US20140105109A1 - Joint Transmission in a Wireless Network - Google Patents

Joint Transmission in a Wireless Network Download PDF

Info

Publication number
US20140105109A1
US20140105109A1 US14/124,278 US201214124278A US2014105109A1 US 20140105109 A1 US20140105109 A1 US 20140105109A1 US 201214124278 A US201214124278 A US 201214124278A US 2014105109 A1 US2014105109 A1 US 2014105109A1
Authority
US
United States
Prior art keywords
data
reference signal
signal
superimposed
user data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/124,278
Inventor
Yuan Zhu
Xiaogang Chen
Alexei Davydov
Qinghua Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Priority to US14/124,278 priority Critical patent/US20140105109A1/en
Assigned to INTEL CORPORATION reassignment INTEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LI, QINGHUA, Chen, Xiaogang, ZHU, YUAN, DAVYDOV, ALEXEI
Assigned to INTEL CORPORATION reassignment INTEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LI, QINGHUA, Chen, Xiaogang, ZHU, YUAN, DAVYDOV, ALEXEI
Publication of US20140105109A1 publication Critical patent/US20140105109A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0222Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave in packet switched networks
    • H04W28/042
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/189Arrangements for providing special services to substations for broadcast or conference, e.g. multicast in combination with wireless systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • H04L45/245Link aggregation, e.g. trunking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/41Flow control; Congestion control by acting on aggregated flows or links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0007Control or signalling for completing the hand-off for multicast or broadcast services, e.g. MBMS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/08User group management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This relates generally to sending data over wireless networks.
  • LTE Long Term Evolution
  • LTE-Advanced Long Term Evolution-Advanced
  • each device may use wireless communication schemes to communicate with a data network. For example, each device may establish a wireless connection to a local base station in order to access a broader data network. Thus, multiple devices may communicate with each other by accessing the data network through multiple base stations.
  • FIG. 1 is a schematic depiction of an example network configuration in accordance with one or more embodiments
  • FIG. 2 is a depiction of a table used by an example network configuration in accordance with one or more embodiments
  • FIG. 3 is a schematic depiction of an example user device in accordance with one or more embodiments
  • FIG. 4 is a schematic depiction of an example base station in accordance with one or more embodiments.
  • FIG. 5 is a flow chart in accordance with one or more embodiments.
  • one area of particular interest may be cooperative multiple point (CoMP) transmission.
  • CoMP multiple base stations may be able to transmit downlink signals to a user device at the same time. The user device may then try to decode all the downlink signals simultaneously in order to improve reception conditions and increase data throughput.
  • one type of CoMP transmission under Scenario 3 may be joint processing.
  • multiple base stations may coordinate with each other to simultaneously transmit to and from user devices.
  • reference signals used to estimate channel conditions may collide and/or interfere with signals containing user data.
  • User devices may thus encounter some challenges in decoding and differentiating the various signals.
  • Some strategies for reducing interference between user data and reference signals may include muting certain portions of the user data signal during transmission. While doing so may reduce interference, muting portions of the user data signal may decrease data throughput to the user device and may cause the user device to underestimate the level of interference during channel estimation.
  • FIG. 1 represents a system 100 for filtering reference signal data from user data in a wireless network according to one or more embodiments.
  • the system may include a user device 110 in communication with multiple base stations 130 a - c.
  • the user device 110 may include a joint processing module 120 capable of receiving multiple signals simultaneously from the base stations 130 a - b.
  • each base stations 130 a - b may send a reference signal 140 a - c and user data 150 a - c to the user device 110 .
  • the user device 110 may be any electronic device capable of communication over a wireless network.
  • the user device 110 may include a desktop computer, laptop computer, mobile phone, tablet personal computer, personal digital assistant, digital camera, and/or any other electronic device.
  • FIG. 1 illustrates only one user device 110 , it should be understood that any number of user devices may be in communication with the base stations 130 a - c.
  • the system 100 may operate according to LTE-Advanced specifications.
  • the base stations 130 a - c may be referred to as evolved Node Bs (eNBs) while the user device 110 may be referred to as user equipment (UE).
  • eNBs evolved Node Bs
  • UE user equipment
  • the system 100 may be capable of using cooperative multiple point transmission (CoMP) Scenario 3.
  • the base stations 130 a - c may have the ability to perform joint processing to coordinate transmission of various signals simultaneously to the user device 110 .
  • some of these signals may include reference signals 140 a - c and user data 150 a - c.
  • the reference signals 140 a - c may be cell specific reference signals (CRS) sent to the user device 110 to perform channel estimation.
  • CRS cell specific reference signals
  • the user device 110 may compare characteristics of the reference signals 140 a - c as they are received to their characteristics when they were sent. By analyzing any differences in these characteristics, channel estimation may be calculated.
  • User data 150 a - c may be any data including image data, video data, media data, control data and/or the like. Furthermore, the user data 150 a - c may be sent on the physical downlink shared channel (PDSCH) according to the LTE-Advanced specification.
  • PDSCH physical downlink shared channel
  • the joint processing module 120 may receive the interfering signals and filter out one or more of the reference signals 140 a - c and/or user data 150 a - c.
  • the joint processing module 120 may receive the interfering signals and filter out one or more of the reference signals 140 a - c and/or user data 150 a - c.
  • the join processing module 120 may be capable of performing successive interference cancellation (SIC).
  • SIC may enable the join processing module 120 to decode two or more signals concurrently. For example, suppose a first signal and a second signal reach the join processing module 120 simultaneously to form a combined signal and that the first signal is the stronger of the two. Using SIC, the join processing module 120 may first decode the first signal, which is stronger, and then subtract the first signal out from the combined signal. As a result, the join processing module 120 may then be able to extract the second, weaker signal from the residue.
  • SIC successive interference cancellation
  • the joint processing module 120 may simultaneously receive a reference signal 140 a - c and user data 150 a that interfere and/or collide with one another. Under the LTE and LTE-Advanced, such collisions may occur on one or more collided resource elements.
  • a resource element may be the basic unit of physical resource in LTE and may be represented as an indexed pair of a sub-carrier and a modulation (e.g., Orthogonal frequency-division multiplexing (OFDM)) symbol.
  • OFDM Orthogonal frequency-division multiplexing
  • a collided resource element may include a superimposed signal of both the reference signal 140 a - c and the user data 150 a - c. Because the reference signal 140 a - c may be the stronger signal, the joint processing module may first detect the reference signal 140 a - c and estimate its channel response. Then, the joint processing module 120 may perform SIC on the superimposed signal to filter out the reference signal 140 a - c. That is, the reference signal 140 a - c may be reconstructed and subtracted out from the superimposed signal. As a result of the subtraction, the remaining downlink user data 150 a - c may be detected and/or decoded.
  • a precoded data symbol may be sent over a pair of collided resource elements.
  • the collided resource elements may be used as a pair during decoding of the data symbol.
  • each resource element of the pair may include parts of the precoded data symbol.
  • some noise may still be present that obscures coherent decoding of the data symbol. Therefore, the remaining signal on each collided resource element may be combined, and decoding of the data symbol may be performed on this combined signal.
  • simultaneous transmission of reference signals 140 a - c and user data 150 a - c from multiple base stations 130 a - c over collided resource elements may be viewed as a form of spatial multiplexing between the base stations 130 a - b.
  • the spatial multiplexing can be viewed as a mathematical expression.
  • the mathematical expression for using two collided resource elements from two different joint transmission cells e.g., base stations 130 a - b ) to transmit one user data 150 a - c resource element (e.g., a PDSCH resource element) is given below.
  • These mathematical expressions may be in the context of the LTE and/or LTE-Advanced specifications.
  • y i 16 is the received vector when PDSCH of cell i sends reference signalr i and the remaining joint transmission cell send data (vector or symbol) s ;
  • r i is the reference signal sent by cell i;
  • H i 16 is the channel matrix of the downlink channel from cell i eNB (base station 130 a - c ) to the UE (user device 110 );
  • P i is the beamforming matrix for sending the data s from cell i eNB to the UE;
  • ⁇ i is the antenna selection vector e.g. [1 0 . . . 0] T for cell i eNB;
  • n i is the noise vector seen by the UE when cell i sends reference signalr i .
  • the full beamforming matrix of the joint transmission on the non-collided resource element is
  • the UE may observe different parts of the full beamformed channel on each collided resource element.
  • the UE may combine the two partial observations to get the full observation of data s as:
  • H k [H 1 k H 2 k ] is the full channel matrix for joint transmission on the k-th resource element and
  • the UE may use the reference signal to coherently decode the PDSCH using the observations from both collided and non-collided resource elements.
  • Other resource elements such as resource elements 13 , 14 and 15 in FIG. 2 can be processed in a similar manner.
  • a relatively high modulation and coding scheme may typically be selected for PDSCH transmission (i.e., transmission of user data 150 a - c ) from a base station 130 a - c to a user device 110 .
  • MCS modulation and coding scheme
  • the higher the MCS that is selected for PDSCH transmission from a particular base station the more susceptible the PDSCH transmission may be to interference with reference signals from other base stations.
  • interference with residual reference signals may still occur. In other words, PDSCH transmission using relatively high MCS may still be susceptible to interference from residual reference signals under a joint transmission scheme.
  • a lower MCS order may be used for PDSCH transmission, relative to the initial MCS order fed back by a user device, on resource elements that collide with reference signals 140 a - c (e.g., resource elements 14 , 16 , 18 , and 20 in FIG. 2 ).
  • the initial MCS order fed back by the user device 110 may still be used. For example, suppose a user device 110 feeds back a MCS order corresponding to 64QAM.
  • the PDSCH transmitting base station 130 a - c may elect to use 16QAM/QPSK in resource elements that have collisions with reference signal data 140 a - c and maintain 64QAM in the other resource elements.
  • a relatively high throughput for PDSCH transmission may be maintained with relatively low interference from reference signal data during joint transmission.
  • a relatively high MCS order may be used during any PDSCH transmission.
  • the user device 110 may elect to demodulate the relatively high order MCS as a lower order MCS.
  • the user device 110 may set the log likelihood ration (LLR) of some bits to zero.
  • LLR log likelihood ration
  • FIG. 3 represents a system depiction of the user device 130 of FIG. 1 .
  • the user device may include a receiver 310 for receiving data and a transmitter 320 for transmitting data.
  • the receiver 310 and the transmitter 320 may be combined to form a transceiver capable of both receiving and transmitting data.
  • the receiver 310 may receive the reference signal 120 a - b from the base station 105 while the transmitter 320 may transmit the CSI signal 125 back to the base station 105 .
  • the user device 110 may also include a memory 330 for storing instructions and a processor 340 for executing those instructions.
  • Join Processing Module 120 (not shown) may include the processor 340 and memory 330 or may be otherwise in communication with the processor 340 and the memory 330 .
  • the Join Processing Module 120 may be a program stored in the memory 330 , and thereby provide instructions for the processor 340 to execute.
  • the processor 340 may carry out instructions from the Join Processing Module 120 to perform interference canceling as described above with reference to FIG. 1 .
  • the user device 110 may also include more than one processor and more than one memory.
  • the user device 110 may also include multiple storage devices.
  • FIG. 4 represents a system depiction of an example base station 130 a - c that may be used to perform joint transmission with other base stations 130 a - c to the user device 110 .
  • the base station 130 a - c may include similar components to those illustrated in the user device 110 of FIG. 3 .
  • the base station 130 a - c may also include a receiver 410 , and transmitter 420 , a processor 440 , and memory 430 .
  • the base station 105 may also include a router 450 to route communication between various user devices.
  • the memory 430 may store the table 200 illustrated in FIG. 2 .
  • the base station 130 a - c may also include a Joint Transmission Logic (not shown) in communication with the processor 440 and memory 460 .
  • Joint Transmission Logic 108 may include the processor 440 and memory 430 .
  • the Joint Transmission Logic 130 may be a program stored in the memory 430 , and thereby provide instructions for the processor 440 to execute.
  • the processor 440 may carry out instructions from the Joint Transmission Logic 108 to determine joint transmission signaling as described above with reference to FIG. 1 .
  • the joint transmission logic 108 may determine that for a particular PDSCH transmission, a different MCS is to be used than the initial MCS fed back from the user device 120 .
  • FIG. 5 represents a flow diagram depicting a method 500 for performing joint transmission in a wireless network according to one or more embodiments.
  • the method may begin in step 510 when a user device wirelessly receives a plurality of colliding wireless signals, from a base station.
  • One of the colliding wireless signals may include reference signal data while the other wireless signal may include user data.
  • step 520 the reference signal data and the user data may be combined into a superimposed signal.
  • step 530 the user device may filter out the reference signal data from the superimposed signal. As previously discussed, this process may involve Successive Interference Canceling by the user device.
  • the user device may decode the user data from the superimposed signal.
  • the user device may be capable of receiving simultaneous joint transmissions from multiple base stations even through significant amount of signal collision and interference. Furthermore, such joint transmission may be received without having to mute certain colliding user data resource elements that would otherwise decrease user data throughput to user device.
  • a processor can include a microprocessor, microcontroller, processor module or subsystem, programmable integrated circuit, programmable gate array, or another control or computing device.
  • a “processor” can refer to a single component or to plural components (e.g., one CPU or multiple CPUs).
  • Data and instructions are stored in respective storage devices, which are implemented as one or more computer-readable or machine-readable storage media.
  • the storage media include different forms of memory including semiconductor memory devices such as dynamic or static random access memories (DRAMs or SRAMs), erasable and programmable read-only memories (EPROMs), electrically erasable and programmable read-only memories (EEPROMs) and flash memories; magnetic disks such as fixed, floppy and removable disks; other magnetic media including tape; optical media such as compact disks (CDs) or digital video disks (DVDs); or other types of storage devices.
  • DRAMs or SRAMs dynamic or static random access memories
  • EPROMs erasable and programmable read-only memories
  • EEPROMs electrically erasable and programmable read-only memories
  • flash memories such as fixed, floppy and removable disks
  • magnetic media such as fixed, floppy and removable disks
  • optical media such as compact disks (CDs) or digital video disks (DVDs); or other
  • the instructions discussed above can be provided on one computer-readable or machine-readable storage medium, or alternatively, can be provided on multiple computer-readable or machine-readable storage media distributed in a large system having possibly plural nodes.
  • Such computer-readable or machine-readable storage medium or media is (are) considered to be part of an article (or article of manufacture).
  • An article or article of manufacture can refer to any manufactured single component or multiple components.
  • the storage medium or media can be located either in the machine running the machine-readable instructions, or located at a remote site from which machine-readable instructions can be downloaded over a network for execution.
  • references throughout this specification to “one embodiment” or “an embodiment” mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one implementation encompassed within the present invention. Thus, appearances of the phrase “one embodiment” or “in an embodiment” are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be instituted in other suitable forms other than the particular embodiment illustrated and all such forms may be encompassed within the claims of the present application.
  • One embodiment may include a method including: receiving, at a user equipment (UE) operating within a 3 rd Generation Partnership Project (3GPP), Long Term Evolution-Advanced (LTE-Advanced) network via a Cooperative Multiple Point Transmission (CoMP) Scenario 3, a plurality of colliding wireless signals, wherein one of the wireless signals comprises reference signal data and another of the wireless signals comprises user data sent over a Physical Downlink Shared Channel (PDSCH); combining the reference signal data with the first user data into a superimposed signal; filtering out the reference signal data from the superimposed signal; and decoding the user data from the superimposed signal.
  • 3GPP 3 rd Generation Partnership Project
  • LTE-Advanced Long Term Evolution-Advanced
  • CoMP Cooperative Multiple Point Transmission
  • the method may also include that the colliding wireless signals are received from evolved node Bs (eNBs) simultaneously transmitting to the UE.
  • the method may also include that the colliding wireless signals are sent as a joint transmission from the eNBs.
  • the method may also include that filtering out the reference signal data from the superimposed signal includes: detecting the reference signal data from the superimposed signal; estimating at least one channel response from the reference signal data; and subtracting the reference signal data from the superimposed wireless signal.
  • the method may also include that after subtracting the reference signal data from the superimposed signal, the remaining part of the superimposed signal is the user data.
  • the method may also include that the plurality of colliding wireless signals are sent over colliding resource elements.
  • the method may include that the reference signal data is received on a first resource element, and the user data is received on a second resource element.
  • the method may also include that the colliding reference signals are cell-specific reference signals.
  • the method may also include that none of the user data is muted.
  • Another embodiment may also be at least one machine readable medium including a plurality of instructions that in response to being executed by a computer device, cause the computer device to carry out the above-described method.
  • a further embodiment may be a user equipment (UE)including: a transceiver; and a joint processing module having a memory and a processor, wherein the UE operates within a 3 rd Generation Partnership Project (3GPP), Long Term Evolution-Advanced (LTE-Advanced) network, and wherein the memory is to store instructions, and the processor is to execute the instructions to: receive, at the transceiver via a Cooperative Multiple Point Transmission (CoMP) Scenario 3, a first wireless signal on a first resource element colliding with a second wireless signal on a second resource element, wherein the first wireless signal comprises reference signal data and the second wireless signal comprises user data sent over a Physical Downlink Shared Channel (PDSCH); combine the reference signal data with the user data into a superimposed signal; filter out the reference signal data from the superimposed signal; and decode the user data from the superimposed signal.
  • CoMP Cooperative Multiple Point Transmission
  • the UE may also include a display.
  • the UE may also include that the colliding wireless signals are received from multiple base stations simultaneously transmitting to the system.
  • the UE may also include that the instructions to filter out the reference signal data from the superimposed signal further include instructions to: detect the reference signal data from the superimposed signal; estimate at least one channel response from the reference signal data; and subtract the reference signal data from the superimposed wireless signal.
  • the UE may include that after subtracting the reference signal data from the superimposed signal, the remaining part of the superimposed signal is the user data.
  • the UE may also include that the plurality of colliding wireless signals are cell-specific reference signals.
  • Another embodiment may be an evolved node B (eNB), including: a transceiver; and a joint transmission logic having a memory and a processor, wherein the eNB operates within a 3 rd Generation Partnership Project (3GPP), Long Term Evolution-Advanced (LTE-Advanced) network, wherein the memory is to store instructions, and the processor is to execute the instructions to: receive, via the transceiver, an initial modulation and coding scheme from a user equipment (UE); and transmit user data, using a lower modulation and coding scheme than the initial modulation and coding scheme, over a first resource element that collides with reference signal data over a second resource element.
  • 3GPP 3 rd Generation Partnership Project
  • LTE-Advanced Long Term Evolution-Advanced
  • the eNB may also include that the memory further comprises instructions to transmit, using the initial modulation and coding scheme, user data over a third resource element that does not collide with reference signal data.
  • the eNB may also include that the reference signal data originates from a second eNB transmitting to the UE simultaneously with the eNB via the Cooperative Multiple Point Transmission (CoMP) Scenario 3.
  • CoMP Cooperative Multiple Point Transmission

Abstract

A system for receiving joint transmission wireless signals may include a transceiver to receive a plurality of colliding wireless signals. One of the wireless signals may include reference signal data while another of the wireless signals may include user data. The reference signal data may be combined with the user data into a superimposed signal. The reference signal data may be filtered out from the superimposed data, and the user data may be decoded.

Description

  • This application claims priority to provisional application 61/542,086, filed Sep. 30, 2011, which application is hereby expressly incorporated herein.
  • BACKGROUND
  • This relates generally to sending data over wireless networks.
  • As mobile and wireless networks grow in popularity, radio and wireless communication standards must adapt to meet ever increasing bandwidth requirements and user demand. Such standards include the Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) and Long Term Evolution-Advanced (LTE-Advanced) systems.
  • Using these protocols, various devices may use wireless communication schemes to communicate with a data network. For example, each device may establish a wireless connection to a local base station in order to access a broader data network. Thus, multiple devices may communicate with each other by accessing the data network through multiple base stations.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Some embodiments are described with respect to the following figures:
  • FIG. 1 is a schematic depiction of an example network configuration in accordance with one or more embodiments;
  • FIG. 2 is a depiction of a table used by an example network configuration in accordance with one or more embodiments;
  • FIG. 3 is a schematic depiction of an example user device in accordance with one or more embodiments;
  • FIG. 4 is a schematic depiction of an example base station in accordance with one or more embodiments; and
  • FIG. 5 is a flow chart in accordance with one or more embodiments.
  • DETAILED DESCRIPTION
  • In wireless communications, one area of particular interest may be cooperative multiple point (CoMP) transmission. Under CoMP multiple base stations may be able to transmit downlink signals to a user device at the same time. The user device may then try to decode all the downlink signals simultaneously in order to improve reception conditions and increase data throughput.
  • Under 3GPP LTE and LTE-Advanced, one type of CoMP transmission under Scenario 3 may be joint processing. During joint processing, multiple base stations may coordinate with each other to simultaneously transmit to and from user devices. As such, there may be an increased chance of signal collision between the various signals sent by the base stations. For example, reference signals used to estimate channel conditions may collide and/or interfere with signals containing user data. User devices may thus encounter some challenges in decoding and differentiating the various signals.
  • Some strategies for reducing interference between user data and reference signals may include muting certain portions of the user data signal during transmission. While doing so may reduce interference, muting portions of the user data signal may decrease data throughput to the user device and may cause the user device to underestimate the level of interference during channel estimation.
  • FIG. 1 represents a system 100 for filtering reference signal data from user data in a wireless network according to one or more embodiments. The system may include a user device 110 in communication with multiple base stations 130 a-c. In some implementations, the user device 110 may include a joint processing module 120 capable of receiving multiple signals simultaneously from the base stations 130 a-b. For example, each base stations 130 a-b may send a reference signal 140 a-c and user data 150 a-c to the user device 110.
  • The user device 110 may be any electronic device capable of communication over a wireless network. For example, the user device 110 may include a desktop computer, laptop computer, mobile phone, tablet personal computer, personal digital assistant, digital camera, and/or any other electronic device. Furthermore, while FIG. 1 illustrates only one user device 110, it should be understood that any number of user devices may be in communication with the base stations 130 a-c.
  • In some implementations, the system 100 may operate according to LTE-Advanced specifications. As such, the base stations 130 a-c may be referred to as evolved Node Bs (eNBs) while the user device 110 may be referred to as user equipment (UE). Furthermore, the system 100 may be capable of using cooperative multiple point transmission (CoMP) Scenario 3. In particular, the base stations 130 a-c may have the ability to perform joint processing to coordinate transmission of various signals simultaneously to the user device 110.
  • Thus, in one or more embodiments, some of these signals may include reference signals 140 a-c and user data 150 a-c. For example, the reference signals 140 a-c may be cell specific reference signals (CRS) sent to the user device 110 to perform channel estimation. The user device 110 may compare characteristics of the reference signals 140 a-c as they are received to their characteristics when they were sent. By analyzing any differences in these characteristics, channel estimation may be calculated.
  • User data 150 a-c may be any data including image data, video data, media data, control data and/or the like. Furthermore, the user data 150 a-c may be sent on the physical downlink shared channel (PDSCH) according to the LTE-Advanced specification. In some implementations using joint processing of the base stations 130 a-c, the reference signals 140 a-c and the user data 150 a-c may experience interference with each other. Thus, the joint processing module 120 may receive the interfering signals and filter out one or more of the reference signals 140 a-c and/or user data 150 a-c.
  • Thus, the joint processing module 120 may receive the interfering signals and filter out one or more of the reference signals 140 a-c and/or user data 150 a-c. In some embodiments, the join processing module 120 may be capable of performing successive interference cancellation (SIC). SIC may enable the join processing module 120 to decode two or more signals concurrently. For example, suppose a first signal and a second signal reach the join processing module 120 simultaneously to form a combined signal and that the first signal is the stronger of the two. Using SIC, the join processing module 120 may first decode the first signal, which is stronger, and then subtract the first signal out from the combined signal. As a result, the join processing module 120 may then be able to extract the second, weaker signal from the residue.
  • In some embodiments, the joint processing module 120 may simultaneously receive a reference signal 140 a-c and user data 150 a that interfere and/or collide with one another. Under the LTE and LTE-Advanced, such collisions may occur on one or more collided resource elements. A resource element may be the basic unit of physical resource in LTE and may be represented as an indexed pair of a sub-carrier and a modulation (e.g., Orthogonal frequency-division multiplexing (OFDM)) symbol.
  • Thus, a collided resource element may include a superimposed signal of both the reference signal 140 a-c and the user data 150 a-c. Because the reference signal 140 a-c may be the stronger signal, the joint processing module may first detect the reference signal 140 a-c and estimate its channel response. Then, the joint processing module 120 may perform SIC on the superimposed signal to filter out the reference signal 140 a-c. That is, the reference signal 140 a-c may be reconstructed and subtracted out from the superimposed signal. As a result of the subtraction, the remaining downlink user data 150 a-c may be detected and/or decoded.
  • In some embodiments, a precoded data symbol may be sent over a pair of collided resource elements. Thus, the collided resource elements may be used as a pair during decoding of the data symbol. For example, after canceling the reference signal 140 a-c on the pair of collided resource elements, each resource element of the pair may include parts of the precoded data symbol. However, due to the cancelation, some noise may still be present that obscures coherent decoding of the data symbol. Therefore, the remaining signal on each collided resource element may be combined, and decoding of the data symbol may be performed on this combined signal.
  • In some embodiments, simultaneous transmission of reference signals 140 a-c and user data 150 a-c from multiple base stations 130 a-c over collided resource elements may be viewed as a form of spatial multiplexing between the base stations 130 a-b. Furthermore, from the perspective of a single resource element, the spatial multiplexing can be viewed as a mathematical expression. For example, the mathematical expression for using two collided resource elements (from two different joint transmission cells e.g., base stations 130 a-b) to transmit one user data 150 a-c resource element (e.g., a PDSCH resource element) is given below. These mathematical expressions may be in the context of the LTE and/or LTE-Advanced specifications.
  • The following expressions may be made with focus on resource element 16 of FIG. 2. First, the transmission of one PDSCH resource element over two collided resource elements can be expressed as equation (1)
  • { y _ 3 16 = H 1 16 P 1 s _ + H 2 16 e _ 2 r 2 + n _ 1 y _ 2 16 = H 2 16 P 2 s _ + H 1 16 e _ 1 r 1 + n _ 2 ( 1 )
  • where y i 16 is the received vector when PDSCH of cell i sends reference signalri and the remaining joint transmission cell send data (vector or symbol) s; ri is the reference signal sent by cell i; Hi 16 is the channel matrix of the downlink channel from cell i eNB (base station 130 a-c) to the UE (user device 110); Pi is the beamforming matrix for sending the data s from cell i eNB to the UE; ēi is the antenna selection vector e.g. [1 0 . . . 0]T for cell i eNB; n i is the noise vector seen by the UE when cell i sends reference signalri. It should be noted that the full beamforming matrix of the joint transmission on the non-collided resource element is
  • P = [ P 1 P 2 ] .
  • Namely, the full beamforming matrixes of the joint transmission on the collided resource element are
  • [ P 1 0 ] and [ 0 P 2 ] with P = ( [ P 1 0 ] + [ 0 P 2 ] )
  • corresponding to the upper and lower parts of P, respectively. In other words, the UE may observe different parts of the full beamformed channel on each collided resource element.
  • After cancelling the reference signal interference, the UE may combine the two partial observations to get the full observation of data s as:
  • y _ 16 = ( y _ 1 16 + y _ 2 16 ) = [ H 1 16 H 2 16 ] [ P 1 P 2 ] s _ + n _ ( 2 )
  • It should be noted that Hk=[H1 k H2 k] is the full channel matrix for joint transmission on the k-th resource element and
  • P = [ P 1 P 2 ]
  • is the beamforming matrix for the non-collided resource element. Finally, the UE may use the reference signal to coherently decode the PDSCH using the observations from both collided and non-collided resource elements. Other resource elements such as resource elements 13, 14 and 15 in FIG. 2 can be processed in a similar manner.
  • In some embodiments under the LTE and/or LTE-Advanced specifications, it may be desirable for the user device to operate at a relatively high Signal to Interference and Noise Ration (SINR). Thus, a relatively high modulation and coding scheme (MCS) may typically be selected for PDSCH transmission (i.e., transmission of user data 150 a-c) from a base station 130 a-c to a user device 110. However, the higher the MCS that is selected for PDSCH transmission from a particular base station, the more susceptible the PDSCH transmission may be to interference with reference signals from other base stations. Furthermore, even after performing interference cancelation as described above, interference with residual reference signals may still occur. In other words, PDSCH transmission using relatively high MCS may still be susceptible to interference from residual reference signals under a joint transmission scheme.
  • Thus, in one or more embodiments, a lower MCS order may be used for PDSCH transmission, relative to the initial MCS order fed back by a user device, on resource elements that collide with reference signals 140 a-c (e.g., resource elements 14, 16, 18, and 20 in FIG. 2). For the other resource elements that do not experience any collision during PDSCH transmission, the initial MCS order fed back by the user device 110 may still be used. For example, suppose a user device 110 feeds back a MCS order corresponding to 64QAM. In this scenario, the PDSCH transmitting base station 130 a-c may elect to use 16QAM/QPSK in resource elements that have collisions with reference signal data 140 a-c and maintain 64QAM in the other resource elements. Thus, a relatively high throughput for PDSCH transmission may be maintained with relatively low interference from reference signal data during joint transmission.
  • In other embodiments, a relatively high MCS order may be used during any PDSCH transmission. However, the user device 110 may elect to demodulate the relatively high order MCS as a lower order MCS. For example, the user device 110 may set the log likelihood ration (LLR) of some bits to zero.
  • FIG. 3 represents a system depiction of the user device 130 of FIG. 1. The user device may include a receiver 310 for receiving data and a transmitter 320 for transmitting data. In one or more embodiments, the receiver 310 and the transmitter 320 may be combined to form a transceiver capable of both receiving and transmitting data. For example, the receiver 310 may receive the reference signal 120 a-b from the base station 105 while the transmitter 320 may transmit the CSI signal 125 back to the base station 105.
  • Additionally, the user device 110 may also include a memory 330 for storing instructions and a processor 340 for executing those instructions. In one or more embodiments, Join Processing Module 120 (not shown) may include the processor 340 and memory 330 or may be otherwise in communication with the processor 340 and the memory 330. In other embodiments, the Join Processing Module 120 may be a program stored in the memory 330, and thereby provide instructions for the processor 340 to execute. As such, the processor 340 may carry out instructions from the Join Processing Module 120 to perform interference canceling as described above with reference to FIG. 1.
  • While FIG. 3 illustrates only one of each component, it should be understood that multiple instances of these components are also contemplated within the present disclosure. For example, the user device 110 may also include more than one processor and more than one memory. Furthermore, the user device 110 may also include multiple storage devices.
  • Similarly, FIG. 4 represents a system depiction of an example base station 130 a-c that may be used to perform joint transmission with other base stations 130 a-c to the user device 110. Thus, the base station 130 a-c may include similar components to those illustrated in the user device 110 of FIG. 3. Specifically, the base station 130 a-c may also include a receiver 410, and transmitter 420, a processor 440, and memory 430. Additionally, the base station 105 may also include a router 450 to route communication between various user devices. In one or more embodiments, the memory 430 may store the table 200 illustrated in FIG. 2.
  • Furthermore, the base station 130 a-c may also include a Joint Transmission Logic (not shown) in communication with the processor 440 and memory 460. In one or more embodiments, Joint Transmission Logic 108 may include the processor 440 and memory 430. In other embodiments, the Joint Transmission Logic 130 may be a program stored in the memory 430, and thereby provide instructions for the processor 440 to execute. As such, the processor 440 may carry out instructions from the Joint Transmission Logic 108 to determine joint transmission signaling as described above with reference to FIG. 1. For example, the joint transmission logic 108 may determine that for a particular PDSCH transmission, a different MCS is to be used than the initial MCS fed back from the user device 120.
  • FIG. 5 represents a flow diagram depicting a method 500 for performing joint transmission in a wireless network according to one or more embodiments. The method may begin in step 510 when a user device wirelessly receives a plurality of colliding wireless signals, from a base station. One of the colliding wireless signals may include reference signal data while the other wireless signal may include user data.
  • Then, in step 520, the reference signal data and the user data may be combined into a superimposed signal. In step 530, the user device may filter out the reference signal data from the superimposed signal. As previously discussed, this process may involve Successive Interference Canceling by the user device.
  • Finally, in step 540, the user device may decode the user data from the superimposed signal. Thus, the user device may be capable of receiving simultaneous joint transmissions from multiple base stations even through significant amount of signal collision and interference. Furthermore, such joint transmission may be received without having to mute certain colliding user data resource elements that would otherwise decrease user data throughput to user device.
  • Instructions of software described above (including the steps described in FIG. 5) may be loaded for execution on a processor (such as the processor illustrated in FIG. 3 and/or FIG. 4) A processor can include a microprocessor, microcontroller, processor module or subsystem, programmable integrated circuit, programmable gate array, or another control or computing device. As used here, a “processor” can refer to a single component or to plural components (e.g., one CPU or multiple CPUs).
  • Data and instructions are stored in respective storage devices, which are implemented as one or more computer-readable or machine-readable storage media. The storage media include different forms of memory including semiconductor memory devices such as dynamic or static random access memories (DRAMs or SRAMs), erasable and programmable read-only memories (EPROMs), electrically erasable and programmable read-only memories (EEPROMs) and flash memories; magnetic disks such as fixed, floppy and removable disks; other magnetic media including tape; optical media such as compact disks (CDs) or digital video disks (DVDs); or other types of storage devices. Note that the instructions discussed above can be provided on one computer-readable or machine-readable storage medium, or alternatively, can be provided on multiple computer-readable or machine-readable storage media distributed in a large system having possibly plural nodes. Such computer-readable or machine-readable storage medium or media is (are) considered to be part of an article (or article of manufacture). An article or article of manufacture can refer to any manufactured single component or multiple components. The storage medium or media can be located either in the machine running the machine-readable instructions, or located at a remote site from which machine-readable instructions can be downloaded over a network for execution.
  • In the foregoing description, numerous details are set forth to provide an understanding of the subject disclosed herein. However, implementations may be practiced without some or all of these details. Other implementations may include modifications and variations from the details discussed above. It is intended that the appended claims cover such modifications and variations.
  • References throughout this specification to “one embodiment” or “an embodiment” mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one implementation encompassed within the present invention. Thus, appearances of the phrase “one embodiment” or “in an embodiment” are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be instituted in other suitable forms other than the particular embodiment illustrated and all such forms may be encompassed within the claims of the present application.
  • The following clauses and/or examples pertain to further embodiments:
  • One embodiment may include a method including: receiving, at a user equipment (UE) operating within a 3rd Generation Partnership Project (3GPP), Long Term Evolution-Advanced (LTE-Advanced) network via a Cooperative Multiple Point Transmission (CoMP) Scenario 3, a plurality of colliding wireless signals, wherein one of the wireless signals comprises reference signal data and another of the wireless signals comprises user data sent over a Physical Downlink Shared Channel (PDSCH); combining the reference signal data with the first user data into a superimposed signal; filtering out the reference signal data from the superimposed signal; and decoding the user data from the superimposed signal.
  • The method may also include that the colliding wireless signals are received from evolved node Bs (eNBs) simultaneously transmitting to the UE. The method may also include that the colliding wireless signals are sent as a joint transmission from the eNBs.
  • Furthermore, the method may also include that filtering out the reference signal data from the superimposed signal includes: detecting the reference signal data from the superimposed signal; estimating at least one channel response from the reference signal data; and subtracting the reference signal data from the superimposed wireless signal. The method may also include that after subtracting the reference signal data from the superimposed signal, the remaining part of the superimposed signal is the user data. The method may also include that the plurality of colliding wireless signals are sent over colliding resource elements.
  • Additionally, the method may include that the reference signal data is received on a first resource element, and the user data is received on a second resource element. The method may also include that the colliding reference signals are cell-specific reference signals. The method may also include that none of the user data is muted.
  • Another embodiment may also be at least one machine readable medium including a plurality of instructions that in response to being executed by a computer device, cause the computer device to carry out the above-described method.
  • A further embodiment may be a user equipment (UE)including: a transceiver; and a joint processing module having a memory and a processor, wherein the UE operates within a 3rd Generation Partnership Project (3GPP), Long Term Evolution-Advanced (LTE-Advanced) network, and wherein the memory is to store instructions, and the processor is to execute the instructions to: receive, at the transceiver via a Cooperative Multiple Point Transmission (CoMP) Scenario 3, a first wireless signal on a first resource element colliding with a second wireless signal on a second resource element, wherein the first wireless signal comprises reference signal data and the second wireless signal comprises user data sent over a Physical Downlink Shared Channel (PDSCH); combine the reference signal data with the user data into a superimposed signal; filter out the reference signal data from the superimposed signal; and decode the user data from the superimposed signal.
  • The UE may also include a display. The UE may also include that the colliding wireless signals are received from multiple base stations simultaneously transmitting to the system. The UE may also include that the instructions to filter out the reference signal data from the superimposed signal further include instructions to: detect the reference signal data from the superimposed signal; estimate at least one channel response from the reference signal data; and subtract the reference signal data from the superimposed wireless signal.
  • Furthermore, the UE may include that after subtracting the reference signal data from the superimposed signal, the remaining part of the superimposed signal is the user data. The UE may also include that the plurality of colliding wireless signals are cell-specific reference signals.
  • Another embodiment may be an evolved node B (eNB), including: a transceiver; and a joint transmission logic having a memory and a processor, wherein the eNB operates within a 3rd Generation Partnership Project (3GPP), Long Term Evolution-Advanced (LTE-Advanced) network, wherein the memory is to store instructions, and the processor is to execute the instructions to: receive, via the transceiver, an initial modulation and coding scheme from a user equipment (UE); and transmit user data, using a lower modulation and coding scheme than the initial modulation and coding scheme, over a first resource element that collides with reference signal data over a second resource element.
  • The eNB may also include that the memory further comprises instructions to transmit, using the initial modulation and coding scheme, user data over a third resource element that does not collide with reference signal data. The eNB may also include that the reference signal data originates from a second eNB transmitting to the UE simultaneously with the eNB via the Cooperative Multiple Point Transmission (CoMP) Scenario 3.

Claims (28)

1. A method, comprising:
receiving, at a user equipment (UE) operating within a 3rd Generation Partnership Project (3GPP), Long Term Evolution-Advanced (LTE-Advanced) network via a Cooperative Multiple Point Transmission (CoMP) Scenario 3, a plurality of colliding wireless signals, wherein one of the wireless signals comprises reference signal data and another of the wireless signals comprises user data sent over a Physical Downlink Shared Channel (PDSCH);
combining the reference signal data with the user data into a superimposed signal;
filtering out the reference signal data from the superimposed signal; and
decoding the user data from the superimposed signal.
2. The method of claim 1, wherein the colliding wireless signals are received from multiple evolved node Bs (eNBs) simultaneously transmitting to the UE.
3. The method of claim 2, wherein the colliding wireless signals are sent as a joint transmission from the multiple eNBs.
4. The method of claim 1, wherein filtering out the reference signal data from the superimposed signal comprises:
detecting the reference signal data from the superimposed signal;
estimating at least one channel response from the reference signal data; and
subtracting the reference signal data from the superimposed wireless signal.
5. The method of claim 4, wherein after subtracting the reference signal data from the superimposed signal, the remaining part of the superimposed signal is the user data.
6. The method of claim 1, wherein the plurality of colliding wireless signals are sent over colliding resource elements.
7. The method of claim 6, wherein the reference signal data is received on a first resource element, and the user data is received on a second resource element.
8. The method of claim 6, wherein the colliding reference signals are cell-specific reference signals.
9. The method of claim 1, wherein none of the user data is muted.
10. At least one non-transitory machine readable medium comprising a plurality of instructions that in response to being executed by a computer device, cause the computer device to carry out a method comprising:
receiving, at a user equipment (UE) operating within a 3rd Generation Partnership Project (3GPP), Long Term Evolution-Advanced (LTE-Advanced) network via a Cooperative Multiple Point Transmission (CoMP) Scenario 3, a plurality of colliding wireless signals, wherein one of the wireless signals comprises reference signal data and another of the wireless signals comprises user data sent over a Physical Downlink Shared Channel (PDSCH);
combining the reference signal data with the user data into a superimposed signal;
filtering out the reference signal data from the superimposed signal; and
decoding the user data from the superimposed signal.
11. A user equipment (UE), comprising:
a transceiver; and
a joint processing module having a memory and a processor, wherein the UE operates within a 3rd Generation Partnership Project (3GPP), Long Term Evolution-Advanced (LTE-Advanced) network, and wherein the memory is to store instructions, and the processor is to execute the instructions to:
receive, at the transceiver via a Cooperative Multiple Point Transmission (CoMP) Scenario 3, a first wireless signal on a first resource element colliding with a second wireless signal on a second resource element, wherein the first wireless signal comprises reference signal data and the second wireless signal comprises user data sent over a Physical Downlink Shared Channel (PDSCH);
combine the reference signal data with the user data into a superimposed signal;
filter out the reference signal data from the superimposed signal; and
decode the user data from the superimposed signal.
12. The UE of claim 11, wherein a precoded data symbol is to be sent over the first resource element and the second resource element.
13. The UE of claim 12, wherein filtering out the reference signal data results in a first remaining signal on the first resource element and a second remaining signal on a second resource element.
14. The UE of claim 13, wherein the instructions to decode the user data from the superimposed signal further comprise instructions to:
combine the first remaining signal with the second remaining signal.
15. The UE of claim 11, wherein the instructions to filter out the reference signal data from the superimposed signal further comprise instructions to:
detect the reference signal data from the superimposed signal;
estimate at least one channel response from the reference signal data; and subtract the reference signal data from the superimposed wireless signal.
16. The UE of claim 14, wherein after subtracting the reference signal data from the superimposed signal, the remaining part of the superimposed signal is the user data.
17. The UE of claim 11, wherein the plurality of colliding wireless signals are cell-specific reference signals.
18. An evolved node B (eNB), comprising:
a transceiver; and
a joint transmission logic having a memory and a processor, wherein the eNB operates within a 3rd Generation Partnership Project (3GPP), Long Term Evolution-Advanced (LTE-Advanced) network, wherein the memory is to store instructions, and the processor is to execute the instructions to:
receive, via the transceiver, an initial modulation and coding scheme from a user equipment (UE); and
transmit user data over a Physical Downlink Shared Channel (PDSCH), using a lower modulation and coding scheme than the initial modulation and coding scheme, over a first resource element that collides with reference signal data over a second resource element, wherein the user data is transmitted via a Cooperative Multiple Point Transmission (CoMP) Scenario 3.
19. The eNB of claim 18, wherein the memory further comprises instructions to:
transmit, using the initial modulation and coding scheme, user data over a third resource element that does not collide with reference signal data.
20. The eNB of claim 18, wherein the reference signal data originates from a second eNB transmitting to the UE simultaneously with the eNB via the Cooperative Multiple Point Transmission (CoMP) Scenario 3.
21. The medium of claim 10, wherein the colliding wireless signals are received from multiple evolved node Bs (eNBs) simultaneously transmitting to the UE.
22. The medium of claim 11, wherein the colliding wireless signals are sent as a joint transmission from the multiple eNBs.
23. The medium of claim 10, wherein filtering out the reference signal data from the superimposed signal comprises:
detecting the reference signal data from the superimposed signal;
estimating at least one channel response from the reference signal data; and
subtracting the reference signal data from the superimposed wireless signal.
24. The medium of claim 13, wherein after subtracting the reference signal data from the superimposed signal, the remaining part of the superimposed signal is the user data.
25. The medium of claim 10, wherein the plurality of colliding wireless signals are sent over colliding resource elements.
26. The medium of claim 15, wherein the reference signal data is received on a first resource element, and the user data is received on a second resource element.
27. The medium of claim 15, wherein the colliding reference signals are cell-specific reference signals.
28. The medium of claim 10, wherein none of the user data is muted.
US14/124,278 2011-09-30 2012-09-28 Joint Transmission in a Wireless Network Abandoned US20140105109A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/124,278 US20140105109A1 (en) 2011-09-30 2012-09-28 Joint Transmission in a Wireless Network

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161542086P 2011-09-30 2011-09-30
US14/124,278 US20140105109A1 (en) 2011-09-30 2012-09-28 Joint Transmission in a Wireless Network
PCT/US2012/057782 WO2013049479A2 (en) 2011-09-30 2012-09-28 Joint transmission in a wireless network

Publications (1)

Publication Number Publication Date
US20140105109A1 true US20140105109A1 (en) 2014-04-17

Family

ID=47992518

Family Applications (21)

Application Number Title Priority Date Filing Date
US13/995,154 Active 2033-03-23 US9402264B2 (en) 2011-09-30 2012-03-29 Methods to transport internet traffic over multiple wireless networks simultaneously
US13/996,694 Expired - Fee Related US9113489B2 (en) 2011-09-30 2012-03-30 Geographically isolated antennas
US13/997,221 Active 2032-05-08 US9635610B2 (en) 2011-09-30 2012-04-11 Uplink power control signaling with carrier aggregation
US13/997,219 Active 2035-07-18 US10070383B2 (en) 2011-09-30 2012-04-11 Improving carrier aggregation performance
US13/997,223 Active 2032-06-11 US9992742B2 (en) 2011-09-30 2012-04-11 Discontinuous reception in a wireless device for in-device coexistence
US13/997,230 Active 2032-10-24 US9699731B2 (en) 2011-09-30 2012-05-14 Inter-node interference cancellation
US13/997,256 Active 2033-03-27 US9693304B2 (en) 2011-09-30 2012-05-14 Rescheduling of a resource component of low power nodes (LPNs) in a coordination set
US13/977,009 Active US9370018B2 (en) 2011-09-30 2012-06-08 Techniques for uplink power control
US13/529,280 Expired - Fee Related US9088872B2 (en) 2011-09-30 2012-06-21 Hybrid codebook design for wireless systems
US13/531,848 Active 2034-01-11 US9144085B2 (en) 2011-09-30 2012-06-25 Multicast/broadcast service continuity in multi-carrier networks
US13/538,775 Active 2034-05-11 US9456415B2 (en) 2011-09-30 2012-06-29 Physical-layer cell identity (PCI) partition for heterogeneous networks
US13/569,350 Abandoned US20130084867A1 (en) 2011-09-30 2012-08-08 Method, apparatus and system of membership verification
US13/592,621 Active US9210550B2 (en) 2011-09-30 2012-08-23 Network vetting of wireless mobile device initiated disconnect
US14/124,278 Abandoned US20140105109A1 (en) 2011-09-30 2012-09-28 Joint Transmission in a Wireless Network
US13/977,523 Active 2033-06-15 US9351311B2 (en) 2011-09-30 2012-10-03 Mapping an enhanced physical downlink control channel
US14/104,012 Abandoned US20140099957A1 (en) 2011-09-30 2013-12-12 Method, apparatus and system of membership verification
US14/489,327 Active 2033-08-29 US9894608B2 (en) 2011-09-30 2014-09-17 Multicast/broadcast service continuity in multi-carrier networks
US14/806,974 Active US9854524B2 (en) 2011-09-30 2015-07-23 Geographically isolated antennas
US14/956,925 Abandoned US20160088559A1 (en) 2011-09-30 2015-12-02 Network vetting of wireless mobile device initiated disconnect
US15/130,875 Active 2032-12-19 US10212661B2 (en) 2011-09-30 2016-04-15 Mapping an enhanced physical downlink control channel
US15/861,538 Active US11178613B2 (en) 2011-09-30 2018-01-03 Multicast/broadcast service continuity in multi-carrier networks

Family Applications Before (13)

Application Number Title Priority Date Filing Date
US13/995,154 Active 2033-03-23 US9402264B2 (en) 2011-09-30 2012-03-29 Methods to transport internet traffic over multiple wireless networks simultaneously
US13/996,694 Expired - Fee Related US9113489B2 (en) 2011-09-30 2012-03-30 Geographically isolated antennas
US13/997,221 Active 2032-05-08 US9635610B2 (en) 2011-09-30 2012-04-11 Uplink power control signaling with carrier aggregation
US13/997,219 Active 2035-07-18 US10070383B2 (en) 2011-09-30 2012-04-11 Improving carrier aggregation performance
US13/997,223 Active 2032-06-11 US9992742B2 (en) 2011-09-30 2012-04-11 Discontinuous reception in a wireless device for in-device coexistence
US13/997,230 Active 2032-10-24 US9699731B2 (en) 2011-09-30 2012-05-14 Inter-node interference cancellation
US13/997,256 Active 2033-03-27 US9693304B2 (en) 2011-09-30 2012-05-14 Rescheduling of a resource component of low power nodes (LPNs) in a coordination set
US13/977,009 Active US9370018B2 (en) 2011-09-30 2012-06-08 Techniques for uplink power control
US13/529,280 Expired - Fee Related US9088872B2 (en) 2011-09-30 2012-06-21 Hybrid codebook design for wireless systems
US13/531,848 Active 2034-01-11 US9144085B2 (en) 2011-09-30 2012-06-25 Multicast/broadcast service continuity in multi-carrier networks
US13/538,775 Active 2034-05-11 US9456415B2 (en) 2011-09-30 2012-06-29 Physical-layer cell identity (PCI) partition for heterogeneous networks
US13/569,350 Abandoned US20130084867A1 (en) 2011-09-30 2012-08-08 Method, apparatus and system of membership verification
US13/592,621 Active US9210550B2 (en) 2011-09-30 2012-08-23 Network vetting of wireless mobile device initiated disconnect

Family Applications After (7)

Application Number Title Priority Date Filing Date
US13/977,523 Active 2033-06-15 US9351311B2 (en) 2011-09-30 2012-10-03 Mapping an enhanced physical downlink control channel
US14/104,012 Abandoned US20140099957A1 (en) 2011-09-30 2013-12-12 Method, apparatus and system of membership verification
US14/489,327 Active 2033-08-29 US9894608B2 (en) 2011-09-30 2014-09-17 Multicast/broadcast service continuity in multi-carrier networks
US14/806,974 Active US9854524B2 (en) 2011-09-30 2015-07-23 Geographically isolated antennas
US14/956,925 Abandoned US20160088559A1 (en) 2011-09-30 2015-12-02 Network vetting of wireless mobile device initiated disconnect
US15/130,875 Active 2032-12-19 US10212661B2 (en) 2011-09-30 2016-04-15 Mapping an enhanced physical downlink control channel
US15/861,538 Active US11178613B2 (en) 2011-09-30 2018-01-03 Multicast/broadcast service continuity in multi-carrier networks

Country Status (16)

Country Link
US (21) US9402264B2 (en)
EP (12) EP2761927A4 (en)
JP (3) JP5777039B2 (en)
KR (1) KR101569640B1 (en)
CN (13) CN103947249B (en)
AU (1) AU2012316021B2 (en)
BR (2) BR112014007424B1 (en)
CA (2) CA2967465C (en)
ES (7) ES2620104T3 (en)
HK (1) HK1207234A1 (en)
HU (6) HUE032133T2 (en)
IN (1) IN2014CN02309A (en)
MX (2) MX2014003737A (en)
MY (1) MY172951A (en)
RU (2) RU2573580C2 (en)
WO (11) WO2013048567A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140219233A1 (en) * 2011-10-19 2014-08-07 Lg Electronics Inc. Communication method for cooperative multi-point and wireless device using same
US20170363007A1 (en) * 2016-06-15 2017-12-21 United Technologies Corporation Isothermalized cooling of gas turbine engine components
CN109348510A (en) * 2018-10-17 2019-02-15 中国联合网络通信集团有限公司 Load-balancing method, device and base station

Families Citing this family (268)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089448B1 (en) * 2006-11-10 2011-12-07 후지쯔 가부시끼가이샤 Wireless communication system
US8331975B2 (en) 2008-12-03 2012-12-11 Interdigital Patent Holdings, Inc. Uplink power control for distributed wireless communication
GB201018633D0 (en) * 2010-11-04 2010-12-22 Nec Corp Communication system
US9313747B2 (en) 2011-07-01 2016-04-12 Intel Corporation Structured codebook for uniform circular array (UCA)
KR20130018036A (en) * 2011-08-12 2013-02-20 삼성전자주식회사 Device and method for selecting a cell according mobility of mobile terminal in moblil communication system
US9402264B2 (en) * 2011-09-30 2016-07-26 Intel Corporation Methods to transport internet traffic over multiple wireless networks simultaneously
US10149118B2 (en) * 2011-10-03 2018-12-04 Lg Electronics Inc. Method and apparatus for transmitting service interest indication message in wireless communication system
CA2850750C (en) 2011-10-05 2020-12-15 Samsung Electronics Co., Ltd. Method and apparatus for selecting neighbor cells in mobile communication system
JP5905590B2 (en) 2011-10-26 2016-04-20 エルジー エレクトロニクス インコーポレイティド Method and apparatus for assigning control channel in wireless communication system
US8774804B2 (en) * 2011-10-31 2014-07-08 Intel Corporation Context-retention controller and method for context retention in wirless access networks
KR20130050024A (en) * 2011-11-07 2013-05-15 주식회사 팬택 Method and apparatus for mapping, transmitting and receiving e-pdcch in wireless communication system
WO2013069707A1 (en) * 2011-11-07 2013-05-16 京セラ株式会社 Mobile terminal and processor
EP2777328A1 (en) * 2011-11-08 2014-09-17 Koninklijke KPN N.V. Distribution of system information in a wireless access telecommunications system
JP5836496B2 (en) * 2011-11-09 2015-12-24 エルジー エレクトロニクス インコーポレイティド Control channel monitoring method and wireless device
US9049730B2 (en) * 2011-11-14 2015-06-02 Qualcomm Incorporated Uplink data transmission with interference mitigation
EP2597793A1 (en) * 2011-11-25 2013-05-29 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Method for estimating interference within a serving cell, user equipment, computer program and computer program products
WO2013095034A1 (en) * 2011-12-22 2013-06-27 엘지전자 주식회사 Method for measuring a wireless communication state in a wireless access system, and apparatus therefor
CN106788929B (en) * 2012-01-09 2020-01-17 华为技术有限公司 Control channel resource mapping method, base station and user equipment
CN103200684B (en) 2012-01-09 2016-01-13 华为技术有限公司 A kind of control channel transmission, method of reseptance and base station, subscriber equipment
KR102031093B1 (en) * 2012-01-11 2019-10-11 엘지전자 주식회사 Method and apparatus for receiving signal in wireless communication system
JP6020837B2 (en) * 2012-01-19 2016-11-02 サン パテント トラスト Transmitting apparatus, transmitting method, and integrated circuit
US8953478B2 (en) * 2012-01-27 2015-02-10 Intel Corporation Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback
JPWO2013111905A1 (en) * 2012-01-27 2015-05-11 京セラ株式会社 Mobile communication system, user terminal, base station, and processor
WO2013110217A1 (en) * 2012-01-29 2013-08-01 Alcatel Lucent An uplink overload indicator for time division duplex wireless communication systems
JP5827899B2 (en) * 2012-01-30 2015-12-02 株式会社Nttドコモ COMMUNICATION SYSTEM, BASE STATION DEVICE, MOBILE TERMINAL DEVICE, AND COMMUNICATION METHOD
CN102572713B (en) * 2012-01-30 2014-08-20 电信科学技术研究院 MBMS reception and capability transmission method and apparatus thereof
US9060028B1 (en) * 2012-02-01 2015-06-16 Sprint Spectrum L.P. Method and apparatus for rejecting untrusted network
WO2013121727A1 (en) 2012-02-16 2013-08-22 パナソニック株式会社 Receiver device, transmitter device, reception method, and transmission method
US9301198B2 (en) * 2012-02-24 2016-03-29 Intel Corporation Cooperative radio access network with centralized base station baseband unit (BBU) processing pool
US9036573B2 (en) * 2012-03-09 2015-05-19 Neocific, Inc. Multi-carrier modulation with hierarchical resource allocation
EP2639989A1 (en) 2012-03-16 2013-09-18 Panasonic Corporation Search space for ePDCCH control information in an OFDM-based mobile communication system
KR102190628B1 (en) 2012-03-19 2020-12-14 텔레폰악티에볼라겟엘엠에릭슨(펍) Configuration of coordinated multipoint transmission hypotheses for channel state information reporting
WO2013141784A1 (en) 2012-03-19 2013-09-26 Telefonaktiebolaget L M Ericsson (Publ) Artificial interference injection for channel state information reporting
WO2013145489A1 (en) * 2012-03-29 2013-10-03 ソニー株式会社 Wireless communication device, wireless communication method, and wireless communication system
JP6081074B2 (en) * 2012-03-30 2017-02-15 株式会社Nttドコモ Wireless communication system, base station apparatus, and wireless communication method
US9143984B2 (en) 2012-04-13 2015-09-22 Intel Corporation Mapping of enhanced physical downlink control channels in a wireless communication network
EP2839706A1 (en) * 2012-04-18 2015-02-25 Qualcomm Incorporated Multi-radio coexistence
US9504057B2 (en) * 2012-05-11 2016-11-22 Apple Inc. Methods and apparatus for in-device coexistence detection and mitigation
US9231723B2 (en) * 2012-05-11 2016-01-05 Intel Corporation Coordinated dynamic point selection (DPS) with cell range expansion in a coordinated multipoint (CoMP) system
JP6206884B2 (en) * 2012-05-14 2017-10-04 ▲ホア▼▲ウェイ▼技術有限公司Huawei Technologies Co.,Ltd. Service instruction message reporting method, apparatus, and system
CN104303547B (en) * 2012-05-14 2019-05-03 诺基亚技术有限公司 Signaling framework for auxiliary information
TWI505726B (en) * 2012-05-18 2015-10-21 Innovative Sonic Corp Method and apparatus for improving frequency prioritization in a wireless communication network
US9084203B2 (en) * 2012-05-21 2015-07-14 Qualcomm Incorporated Methods and apparatus for providing transmit power control for devices engaged in D2D communications
KR20150016209A (en) * 2012-05-25 2015-02-11 엘지전자 주식회사 Method and apparatus for monitoring downlink control channel
US9788226B2 (en) * 2012-06-05 2017-10-10 Lg Electronics Inc. Method and apparatus for reporting channel state information
US8831655B2 (en) 2012-06-05 2014-09-09 Apple Inc. Methods and apparatus for coexistence of wireless subsystems in a wireless communication device
US9297697B2 (en) 2012-06-05 2016-03-29 Apple Inc. In-device coexistence between radios
WO2013184053A1 (en) * 2012-06-08 2013-12-12 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for supporting retransmission
US20130343252A1 (en) * 2012-06-25 2013-12-26 Broadcom Corporation Power Saving for Mobile Terminals
US9210605B2 (en) * 2012-06-29 2015-12-08 Qualcomm Incorporated Channel state information reporting for partially cancelled interference
WO2014010901A1 (en) * 2012-07-11 2014-01-16 Lg Electronics Inc. Method and apparatus for changing discontinuous reception cycle in wireless communication system
US9444608B2 (en) * 2012-07-26 2016-09-13 Huawei Device Co., Ltd. Control channel transmission method and apparatus to implement transmission of ePDCCHs through an eREG in a unit physical resource block
US9723523B2 (en) * 2012-08-03 2017-08-01 Blackberry Limited Maintaining MBMS continuity
CN104584461B (en) * 2012-08-15 2018-01-09 Lg 电子株式会社 The method and apparatus for sending instruction in a wireless communication system
US20150181571A1 (en) * 2012-08-15 2015-06-25 Lg Electronics Inc. Method monitoring pdcch based on drx and communication device thereof
US9642183B2 (en) * 2012-08-31 2017-05-02 Dell Products L.P. Information handling system proximity-based wireless interface connectivity
GB2505696A (en) * 2012-09-07 2014-03-12 Sony Corp Receiving a sleep indication signal at a communications device in the narrow band control channel of a virtual carrier
KR102130353B1 (en) * 2012-09-18 2020-07-06 삼성전자주식회사 Method and apparatus for generating control channel element in communication system
US9369248B2 (en) * 2012-09-19 2016-06-14 Telefonaktiebolaget Lm Ericsson (Publ) Method and communication node for mapping an enhanced physical downlink control channel, EPDCCH, message
US9107174B2 (en) * 2012-10-12 2015-08-11 Futurewei Technologies, Inc. Systems and methods for uplink power control and scheduling in a wireless network
CN103781177B (en) * 2012-10-19 2018-10-30 株式会社Ntt都科摩 A kind of information transferring method, device and base station
WO2014065584A1 (en) * 2012-10-23 2014-05-01 엘지전자 주식회사 Method for receiving control information in wireless communication system and apparatus therefor
US10111049B2 (en) * 2012-10-26 2018-10-23 Qualcomm Incorporated Multiband eMBMS enhancement using carrier aggregation
US9980247B2 (en) * 2012-10-26 2018-05-22 Qualcomm Incorporated Primary cell signaling for eMBMS in carrier aggregation
CN103796208B (en) * 2012-10-26 2017-02-08 北京邮电大学 Physical cell identity classification self-configuration method and device
US9258629B2 (en) * 2012-12-11 2016-02-09 Huawei Technologies Co., Ltd. System and method for an agile cloud radio access network
FR3000358B1 (en) * 2012-12-21 2018-01-12 Airbus Ds Sas METHOD FOR ESTABLISHING A BATTERY ENERGY SAVING STRATEGY OF MOBILE TERMINALS
US20140185532A1 (en) * 2012-12-28 2014-07-03 Bhaskar Rao Downlink and uplink interference mitigation in a multicell network using interference cancellation and orthogonal resource allocation
KR102218914B1 (en) 2013-01-07 2021-02-23 엘지전자 주식회사 Method and apparatus for transmitting/receiving signals
CN104982073B (en) * 2013-01-14 2020-01-31 Lg 电子株式会社 Method for detecting small cell based on discovery signal
EP2944109B1 (en) * 2013-01-14 2019-12-18 Telefonaktiebolaget LM Ericsson (publ) Resource scheduling in a wireless communication network
US9743305B2 (en) * 2013-01-17 2017-08-22 Intel IP Corporation Fast small cell discovery
US20140204781A1 (en) * 2013-01-21 2014-07-24 Michael Horvat Method and device for determining a signal detection quality for a physical control channel
US10009803B2 (en) * 2013-02-12 2018-06-26 Altiostar Networks, Inc. Long term evolution radio access network
US10326569B2 (en) 2013-02-12 2019-06-18 Altiostar Networks, Inc. Inter-site carrier aggregation with physical uplink control channel monitoring
US9521637B2 (en) 2013-02-14 2016-12-13 Blackberry Limited Small cell demodulation reference signal and initial synchronization
US8964705B2 (en) 2013-02-14 2015-02-24 Blackberry Limited For small cell demodulation reference signal and initial synchronization
EP2959744B1 (en) * 2013-02-21 2016-11-09 Telefonaktiebolaget LM Ericsson (publ) Method, wireless device and computer program for use with discontinuous reception
KR102065020B1 (en) * 2013-03-11 2020-01-10 삼성전자주식회사 Apparatus and method for obtaining synchronization in wireless communication system
US9173109B2 (en) * 2013-03-15 2015-10-27 Blackberry Limited Radio link quality monitoring
CN104066093B (en) * 2013-03-18 2018-03-23 财团法人工业技术研究院 Interference management method, anchor point equipment, base station and system of wireless communication system
US9210670B2 (en) * 2013-03-18 2015-12-08 Samsung Electronics Co., Ltd. Uplink power control in adaptively configured TDD communication systems
CN105164948B (en) * 2013-04-05 2018-03-09 华为技术有限公司 Method for Inter-Cell Interference Coordination
KR102034025B1 (en) * 2013-04-08 2019-10-18 한국전자통신연구원 Method and apparatus for frequency allocation
CN109495231B (en) * 2013-04-25 2023-05-09 华为技术有限公司 Method and device for transmitting signals
GB2513870A (en) 2013-05-07 2014-11-12 Nec Corp Communication system
CN105191192B (en) * 2013-05-09 2018-04-20 Lg 电子株式会社 Receive the method for being used for the search signal for detecting small size cell
US20160112888A1 (en) * 2013-05-10 2016-04-21 Elwha Llc Dynamic point to point mobile network including intermediate user interface aspects system and method
US9832728B2 (en) 2013-05-10 2017-11-28 Elwha Llc Dynamic point to point mobile network including origination user interface aspects system and method
US9380614B2 (en) * 2013-05-23 2016-06-28 Lg Electronics Inc. Method of performing communication by user equipment in cloud radio access network environment and apparatus therefor
US9730271B2 (en) * 2013-06-03 2017-08-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Systems and methods for splitting and recombining communications in multi-network environments
US9907006B2 (en) 2013-06-03 2018-02-27 Avago Technologies General Ip (Singapore) Pte. Ltd. Cross radio access technology access with handoff and interference management using communication performance data
US9888422B2 (en) 2013-06-03 2018-02-06 Avago Technologies General Ip (Singapore) Pte. Ltd. System and method for adaptive access and handover configuration based on prior history in a multi-RAT environment
WO2014198479A1 (en) * 2013-06-13 2014-12-18 Sony Corporation Telecommunications apparatus and methods
EP3309973B1 (en) 2013-06-26 2021-05-19 Huawei Technologies Co., Ltd. Reference signal transmission method and apparatus
CN104254121B (en) * 2013-06-28 2018-05-29 电信科学技术研究院 A kind of PUSCH Poewr control methods and device
US8995543B2 (en) 2013-06-28 2015-03-31 Intel Mobile Communications GmbH Method and device for channel estimation with colliding interference cancellation
CN104284440B (en) * 2013-07-04 2019-05-21 电信科学技术研究院 Dispatching method, cooperative transmission node and center cooperation point in down collaboration transmission
CN110266353B (en) * 2013-07-05 2022-03-22 株式会社Ntt都科摩 Terminal, base station, sending method and method for determining precoding matrix
WO2015020179A1 (en) 2013-08-09 2015-02-12 三菱電機株式会社 Communication system
WO2015018068A1 (en) * 2013-08-09 2015-02-12 富士通株式会社 Information interaction method, base station and communication system
EP3033904A4 (en) * 2013-08-12 2017-06-21 Intel Corporation Managing communications in multiple radio access networks
CN105474558B (en) * 2013-08-18 2019-11-08 Lg电子株式会社 Repeater operation method and apparatus in wireless communication system
WO2015046939A1 (en) * 2013-09-26 2015-04-02 Lg Electronics Inc. Method and apparatus for transmitting interest indication for group communication in wireless communication system
US20160249183A1 (en) * 2013-10-23 2016-08-25 Lg Electronics Inc. Method of selectively transmitting mbms service level information in wireless communication system and apparatus therefor
US9948541B2 (en) 2013-10-24 2018-04-17 Parallel Wireless, Inc. Full duplex services using RTS/CTS
WO2015061983A1 (en) * 2013-10-30 2015-05-07 Qualcomm Incorporated Service continuity for group communications over evolved multimedia broadcast multicast service
US10321456B2 (en) * 2013-10-31 2019-06-11 Sony Corporation Network element and method of communicating using a plurality of controls channels modules
WO2015080413A1 (en) * 2013-11-29 2015-06-04 Lg Electronics Inc. Method and apparatus for determining multimedia broadcast multicast service interest in wireless communication system
FR3015830B1 (en) * 2013-12-19 2017-03-17 Sagem Defense Securite DEVICE FOR INTERCONNECTING CONTROLLED SAFETY COMMUNICATION NETWORKS
CN104754622A (en) * 2013-12-31 2015-07-01 中兴通讯股份有限公司 Indication information sending method and device and user equipment
KR102206280B1 (en) 2014-01-24 2021-01-22 삼성전자주식회사 Method and apparatus for setting a handover parameter in mobile communication system
KR102129037B1 (en) * 2014-02-04 2020-07-02 삼성전자주식회사 A Method and an apparatus for performing Carrier Aggregation using Multiple ABS(Almost Blank Subframe) pattern in a macro cell base station of a wireless communication system with Heterogeneous Networks
WO2015127241A1 (en) * 2014-02-21 2015-08-27 Convida Wireless, Llc Handover in integrated small cell and wifi networks
EP2930994B1 (en) 2014-04-07 2016-05-18 Alcatel Lucent Mitigating UL-to-DL interference
US9338685B2 (en) * 2014-04-09 2016-05-10 Verizon Patent And Licensing Inc. Evolved node B resource management based on interest indicators
US10015790B2 (en) 2014-04-25 2018-07-03 Lg Electronics Inc. Method and device for transmitting/receiving radio signal in wireless communication system
US9467212B2 (en) * 2014-05-09 2016-10-11 Huawei Technologies Canada Co., Ltd. System and method for multiple-input multiple-output communication
EP3133747B1 (en) * 2014-05-15 2018-12-12 Huawei Technologies Co. Ltd. Method and apparatus for transmitting and feeding back signal
CN104038999B (en) * 2014-05-26 2018-04-27 大唐移动通信设备有限公司 Block the suppressing method and device of interference
EP3627900B1 (en) 2014-06-12 2021-02-03 Huawei Technologies Co., Ltd. Bearer handover control method and serving gateway
EP3157273B1 (en) * 2014-06-13 2019-10-23 Sharp Kabushiki Kaisha Base-station device, terminal device, and communication method
EP2966912A1 (en) * 2014-07-09 2016-01-13 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Method of, and transceiver station and mobile terminal for, distributing system information in a cellular telecommunications network.
KR101600955B1 (en) * 2014-07-16 2016-03-08 에스케이텔레콤 주식회사 Base station and control method thereof
US11445493B2 (en) 2014-07-31 2022-09-13 Lg Electronics Inc. Method and apparatus for transceiving wireless signal in wireless communication system
EP3771115B1 (en) * 2014-07-28 2022-09-07 LG Electronics Inc. Method and apparatus for transceiving wireless signal in wireless communication system
KR101582598B1 (en) * 2014-07-31 2016-01-05 에스케이텔레콤 주식회사 Terminal device and control method thereof
JP6391059B2 (en) * 2014-08-07 2018-09-19 華為技術有限公司Huawei Technologies Co.,Ltd. Interference cancellation method and device
US10772051B2 (en) 2014-08-15 2020-09-08 Parallel Wireless, Inc. Inter-cell interference mitigation
CN104184555B (en) * 2014-09-03 2017-06-23 西安电子科技大学 A kind of method for precoding based on dicode sheet suitable for 3D mimo systems
US9844070B2 (en) * 2014-09-10 2017-12-12 Cisco Technology, Inc. System and method for decoupling long term evolution media access control scheduling from subframe rate procedures
US9923705B2 (en) 2014-10-06 2018-03-20 Parallel Wireless, Inc. Full-duplex mesh networks
US10411853B2 (en) * 2014-10-10 2019-09-10 Lg Electronics Inc. Method and device for transmitting and receiving wireless signal in wireless communication system
WO2016073384A1 (en) 2014-11-03 2016-05-12 Parallel Wireless, Inc. Improved tracking area planning
US9729396B2 (en) 2014-11-04 2017-08-08 Cisco Technology, Inc. System and method for providing dynamic radio access network orchestration
US10356839B2 (en) * 2014-11-04 2019-07-16 Qualcomm Incorporated Low power discontinuous reception with a second receiver
CN107113787B (en) * 2014-11-07 2021-03-02 松下电器(美国)知识产权公司 Improved resource assignment for transmission on unlicensed carriers
US10939373B2 (en) * 2014-11-07 2021-03-02 Telefonaktiebolaget Lm Ericsson (Publ) Method for enhanced power saving mode for a wireless device
CN104363523B (en) * 2014-12-05 2018-08-31 中国科学院深圳先进技术研究院 A kind of asymmetric communication network and communications method
KR101866619B1 (en) * 2015-01-08 2018-06-14 주식회사 케이티 Methods for tranmitting and receving the single cell multipoint transmission data and Apparatuses thereof
EP3045794B1 (en) * 2015-01-16 2019-05-15 Nexans Downhole cable with integrated non-metallic tube
US20160227485A1 (en) * 2015-01-29 2016-08-04 Intel Corporation Drs based power control in communication systems
US9648634B2 (en) 2015-01-29 2017-05-09 Qualcomm Incorporated System and methods for providing a transmission skipping policy to improve performance in a multi-subscriber identity module (SIM) wireless communication device
JP6321830B2 (en) * 2015-01-30 2018-05-09 京セラ株式会社 Base station, user terminal and apparatus
US10264564B2 (en) * 2015-01-30 2019-04-16 Futurewei Technologies, Inc. System and method for resource allocation for massive carrier aggregation
KR102206361B1 (en) * 2015-01-30 2021-01-21 후아웨이 테크놀러지 컴퍼니 리미티드 Apparatus and method for performing uplink power control in wireless communication system supporting carrier aggregation
US9503990B2 (en) 2015-01-30 2016-11-22 Innovative Technology Lab Co., Ltd. Apparatus and method for performing uplink power control in wireless communication system supporting carrier aggregation
US10033513B2 (en) * 2015-02-09 2018-07-24 Huawei Technologies Co., Ltd. Channel impulse response estimation for full-duplex communication networks
CN105992377A (en) * 2015-02-16 2016-10-05 富士通株式会社 Resource scheduling method, device and communication system
DE102015105008A1 (en) * 2015-03-31 2016-10-06 Atmel Corporation Device for activating an electrically or electronically controlled device from an energy-saving passive state
KR101870022B1 (en) * 2015-04-02 2018-06-22 주식회사 케이티 Methods for reconfiguring radio bearer and Apparatuses thereof
US10419315B2 (en) * 2015-04-03 2019-09-17 Lg Electronics Inc. Method for performing a packet delay calculation in a PDCP entity in a wireless communication system and a device therefor
US20180084407A1 (en) * 2015-04-08 2018-03-22 Lg Electronics Inc. Method for transmitting sidelink terminal information of terminal in wireless communication system and terminal utilizing the method
WO2016163656A1 (en) 2015-04-09 2016-10-13 Lg Electronics Inc. Method for performing a pdcch monitoring in a carrier aggregation with at least one scell operating in an unlicensed spectrum and a device therefor
JP6313904B2 (en) * 2015-04-10 2018-04-18 京セラ株式会社 Base station, communication method and processor
US9973963B2 (en) 2015-05-07 2018-05-15 Parallel Wireless, Inc. Virtual guard bands
US20170171820A1 (en) * 2015-06-16 2017-06-15 Telefonaktiebolaget L M Ericsson (Publ) A high power radio base station, a low power radio base station and respective method performed thereby for communication with a wireless device
US9961688B1 (en) * 2015-07-12 2018-05-01 Kiomars Anvari Cloud ran architecture
US10244422B2 (en) 2015-07-16 2019-03-26 Cisco Technology, Inc. System and method to manage network utilization according to wireless backhaul and radio access network conditions
CN105162564B (en) * 2015-07-31 2019-02-01 中国科学院上海高等研究院 A kind of broadcast time resource allocation methods and device
US10015640B2 (en) 2015-08-12 2018-07-03 At&T Intellectual Property I, L.P. Network device selection for broadcast content
US9979604B2 (en) 2015-08-12 2018-05-22 At&T Intellectual Property I, L.P. Network management for content broadcast
CN106470096B (en) * 2015-08-14 2021-03-23 索尼公司 Apparatus and method for base station side and user equipment side for wireless communication
US10064208B2 (en) * 2015-08-24 2018-08-28 Qualcomm Incorporated Multi-carrier throughput enhancement by opportunistic packet scheduling with SPS concurrency
TWI763633B (en) * 2015-08-25 2022-05-11 美商Idac控股公司 Wireless transmit/receive unit and method implemented therein
CN107852264B (en) * 2015-08-28 2021-05-11 苹果公司 Beamformed Physical Downlink Control Channel (BPDCCH) for narrow beam based wireless communication
KR102419407B1 (en) * 2015-08-31 2022-07-11 삼성전자주식회사 Apparatus and method for operating radio access technology in communication system supporting time division duplexing scheme
CN106535333B (en) * 2015-09-11 2019-12-13 电信科学技术研究院 Physical downlink control channel transmission method and device
CN106559111B (en) * 2015-09-25 2021-03-26 中兴通讯股份有限公司 Method, device and system for acquiring codebook
KR102172109B1 (en) * 2015-10-26 2020-10-30 에스케이텔레콤 주식회사 Apparatus and method for cell control
US10433277B2 (en) * 2015-11-02 2019-10-01 Qualcomm Incorporated Enhanced multicast broadcast multimedia service in enhanced component carriers over variable transmission bandwidth
WO2017090953A1 (en) * 2015-11-26 2017-06-01 엘지전자 주식회사 Method and device for determining mbms service of interest to terminal
US9838379B1 (en) 2015-12-01 2017-12-05 Sprint Communications Company L.P. Security tiering in a mobile communication device application framework
US9521504B1 (en) * 2015-12-02 2016-12-13 Sprint Communications Company L.P. Channel selection in a mobile communication device application framework
US11109372B2 (en) * 2016-01-11 2021-08-31 Qualcomm Incorporated Narrow-band physical control channel design
US10420134B2 (en) 2016-02-02 2019-09-17 Cisco Technology, Inc. System and method to facilitate subframe scheduling in a split medium access control radio access network environment
CN108353415B (en) * 2016-02-05 2021-06-04 Oppo广东移动通信有限公司 Method, mobile station, network device and storage medium for transmitting traffic
US11064414B1 (en) * 2016-02-08 2021-07-13 T-Mobile Innovations Llc Handover target selection based on latency
US10115092B1 (en) * 2016-03-04 2018-10-30 Sprint Communications Company L.P. Service composition in a mobile communication device application framework
US10264621B2 (en) 2016-03-18 2019-04-16 Parallel Wireless, Inc IuGW architecture
WO2017177223A1 (en) 2016-04-08 2017-10-12 Altiostar Networks, Inc. Dual connectivity
US10499413B2 (en) 2016-04-08 2019-12-03 Altiostar Networks, Inc. Wireless data priority services
US10237857B2 (en) * 2016-04-19 2019-03-19 Qualcomm Incorporated Beam reference signal based narrowband channel measurement and CQI reporting
US10200897B2 (en) * 2016-04-26 2019-02-05 Apple Inc. Radio link monitoring using downlink control and data decoding performance characteristics
EP3456071A1 (en) * 2016-05-13 2019-03-20 Telefonaktiebolaget LM Ericsson (PUBL) Methods, apparatuses and computer program for transmission format/retransmission adaptation in wireless network
US10211907B1 (en) 2016-05-26 2019-02-19 Sprint Spectrum L.P. Coordinated multipoint mode selection for relay base station
CN107529147B (en) * 2016-06-22 2021-03-09 上海朗帛通信技术有限公司 Wireless transmission method and device
US10477483B2 (en) 2016-08-11 2019-11-12 Qualcomm, Incorporated Closed loop power control function based on uplink communication type
CN107734465B (en) * 2016-08-12 2019-12-20 电信科学技术研究院 Method for transmitting multicast service, method and device for receiving multicast service
EP3516903B1 (en) * 2016-09-23 2022-08-17 Nokia Solutions and Networks Oy Radio configuration for machine type communications
US10999795B2 (en) * 2016-10-06 2021-05-04 Qualcomm Incorporated Independent wakeups from deep sleep for broadcast and unicast service
RU2720584C1 (en) * 2016-10-11 2020-05-12 Телефонактиеболагет Лм Эрикссон (Пабл) Carrier type mbms in system information
US10231253B2 (en) * 2016-11-02 2019-03-12 Cisco Technology, Inc. Per-packet, time slotted channel hopping (TSCH), meta-timeslot
CN106569148A (en) * 2016-11-03 2017-04-19 深圳市汇川技术股份有限公司 Fault processing system and method of vehicle-mounted power source
ES2775791T3 (en) * 2016-11-04 2020-07-28 Ericsson Telefon Ab L M Design of the downlink control short physical channel mapping (sPDCCH)
US10979946B2 (en) 2016-11-10 2021-04-13 Parallel Wireless, Inc. Hand-in with topology hiding
WO2018103018A1 (en) * 2016-12-07 2018-06-14 Huawei Technologies Co., Ltd. A method for managing a high frequency connection a terminal and a base station
KR101955642B1 (en) * 2016-12-09 2019-03-07 에스케이텔레콤 주식회사 Carrier aggregation method of a base station and apparatus for the same
WO2018107358A1 (en) * 2016-12-13 2018-06-21 广东欧珀移动通信有限公司 Uplink power control method and device
US10624034B2 (en) 2016-12-13 2020-04-14 Altiostar Networks, Inc. Power control in wireless communications
CN108206898B (en) * 2016-12-20 2021-03-19 展讯通信(上海)有限公司 Method and device for realizing multi-party call and multi-pass terminal
DE102017100076A1 (en) 2017-01-04 2018-07-05 Sennheiser Electronic Gmbh & Co. Kg Method for low-latency audio transmission in an LTE network
US10980016B2 (en) * 2017-01-05 2021-04-13 Lg Electronics Inc. Method for transmitting or receiving downlink control information in wireless communication system and apparatus for same
CN108322367B (en) * 2017-01-16 2022-01-14 中兴通讯股份有限公司 Method, equipment and system for service delivery
CN110476459B (en) * 2017-03-24 2022-12-06 瑞典爱立信有限公司 QoS flow inactivity counter
US11284372B2 (en) 2017-03-24 2022-03-22 Apple Inc. Wake up signal for machine type communication and narrowband-internet-of-things devices
US10237759B1 (en) * 2017-03-29 2019-03-19 Sprint Spectrum L.P. Coordinated multipoint set selection based on donor status
WO2018184470A1 (en) * 2017-04-03 2018-10-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods and apparatuses for configuring a control resource set in a wireless communication system
RU2700180C1 (en) * 2017-04-24 2019-09-13 ЭлДжи ЭЛЕКТРОНИКС ИНК. Method for transmitting or receiving a signal in a wireless communication system and apparatus therefor
CN108809588B (en) * 2017-05-05 2022-05-17 中兴通讯股份有限公司 Control channel resource mapping method and device
US10772052B2 (en) * 2017-06-16 2020-09-08 Qualcomm Incorporated Controlling coexistent radio systems in a wireless device
WO2019024130A1 (en) * 2017-08-02 2019-02-07 Qualcomm Incorporated Configurations for transmitting random access preamble messages
US11153826B2 (en) * 2017-08-10 2021-10-19 Qualcomm Incorporated Procedure-based uplink power control
WO2019028863A1 (en) 2017-08-11 2019-02-14 Zte Corporation Communicating paging information in wireless communications
CN109361498B (en) 2017-08-12 2019-09-20 华为技术有限公司 The method and transmitting device of pre-coding matrix subset limitation
US10856263B2 (en) * 2017-09-08 2020-12-01 Qualcomm Incorporated Randomized search space for downlink control channel
EP3689016A1 (en) * 2017-09-28 2020-08-05 Sony Corporation Base station and user equipment
US11627478B2 (en) 2017-10-18 2023-04-11 Parallel Wireless, Inc. Virtualized cell architecture
CN107948985B (en) * 2017-11-30 2019-12-03 北京邮电大学 Light-carried wireless accesses the Beam resources distribution method in network
CN109982354B (en) * 2017-12-28 2022-05-10 中国移动通信集团北京有限公司 Antenna weight value adjusting method and device
CN108076531B (en) * 2018-01-08 2020-05-12 北京邮电大学 Multi-service provider-oriented dynamic allocation method for wireless network slice resources
AU2018401505A1 (en) 2018-01-12 2020-08-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource configuration method and apparatus, and computer storage medium
US11539488B2 (en) * 2018-01-26 2022-12-27 Qualcomm Incorporated Control element resource mapping schemes in wireless systems
CN108306664B (en) * 2018-01-31 2021-03-12 重庆邮电大学 Method for generating parameterized block DFT codebook based on user distribution
US10681649B2 (en) 2018-02-19 2020-06-09 Qualcomm Incorporated Dynamic spatial reuse in distribution networks
CN114024582A (en) 2018-04-08 2022-02-08 华为技术有限公司 Communication method and communication device
US11943652B2 (en) 2018-06-28 2024-03-26 Interdigital Patent Holdings, Inc. Prioritization procedures for NR V2X sidelink shared channel data transmission
US11606703B2 (en) 2018-07-31 2023-03-14 Parallel Wireless, Inc. Distributed multi-HNG son
US20210315032A1 (en) * 2018-08-10 2021-10-07 Telefonaktiebolaget Lm Ericsson (Publ) User Equipment Discovery
US10904939B2 (en) * 2018-08-31 2021-01-26 Samsung Electronics Co., Ltd. User equipment (UE) and method thereof for efficient communication with wireless network
CN110876185B (en) * 2018-08-31 2021-07-09 中国移动通信有限公司研究院 Indication signaling transmission and receiving method, device, network side equipment and terminal
US20200092068A1 (en) * 2018-09-19 2020-03-19 Qualcomm Incorporated Acknowledgement codebook design for multiple transmission reception points
US11223461B2 (en) * 2018-09-28 2022-01-11 Qualcomm Incorporated Association of transmission configuration indicator states to physical cell identities
US11296851B2 (en) 2018-09-28 2022-04-05 Qualcomm Incorporated Remote interference management reference signal transmission
CN111050357B (en) * 2018-10-14 2023-08-29 阿里巴巴集团控股有限公司 Communication method and device for terminal and base station
US11317251B2 (en) * 2019-02-05 2022-04-26 Qualcomm Incorporated Numerologies that support broadcasting over a carrier
CN111586723B (en) * 2019-02-15 2022-04-22 华为技术有限公司 Communication method and communication device
KR20200104017A (en) * 2019-02-26 2020-09-03 삼성전자주식회사 Electronic device supporting 5g network communication and method for the electronic device to control transmit power
WO2020186097A1 (en) 2019-03-12 2020-09-17 Google Llc User-equipment coordination set beam sweeping
CN111757431B (en) * 2019-03-28 2023-01-13 华为技术有限公司 Communication method and device
US11503610B2 (en) 2019-04-02 2022-11-15 Google Llc User equipment coordination for interference cancelation
US20220095236A1 (en) * 2019-04-30 2022-03-24 Hewlett-Packard Development Company, L.P. Managing aggregated node group power states
US10555211B1 (en) 2019-05-01 2020-02-04 Sprint Communications Company L.P. Intermodulation interference mitigation in a wireless access point that uses multi-band carrier aggregation
US10893572B2 (en) 2019-05-22 2021-01-12 Google Llc User-equipment-coordination set for disengaged mode
US11039398B2 (en) * 2019-05-31 2021-06-15 At&T Intellectual Property I, L.P. Uplink interference avoidance under open loop power control conditions
JPWO2021006064A1 (en) * 2019-07-10 2021-01-14
CN112567880A (en) * 2019-07-25 2021-03-26 谷歌有限责任公司 User equipment coordination set regrouping
EP3772197A1 (en) * 2019-08-02 2021-02-03 Panasonic Intellectual Property Corporation of America Transceiver device and scheduling device
US11350439B2 (en) 2019-08-13 2022-05-31 Google Llc User-equipment-coordination-set control aggregation
CN110493086B (en) * 2019-09-06 2021-08-03 苏州凌犀物联网技术有限公司 Internet of things management method and Internet of things management platform
WO2021054963A1 (en) 2019-09-19 2021-03-25 Google Llc Enhanced beam searching for active coordination sets
EP3997798A1 (en) 2019-09-19 2022-05-18 Google LLC User-equipment-coordination-set selective participation
EP4030821A4 (en) * 2019-09-30 2022-10-19 Huawei Technologies Co., Ltd. Communication method and apparatus
US11470678B2 (en) * 2019-09-30 2022-10-11 Qualcomm Incorporated Broadcast of multiple physical cell identity ranges
CN114762384A (en) * 2019-12-23 2022-07-15 中兴通讯股份有限公司 System and method for multi-node communication in a wireless communication network
US11546864B2 (en) * 2020-02-14 2023-01-03 Samsung Electronics Co., Ltd. Uplink power control in dual connectivity
KR20210117845A (en) * 2020-03-20 2021-09-29 삼성전자주식회사 Apparatus and method for handling radio configuration for multicast and broadcast services in wireless communication system
US20230156434A1 (en) * 2020-04-10 2023-05-18 JRD Communication (Shenzhen) Ltd. Apparatus and method for unicast, broadcast, and multicast services
CN113543038B (en) * 2020-04-15 2022-10-28 上海朗帛通信技术有限公司 Method and device used in node of wireless communication
US11184742B2 (en) * 2020-04-20 2021-11-23 Motorola Solutions, Inc. Method and apparatus for determining an approver for requesting permission to join a dynamically-created talkgroup
CN113573383B (en) * 2020-04-29 2023-04-07 京东方科技集团股份有限公司 Re-network access method after mobile terminal network disconnection and related equipment
US20210344436A1 (en) * 2020-04-30 2021-11-04 Quacomm Incorporated Mapping a control resource to a physical cell
CN116097820A (en) * 2020-08-06 2023-05-09 中兴通讯股份有限公司 Techniques for managing multicast and broadcast services
US20220078720A1 (en) * 2020-09-10 2022-03-10 Qualcomm Incorporated Techniques for determining uplink power for multiple concurrent uplink transmissions
US20220353888A1 (en) * 2021-04-28 2022-11-03 Verizon Patent And Licensing Inc. Dynamic cell range extension in a time division duplexing air interface
WO2023080827A1 (en) * 2021-11-03 2023-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device, network node, and methods performed therein during discontinous reception (drx)
CN114301883B (en) * 2021-12-29 2023-07-04 中电福富信息科技有限公司 Anti-streaming method for national standard equipment video stream based on UDP protocol transmission
WO2023249367A1 (en) * 2022-06-24 2023-12-28 Lg Electronics Inc. Handling of serving cell based on multicast measurement

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080117878A1 (en) * 2006-11-17 2008-05-22 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving data in a communication system
US20090227247A1 (en) * 2008-03-05 2009-09-10 Samsung Electronics Co., Ltd. Apparatus and method for eliminating an interference signal in a communication system
US20100008282A1 (en) * 2008-07-11 2010-01-14 Qualcomm Incorporated Synchronous tdm-based communication in dominant interference scenarios
US20100080323A1 (en) * 2008-09-30 2010-04-01 Markus Mueck Methods and apparatus for partial interference reduction within wireless networks
US20100273506A1 (en) * 2009-04-27 2010-10-28 Interdigital Patent Holdings, Inc. Reference signals for positioning measurements
US20100272032A1 (en) * 2009-04-28 2010-10-28 Motorola, Inc. Method of signaling particular types of resource elements in a wireless communication system
US20120243486A1 (en) * 2009-08-25 2012-09-27 Interdigital Patent Holdings, Inc. Method and apparatus for managing group communications
US20120329400A1 (en) * 2010-03-24 2012-12-27 Hanbyul Seo Method and apparatus for reducing inter-cell interference in radio communication system
US20140086283A1 (en) * 2011-03-17 2014-03-27 Interdigital Patent Holdings, Inc. Physical layer network coding using forward error correction codes

Family Cites Families (224)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US111011A (en) * 1871-01-17 Improvement in clothes-driers
JP4299975B2 (en) * 2001-02-22 2009-07-22 株式会社日立国際電気 Wireless base station maintenance method
KR100958519B1 (en) 2002-08-14 2010-05-17 엘지전자 주식회사 Method for receive and transmission in mobile communications system
US20040116122A1 (en) * 2002-09-20 2004-06-17 Interdigital Technology Corporation Enhancing reception using intercellular interference cancellation
DE502004011393D1 (en) * 2003-03-04 2010-08-26 Siemens Ag METHOD AND WIRELESSLY COUPLABLE COMMUNICATION DEVICE FOR PACKET-ORIENTED DATA TRANSMISSION
WO2005020474A1 (en) 2003-08-22 2005-03-03 Samsung Electronics Co., Ltd. Cell reselection method for receiving packet data in a mobile communication system supporting mbms
CN1619993A (en) * 2003-11-21 2005-05-25 北京三星通信技术研究有限公司 Method of direct communication between terminals based on network controlling
WO2005064822A1 (en) 2003-12-31 2005-07-14 Samsung Electronics Co., Ltd, Selective combining method and apparatus in a mobile communication system
CN100542345C (en) * 2004-02-11 2009-09-16 三星电子株式会社 The method of operating TDD/virtual FDD hierarchical cellular telecommunication system
GB2416269A (en) 2004-04-16 2006-01-18 Nokia Corp Cell selection and re-selection
EP1596396A1 (en) * 2004-05-15 2005-11-16 Deutsche Thomson-Brandt Gmbh Method for splitting a data stream
WO2005125044A1 (en) 2004-06-22 2005-12-29 Nortel Networks Limited Closed loop mimo systems and methods
CN100473206C (en) * 2004-08-13 2009-03-25 美国博通公司 Method and system for carrying out communication switch in communication system
KR100965659B1 (en) * 2004-09-14 2010-06-25 삼성전자주식회사 Method for indicating cell selection when session stop in mbms system and system thereof
US20060133309A1 (en) * 2004-12-21 2006-06-22 Mathis James E Methods for synchronization of communications between a circuit switched network and a packet data network
US20060171355A1 (en) * 2005-01-28 2006-08-03 Samsung Electronics Co., Ltd. Method and system for transmitting/receiving session non-interest indication information of UE in a multimedia broadcast/multicast service system
JP4640855B2 (en) * 2005-02-18 2011-03-02 富士通株式会社 Base station and interference reduction method in the base station
US8189714B2 (en) * 2005-05-04 2012-05-29 Rockstar Bidco, LP Wireless feedback system and method
KR100606103B1 (en) * 2005-07-15 2006-07-31 삼성전자주식회사 Methodd for performing handover between different mobile communication networks and the dual mode terminal therefor
RU2372742C1 (en) 2005-08-11 2009-11-10 Самсунг Электроникс Ко., Лтд. Method and device for transmitting/receiving of information about access of broadcasting service in broadcasting system and corresponding system
US8023955B2 (en) * 2005-08-22 2011-09-20 Sony Corporation Uplink resource allocation to control intercell interference in a wireless communication system
US8594252B2 (en) * 2005-08-22 2013-11-26 Qualcomm Incorporated Interference cancellation for wireless communications
JP2009510964A (en) * 2005-10-05 2009-03-12 エヌエックスピー ビー ヴィ Method for individually interleaving data streams for MIMO transmission
KR100874152B1 (en) * 2005-10-14 2008-12-15 삼성전자주식회사 Apparatus and method for simultaneous data service using multiple heterogeneous wireless networks
CN100592663C (en) 2005-11-30 2010-02-24 大唐移动通信设备有限公司 Method and device for eliminating cross time-slot interference
KR101333918B1 (en) 2006-01-05 2013-11-27 엘지전자 주식회사 Point-to-multipoint service communication of mobile communication system
AU2007200185A1 (en) 2006-02-08 2007-08-23 Nec Australia Pty Ltd Delivery of multicast and uni-cast services in an OFDMA system
EP1830534A1 (en) * 2006-03-03 2007-09-05 Alcatel Lucent Active cancellation of inter-cell interference in a cellular wireless access system
RU2396714C1 (en) * 2006-04-12 2010-08-10 Эл Джи Электроникс Инк. Method for distribution of reference signals in system with multiple inputs and multiple outputs (mimo)
KR100895166B1 (en) * 2006-04-21 2009-05-04 삼성전자주식회사 Apparatus and method for channel quality in wireless communication system
KR100965654B1 (en) * 2006-06-14 2010-06-23 삼성전자주식회사 Method for transmitting common control information in wireless mobile communication system
GB2439369A (en) * 2006-06-26 2007-12-27 Samsung Electronics Co Ltd Grouping and transmitting mobile television services available to a mobile device user
WO2008018130A1 (en) 2006-08-09 2008-02-14 Mitsubishi Electric Corporation Data communication method and mobile communication system
CN101132215B (en) * 2006-08-25 2012-01-11 上海贝尔股份有限公司 Evolutionary multimedia broadcast multi-broadcasting business base station, user device and method thereof
KR100753369B1 (en) * 2006-08-30 2007-08-30 주식회사 팬택 Method of inter-cell interference mitigation for a mobile communication system
KR100951382B1 (en) * 2006-09-07 2010-04-08 삼성전자주식회사 Method and apparatus for removing interference of up link receive signal in time division duplex
US20080080434A1 (en) * 2006-09-28 2008-04-03 Guy Wolf Method and apparatus of system scheduler
US8547892B2 (en) 2006-10-03 2013-10-01 Telefonaktiebolaget Lm Ericsson (Publ) Method for transmission of MBMS control information in a radio access network
US8169957B2 (en) 2007-02-05 2012-05-01 Qualcomm Incorporated Flexible DTX and DRX in a wireless communication system
US8260292B2 (en) 2007-02-15 2012-09-04 Lg Electronics Inc. Hierarchical service list
US8036308B2 (en) 2007-02-28 2011-10-11 Broadcom Corporation Method and system for a wideband polar transmitter
US7961807B2 (en) * 2007-03-16 2011-06-14 Freescale Semiconductor, Inc. Reference signaling scheme using compressed feedforward codebooks for multi-user, multiple input, multiple output (MU-MIMO) systems
US7809074B2 (en) * 2007-03-16 2010-10-05 Freescale Semiconductor, Inc. Generalized reference signaling scheme for multi-user, multiple input, multiple output (MU-MIMO) using arbitrarily precoded reference signals
CN101296028B (en) 2007-04-25 2012-11-21 大唐移动通信设备有限公司 Method and device for special carrier transmitting multimedia broadcast multicast service, and transmission system
WO2008134473A2 (en) * 2007-04-26 2008-11-06 Interdigital Technology Corporation Method and apparatus of measurement mechanism and efficient paging and broadcasting scheme implementation in mbms dedicated cell of lte systems
JP4976543B2 (en) * 2007-04-27 2012-07-18 エルジー エレクトロニクス インコーポレイティド Method for transmitting downlink control channel in mobile communication system and method for mapping control channel to physical resource using block interleaver
CN101669336B (en) 2007-04-27 2013-05-08 交互数字技术公司 Method and apparatus of resource management for multimedia broadcast multicast services
CN101296394A (en) * 2007-04-29 2008-10-29 中兴通讯股份有限公司 Method and equipment for providing MBMS service for multi-carrier frequency community in wireless communication system
CN101296410B (en) 2007-04-29 2011-02-23 大唐移动通信设备有限公司 Method for special carrier configuration, and multimedia broadcast multicast service transmission method
JP5194112B2 (en) 2007-05-04 2013-05-08 株式会社東芝 Intelligent connectivity framework for simultaneous use of multiple interfaces
US8699602B2 (en) 2007-12-13 2014-04-15 Texas Instruments Incorporated Channel quality report processes, circuits and systems
US8179775B2 (en) * 2007-08-14 2012-05-15 Texas Instruments Incorporated Precoding matrix feedback processes, circuits and systems
US20080311903A1 (en) 2007-06-14 2008-12-18 Microsoft Corporation Techniques for managing dual-channel wireless devices
KR20090003809A (en) * 2007-07-03 2009-01-12 삼성전자주식회사 Method for playing data using networks and device using the same
US20090080560A1 (en) * 2007-09-20 2009-03-26 Cisco Technology, Inc. Closed-loop beamforming weight estimation in frequency division duplex systems
KR101448309B1 (en) * 2007-09-28 2014-10-08 엘지전자 주식회사 Method of monitoring downlink control channel in wireless communication system
CN101400017B (en) 2007-09-29 2012-09-19 北京三星通信技术研究有限公司 Method for continuously receiving broadcast multicast service data supporting evolution
US20090093222A1 (en) * 2007-10-03 2009-04-09 Qualcomm Incorporated Calibration and beamforming in a wireless communication system
ATE553628T1 (en) * 2007-11-13 2012-04-15 Research In Motion Ltd METHOD AND APPARATUS FOR STATUS/MODE TRANSITIONS
US8774141B2 (en) 2007-12-07 2014-07-08 Blackberry Limited Multicast broadcast single frequency network data scheduling and handling
US20090149164A1 (en) 2007-12-10 2009-06-11 Research In Motion Limited System and method for single cell point-to-multipoint multiplexing and scheduling
WO2009075662A1 (en) * 2007-12-12 2009-06-18 Nokia Corporation Adaptive codebook for beamforming in limited feedback mimo systems
EP2241132A2 (en) * 2007-12-29 2010-10-20 France Telecom Telecommunication method
KR101514647B1 (en) * 2008-01-24 2015-04-23 삼성전자주식회사 Apparatus for distributing data traffic in heterogeneous wireless networks
WO2009096846A1 (en) * 2008-01-30 2009-08-06 Telefonaktiebolaget L M Ericsson (Publ) Configuration measurement time slots for mobile terminals in a tdd system
WO2009108768A1 (en) 2008-02-28 2009-09-03 Interdigital Patent Holdings, Inc. Method and apparatus for lte system information update in connected mode
CN101521850A (en) * 2008-02-29 2009-09-02 中兴通讯股份有限公司 Transmission method and business switching method of MBMS business resource using information
KR100913473B1 (en) * 2008-03-20 2009-08-25 엘지전자 주식회사 Method for monitoring pdcch in wireless communication
CN101547512B (en) * 2008-03-27 2012-05-23 中兴通讯股份有限公司 Hierarchical heterogeneous distributed base station and method thereof
US8442069B2 (en) * 2008-04-14 2013-05-14 Qualcomm Incorporated System and method to enable uplink control for restricted association networks
US8855040B1 (en) * 2008-04-21 2014-10-07 Google Inc. Cross-cell MIMO
CN101568158B (en) * 2008-04-24 2011-07-20 华为技术有限公司 Method, system and device for plot switching of user equipment
JP4337007B1 (en) * 2008-05-23 2009-09-30 日本電気株式会社 Wireless communication system, base station, terminal, wireless communication method, program
EP2297870B1 (en) 2008-06-18 2012-02-22 Telefonaktiebolaget LM Ericsson (publ) Intercell interference reduction
JP5404622B2 (en) * 2008-06-23 2014-02-05 パナソニック株式会社 Radio communication base station apparatus and reference signal allocation method
US8031668B2 (en) 2008-06-23 2011-10-04 Sunplus Mmobile Inc. Method for optimizing discontinuous reception in random access and scheduling request
US8630587B2 (en) 2008-07-11 2014-01-14 Qualcomm Incorporated Inter-cell interference cancellation framework
US8406171B2 (en) * 2008-08-01 2013-03-26 Texas Instruments Incorporated Network MIMO reporting, control signaling and transmission
US20100035555A1 (en) * 2008-08-05 2010-02-11 Interdigital Patent Holdings, Inc. Method and apparatus for implementing multi-cell cooperation techniques
US20110141908A1 (en) 2008-08-12 2011-06-16 Panasonic Corporation Wireless transmitting device and wireless receiving device
JP4945530B2 (en) * 2008-08-25 2012-06-06 株式会社東芝 Home agent, communication system, and communication method
CN102123779B (en) * 2008-08-26 2013-06-05 华为技术有限公司 System and method for wireless communications
US8576733B2 (en) * 2008-08-27 2013-11-05 Qualcomm Incorporated Control of access terminal operation based on interference information
KR20100030091A (en) * 2008-09-09 2010-03-18 삼성전자주식회사 Dual standby portable terminal and method for communicating thereof
US8983397B2 (en) 2008-10-10 2015-03-17 Qualcomm Incorporated Method and apparatus for channel feedback by multiple description coding in a wireless communication system
JP5622735B2 (en) * 2008-10-20 2014-11-12 インターデイジタル パテント ホールディングス インコーポレイテッド Carrier aggregation
US8738981B2 (en) 2008-10-24 2014-05-27 Qualcomm Incorporated Method and apparatus for H-ARQ scheduling in a wireless communication system
US8520621B2 (en) * 2008-11-04 2013-08-27 Apple Inc. Providing a downlink control structure in a first carrier to indicate control information in a second, different carrier
US8676125B2 (en) 2008-11-07 2014-03-18 Qualcomm Incorporated Systems and methods of reducing interference
CN101742618B (en) * 2008-11-14 2013-04-24 华为技术有限公司 Method and base station for determining discontinuous transmission mode
US8077664B2 (en) * 2008-12-11 2011-12-13 Telefonaktiebolaget L M Ericsson (Publ) Precoding with reduced feedback for coordinated multipoint transmission on the downlink
KR20100073976A (en) * 2008-12-23 2010-07-01 엘지전자 주식회사 Method and appratus of controlling uplink transmission power
US8867441B2 (en) * 2009-01-14 2014-10-21 Lg Electronics Inc. Wireless apparatus for a multi-carrier system
US8248942B2 (en) * 2009-01-27 2012-08-21 Cisco Technology, Inc. Monitoring of real-time transport protocol (RTP) packet flow along RTP path
KR20100088518A (en) 2009-01-30 2010-08-09 엘지전자 주식회사 Method for transmitting reference signals in downlink multiple input multiple output
US8243696B2 (en) * 2009-02-02 2012-08-14 Texas Instruments Incorporated Joint processing downlink coordinated multi-point reference signal support
US9450727B2 (en) * 2009-02-03 2016-09-20 Google Technology Holdings LLC Physical layer acknowledgement signaling resource allocation in wireless communication systems
RU2565030C2 (en) * 2009-02-09 2015-10-10 Интердиджитал Пэйтент Холдингз, Инк. Device and method of controlling uplink power for wireless transmit/receive unit using multiple carriers
US8837396B2 (en) * 2009-02-10 2014-09-16 Telefonaktiebolaget L M Ericsson (Publ) Mapping user data onto a time-frequency resource grid in a coordinated multi-point wireless communication sytem
US9608703B2 (en) 2009-03-03 2017-03-28 Monument Bank Of Intellectual Property, Llc Closed loop MIMO harmonized feedback
US8649456B2 (en) * 2009-03-12 2014-02-11 Futurewei Technologies, Inc. System and method for channel information feedback in a wireless communications system
US20100254329A1 (en) * 2009-03-13 2010-10-07 Interdigital Patent Holdings, Inc. Uplink grant, downlink assignment and search space method and apparatus in carrier aggregation
CN101841892B (en) 2009-03-18 2012-10-03 中国移动通信集团公司 Method, equipment and system for indicating and detecting PDCCH in a carrier aggregation system
US20100240382A1 (en) * 2009-03-19 2010-09-23 Qualcomm Incorporated Systems, apparatus and methods for interference management in wireless networks
WO2010108144A1 (en) 2009-03-19 2010-09-23 Georgia Tech Research Corporation Systems and methods for improved wireless interface aggregation
US20100239032A1 (en) * 2009-03-20 2010-09-23 Industrial Technology Research Institute System and method for precoding and data exchange in wireless communication
CN101515917B (en) * 2009-03-25 2012-01-04 东南大学 Multi-user wireless communication system based on both-way trunk and method thereof
WO2010122892A1 (en) 2009-04-23 2010-10-28 シャープ株式会社 Mobile station apparatus, base station apparatus, communication system, reception method and control program
US8660023B2 (en) * 2009-06-02 2014-02-25 Blackberry Limited System and method for reducing blind decoding for carrier aggregation
US8681106B2 (en) * 2009-06-07 2014-03-25 Apple Inc. Devices, methods, and graphical user interfaces for accessibility using a touch-sensitive surface
JP5614950B2 (en) 2009-07-09 2014-10-29 キヤノン株式会社 Radiographic apparatus, radiographic control method, and program
US8570928B2 (en) * 2009-07-17 2013-10-29 Htc Corporation Method of handling multimedia broadcast multicast service data reception on multiple component carriers
US8553645B2 (en) * 2009-07-31 2013-10-08 Motorola Mobility Llc Method and apparatus for service continuity on a mobile communication device
US8428521B2 (en) * 2009-08-04 2013-04-23 Qualcomm Incorporated Control for uplink in MIMO communication system
US8750205B2 (en) * 2009-08-07 2014-06-10 Texas Instruments Incorporated Multiple rank CQI feedback for cellular networks
KR20110017811A (en) * 2009-08-14 2011-02-22 삼성전자주식회사 Method and apparatus for generating and multiplexing of control channel in backhaul subframe for relay
KR101650749B1 (en) * 2009-08-18 2016-08-24 삼성전자주식회사 Method and apparatus for allocation and indication of control channel in backhaul subframe for relay
KR20110020708A (en) * 2009-08-24 2011-03-03 삼성전자주식회사 Method and apparatus for generating and multiplexing of control channel for inter-cell interference coordication in ofdm system
US8599768B2 (en) 2009-08-24 2013-12-03 Intel Corporation Distributing group size indications to mobile stations
JP5366206B2 (en) 2009-09-04 2013-12-11 独立行政法人情報通信研究機構 Wireless communication network system, communication apparatus, communication terminal, and wireless communication method.
US8687484B2 (en) * 2009-09-09 2014-04-01 Lg Electronics Inc. Method and apparatus for performing communication in relay system
US8942192B2 (en) * 2009-09-15 2015-01-27 Qualcomm Incorporated Methods and apparatus for subframe interlacing in heterogeneous networks
EP3833090B1 (en) * 2009-09-25 2023-08-23 BlackBerry Limited Multi-carrier network operation
CN102036180B (en) 2009-09-28 2013-07-24 宏达国际电子股份有限公司 Method of handling mobility in multimedia broadcast multicast service single frequency network
WO2011041666A2 (en) 2009-10-01 2011-04-07 Interdigital Patent Holdings, Inc. Power control methods and apparatus
CN102687567B (en) * 2009-10-02 2015-07-15 交互数字专利控股公司 Method and apparatus for controlling transmit power of transmissions on more than one component carrier
US8457079B2 (en) * 2009-10-05 2013-06-04 Motorola Mobility Llc Method and apparatus for mitigating downlink control channel interference
US8902873B2 (en) * 2009-10-08 2014-12-02 Qualcomm Incorporated Efficient signaling for closed-loop transmit diversity
KR20110038994A (en) 2009-10-09 2011-04-15 삼성전자주식회사 Method of receiving and transmitting multi-user control channels in wireless communication system with multiple antennas and apparatus thereof
KR20110040672A (en) * 2009-10-12 2011-04-20 주식회사 팬택 Appratus and method for transmitting and receiving control channel in wireless communication system
US20120224553A1 (en) * 2009-10-29 2012-09-06 Dong Cheol Kim Apparatus and method for transceiving uplink transmission power control information in a multi-carrier communication system
US8917659B2 (en) 2009-10-29 2014-12-23 Lg Electronics Inc. Method of transmitting warning message in multiple component carrier system
US8520617B2 (en) * 2009-11-06 2013-08-27 Motorola Mobility Llc Interference mitigation in heterogeneous wireless communication networks
US8411588B2 (en) * 2009-11-09 2013-04-02 Research In Motion Limited Methods and apparatus to manage wireless device power consumption
KR20110051096A (en) * 2009-11-09 2011-05-17 주식회사 팬택 Method for controlling interference and cluster, method for newly registering thereof in clustert in heterogeneous network
CN102065031A (en) 2009-11-11 2011-05-18 大唐移动通信设备有限公司 Intercell interference processing method and equipment
CN102065549A (en) * 2009-11-16 2011-05-18 中国移动通信集团公司 Interference management method and system in wireless layering network and base station
CN102088660B (en) * 2009-12-04 2014-08-20 华为技术有限公司 Method and device for realizing dynamic region management on multimedia broadcast multicast services (MBMSs)
KR101104506B1 (en) * 2009-12-15 2012-01-12 한국전자통신연구원 Base station for operating COMP
KR101646512B1 (en) * 2009-12-17 2016-08-08 엘지전자 주식회사 A method of transmitting signal in a distributed antenna system
US9124406B2 (en) * 2009-12-29 2015-09-01 Qualcomm Incorporated Fallback operation for cross-carrier signaling in multi-carrier operation
EP2341678A1 (en) * 2010-01-05 2011-07-06 Panasonic Corporation Signaling of resource assignments in cross-carrier scheduling scenarios
CN101778462B (en) * 2010-01-08 2015-05-20 中兴通讯股份有限公司 Method and device for sending uplink transmission power control information
JP5449409B2 (en) 2010-01-28 2014-03-19 パナソニック株式会社 Control information transmitting apparatus, control information receiving apparatus, and control information transmitting method
CN102143434B (en) * 2010-01-29 2015-04-29 电信科学技术研究院 Methods, system and device for transmitting system information and receiving MBMS
KR101626989B1 (en) * 2010-02-01 2016-06-13 삼성전자주식회사 Method and appratus for allocation identifier of base station in a communicaiton system
US20120026940A1 (en) 2010-02-02 2012-02-02 Qualcomm Incorporated Radio reporting set and backhaul reporting set construction for coordinated multi-point communication
US8305987B2 (en) * 2010-02-12 2012-11-06 Research In Motion Limited Reference signal for a coordinated multi-point network implementation
US9820273B2 (en) * 2010-03-02 2017-11-14 Xiaoxia Zhang Uplink coordinated multipoint communications in a wireless network
US9496972B2 (en) * 2010-03-08 2016-11-15 Htc Corporation Communication devices and methods thereof
KR101276855B1 (en) * 2010-03-08 2013-06-18 엘지전자 주식회사 A method and a user equipment for transmitting precoding matrix information, and a method and a base station for configuring a precoding matrix
US8750191B2 (en) * 2010-03-12 2014-06-10 Htc Corporation Communication devices for providing multimedia broadcast/multicast services
GB2478603B (en) * 2010-03-12 2017-10-11 Toshiba Res Europe Ltd Linear multiuser precoding with multiple-receive antenna users
US9144040B2 (en) * 2010-04-01 2015-09-22 Futurewei Technologies, Inc. System and method for uplink multi-antenna power control in a communications system
EP2553850B1 (en) * 2010-04-02 2018-01-03 Koninklijke Philips N.V. A method for operating a secondary station by feeding back a single precoding indicator for single-user MIMO and multi-user MIMO
PL2556638T3 (en) * 2010-04-06 2015-10-30 Nokia Technologies Oy Codebook design and structure for modular feedback
WO2011124142A1 (en) * 2010-04-07 2011-10-13 Htc Corporation Communication device and method thereof
RU2577466C2 (en) * 2010-04-08 2016-03-20 Конинклейке Филипс Электроникс Н.В. Patient monitoring over heterogeneous networks
EP2378703A1 (en) * 2010-04-13 2011-10-19 Panasonic Corporation Mapping of control information to control channel elements
US9801102B2 (en) * 2010-04-28 2017-10-24 Samsung Electronics Co., Ltd. Method and apparatus for handover using X2 interface based on closed subscriber group in mobile communication system
US9686770B2 (en) * 2010-06-15 2017-06-20 Mediatek Inc. Methods to support MBMS service continuity and counting and localized MBMS service
US20120002637A1 (en) * 2010-06-18 2012-01-05 Interdigital Patent Holdings, Inc. Method and apparatus for supporting home node-b mobility
ES2639619T3 (en) * 2010-06-18 2017-10-27 Telefonaktiebolaget Lm Ericsson (Publ) Methods for providing power-free space reports arranged in order of component carrier indexes and related base stations
TWI497958B (en) * 2010-06-18 2015-08-21 Mediatek Inc Communications apparatus,a method for coordinating transmissions and a method for assigning an abs pattern
CN101867457B (en) 2010-06-21 2016-01-20 中兴通讯股份有限公司 The processing method of channel condition information and subscriber equipment
WO2011162656A1 (en) * 2010-06-24 2011-12-29 Telefonaktiebolaget Lm Eriksson (Publ) Timeslot allocation method in a wireless tdd network
US9173205B2 (en) * 2010-08-13 2015-10-27 Lg Electronics Inc. Method and base station for transmitting downlink signal and method and equipment for receiving downlink signal
JP5986084B2 (en) * 2010-08-13 2016-09-06 インターデイジタル パテント ホールディングス インコーポレイテッド Method and system for intra-device interference mitigation
JP5497577B2 (en) * 2010-08-16 2014-05-21 株式会社Nttドコモ COMMUNICATION CONTROL METHOD, BASE STATION DEVICE, AND MOBILE STATION DEVICE
WO2012023785A2 (en) * 2010-08-17 2012-02-23 한국전자통신연구원 Method for controlling uplink transmit power in mobile communication system
CN103053203A (en) * 2010-08-17 2013-04-17 日本电气株式会社 Access control failure handling for henb inbound mobility
US8446971B2 (en) 2010-08-23 2013-05-21 Intel Corporation Communication station and method for efficiently providing channel feedback for MIMO communications
CN102387543B (en) * 2010-09-02 2015-08-12 中兴通讯股份有限公司 The collocation method of dynamic subframe and device in a kind of tdd systems
US8971903B2 (en) * 2010-09-10 2015-03-03 Qualcomm Incorporated Techniques for managing communications resources for a mobile device
EP3270652A1 (en) * 2010-09-15 2018-01-17 Huawei Technologies Co., Ltd. System and method for channel state information feedback in wireless communications systems
US20120069782A1 (en) * 2010-09-22 2012-03-22 Richard Lee-Chee Kuo Method and apparatus for improving drx in a wireless communication system
KR101901927B1 (en) * 2010-09-28 2018-09-27 엘지전자 주식회사 Inter-cell interference coordination in a wireless communication system
WO2012044088A2 (en) * 2010-09-29 2012-04-05 엘지전자 주식회사 Method and apparatus for efficient feedback in a wireless communication system that supports multiple antennas
WO2012041393A1 (en) * 2010-10-01 2012-04-05 Nokia Siemens Networks Oy Muting data transmissions
EP2437422A1 (en) * 2010-10-01 2012-04-04 Panasonic Corporation Search space for uplink and downlink grant in an OFDM-based mobile communication system
CN102025411B (en) * 2010-10-11 2016-09-28 中兴通讯股份有限公司 A kind of tdd systems and dynamic frame structure thereof and collocation method
TWI454167B (en) * 2010-11-11 2014-09-21 Mediatek Inc Methods for configuring channel state information measurement in a communications system and communications apparatus utilizing the same
CN101989898A (en) * 2010-11-15 2011-03-23 中兴通讯股份有限公司 Method and device for transmitting response message
WO2012074325A2 (en) * 2010-12-03 2012-06-07 Lg Electronics Inc. Method and apparatus for performing access control in wireless communication system
US9002367B2 (en) * 2010-12-23 2015-04-07 Telefonaktiebolaget L M Ericsson (Publ) Downlink control for wireless heterogeneous telecommunications
CN102065490B (en) * 2011-01-17 2014-04-02 大唐移动通信设备有限公司 Method and equipment for coordinating downlink transmitting power between base stations
CN102075993B (en) * 2011-01-30 2013-06-05 大唐移动通信设备有限公司 Method and equipment for maintaining timer in carrier aggregation system
JP5032678B2 (en) 2011-02-09 2012-09-26 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Multi-carrier scheduling
US8619716B2 (en) * 2011-02-21 2013-12-31 Motorola Mobility Llc IQ imbalance image compensation in multi-carrier wireless communication systems
KR101899822B1 (en) * 2011-03-11 2018-09-20 엘지전자 주식회사 Method and device for controlling interference between cells in wireless communication system
US8948771B2 (en) * 2011-04-14 2015-02-03 Broadcom Corporation Enhancements in channel reliability in scenarios operating on shared band
US8948293B2 (en) * 2011-04-20 2015-02-03 Texas Instruments Incorporated Downlink multiple input multiple output enhancements for single-cell with remote radio heads
JP5236774B2 (en) * 2011-04-22 2013-07-17 三菱電機株式会社 Data communication method, mobile communication system
CN102158978B (en) 2011-04-22 2017-03-01 中兴通讯股份有限公司 A kind of processing method of Downlink Control Information and system
US9072072B2 (en) * 2011-04-29 2015-06-30 Qualcomm Incorporated Methods and apparatuses for managing simultaneous unicast and multicast/broadcast services in a wireless communication system
US20120281640A1 (en) * 2011-05-02 2012-11-08 Research In Motion Limited Methods of PDCCH Capacity Enhancement in LTE Systems Based on a TP-Specific Reference Signal
WO2012150831A2 (en) * 2011-05-03 2012-11-08 삼성전자 주식회사 Method and apparatus for user equipment receiving mbms service processing semi-permanent scheduling from mbsfn subframe in wireless communication system
TWI577215B (en) * 2011-05-17 2017-04-01 內數位專利控股公司 Method and apparatus for power control of a divided subframe transmission
RU2556081C1 (en) * 2011-05-17 2015-07-10 Хуавэй Текнолоджиз Ко., Лтд. Communication system and method of its control
KR101510582B1 (en) * 2011-06-15 2015-04-08 삼성전자주식회사 Extension of physical downlink control signaling in a communication system
US20120320751A1 (en) 2011-06-17 2012-12-20 Jing Zhu Method and system for communicating data packets
US9413509B2 (en) * 2011-06-17 2016-08-09 Texas Instruments Incorporated Hybrid automatic repeat request acknowledge resource allocation for enhanced physical downlink control channel
US20130003604A1 (en) * 2011-06-30 2013-01-03 Research In Motion Limited Method and Apparatus for Enhancing Downlink Control Information Transmission
WO2013001054A1 (en) * 2011-06-30 2013-01-03 Nokia Siemens Networks Oy Handover between different closed subscriber groups
US9313747B2 (en) * 2011-07-01 2016-04-12 Intel Corporation Structured codebook for uniform circular array (UCA)
CN103380635B (en) * 2011-07-14 2017-02-15 Lg电子株式会社 Method and apparatus for performing membership verification or access control in wireless communication system
US9204354B2 (en) * 2011-08-11 2015-12-01 Mediatek Inc. Method for small cell discovery in heterogeneous network
US20130039250A1 (en) 2011-08-12 2013-02-14 Mediatek, Inc. Method to Indicate MBMS Reception Status to Enable Service Continuity
EP3975609A3 (en) * 2011-08-12 2022-08-03 Interdigital Patent Holdings, Inc. Interference measurement in wireless networks
US9197387B2 (en) * 2011-08-15 2015-11-24 Google Technology Holdings LLC Method and apparatus for control channel transmission and reception
EP2745586B1 (en) * 2011-08-16 2016-03-09 Telefonaktiebolaget LM Ericsson (publ) Capability extensions for multimedia broadcast multicast services
US8867426B2 (en) * 2011-09-01 2014-10-21 Lg Electronics Inc. Method and apparatus for providing multimedia broadcast and multicast service (MBMS) in wireless communication system
US8843139B2 (en) * 2011-09-26 2014-09-23 Blackberry Limited Method and system for small cell discovery in heterogeneous cellular networks
US9402264B2 (en) 2011-09-30 2016-07-26 Intel Corporation Methods to transport internet traffic over multiple wireless networks simultaneously
US8654816B2 (en) * 2011-10-18 2014-02-18 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices for determining a transmission rank
US9509377B2 (en) * 2011-11-07 2016-11-29 Google Technology Holdings LLC Method and apparatus for rank adaptation in an orthogonal frequency division multiplexing communication system
US9769806B2 (en) * 2012-01-17 2017-09-19 Texas Instruments Incorporated Resource configuration for EPDCCH
KR101959398B1 (en) * 2012-01-25 2019-03-18 삼성전자주식회사 Method and apparatus for transmitting a signal on control channel in a orthogonal frequency division multiplexing communication system
KR102524731B1 (en) * 2012-01-27 2023-04-21 인터디지탈 패튼 홀딩스, 인크 Systems and/or methods for providing epdcch in a multiple carrier based and/or quasi-collated network
US9179456B2 (en) * 2012-02-07 2015-11-03 Samsung Electronics Co., Ltd. Methods and apparatus for downlink control channels transmissions in wireless communications systems
EP4007196B1 (en) * 2012-03-05 2023-09-20 Samsung Electronics Co., Ltd. Harq-ack signal transmission in response to detection of control channel type in case of multiple control channel types
JP6110472B2 (en) * 2012-03-22 2017-04-05 エルジー エレクトロニクス インコーポレイティド Method and apparatus for receiving control information in wireless communication system
US10448379B2 (en) * 2012-05-04 2019-10-15 Texas Instruments Incorporated Enhanced downlink control channel configuration for LTE
WO2014017866A1 (en) * 2012-07-26 2014-01-30 엘지전자 주식회사 Method and user device for receiving downlink signal, and method and base station for transmitting downlink signal

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080117878A1 (en) * 2006-11-17 2008-05-22 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving data in a communication system
US20090227247A1 (en) * 2008-03-05 2009-09-10 Samsung Electronics Co., Ltd. Apparatus and method for eliminating an interference signal in a communication system
US20100008282A1 (en) * 2008-07-11 2010-01-14 Qualcomm Incorporated Synchronous tdm-based communication in dominant interference scenarios
US20100080323A1 (en) * 2008-09-30 2010-04-01 Markus Mueck Methods and apparatus for partial interference reduction within wireless networks
US20100273506A1 (en) * 2009-04-27 2010-10-28 Interdigital Patent Holdings, Inc. Reference signals for positioning measurements
US20100272032A1 (en) * 2009-04-28 2010-10-28 Motorola, Inc. Method of signaling particular types of resource elements in a wireless communication system
US20120243486A1 (en) * 2009-08-25 2012-09-27 Interdigital Patent Holdings, Inc. Method and apparatus for managing group communications
US20120329400A1 (en) * 2010-03-24 2012-12-27 Hanbyul Seo Method and apparatus for reducing inter-cell interference in radio communication system
US20140086283A1 (en) * 2011-03-17 2014-03-27 Interdigital Patent Holdings, Inc. Physical layer network coding using forward error correction codes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140219233A1 (en) * 2011-10-19 2014-08-07 Lg Electronics Inc. Communication method for cooperative multi-point and wireless device using same
US9300447B2 (en) * 2011-10-19 2016-03-29 Lg Electronics Inc. Communication method for cooperative multi-point and wireless device using same
US9615381B2 (en) 2011-10-19 2017-04-04 Lg Electronics Inc. Communication method for cooperative multi-point and wireless device using same
US9872309B2 (en) 2011-10-19 2018-01-16 Lg Electronics Inc. Communication method for cooperative multi-point and wireless device using same
US20170363007A1 (en) * 2016-06-15 2017-12-21 United Technologies Corporation Isothermalized cooling of gas turbine engine components
CN109348510A (en) * 2018-10-17 2019-02-15 中国联合网络通信集团有限公司 Load-balancing method, device and base station

Also Published As

Publication number Publication date
WO2013048592A1 (en) 2013-04-04
EP2761770A2 (en) 2014-08-06
US20130083744A1 (en) 2013-04-04
JP2015065660A (en) 2015-04-09
EP2852190A3 (en) 2015-07-01
JP2015216669A (en) 2015-12-03
IN2014CN02309A (en) 2015-06-19
WO2013048582A1 (en) 2013-04-04
WO2013048567A1 (en) 2013-04-04
HUE032133T2 (en) 2017-08-28
US9854524B2 (en) 2017-12-26
CN103843268B (en) 2017-10-13
EP2852190A8 (en) 2016-02-24
US9635610B2 (en) 2017-04-25
EP2761776B1 (en) 2017-01-04
US9088872B2 (en) 2015-07-21
BR112014007424B1 (en) 2022-03-08
EP2761798A1 (en) 2014-08-06
ES2710917T3 (en) 2019-04-29
WO2013048571A1 (en) 2013-04-04
EP2761940A1 (en) 2014-08-06
RU2015152416A (en) 2017-06-13
CN103947249B (en) 2018-04-27
ES2610214T3 (en) 2017-04-26
HUE038852T2 (en) 2018-12-28
EP2761901A4 (en) 2015-09-23
CA2967465A1 (en) 2013-04-04
US9113489B2 (en) 2015-08-18
EP2761927A1 (en) 2014-08-06
BR112014007424A2 (en) 2017-06-13
CN103828266A (en) 2014-05-28
US9456415B2 (en) 2016-09-27
US10212661B2 (en) 2019-02-19
MX356973B (en) 2018-06-21
US9351311B2 (en) 2016-05-24
CN103947266B (en) 2018-01-19
EP2852190B1 (en) 2018-05-16
CN107182038A (en) 2017-09-19
EP2761788B1 (en) 2017-01-18
EP2761788A4 (en) 2015-10-21
US20150351039A1 (en) 2015-12-03
EP2771990A4 (en) 2015-10-21
EP2761798A4 (en) 2016-02-10
US20160204843A1 (en) 2016-07-14
WO2013049301A3 (en) 2013-06-27
HUE031378T2 (en) 2017-07-28
EP2761941A4 (en) 2015-10-21
ES2636457T3 (en) 2017-10-05
EP2761785A4 (en) 2015-11-25
EP2761770B1 (en) 2016-11-23
CN103843420A (en) 2014-06-04
US9370018B2 (en) 2016-06-14
WO2013044878A1 (en) 2013-04-04
KR101569640B1 (en) 2015-11-16
CN104602198A (en) 2015-05-06
EP2761776A1 (en) 2014-08-06
US20130272173A1 (en) 2013-10-17
HUE033079T2 (en) 2017-11-28
JP2014528667A (en) 2014-10-27
US20140056279A1 (en) 2014-02-27
EP2761927A4 (en) 2015-08-12
US20140226575A1 (en) 2014-08-14
US20140099957A1 (en) 2014-04-10
CA2967465C (en) 2018-11-27
US9992742B2 (en) 2018-06-05
CN103828275B (en) 2017-01-18
US20130084867A1 (en) 2013-04-04
CN103843268A (en) 2014-06-04
JP6168502B2 (en) 2017-07-26
AU2012316021B2 (en) 2015-07-09
EP2761961A1 (en) 2014-08-06
US9894608B2 (en) 2018-02-13
EP2761798B1 (en) 2017-06-21
US20140018090A1 (en) 2014-01-16
CN103947278A (en) 2014-07-23
US10070383B2 (en) 2018-09-04
CN103947249A (en) 2014-07-23
CN103828275A (en) 2014-05-28
HK1207234A1 (en) 2016-01-22
HUE036096T2 (en) 2018-06-28
RU2014112051A (en) 2015-10-10
CN103947278B (en) 2018-09-28
WO2013048581A1 (en) 2013-04-04
CA2850169C (en) 2017-07-11
US9693304B2 (en) 2017-06-27
US9144085B2 (en) 2015-09-22
CA2850169A1 (en) 2013-04-04
MY172951A (en) 2019-12-16
BR122014028496A2 (en) 2019-08-20
BR122014028496B1 (en) 2022-03-22
ES2615259T3 (en) 2017-06-06
RU2573580C2 (en) 2016-01-20
EP2761788A1 (en) 2014-08-06
EP2761785A2 (en) 2014-08-06
EP2761940A4 (en) 2015-10-28
AU2012316021A1 (en) 2014-04-17
CN103828254B (en) 2017-07-04
WO2013048569A1 (en) 2013-04-04
WO2013049301A4 (en) 2013-08-08
CN107182038B (en) 2020-07-31
US20160234815A1 (en) 2016-08-11
EP2761901B1 (en) 2018-11-21
US20130156075A1 (en) 2013-06-20
US20130268628A1 (en) 2013-10-10
US20150036581A1 (en) 2015-02-05
ES2620104T3 (en) 2017-06-27
CN103828266B (en) 2017-07-04
EP2761940B1 (en) 2016-10-19
JP5777039B2 (en) 2015-09-09
ES2676402T3 (en) 2018-07-19
EP2761901A1 (en) 2014-08-06
EP2771990A1 (en) 2014-09-03
CN104602198B (en) 2021-01-22
WO2013049479A2 (en) 2013-04-04
US9402264B2 (en) 2016-07-26
CN104115513A (en) 2014-10-22
US20130231120A1 (en) 2013-09-05
US20150223265A1 (en) 2015-08-06
JP6307724B2 (en) 2018-04-11
WO2013049479A3 (en) 2013-07-04
US11178613B2 (en) 2021-11-16
WO2013048568A1 (en) 2013-04-04
ES2621846T3 (en) 2017-07-05
EP2761785B1 (en) 2021-01-06
US20180132179A1 (en) 2018-05-10
CN103843420B (en) 2017-09-12
CN103947266A (en) 2014-07-23
EP2761961A4 (en) 2016-01-27
CN103828254A (en) 2014-05-28
WO2013049301A2 (en) 2013-04-04
HUE032680T2 (en) 2017-10-30
KR20140054402A (en) 2014-05-08
US20130083715A1 (en) 2013-04-04
MX2014003737A (en) 2014-07-14
CN103999385A (en) 2014-08-20
US9210550B2 (en) 2015-12-08
EP2761941A1 (en) 2014-08-06
US20160088559A1 (en) 2016-03-24
RU2631258C2 (en) 2017-09-20
CN104115513B (en) 2018-02-13
US20140010320A1 (en) 2014-01-09
EP2852190A2 (en) 2015-03-25
US20150071179A1 (en) 2015-03-12
CN104081682A (en) 2014-10-01
EP2761770A4 (en) 2015-10-28
US9699731B2 (en) 2017-07-04
EP2761776A4 (en) 2015-10-21
WO2013048570A1 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
EP2761770B1 (en) Joint transmission in a wireless network
JP7072555B2 (en) Devices and methods to facilitate non-orthogonal wireless communication
US9031612B2 (en) Spatial alignment for D2D interference mitigation
CN106464322B (en) Method for intra-cell interference cancellation and suppressed signaling and user equipment
US9538397B2 (en) Base station, terminal, communication system, communication method, and integrated circuit
US20160013903A1 (en) Method and device for canceling interference and receiving data in wireless communication system
KR101689111B1 (en) Methods and apparatus for interference coordinated transmission and reception in wireless networks
US10103831B2 (en) Method for transmitting and receiving signal in wireless communication system and apparatus for performing same
EP3522434B1 (en) Reception device, transmission device, reception method, transmission method, and program
EP3276859A1 (en) Device
US10064197B2 (en) Network assisted interference suppression
CN106664662B (en) Power adaptation and randomization for interference cancellation and suppression
US9544085B2 (en) Method and apparatus for interference cancellation
KR20160016525A (en) Interference cancellation techniques based on blindly-detected interference parameters for lte-advanced ue
WO2018059418A1 (en) Method and apparatus for handling aperiodic reference signal in mobile communications
CN106941368B (en) Data transmission method and base station
CN116458104A (en) Communication method and device
WO2020014825A1 (en) Processing of reference signals in precoding
KR20150094475A (en) Scheme for interference cancellation using a constellation diagram

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTEL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHU, YUAN;CHEN, XIAOGANG;DAVYDOV, ALEXEI;AND OTHERS;SIGNING DATES FROM 20140120 TO 20140306;REEL/FRAME:032380/0172

Owner name: INTEL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHU, YUAN;CHEN, XIAOGANG;DAVYDOV, ALEXEI;AND OTHERS;SIGNING DATES FROM 20140120 TO 20140306;REEL/FRAME:032374/0076

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION