 2002-12-27 2004-10-14 Docomo Communications Laboratories Usa, Inc. Selective fusion location estimation (SELFLOC) for wireless access technologies
US20050280557A1 (en) * 2004-06-18 2005-12-22 Anjali Jha Tracking lost and stolen mobile devices using location technologies and equipment identifiers
US20060030339A1 (en) * 2004-08-04 2006-02-09 Igor Zhovnirovsky Implementation of serverless applications over wireless networks
US20070040895A1 (en) * 2005-08-19 2007-02-22 University Of South Florida Wireless Emergency-Reporting System

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8718478B2 (en) 2007-10-12 2014-05-06 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US9609070B2 (en) 2007-12-20 2017-03-28 Corning Optical Communications Wireless Ltd Extending outdoor location based services and applications into enclosed areas
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US9590733B2 (en) 2009-07-24 2017-03-07 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US10070258B2 (en) 2009-07-24 2018-09-04 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US9967032B2 (en) 2010-03-31 2018-05-08 Corning Optical Communications LLC Localization services in optical fiber-based distributed communications components and systems, and related methods
US8983301B2 (en) 2010-03-31 2015-03-17 Corning Optical Communications LLC Localization services in optical fiber-based distributed communications components and systems, and related methods
US10448205B2 (en) 2010-08-09 2019-10-15 Corning Optical Communications LLC Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US9185674B2 (en) 2010-08-09 2015-11-10 Corning Cable Systems Llc Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US8570914B2 (en) 2010-08-09 2013-10-29 Corning Cable Systems Llc Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US10959047B2 (en) 2010-08-09 2021-03-23 Corning Optical Communications LLC Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US11653175B2 (en) 2010-08-09 2023-05-16 Corning Optical Communications LLC Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US9913094B2 (en) 2010-08-09 2018-03-06 Corning Optical Communications LLC Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US10085230B2 (en) * 2011-02-09 2018-09-25 Commscope Technologies Llc System and method for location boosting using proximity information
US20170257839A1 (en) * 2011-02-09 2017-09-07 Commscope Technologies Llc System and method for location boosting using proximity information
US8965403B2 (en) 2011-04-14 2015-02-24 Here Global B.V. Location tracking
US8548493B2 (en) * 2011-04-14 2013-10-01 Navteq B.V. Location tracking
US20120264447A1 (en) * 2011-04-14 2012-10-18 Rieger Iii Charles J Location Tracking
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9715001B2 (en) 2011-06-13 2017-07-25 Commscope Technologies Llc Mobile location in a remote radio head environment
US10237688B2 (en) 2011-08-18 2019-03-19 Rivada Research, Llc Method and system for improving the location of fixed wireless CBSD nodes
US9485623B2 (en) 2011-08-18 2016-11-01 Rivada Research, Llc Method and system for providing enhanced location based trilateration
US9843900B2 (en) 2011-08-18 2017-12-12 Rivada Research, Llc Method and system for providing enhanced location based service (ELBS) trilateration using a single device
US9838997B2 (en) 2011-08-18 2017-12-05 Rivada Research, Llc. Method and system for enhanced location based information for fixed platforms
US9332386B2 (en) 2011-08-18 2016-05-03 Rivada Research, Llc Method and system for providing enhanced location based information for wireless handsets
US9641978B2 (en) 2011-08-18 2017-05-02 Rivada Research, Llc Method and system for providing enhanced location based information for wireless handsets
US9344848B2 (en) 2011-08-18 2016-05-17 Rivada Research, Llc Method and system for providing enhanced location based information for wireless handsets
US9351112B2 (en) 2011-08-18 2016-05-24 Rivada Research, Llc Method and system for providing enhanced location based information for wireless handsets
US8787944B2 (en) 2011-08-18 2014-07-22 Rivada Research, Llc Method and system for providing enhanced location based information for wireless handsets
US9774999B2 (en) 2011-08-18 2017-09-26 Rivada Research, Llc. Method and system for providing enhanced location based information for wireless handsets
US9877299B2 (en) 2011-08-18 2018-01-23 Rivada Research, Llc Method and system for performing trilateration for fixed infrastructure nodes (FIN) based on enhanced location based information
US9860868B2 (en) 2011-08-18 2018-01-02 Rivada Research, Llc. Method and system for providing enhanced location based information for wireless handsets using dead reckoning
US10045153B2 (en) 2011-08-18 2018-08-07 Rivada Research, Llc Enhanced location based information enabling self-realized leases
US9723453B2 (en) 2011-08-18 2017-08-01 Rivada Research, Llc Method and system for providing enhanced location based trilateration
US9538499B2 (en) 2011-08-18 2017-01-03 Rivada Research, Llc Method and system for providing enhanced location based information for wireless handsets
US9568585B2 (en) 2011-08-18 2017-02-14 Rivada Research, Llc Method and system for providing enhanced location based service (ELBS) trilateration using a single device
US9609616B2 (en) 2011-08-18 2017-03-28 Rivada Research, Llc. Method and system for providing enhanced location based information for wireless handsets
US10057721B2 (en) 2011-08-18 2018-08-21 Rivada Research, Llc. Method and system for providing enhanced location based information for wireless handsets
US9591437B2 (en) 2011-12-23 2017-03-07 Elwha Llc Computational systems and methods for locating a mobile device
US9357496B2 (en) 2011-12-23 2016-05-31 Elwha Llc Computational systems and methods for locating a mobile device
US9332393B2 (en) 2011-12-23 2016-05-03 Elwha Llc Computational systems and methods for locating a mobile device
US9482737B2 (en) * 2011-12-30 2016-11-01 Elwha Llc Computational systems and methods for locating a mobile device
US20130172004A1 (en) * 2011-12-30 2013-07-04 Paramvir Bahl Computational Systems and Methods for Locating a Mobile Device
US9781553B2 (en) 2012-04-24 2017-10-03 Corning Optical Communications LLC Location based services in a distributed communication system, and related components and methods
US20130310081A1 (en) * 2012-05-18 2013-11-21 Winitech Co., Ltd. Indoor positioning service system usingbeacon nodes
US9684060B2 (en) 2012-05-29 2017-06-20 CorningOptical Communications LLC Ultrasound-based localization of client devices with inertial navigation supplement in distributed communication systems and related devices and methods
US8447516B1 (en) 2012-08-31 2013-05-21 Google Inc. Efficient proximity detection
US8948782B2 (en) 2012-12-21 2015-02-03 Qualcomm Incorporated Proximity determination based on distance ratios
US9414192B2 (en) 2012-12-21 2016-08-09 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
US9158864B2 (en) 2012-12-21 2015-10-13 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
US20140349673A1 (en) * 2013-05-24 2014-11-27 Samsung Electronics Co., Ltd. Geo-proximate devices-coupling system and method
US9161328B2 (en) * 2013-05-24 2015-10-13 Samsung Electronics Co., Ltd. Automatic and wireless sharing of location information between a location-aware device and a location-unaware device
US9788163B2 (en) 2013-07-02 2017-10-10 Life360, Inc. Apparatus and method for increasing accuracy of location determination of mobile devices within a location-based group
US9906915B2 (en) 2013-07-02 2018-02-27 Life360, Inc. Apparatus and method for increasing accuracy of location determination of mobile devices within a location-based group
US9301095B2 (en) 2013-09-10 2016-03-29 Life360, Inc. Apparatus and method for determining and providing relative values of contacts associated with mobile devices within a location-based group
US9294876B2 (en) 2013-09-10 2016-03-22 Life360, Inc. Apparatus and method for generating, displaying and implementing a geo-fence using location determination of mobile devices within a location-based group
US9077321B2 (en) 2013-10-23 2015-07-07 Corning Optical Communications Wireless Ltd. Variable amplitude signal generators for generating a sinusoidal signal having limited direct current (DC) offset variation, and related devices, systems, and methods
US9374799B2 (en) * 2013-12-23 2016-06-21 Cellco Partnership Mobile device locating using long term evolution signals
US20150181549A1 (en) * 2013-12-23 2015-06-25 Cellco Partnership D/B/A Verizon Wireless Mobile device locating using long term evolution signals
US20150195725A1 (en) * 2014-01-06 2015-07-09 Silicon Laboratories Inc. Apparatus and Methods for Radio Frequency Ranging
US10317508B2 (en) * 2014-01-06 2019-06-11 Silicon Laboratories Inc. Apparatus and methods for radio frequency ranging
WO2015130686A1 (en) * 2014-02-28 2015-09-03 Life360, Inc. Apparatus and method of determining fraudulent use of a mobile device based on behavioral abnormality
US9510204B2 (en) 2014-02-28 2016-11-29 Life360, Inc. Apparatus and method of determining fraudulent use of a mobile device based on behavioral abnormality
US9658311B2 (en) * 2014-07-30 2017-05-23 Aruba Networks, Inc. System and methods for location determination in MIMO wireless networks
US20160033617A1 (en) * 2014-07-30 2016-02-04 Aruba Networks, Inc. System and Methods for Location Determination in MIMO Wireless Networks
US9648580B1 (en) 2016-03-23 2017-05-09 Corning Optical Communications Wireless Ltd Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns
US10337835B2 (en) 2016-05-11 2019-07-02 Rivada Research LLC Method and system for using enhanced location-based information to guide munitions
US10345078B2 (en) 2016-05-11 2019-07-09 Rivada Research, Llc Method and system for using enhanced location-based information to guide munitions
US10863452B2 (en) 2018-12-12 2020-12-08 Rohde & Schwarz Gmbh & Co. Kg Method and radio for setting the transmission power of a radio transmission

Also Published As

Publication number Publication date
US20110171912A1 (en) 2011-07-14
US9331798B2 (en) 2016-05-03

Similar Documents

Publication Publication Date Title
US9331798B2 (en) System and method for mobile location by proximity detection
US9237415B2 (en) Method and system for estimating range of mobile device to wireless installation
US9354293B2 (en) Pilot beacon system for indoor positioning
US8638214B2 (en) System and method for location of mobile devices in confined environments
US9594149B2 (en) Fingerprinting with radio channel related information
US7130642B2 (en) Method and apparatus for performing position determination in a wireless communication network with repeaters
US8437775B2 (en) Methods and arrangements for enabling estimation of a position of a mobile terminal
US7546084B2 (en) System and method of operation for network overlay geolocation system with repeaters
US20060014548A1 (en) Determination of mobile terminal position
CN115398274A (en) SPS spoofing detection
US20090047973A1 (en) Enhanced Mobile Location
US10524224B2 (en) Method and system for positioning of remote user equipment
US9408026B2 (en) Methods and arrangements for positioning in wireless communications systems
CN104904145A (en) Method and apparatus for RF performance metric estimation
CA2627515A1 (en) Positioning for wlans and other wireless networks
Bull Wireless geolocation
US20220357459A1 (en) A device, a system, a method and computer program product for identifying interfering devices in position measurements
US11480687B1 (en) Systems and methods for leveraging global positioning repeaters to locate devices and to obfuscate device location
EP1772037B1 (en) Determination of mobile terminal position
US9927511B1 (en) Location communication system and method
WO2023132987A1 (en) Integrity information for radio access technology dependent positioning assistance data
AU2006225082A1 (en) Enhanced mobile location
KR20110077994A (en) Method of transmitting reference signal for estimating of location and mobile telecommunication system for the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: ANDREW, LLC, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BECK, ANDRES;GRAVELY, THOMAS;REEL/FRAME:025616/0525

Effective date: 20110106

AS Assignment

Owner name: ANDREW, LLC, NORTH CAROLINA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE THE NAME OF ONE OF THE INVENTORS PREVIOUSLY RECORDED ON REEL 025616 FRAME 0525. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:BECK, ANDREW;GRAVELY, THOMAS;REEL/FRAME:025785/0022

Effective date: 20110106

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, NE

Free format text: PATENT SECURITY AGREEMENT (ABL);ASSIGNORS:ALLEN TELECOM LLC;ANDREW LLC;COMMSCOPE, INC. OF NORTH CAROLINA;REEL/FRAME:029013/0044

Effective date: 20120904

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, NE

Free format text: PATENT SECURITY AGREEMENT (TL);ASSIGNORS:ALLEN TELECOM LLC;ANDREW LLC;COMMSCOPE, INC. OF NORTH CAROLINA;REEL/FRAME:029024/0899

Effective date: 20120904

AS Assignment

Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA

Free format text: CHANGE OF NAME;ASSIGNOR:ANDREW LLC;REEL/FRAME:035176/0585

Effective date: 20150301

AS Assignment

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CONNECTICUT

Free format text: SECURITY INTEREST;ASSIGNORS:ALLEN TELECOM LLC;COMMSCOPE TECHNOLOGIES LLC;COMMSCOPE, INC. OF NORTH CAROLINA;AND OTHERS;REEL/FRAME:036201/0283

Effective date: 20150611

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATE

Free format text: SECURITY INTEREST;ASSIGNORS:ALLEN TELECOM LLC;COMMSCOPE TECHNOLOGIES LLC;COMMSCOPE, INC. OF NORTH CAROLINA;AND OTHERS;REEL/FRAME:036201/0283

Effective date: 20150611

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION

AS Assignment

Owner name: ALLEN TELECOM LLC, NORTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST PATENTS (RELEASES RF 036201/0283);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:042126/0434

Effective date: 20170317

Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST PATENTS (RELEASES RF 036201/0283);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:042126/0434

Effective date: 20170317

Owner name: COMMSCOPE, INC. OF NORTH CAROLINA, NORTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST PATENTS (RELEASES RF 036201/0283);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:042126/0434

Effective date: 20170317

Owner name: REDWOOD SYSTEMS, INC., NORTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST PATENTS (RELEASES RF 036201/0283);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:042126/0434

Effective date: 20170317

AS Assignment

Owner name: COMMSCOPE, INC. OF NORTH CAROLINA, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001

Effective date: 20190404

Owner name: REDWOOD SYSTEMS, INC., NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001

Effective date: 20190404

Owner name: ANDREW LLC, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001

Effective date: 20190404

Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001

Effective date: 20190404

Owner name: ALLEN TELECOM LLC, ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001

Effective date: 20190404

Owner name: ANDREW LLC, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001

Effective date: 20190404

Owner name: ALLEN TELECOM LLC, ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001

Effective date: 20190404

Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001

Effective date: 20190404

Owner name: COMMSCOPE, INC. OF NORTH CAROLINA, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001

Effective date: 20190404

Owner name: REDWOOD SYSTEMS, INC., NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001

Effective date: 20190404

AS Assignment

Owner name: BISON PATENT LICENSING, LLC, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:060641/0312

Effective date: 20220628