US20160282130A1 - User interface for predictive traffic - Google Patents

User interface for predictive traffic Download PDF

Info

Publication number
US20160282130A1
US20160282130A1 US15/175,527 US201615175527A US2016282130A1 US 20160282130 A1 US20160282130 A1 US 20160282130A1 US 201615175527 A US201615175527 A US 201615175527A US 2016282130 A1 US2016282130 A1 US 2016282130A1
Authority
US
United States
Prior art keywords
route
time
user
navigation device
geographic location
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/175,527
Inventor
Darrell Sano
Kevin Tsurutome
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TeleCommunication Systems Inc
Original Assignee
TeleCommunication Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TeleCommunication Systems Inc filed Critical TeleCommunication Systems Inc
Priority to US15/175,527 priority Critical patent/US20160282130A1/en
Publication of US20160282130A1 publication Critical patent/US20160282130A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096805Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route
    • G08G1/096827Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed onboard
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3492Special cost functions, i.e. other than distance or default speed limit of road segments employing speed data or traffic data, e.g. real-time or historical
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3664Details of the user input interface, e.g. buttons, knobs or sliders, including those provided on a touch screen; remote controllers; input using gestures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3691Retrieval, searching and output of information related to real-time traffic, weather, or environmental conditions
    • G01C21/3694Output thereof on a road map
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/0969Systems involving transmission of navigation instructions to the vehicle having a display in the form of a map
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • G01C21/3415Dynamic re-routing, e.g. recalculating the route when the user deviates from calculated route or after detecting real-time traffic data or accidents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3691Retrieval, searching and output of information related to real-time traffic, weather, or environmental conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096833Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route
    • G08G1/096844Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route where the complete route is dynamically recomputed based on new data

Definitions

  • This invention relates generally to navigation devices. More particularly, it relates to location based services (LBS), and navigation services based on predictive traffic data.
  • LBS location based services
  • Alerts may also describe conditions on unfamiliar roadways, but such information's impact is all but undecipherable and meaningless except to the local commuter. Alerts provide granular road-specific information, but what this information means in terms of an Estimated Time of Travel (ETI) and a resultant Estimated Time of Arrival (ETA), to a specific destination is unknown. If a user is unfamiliar with the local roadways, the impact on ETT and the resultant ETA is unknown.
  • ETI Estimated Time of Travel
  • ETA Estimated Time of Arrival
  • Navigation products today include real time traffic, and may generate alternate routes around adverse traffic conditions. However, this capability is useful only once the user has started driving on a route. In unfamiliar locations to unfamiliar destinations, the question still remains from a planning perspective of when a user should begin a drive. A user may desire to known what the drive time for a given route would be several hours from now. A user may want to know if they have multiple meetings in different locations, when to depart each location to insure that they arrive in a timely manner, not late and preferably not too early.
  • a navigation device is comprised of a predictive traffic data database to store predictive traffic data at a plurality of times and a map database to store mapping data.
  • a mapping module calculates a route and an estimated time of traversal for the route between a beginning geographic location and an ending geographic location based on the predictive traffic data and the mapping data.
  • a start time modification module monitors for a modification of a start time for the route. The mapping module re-calculates the estimated time of traversal in response to the modification of the start time for the route.
  • an apparatus and method of determining an estimated time of arrival for a route calculated by a navigation device includes calculating the route and the estimated time of traversal for the route between a beginning geographic location and an ending geographic location based on predictive traffic data and mapping data.
  • a modification of a start time is monitoring for the route.
  • the estimated time of traversal is re-calculating in response to the modification of the start time for the route.
  • FIG. 1 shows a navigation device illustrating a traffic map with flow data and incidents based on current time and future times, in accordance with the principles of the present invention.
  • FIG. 2 shows a navigation device illustrating a traffic map with flow data and incidents at two hours into the future from that shown in FIG. 1 , in accordance with the principles of the present invention.
  • FIG. 3 shows an in-car navigation device illustrating a traffic map with flow data and incidents based on current time and future times, in accordance with the principles of the present invention.
  • FIG. 4 shows a detailed view of the navigation device, in accordance with the principles of the present invention.
  • FIG. 5 shows a process for calculating an Estimated Time of Traversal (ETT) based on predictive traffic data, in accordance with the principles of the present invention.
  • ETT Estimated Time of Traversal
  • the present invention provides predictive traffic data based navigation based on real time sampling of traffic patterns over an extended period of time, e.g., a year. Traffic pattern data trends are averaged over the course of an extended period of time to insure the best possible scenarios during seasonal travel patterns, weekly commute patterns, and hourly daily flow data.
  • Specific days may require added travel time, e.g., the day before Thanksgiving or other holiday, versus driving on the actual holiday itself.
  • Hourly traffic data averages the flow during peak morning and evening commutes versus off-hour or mid-day driving.
  • an easy to use, direct manipulation user interface disclosed herein allows a user to see traffic impact throughout the day, and preferably be prompted when to begin a drive based on traffic pattern averages.
  • FIG. 1 shows a navigation device illustrating a traffic map with flow data and incidents based on current time and future times, in accordance with the principles of the present invention.
  • navigation device 100 includes a slide control 110 and a map viewing area 120 .
  • the slide control 110 allows a user to select various times of day.
  • a user is able to select from a plurality of available time options 130 in the near future from their current time.
  • a user is given time options 130 that span up to six hours into the future from their current time.
  • the map viewing area 120 is updated with predictive traffic conditions. Moving the slide control up or down, e.g., dragging up or down with a finger on a tough pad or touch screen, slides the hours of the day forward or backward.
  • the current' time is shown as being 12:45 PM mid-day, and the slide control 110 is set to 3 PM.
  • traffic conditions shown in map viewing area 120 reflect predictive traffic conditions for that time of day.
  • the En to a destination e.g., to an airport, is calculated as approximately 42 minutes.
  • the resultant ETA can be easily calculated from the ETA for display on the map viewing area 120 .
  • time options 130 shown in FIG. 1 are one hour increments
  • the increments can be adjusted within a configuration menu (not shown). For example, in some instances a use may desire to known if they leave for a trip later by 10 or 20 minutes. Near rush hour times, 10 or 20 minutes can result in significant traffic reductions or increases necessitating use of smaller increments for time options 130 .
  • FIG. 2 shows a navigation device illustrating a traffic map with flow data and incidents at two hours into the future from that shown in FIG. 1 , in accordance with the principles of the present invention.
  • slide control 110 is shown after having been moved to another time.
  • the current time is still shown as being 12:45 PM mid-day, but the slide control 110 has been moved relative to the slide control 110 shown in FIG. 1 to predict an ETT for a delayed departure at 5 PM.
  • traffic conditions shown in map viewing area 120 are updated to reflect predictive traffic conditions for the new time.
  • the ETT to the airport for FIG. 2 has now increased to 1 hr and 24 minutes versus the 42 min. ETT shown in FIG. 1 .
  • This information can be very significant, especially if a user has a flight at 5:15 PM and the ETT is 1 hr and 24 for a departure time of 5 PM.
  • a user is able to begin driving to a destination, e.g., airport, by 3 PM to make sure they are not late.
  • a route reminder alerts a driver to depart at a proper time, 3 PM for the example given in FIGS. 1 and 2 .
  • FIG. 3 shows an in-car navigation device illustrating a traffic map with flow data and incidents based on current time and future times, in accordance with the principles of the present invention.
  • navigation device 300 that includes a route viewer selector window 310 and a map viewing area 320 .
  • the route viewer selector window 310 allows a user to select various times of day similar to the slide control 110 shown in FIGS. 1 and 2 .
  • a user is able to select from a plurality of available time options in the future from their current time to predict an ETT for a route at a different time than their current time based on predictive traffic conditions for a selected time.
  • a user has already entered their beginning geographic location and ending geographic location for route guidance.
  • a user has selected, for the already calculated route guidance, to leave at 6 AM.
  • the navigation device 300 has calculated that traversal of the calculated route will take 3 hrs and 22 min. to traverse.
  • criteria within the route viewer selector window 310 can be modified to allow a user to determine an ETT for any given departure time.
  • FIG. 4 shows a detailed view of the navigation device, in accordance with the principles of the present invention.
  • the navigation device 100 includes a start time modification module 410 , a predictive traffic data database 420 , and a mapping module 430 .
  • the navigation device 100 can further include an optional user appointments database 450 .
  • Start time modification module 410 monitors for changes in a menu option area for the navigation device 100 .
  • start time modification module 410 monitors for changes with slide control 110 and route viewer selector window 310 .
  • Start time modification module 410 triggers a re-calculation of an ETT based on a newly entered start time for route guidance.
  • Predictive traffic data database 420 stores predictive traffic patterns over an extended period of time for specific times periods.
  • a database query submitted to the predictive traffic data database 420 based on a pre-determined route and a specific time of day results in predictive traffic patterns being returned to mapping module 430 .
  • Mapping module 430 can use the predictive traffic patterns for a given route to calculate or re-calculate an ETT for the given route.
  • Mapping module 430 maps a current location of the navigation device 110 or user defined locations for the navigation device 110 based on mapping data from map database 440 , as is known within the art. However, in accordance with the principles disclosed herein the mapping module 430 further performs predictive mapping for the navigation device 110 .
  • Predictive mapping includes predicting an ETT for a given route for time periods either before or after a current time. Predictive traffic data that has been accumulated over an extended period of time, e.g., a year, provides data upon which navigation device 100 can predict an ETT for a given route at any time during that extended period.
  • User appointment(s) database 450 can store previously entered user appointments, similarly to how a personal data assistant (PDA) can store user appointments. However, in accordance with the principles disclosed herein the user appointment(s) database 450 provides user appointment(s) information in addition to location information and predictive traffic information as a basis from which to formulate predictive traffic information for specific geographic locations associated with the previously entered user appointment(s). The user appointment(s) from user appointment(s) database 450 can be used as geographic starting points or destination during route guidance formations.
  • FIG. 5 shows a process for calculating an Estimated Time of Traversal (ETT) based on predictive traffic data, in accordance with the principles of the present invention.
  • ETT Estimated Time of Traversal
  • process 500 for calculating an ETT includes a step for calculating an ETT for a given route 510 , a step for determining if the beginning time for the given route has been changed 520 , and a step for re-calculating an ETT for a new time 530 .
  • the navigation device 100 has already acquired a beginning geographic location and an ending geographic location.
  • the beginning geographic location and the ending geographic location can be acquired by the navigation device 100 through a variety of ways.
  • a user can enter such information through appropriate menu options, pre-stored geographic locations, e.g,. from user appointment(s) database 450 , can be selected by a user through appropriate menu options, a beginning geographic location can be obtained from an on-board position determining determiner, e.g., Global Positioning System (GPS), a beginning geographic location can be obtained from a remote positioning center (not shown) that remotely determines the location of the navigation device 100 , etc.
  • GPS Global Positioning System
  • the user appointment(s) database 450 can provide geographic location(s) from which an ETT is calculated for a route to one or more geographic locations retrieved from user appointment(s) database 450 .
  • a user e.g., a salesperson
  • mapping module 430 submits a database query to map database 440 to calculate a route between the beginning geographic location and the ending geographic location. Once a route is calculated between the beginning geographic location and the ending geographic location, mapping module 430 submits a database query to predictive traffic data database 420 to retrieve predictive traffic data for the calculated route. The predictive traffic data for the calculated route is used by the mapping module 430 to calculate an ETT for the calculated route. The ETT is displayed for a user of the navigation device 100 .
  • Step 510 can be an optional step within process 500 .
  • the navigation device 100 can automatically calculate a route and an ETT for the beginning geographic location and the ending geographic location. Alternately, process 500 can go directly to step 520 and wait for a user to select a beginning time before calculation of an ETT for that route.
  • mapping module 430 submits a database query to predictive traffic data database 420 to retrieve predictive traffic data for the calculated route.
  • the predictive traffic data for the calculated route is used by the mapping module 430 to calculate an ETT for the calculated route.
  • the new ETT is displayed for a user of the navigation device 100 .

Abstract

A navigation device includes a predictive traffic data database to store predictive traffic data at a plurality of times and a map database to store mapping data. A mapping module calculates a route and an estimated time of traversal for a route between a beginning geographic location and an ending geographic location based on the predictive traffic data and the mapping data. A start time modification module monitors for a modification of a start time for the route, with the mapping module re-calculating the estimated time of traversal in response to the modification of the start time for the route.

Description

  • The present invention is a continuation of U.S. Ser. No. 14/921546, filed Oct. 23, 2015, which claims priority from U.S. Provisional Application 61/136,827, filed Oct. 7, 2008, entitled “USER INTERFACE FOR PREDICTIVE TRAFFIC”, to SANO et al., the entirety of which is expressly incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates generally to navigation devices. More particularly, it relates to location based services (LBS), and navigation services based on predictive traffic data.
  • 2. Background of the Related Art
  • When traveling for business or leisure, a challenge always remains as how to gauge when to depart an origin to arrive at a destination on time. This challenge exists for business travelers who must attend a meeting on time, catch a flight, etc. likewise, this challenge exists for non-business travelers, such as vacationers, who must arrive at an event, a dinner reservation, pick up children from a day care center or school, etc. In unfamiliar surroundings and roadways, the unknown factor that can cause delays greatly increases. People are either late or too early and must kill time. Traffic conditions only compound the problems associated with navigation timing to avoid being either late or too early.
  • Current technologies include traffic prompts or alerts, which do little to help a user determine when to leave for a given destination. Alerts may also describe conditions on unfamiliar roadways, but such information's impact is all but undecipherable and meaningless except to the local commuter. Alerts provide granular road-specific information, but what this information means in terms of an Estimated Time of Travel (ETI) and a resultant Estimated Time of Arrival (ETA), to a specific destination is unknown. If a user is unfamiliar with the local roadways, the impact on ETT and the resultant ETA is unknown.
  • Navigation products today include real time traffic, and may generate alternate routes around adverse traffic conditions. However, this capability is useful only once the user has started driving on a route. In unfamiliar locations to unfamiliar destinations, the question still remains from a planning perspective of when a user should begin a drive. A user may desire to known what the drive time for a given route would be several hours from now. A user may want to know if they have multiple meetings in different locations, when to depart each location to insure that they arrive in a timely manner, not late and preferably not too early.
  • SUMMARY OF THE INVENTION
  • In accordance with the principles of the present invention, a navigation device is comprised of a predictive traffic data database to store predictive traffic data at a plurality of times and a map database to store mapping data. A mapping module calculates a route and an estimated time of traversal for the route between a beginning geographic location and an ending geographic location based on the predictive traffic data and the mapping data. A start time modification module monitors for a modification of a start time for the route. The mapping module re-calculates the estimated time of traversal in response to the modification of the start time for the route.
  • In accordance with another aspect of the invention, an apparatus and method of determining an estimated time of arrival for a route calculated by a navigation device includes calculating the route and the estimated time of traversal for the route between a beginning geographic location and an ending geographic location based on predictive traffic data and mapping data. A modification of a start time is monitoring for the route. The estimated time of traversal is re-calculating in response to the modification of the start time for the route.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a navigation device illustrating a traffic map with flow data and incidents based on current time and future times, in accordance with the principles of the present invention.
  • FIG. 2 shows a navigation device illustrating a traffic map with flow data and incidents at two hours into the future from that shown in FIG. 1, in accordance with the principles of the present invention.
  • FIG. 3 shows an in-car navigation device illustrating a traffic map with flow data and incidents based on current time and future times, in accordance with the principles of the present invention.
  • FIG. 4 shows a detailed view of the navigation device, in accordance with the principles of the present invention.
  • FIG. 5 shows a process for calculating an Estimated Time of Traversal (ETT) based on predictive traffic data, in accordance with the principles of the present invention.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • The present invention provides predictive traffic data based navigation based on real time sampling of traffic patterns over an extended period of time, e.g., a year. Traffic pattern data trends are averaged over the course of an extended period of time to insure the best possible scenarios during seasonal travel patterns, weekly commute patterns, and hourly daily flow data.
  • For example, driving time in September would most likely require longer time versus driving times for the same route in August when people are more frequently on vacation, and school traffic is absent.
  • Specific days may require added travel time, e.g., the day before Thanksgiving or other holiday, versus driving on the actual holiday itself. Hourly traffic data averages the flow during peak morning and evening commutes versus off-hour or mid-day driving. At any of these times, an easy to use, direct manipulation user interface disclosed herein allows a user to see traffic impact throughout the day, and preferably be prompted when to begin a drive based on traffic pattern averages.
  • FIG. 1 shows a navigation device illustrating a traffic map with flow data and incidents based on current time and future times, in accordance with the principles of the present invention.
  • In particular, navigation device 100 includes a slide control 110 and a map viewing area 120. The slide control 110 allows a user to select various times of day. In particular, a user is able to select from a plurality of available time options 130 in the near future from their current time. In the example shown, a user is given time options 130 that span up to six hours into the future from their current time.
  • Once slide control 110 is moved to another time, the map viewing area 120 is updated with predictive traffic conditions. Moving the slide control up or down, e.g., dragging up or down with a finger on a tough pad or touch screen, slides the hours of the day forward or backward. In the example shown in FIG. 1, the current' time is shown as being 12:45 PM mid-day, and the slide control 110 is set to 3 PM. With the slide control 110 set as shown in FIG. 1, traffic conditions shown in map viewing area 120 reflect predictive traffic conditions for that time of day. The En to a destination, e.g., to an airport, is calculated as approximately 42 minutes. The resultant ETA can be easily calculated from the ETA for display on the map viewing area 120.
  • Although the time options 130 shown in FIG. 1 are one hour increments, the increments can be adjusted within a configuration menu (not shown). For example, in some instances a use may desire to known if they leave for a trip later by 10 or 20 minutes. Near rush hour times, 10 or 20 minutes can result in significant traffic reductions or increases necessitating use of smaller increments for time options 130.
  • FIG. 2 shows a navigation device illustrating a traffic map with flow data and incidents at two hours into the future from that shown in FIG. 1, in accordance with the principles of the present invention.
  • In particular, slide control 110 is shown after having been moved to another time. In the example shown in FIG. 2, the current time is still shown as being 12:45 PM mid-day, but the slide control 110 has been moved relative to the slide control 110 shown in FIG. 1 to predict an ETT for a delayed departure at 5 PM. With the slide control 110 set as shown in FIG. 2, traffic conditions shown in map viewing area 120 are updated to reflect predictive traffic conditions for the new time.
  • The ETT to the airport for FIG. 2 has now increased to 1 hr and 24 minutes versus the 42 min. ETT shown in FIG. 1. This information can be very significant, especially if a user has a flight at 5:15 PM and the ETT is 1 hr and 24 for a departure time of 5 PM. Using the navigation device 100 disclosed herein, a user is able to begin driving to a destination, e.g., airport, by 3 PM to make sure they are not late. Preferably, a route reminder alerts a driver to depart at a proper time, 3 PM for the example given in FIGS. 1 and 2.
  • FIG. 3 shows an in-car navigation device illustrating a traffic map with flow data and incidents based on current time and future times, in accordance with the principles of the present invention.
  • In particular, navigation device 300 that includes a route viewer selector window 310 and a map viewing area 320. The route viewer selector window 310 allows a user to select various times of day similar to the slide control 110 shown in FIGS. 1 and 2. A user is able to select from a plurality of available time options in the future from their current time to predict an ETT for a route at a different time than their current time based on predictive traffic conditions for a selected time.
  • In the example shown, a user has already entered their beginning geographic location and ending geographic location for route guidance. A user has selected, for the already calculated route guidance, to leave at 6 AM. For such a departure time and based on statistical traffic data, the navigation device 300 has calculated that traversal of the calculated route will take 3 hrs and 22 min. to traverse. Similarly to the slide control 110 shown in FIGS. 1 and 2, criteria within the route viewer selector window 310 can be modified to allow a user to determine an ETT for any given departure time.
  • FIG. 4 shows a detailed view of the navigation device, in accordance with the principles of the present invention.
  • In particular, the navigation device 100 includes a start time modification module 410, a predictive traffic data database 420, and a mapping module 430. The navigation device 100 can further include an optional user appointments database 450.
  • Start time modification module 410 monitors for changes in a menu option area for the navigation device 100. In the examples shown in FIGS. 1-3, start time modification module 410 monitors for changes with slide control 110 and route viewer selector window 310. Start time modification module 410 triggers a re-calculation of an ETT based on a newly entered start time for route guidance.
  • Predictive traffic data database 420 stores predictive traffic patterns over an extended period of time for specific times periods. A database query submitted to the predictive traffic data database 420 based on a pre-determined route and a specific time of day results in predictive traffic patterns being returned to mapping module 430. Mapping module 430 can use the predictive traffic patterns for a given route to calculate or re-calculate an ETT for the given route.
  • Mapping module 430 maps a current location of the navigation device 110 or user defined locations for the navigation device 110 based on mapping data from map database 440, as is known within the art. However, in accordance with the principles disclosed herein the mapping module 430 further performs predictive mapping for the navigation device 110. Predictive mapping includes predicting an ETT for a given route for time periods either before or after a current time. Predictive traffic data that has been accumulated over an extended period of time, e.g., a year, provides data upon which navigation device 100 can predict an ETT for a given route at any time during that extended period.
  • User appointment(s) database 450 can store previously entered user appointments, similarly to how a personal data assistant (PDA) can store user appointments. However, in accordance with the principles disclosed herein the user appointment(s) database 450 provides user appointment(s) information in addition to location information and predictive traffic information as a basis from which to formulate predictive traffic information for specific geographic locations associated with the previously entered user appointment(s). The user appointment(s) from user appointment(s) database 450 can be used as geographic starting points or destination during route guidance formations.
  • FIG. 5 shows a process for calculating an Estimated Time of Traversal (ETT) based on predictive traffic data, in accordance with the principles of the present invention.
  • In particular, process 500 for calculating an ETT includes a step for calculating an ETT for a given route 510, a step for determining if the beginning time for the given route has been changed 520, and a step for re-calculating an ETT for a new time 530.
  • At step 510, the navigation device 100 has already acquired a beginning geographic location and an ending geographic location. The beginning geographic location and the ending geographic location can be acquired by the navigation device 100 through a variety of ways. A user can enter such information through appropriate menu options, pre-stored geographic locations, e.g,. from user appointment(s) database 450, can be selected by a user through appropriate menu options, a beginning geographic location can be obtained from an on-board position determining determiner, e.g., Global Positioning System (GPS), a beginning geographic location can be obtained from a remote positioning center (not shown) that remotely determines the location of the navigation device 100, etc.
  • Optionally, the user appointment(s) database 450 can provide geographic location(s) from which an ETT is calculated for a route to one or more geographic locations retrieved from user appointment(s) database 450. In this manner a user, e.g., a salesperson, can select their route for a single appointment, e.g., a sales meeting, or routes for all of their appointments throughout the day that minimizes travel times based on the principles disclosed herein for route guidance based on predictive traffic patterns.
  • At step 510, mapping module 430 submits a database query to map database 440 to calculate a route between the beginning geographic location and the ending geographic location. Once a route is calculated between the beginning geographic location and the ending geographic location, mapping module 430 submits a database query to predictive traffic data database 420 to retrieve predictive traffic data for the calculated route. The predictive traffic data for the calculated route is used by the mapping module 430 to calculate an ETT for the calculated route. The ETT is displayed for a user of the navigation device 100.
  • Step 510 can be an optional step within process 500. The navigation device 100 can automatically calculate a route and an ETT for the beginning geographic location and the ending geographic location. Alternately, process 500 can go directly to step 520 and wait for a user to select a beginning time before calculation of an ETT for that route.
  • At step 520, a decision is made if a user has selected or reselected a new beginning time for the route calculated in step 510. If the beginning time for the route calculated in step 510 has been changed by a user or a user enters a beginning time for the route for the first time, process 500 branches to step 530. Otherwise, if the beginning time for the route has not been changed, process 500 branches to step 520. Branching back to step 520 allows process 500 to continuously monitor for a change in a beginning time for a given route.
  • At step 530, mapping module 430 submits a database query to predictive traffic data database 420 to retrieve predictive traffic data for the calculated route. The predictive traffic data for the calculated route is used by the mapping module 430 to calculate an ETT for the calculated route. The new ETT is displayed for a user of the navigation device 100.
  • While the invention has been described with reference to the exemplary embodiments thereof, those skilled in the art will be able to make various modifications to the described embodiments of the invention without departing from the true spirit and scope of the invention.

Claims (1)

What is claimed is:
1. A method of determining a time to embark on an overall day's route determined by a navigation device, comprising:
determining said overall day's route including each of a plurality of separate trips to different ending locations, each of said plurality of separate trips being separated in time over a day;
determining an estimated total travel time of traversal for said overall day's route between a beginning geographic location of a first one of said plurality of separate trips, and an ending geographic location of a last one of said plurality of separate trips, based on prior real time sampling of traffic patterns over an extended period of time, and a future start time for embarking on said overall day's route;
modifying said future start time for embarking on said overall day's route; and re-determining said estimated total travel time of traversal in response to said modification of said future start time.
US15/175,527 2008-10-07 2016-06-07 User interface for predictive traffic Abandoned US20160282130A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/175,527 US20160282130A1 (en) 2008-10-07 2016-06-07 User interface for predictive traffic

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13682708P 2008-10-07 2008-10-07
US12/588,145 US9200913B2 (en) 2008-10-07 2009-10-06 User interface for predictive traffic
US14/921,546 US9372091B2 (en) 2008-10-07 2015-10-23 User interface for predictive traffic
US15/175,527 US20160282130A1 (en) 2008-10-07 2016-06-07 User interface for predictive traffic

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/921,546 Continuation US9372091B2 (en) 2008-10-07 2015-10-23 User interface for predictive traffic

Publications (1)

Publication Number Publication Date
US20160282130A1 true US20160282130A1 (en) 2016-09-29

Family

ID=42076426

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/588,145 Active 2032-01-19 US9200913B2 (en) 2008-10-07 2009-10-06 User interface for predictive traffic
US14/921,546 Expired - Fee Related US9372091B2 (en) 2008-10-07 2015-10-23 User interface for predictive traffic
US15/175,527 Abandoned US20160282130A1 (en) 2008-10-07 2016-06-07 User interface for predictive traffic

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/588,145 Active 2032-01-19 US9200913B2 (en) 2008-10-07 2009-10-06 User interface for predictive traffic
US14/921,546 Expired - Fee Related US9372091B2 (en) 2008-10-07 2015-10-23 User interface for predictive traffic

Country Status (1)

Country Link
US (3) US9200913B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018161533A1 (en) * 2017-03-06 2018-09-13 广东欧珀移动通信有限公司 Method and device for presenting traffic information, computer device, and computer readable storage medium
CN109612453A (en) * 2018-11-23 2019-04-12 杭州优行科技有限公司 Navigate place amending method and device

Families Citing this family (224)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013255A2 (en) * 1999-08-13 2001-02-22 Pixo, Inc. Displaying and traversing links in character array
US8645137B2 (en) 2000-03-16 2014-02-04 Apple Inc. Fast, language-independent method for user authentication by voice
ITFI20010199A1 (en) 2001-10-22 2003-04-22 Riccardo Vieri SYSTEM AND METHOD TO TRANSFORM TEXTUAL COMMUNICATIONS INTO VOICE AND SEND THEM WITH AN INTERNET CONNECTION TO ANY TELEPHONE SYSTEM
US8677377B2 (en) 2005-09-08 2014-03-18 Apple Inc. Method and apparatus for building an intelligent automated assistant
US7633076B2 (en) 2005-09-30 2009-12-15 Apple Inc. Automated response to and sensing of user activity in portable devices
US7739040B2 (en) 2006-06-30 2010-06-15 Microsoft Corporation Computation of travel routes, durations, and plans over multiple contexts
US9318108B2 (en) 2010-01-18 2016-04-19 Apple Inc. Intelligent automated assistant
US8977255B2 (en) 2007-04-03 2015-03-10 Apple Inc. Method and system for operating a multi-function portable electronic device using voice-activation
US9053089B2 (en) 2007-10-02 2015-06-09 Apple Inc. Part-of-speech tagging using latent analogy
US8620662B2 (en) * 2007-11-20 2013-12-31 Apple Inc. Context-aware unit selection
US10002189B2 (en) 2007-12-20 2018-06-19 Apple Inc. Method and apparatus for searching using an active ontology
US9330720B2 (en) 2008-01-03 2016-05-03 Apple Inc. Methods and apparatus for altering audio output signals
US8065143B2 (en) 2008-02-22 2011-11-22 Apple Inc. Providing text input using speech data and non-speech data
US8996376B2 (en) 2008-04-05 2015-03-31 Apple Inc. Intelligent text-to-speech conversion
US10496753B2 (en) 2010-01-18 2019-12-03 Apple Inc. Automatically adapting user interfaces for hands-free interaction
US8464150B2 (en) 2008-06-07 2013-06-11 Apple Inc. Automatic language identification for dynamic text processing
US20100030549A1 (en) 2008-07-31 2010-02-04 Lee Michael M Mobile device having human language translation capability with positional feedback
US8768702B2 (en) 2008-09-05 2014-07-01 Apple Inc. Multi-tiered voice feedback in an electronic device
US8898568B2 (en) 2008-09-09 2014-11-25 Apple Inc. Audio user interface
US8712776B2 (en) 2008-09-29 2014-04-29 Apple Inc. Systems and methods for selective text to speech synthesis
US8583418B2 (en) 2008-09-29 2013-11-12 Apple Inc. Systems and methods of detecting language and natural language strings for text to speech synthesis
US8676904B2 (en) 2008-10-02 2014-03-18 Apple Inc. Electronic devices with voice command and contextual data processing capabilities
US9959870B2 (en) 2008-12-11 2018-05-01 Apple Inc. Speech recognition involving a mobile device
KR101057191B1 (en) * 2008-12-30 2011-08-16 주식회사 하이닉스반도체 Method of forming fine pattern of semiconductor device
US8862252B2 (en) * 2009-01-30 2014-10-14 Apple Inc. Audio user interface for displayless electronic device
US8380507B2 (en) 2009-03-09 2013-02-19 Apple Inc. Systems and methods for determining the language to use for speech generated by a text to speech engine
DE102010029091B4 (en) * 2009-05-21 2015-08-20 Koh Young Technology Inc. Form measuring device and method
US10241644B2 (en) 2011-06-03 2019-03-26 Apple Inc. Actionable reminder entries
US9858925B2 (en) 2009-06-05 2018-01-02 Apple Inc. Using context information to facilitate processing of commands in a virtual assistant
US10540976B2 (en) 2009-06-05 2020-01-21 Apple Inc. Contextual voice commands
US10255566B2 (en) 2011-06-03 2019-04-09 Apple Inc. Generating and processing task items that represent tasks to perform
US10241752B2 (en) 2011-09-30 2019-03-26 Apple Inc. Interface for a virtual digital assistant
US9431006B2 (en) 2009-07-02 2016-08-30 Apple Inc. Methods and apparatuses for automatic speech recognition
US20110110534A1 (en) * 2009-11-12 2011-05-12 Apple Inc. Adjustable voice output based on device status
US8682649B2 (en) 2009-11-12 2014-03-25 Apple Inc. Sentiment prediction from textual data
US8600743B2 (en) 2010-01-06 2013-12-03 Apple Inc. Noise profile determination for voice-related feature
US8381107B2 (en) 2010-01-13 2013-02-19 Apple Inc. Adaptive audio feedback system and method
US8311838B2 (en) 2010-01-13 2012-11-13 Apple Inc. Devices and methods for identifying a prompt corresponding to a voice input in a sequence of prompts
US10553209B2 (en) 2010-01-18 2020-02-04 Apple Inc. Systems and methods for hands-free notification summaries
US10679605B2 (en) 2010-01-18 2020-06-09 Apple Inc. Hands-free list-reading by intelligent automated assistant
US10705794B2 (en) 2010-01-18 2020-07-07 Apple Inc. Automatically adapting user interfaces for hands-free interaction
US10276170B2 (en) 2010-01-18 2019-04-30 Apple Inc. Intelligent automated assistant
DE202011111062U1 (en) 2010-01-25 2019-02-19 Newvaluexchange Ltd. Device and system for a digital conversation management platform
US8682667B2 (en) 2010-02-25 2014-03-25 Apple Inc. User profiling for selecting user specific voice input processing information
US8639516B2 (en) 2010-06-04 2014-01-28 Apple Inc. User-specific noise suppression for voice quality improvements
US8713021B2 (en) 2010-07-07 2014-04-29 Apple Inc. Unsupervised document clustering using latent semantic density analysis
US8719006B2 (en) 2010-08-27 2014-05-06 Apple Inc. Combined statistical and rule-based part-of-speech tagging for text-to-speech synthesis
US8719014B2 (en) 2010-09-27 2014-05-06 Apple Inc. Electronic device with text error correction based on voice recognition data
US10515147B2 (en) 2010-12-22 2019-12-24 Apple Inc. Using statistical language models for contextual lookup
US10762293B2 (en) 2010-12-22 2020-09-01 Apple Inc. Using parts-of-speech tagging and named entity recognition for spelling correction
US8781836B2 (en) 2011-02-22 2014-07-15 Apple Inc. Hearing assistance system for providing consistent human speech
US9262612B2 (en) 2011-03-21 2016-02-16 Apple Inc. Device access using voice authentication
US10672399B2 (en) 2011-06-03 2020-06-02 Apple Inc. Switching between text data and audio data based on a mapping
US10057736B2 (en) 2011-06-03 2018-08-21 Apple Inc. Active transport based notifications
US8812294B2 (en) 2011-06-21 2014-08-19 Apple Inc. Translating phrases from one language into another using an order-based set of declarative rules
US8706472B2 (en) 2011-08-11 2014-04-22 Apple Inc. Method for disambiguating multiple readings in language conversion
US8994660B2 (en) 2011-08-29 2015-03-31 Apple Inc. Text correction processing
US8762156B2 (en) 2011-09-28 2014-06-24 Apple Inc. Speech recognition repair using contextual information
US8892350B2 (en) 2011-12-16 2014-11-18 Toyoda Jidosha Kabushiki Kaisha Journey learning system
US10134385B2 (en) 2012-03-02 2018-11-20 Apple Inc. Systems and methods for name pronunciation
US9483461B2 (en) 2012-03-06 2016-11-01 Apple Inc. Handling speech synthesis of content for multiple languages
US9280610B2 (en) 2012-05-14 2016-03-08 Apple Inc. Crowd sourcing information to fulfill user requests
US10417037B2 (en) 2012-05-15 2019-09-17 Apple Inc. Systems and methods for integrating third party services with a digital assistant
US8775442B2 (en) 2012-05-15 2014-07-08 Apple Inc. Semantic search using a single-source semantic model
WO2013185109A2 (en) 2012-06-08 2013-12-12 Apple Inc. Systems and methods for recognizing textual identifiers within a plurality of words
US9721563B2 (en) 2012-06-08 2017-08-01 Apple Inc. Name recognition system
US11935190B2 (en) 2012-06-10 2024-03-19 Apple Inc. Representing traffic along a route
US10119831B2 (en) * 2012-06-10 2018-11-06 Apple Inc. Representing traffic along a route
US9495129B2 (en) 2012-06-29 2016-11-15 Apple Inc. Device, method, and user interface for voice-activated navigation and browsing of a document
US9576574B2 (en) 2012-09-10 2017-02-21 Apple Inc. Context-sensitive handling of interruptions by intelligent digital assistant
US9547647B2 (en) 2012-09-19 2017-01-17 Apple Inc. Voice-based media searching
US8935167B2 (en) 2012-09-25 2015-01-13 Apple Inc. Exemplar-based latent perceptual modeling for automatic speech recognition
KR20230137475A (en) 2013-02-07 2023-10-04 애플 인크. Voice trigger for a digital assistant
US10572476B2 (en) 2013-03-14 2020-02-25 Apple Inc. Refining a search based on schedule items
US10642574B2 (en) 2013-03-14 2020-05-05 Apple Inc. Device, method, and graphical user interface for outputting captions
US9977779B2 (en) 2013-03-14 2018-05-22 Apple Inc. Automatic supplementation of word correction dictionaries
US9733821B2 (en) 2013-03-14 2017-08-15 Apple Inc. Voice control to diagnose inadvertent activation of accessibility features
US9368114B2 (en) 2013-03-14 2016-06-14 Apple Inc. Context-sensitive handling of interruptions
US10652394B2 (en) 2013-03-14 2020-05-12 Apple Inc. System and method for processing voicemail
AU2014233517B2 (en) 2013-03-15 2017-05-25 Apple Inc. Training an at least partial voice command system
AU2014251347B2 (en) 2013-03-15 2017-05-18 Apple Inc. Context-sensitive handling of interruptions
US10748529B1 (en) 2013-03-15 2020-08-18 Apple Inc. Voice activated device for use with a voice-based digital assistant
KR101857648B1 (en) 2013-03-15 2018-05-15 애플 인크. User training by intelligent digital assistant
WO2014144579A1 (en) 2013-03-15 2014-09-18 Apple Inc. System and method for updating an adaptive speech recognition model
WO2014197334A2 (en) 2013-06-07 2014-12-11 Apple Inc. System and method for user-specified pronunciation of words for speech synthesis and recognition
US9582608B2 (en) 2013-06-07 2017-02-28 Apple Inc. Unified ranking with entropy-weighted information for phrase-based semantic auto-completion
WO2014197336A1 (en) 2013-06-07 2014-12-11 Apple Inc. System and method for detecting errors in interactions with a voice-based digital assistant
WO2014197335A1 (en) 2013-06-08 2014-12-11 Apple Inc. Interpreting and acting upon commands that involve sharing information with remote devices
US10176167B2 (en) 2013-06-09 2019-01-08 Apple Inc. System and method for inferring user intent from speech inputs
EP3937002A1 (en) 2013-06-09 2022-01-12 Apple Inc. Device, method, and graphical user interface for enabling conversation persistence across two or more instances of a digital assistant
AU2014278595B2 (en) 2013-06-13 2017-04-06 Apple Inc. System and method for emergency calls initiated by voice command
DE112014003653B4 (en) 2013-08-06 2024-04-18 Apple Inc. Automatically activate intelligent responses based on activities from remote devices
US10296160B2 (en) 2013-12-06 2019-05-21 Apple Inc. Method for extracting salient dialog usage from live data
US9959508B2 (en) 2014-03-20 2018-05-01 CloudMade, Inc. Systems and methods for providing information for predicting desired information and taking actions related to user needs in a mobile device
US9620105B2 (en) 2014-05-15 2017-04-11 Apple Inc. Analyzing audio input for efficient speech and music recognition
US10592095B2 (en) 2014-05-23 2020-03-17 Apple Inc. Instantaneous speaking of content on touch devices
US9502031B2 (en) 2014-05-27 2016-11-22 Apple Inc. Method for supporting dynamic grammars in WFST-based ASR
US9430463B2 (en) 2014-05-30 2016-08-30 Apple Inc. Exemplar-based natural language processing
US9715875B2 (en) 2014-05-30 2017-07-25 Apple Inc. Reducing the need for manual start/end-pointing and trigger phrases
US9633004B2 (en) 2014-05-30 2017-04-25 Apple Inc. Better resolution when referencing to concepts
AU2015266863B2 (en) 2014-05-30 2018-03-15 Apple Inc. Multi-command single utterance input method
US10170123B2 (en) 2014-05-30 2019-01-01 Apple Inc. Intelligent assistant for home automation
US9760559B2 (en) 2014-05-30 2017-09-12 Apple Inc. Predictive text input
US9842101B2 (en) 2014-05-30 2017-12-12 Apple Inc. Predictive conversion of language input
US10289433B2 (en) 2014-05-30 2019-05-14 Apple Inc. Domain specific language for encoding assistant dialog
US9734193B2 (en) 2014-05-30 2017-08-15 Apple Inc. Determining domain salience ranking from ambiguous words in natural speech
US9785630B2 (en) 2014-05-30 2017-10-10 Apple Inc. Text prediction using combined word N-gram and unigram language models
US10078631B2 (en) 2014-05-30 2018-09-18 Apple Inc. Entropy-guided text prediction using combined word and character n-gram language models
US10659851B2 (en) 2014-06-30 2020-05-19 Apple Inc. Real-time digital assistant knowledge updates
US9338493B2 (en) 2014-06-30 2016-05-10 Apple Inc. Intelligent automated assistant for TV user interactions
US10446141B2 (en) 2014-08-28 2019-10-15 Apple Inc. Automatic speech recognition based on user feedback
US9818400B2 (en) 2014-09-11 2017-11-14 Apple Inc. Method and apparatus for discovering trending terms in speech requests
US10789041B2 (en) 2014-09-12 2020-09-29 Apple Inc. Dynamic thresholds for always listening speech trigger
US10127911B2 (en) 2014-09-30 2018-11-13 Apple Inc. Speaker identification and unsupervised speaker adaptation techniques
US10074360B2 (en) 2014-09-30 2018-09-11 Apple Inc. Providing an indication of the suitability of speech recognition
US9646609B2 (en) 2014-09-30 2017-05-09 Apple Inc. Caching apparatus for serving phonetic pronunciations
US9886432B2 (en) 2014-09-30 2018-02-06 Apple Inc. Parsimonious handling of word inflection via categorical stem + suffix N-gram language models
US9668121B2 (en) 2014-09-30 2017-05-30 Apple Inc. Social reminders
US10552013B2 (en) 2014-12-02 2020-02-04 Apple Inc. Data detection
US9711141B2 (en) 2014-12-09 2017-07-18 Apple Inc. Disambiguating heteronyms in speech synthesis
JP2016138816A (en) * 2015-01-28 2016-08-04 アルパイン株式会社 Navigation device and computer program
US9865280B2 (en) 2015-03-06 2018-01-09 Apple Inc. Structured dictation using intelligent automated assistants
US10152299B2 (en) 2015-03-06 2018-12-11 Apple Inc. Reducing response latency of intelligent automated assistants
US10567477B2 (en) 2015-03-08 2020-02-18 Apple Inc. Virtual assistant continuity
US9721566B2 (en) 2015-03-08 2017-08-01 Apple Inc. Competing devices responding to voice triggers
US9886953B2 (en) 2015-03-08 2018-02-06 Apple Inc. Virtual assistant activation
US9899019B2 (en) 2015-03-18 2018-02-20 Apple Inc. Systems and methods for structured stem and suffix language models
US9842105B2 (en) 2015-04-16 2017-12-12 Apple Inc. Parsimonious continuous-space phrase representations for natural language processing
US10460227B2 (en) 2015-05-15 2019-10-29 Apple Inc. Virtual assistant in a communication session
US10083688B2 (en) 2015-05-27 2018-09-25 Apple Inc. Device voice control for selecting a displayed affordance
US10127220B2 (en) 2015-06-04 2018-11-13 Apple Inc. Language identification from short strings
US9578173B2 (en) 2015-06-05 2017-02-21 Apple Inc. Virtual assistant aided communication with 3rd party service in a communication session
US10101822B2 (en) 2015-06-05 2018-10-16 Apple Inc. Language input correction
US11025565B2 (en) 2015-06-07 2021-06-01 Apple Inc. Personalized prediction of responses for instant messaging
US10186254B2 (en) 2015-06-07 2019-01-22 Apple Inc. Context-based endpoint detection
US10255907B2 (en) 2015-06-07 2019-04-09 Apple Inc. Automatic accent detection using acoustic models
US20160378747A1 (en) 2015-06-29 2016-12-29 Apple Inc. Virtual assistant for media playback
US10671428B2 (en) 2015-09-08 2020-06-02 Apple Inc. Distributed personal assistant
US10747498B2 (en) 2015-09-08 2020-08-18 Apple Inc. Zero latency digital assistant
US9697820B2 (en) 2015-09-24 2017-07-04 Apple Inc. Unit-selection text-to-speech synthesis using concatenation-sensitive neural networks
US11010550B2 (en) 2015-09-29 2021-05-18 Apple Inc. Unified language modeling framework for word prediction, auto-completion and auto-correction
US10366158B2 (en) 2015-09-29 2019-07-30 Apple Inc. Efficient word encoding for recurrent neural network language models
US11587559B2 (en) 2015-09-30 2023-02-21 Apple Inc. Intelligent device identification
US10691473B2 (en) 2015-11-06 2020-06-23 Apple Inc. Intelligent automated assistant in a messaging environment
US10049668B2 (en) 2015-12-02 2018-08-14 Apple Inc. Applying neural network language models to weighted finite state transducers for automatic speech recognition
US10223066B2 (en) 2015-12-23 2019-03-05 Apple Inc. Proactive assistance based on dialog communication between devices
US10446143B2 (en) 2016-03-14 2019-10-15 Apple Inc. Identification of voice inputs providing credentials
US9934775B2 (en) 2016-05-26 2018-04-03 Apple Inc. Unit-selection text-to-speech synthesis based on predicted concatenation parameters
US9972304B2 (en) 2016-06-03 2018-05-15 Apple Inc. Privacy preserving distributed evaluation framework for embedded personalized systems
US11227589B2 (en) 2016-06-06 2022-01-18 Apple Inc. Intelligent list reading
US10249300B2 (en) 2016-06-06 2019-04-02 Apple Inc. Intelligent list reading
US10049663B2 (en) 2016-06-08 2018-08-14 Apple, Inc. Intelligent automated assistant for media exploration
DK179588B1 (en) 2016-06-09 2019-02-22 Apple Inc. Intelligent automated assistant in a home environment
US10067938B2 (en) 2016-06-10 2018-09-04 Apple Inc. Multilingual word prediction
US10509862B2 (en) 2016-06-10 2019-12-17 Apple Inc. Dynamic phrase expansion of language input
US10192552B2 (en) 2016-06-10 2019-01-29 Apple Inc. Digital assistant providing whispered speech
US10586535B2 (en) 2016-06-10 2020-03-10 Apple Inc. Intelligent digital assistant in a multi-tasking environment
US10490187B2 (en) 2016-06-10 2019-11-26 Apple Inc. Digital assistant providing automated status report
DK201670540A1 (en) 2016-06-11 2018-01-08 Apple Inc Application integration with a digital assistant
DK179049B1 (en) 2016-06-11 2017-09-18 Apple Inc Data driven natural language event detection and classification
DK179415B1 (en) 2016-06-11 2018-06-14 Apple Inc Intelligent device arbitration and control
DK179343B1 (en) 2016-06-11 2018-05-14 Apple Inc Intelligent task discovery
US11036972B2 (en) * 2016-07-11 2021-06-15 Disco Corporation Management system for supervising operator
US10474753B2 (en) 2016-09-07 2019-11-12 Apple Inc. Language identification using recurrent neural networks
US10043516B2 (en) 2016-09-23 2018-08-07 Apple Inc. Intelligent automated assistant
US11281993B2 (en) 2016-12-05 2022-03-22 Apple Inc. Model and ensemble compression for metric learning
US10593346B2 (en) 2016-12-22 2020-03-17 Apple Inc. Rank-reduced token representation for automatic speech recognition
US11204787B2 (en) 2017-01-09 2021-12-21 Apple Inc. Application integration with a digital assistant
US20200011678A1 (en) * 2017-02-22 2020-01-09 Rovi Guides, Inc. Systems and methods for altering navigation instructions based on the consumption time of media content
DK201770383A1 (en) 2017-05-09 2018-12-14 Apple Inc. User interface for correcting recognition errors
US10417266B2 (en) 2017-05-09 2019-09-17 Apple Inc. Context-aware ranking of intelligent response suggestions
US10726832B2 (en) 2017-05-11 2020-07-28 Apple Inc. Maintaining privacy of personal information
US10395654B2 (en) 2017-05-11 2019-08-27 Apple Inc. Text normalization based on a data-driven learning network
DK201770439A1 (en) 2017-05-11 2018-12-13 Apple Inc. Offline personal assistant
DK179496B1 (en) 2017-05-12 2019-01-15 Apple Inc. USER-SPECIFIC Acoustic Models
DK179745B1 (en) 2017-05-12 2019-05-01 Apple Inc. SYNCHRONIZATION AND TASK DELEGATION OF A DIGITAL ASSISTANT
DK201770429A1 (en) 2017-05-12 2018-12-14 Apple Inc. Low-latency intelligent automated assistant
US11301477B2 (en) 2017-05-12 2022-04-12 Apple Inc. Feedback analysis of a digital assistant
DK201770432A1 (en) 2017-05-15 2018-12-21 Apple Inc. Hierarchical belief states for digital assistants
DK201770431A1 (en) 2017-05-15 2018-12-20 Apple Inc. Optimizing dialogue policy decisions for digital assistants using implicit feedback
US10403278B2 (en) 2017-05-16 2019-09-03 Apple Inc. Methods and systems for phonetic matching in digital assistant services
US10303715B2 (en) 2017-05-16 2019-05-28 Apple Inc. Intelligent automated assistant for media exploration
US10311144B2 (en) 2017-05-16 2019-06-04 Apple Inc. Emoji word sense disambiguation
US20180336892A1 (en) 2017-05-16 2018-11-22 Apple Inc. Detecting a trigger of a digital assistant
DK179560B1 (en) 2017-05-16 2019-02-18 Apple Inc. Far-field extension for digital assistant services
US10657328B2 (en) 2017-06-02 2020-05-19 Apple Inc. Multi-task recurrent neural network architecture for efficient morphology handling in neural language modeling
US10445429B2 (en) 2017-09-21 2019-10-15 Apple Inc. Natural language understanding using vocabularies with compressed serialized tries
US10755051B2 (en) 2017-09-29 2020-08-25 Apple Inc. Rule-based natural language processing
US10636424B2 (en) 2017-11-30 2020-04-28 Apple Inc. Multi-turn canned dialog
US10733982B2 (en) 2018-01-08 2020-08-04 Apple Inc. Multi-directional dialog
US10733375B2 (en) 2018-01-31 2020-08-04 Apple Inc. Knowledge-based framework for improving natural language understanding
US10789959B2 (en) 2018-03-02 2020-09-29 Apple Inc. Training speaker recognition models for digital assistants
US10592604B2 (en) 2018-03-12 2020-03-17 Apple Inc. Inverse text normalization for automatic speech recognition
US10818288B2 (en) 2018-03-26 2020-10-27 Apple Inc. Natural assistant interaction
US10909331B2 (en) 2018-03-30 2021-02-02 Apple Inc. Implicit identification of translation payload with neural machine translation
US11145294B2 (en) 2018-05-07 2021-10-12 Apple Inc. Intelligent automated assistant for delivering content from user experiences
US10928918B2 (en) 2018-05-07 2021-02-23 Apple Inc. Raise to speak
US10984780B2 (en) 2018-05-21 2021-04-20 Apple Inc. Global semantic word embeddings using bi-directional recurrent neural networks
DK180639B1 (en) 2018-06-01 2021-11-04 Apple Inc DISABILITY OF ATTENTION-ATTENTIVE VIRTUAL ASSISTANT
US10892996B2 (en) 2018-06-01 2021-01-12 Apple Inc. Variable latency device coordination
US11386266B2 (en) 2018-06-01 2022-07-12 Apple Inc. Text correction
DK179822B1 (en) 2018-06-01 2019-07-12 Apple Inc. Voice interaction at a primary device to access call functionality of a companion device
DK201870355A1 (en) 2018-06-01 2019-12-16 Apple Inc. Virtual assistant operation in multi-device environments
US10504518B1 (en) 2018-06-03 2019-12-10 Apple Inc. Accelerated task performance
US11010561B2 (en) 2018-09-27 2021-05-18 Apple Inc. Sentiment prediction from textual data
US11462215B2 (en) 2018-09-28 2022-10-04 Apple Inc. Multi-modal inputs for voice commands
US10839159B2 (en) 2018-09-28 2020-11-17 Apple Inc. Named entity normalization in a spoken dialog system
US11170166B2 (en) 2018-09-28 2021-11-09 Apple Inc. Neural typographical error modeling via generative adversarial networks
US11475898B2 (en) 2018-10-26 2022-10-18 Apple Inc. Low-latency multi-speaker speech recognition
US11638059B2 (en) 2019-01-04 2023-04-25 Apple Inc. Content playback on multiple devices
US11348573B2 (en) 2019-03-18 2022-05-31 Apple Inc. Multimodality in digital assistant systems
US11423908B2 (en) 2019-05-06 2022-08-23 Apple Inc. Interpreting spoken requests
US11307752B2 (en) 2019-05-06 2022-04-19 Apple Inc. User configurable task triggers
US11475884B2 (en) 2019-05-06 2022-10-18 Apple Inc. Reducing digital assistant latency when a language is incorrectly determined
DK201970509A1 (en) 2019-05-06 2021-01-15 Apple Inc Spoken notifications
US11140099B2 (en) 2019-05-21 2021-10-05 Apple Inc. Providing message response suggestions
US11289073B2 (en) 2019-05-31 2022-03-29 Apple Inc. Device text to speech
US11496600B2 (en) 2019-05-31 2022-11-08 Apple Inc. Remote execution of machine-learned models
DK180129B1 (en) 2019-05-31 2020-06-02 Apple Inc. User activity shortcut suggestions
DK201970511A1 (en) 2019-05-31 2021-02-15 Apple Inc Voice identification in digital assistant systems
US11360641B2 (en) 2019-06-01 2022-06-14 Apple Inc. Increasing the relevance of new available information
US11281640B2 (en) * 2019-07-02 2022-03-22 Walmart Apollo, Llc Systems and methods for interleaving search results
WO2021056255A1 (en) 2019-09-25 2021-04-01 Apple Inc. Text detection using global geometry estimators
CN111928867B (en) * 2020-08-20 2021-04-30 上海西井信息科技有限公司 Path planning method, system, equipment and storage medium based on time expansion

Family Cites Families (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5263136A (en) 1991-04-30 1993-11-16 Optigraphics Corporation System for managing tiled images using multiple resolutions
US5359529A (en) 1992-05-15 1994-10-25 Zexel Corporation Route guidance on/off-route state filter
US6321158B1 (en) 1994-06-24 2001-11-20 Delorme Publishing Company Integrated routing/mapping information
US6518889B2 (en) 1998-07-06 2003-02-11 Dan Schlager Voice-activated personal alarm
US5819200A (en) 1996-02-14 1998-10-06 Zexel Corporation Method and apparatus for selecting a destination in a vehicle navigation system
US6108555A (en) 1996-05-17 2000-08-22 Ksi, Inc. Enchanced time difference localization system
KR100288284B1 (en) 1996-09-30 2001-05-02 모리 하루오 Car Navigation
US6680694B1 (en) 1997-08-19 2004-01-20 Siemens Vdo Automotive Corporation Vehicle information system
US6122520A (en) 1998-02-13 2000-09-19 Xerox Corporation System and method for obtaining and using location specific information
US6192314B1 (en) 1998-03-25 2001-02-20 Navigation Technologies Corp. Method and system for route calculation in a navigation application
US6532475B1 (en) 1998-05-28 2003-03-11 Increment P Corporation Map information providing system and map information searching method
US6714205B1 (en) 1998-08-21 2004-03-30 Canon Kabushiki Kaisha Image data processing method and apparatus, and image processing system
FI106823B (en) 1998-10-23 2001-04-12 Nokia Mobile Phones Ltd Information retrieval system
US6272129B1 (en) 1999-01-19 2001-08-07 3Com Corporation Dynamic allocation of wireless mobile nodes over an internet protocol (IP) network
JP4155671B2 (en) 1999-07-12 2008-09-24 アルパイン株式会社 Car navigation system
US8397177B2 (en) 1999-07-22 2013-03-12 Tavusi Data Solutions Llc Graphic-information flow method and system for visually analyzing patterns and relationships
US7093286B1 (en) 1999-07-23 2006-08-15 Openwave Systems Inc. Method and system for exchanging sensitive information in a wireless communication system
US20050026589A1 (en) 1999-07-29 2005-02-03 Bryan Holland Remote locator system using A E911-enabled wireless system
US6401034B1 (en) 1999-09-02 2002-06-04 Navigation Technologies Corp. Method and system for finding intermediate destinations with a navigation system
US6256577B1 (en) * 1999-09-17 2001-07-03 Intel Corporation Using predictive traffic modeling
US6470189B1 (en) 1999-09-29 2002-10-22 Motorola, Inc. Method and apparatus in a wireless transceiver for seeking and transferring information available from a network server
EP1128163B1 (en) 2000-02-23 2013-10-30 Deutsche Telekom AG System for planning and guiding a travel route
DE60121075T2 (en) 2000-03-01 2007-02-01 Matsushita Electric Industrial Co., Ltd., Kadoma navigation device
US6587782B1 (en) 2000-03-14 2003-07-01 Navigation Technologies Corp. Method and system for providing reminders about points of interests while traveling
US6480783B1 (en) * 2000-03-17 2002-11-12 Makor Issues And Rights Ltd. Real time vehicle guidance and forecasting system under traffic jam conditions
US20030095525A1 (en) 2000-04-13 2003-05-22 Daniel Lavin Navigation control unit for a wireless computer resource access device, such as a wireless web content access device
US6487495B1 (en) 2000-06-02 2002-11-26 Navigation Technologies Corporation Navigation applications using related location-referenced keywords
US6317686B1 (en) * 2000-07-21 2001-11-13 Bin Ran Method of providing travel time
US6671424B1 (en) 2000-07-25 2003-12-30 Chipworks Predictive image caching algorithm
US6741856B2 (en) 2000-08-14 2004-05-25 Vesuvius Inc. Communique system for virtual private narrowcasts in cellular communication networks
JP2002201222A (en) * 2000-09-19 2002-07-19 Merck Patent Gmbh Polymer bead, method of using polymer bead, reflective film, security mark, securities, security device
WO2002025488A2 (en) 2000-09-25 2002-03-28 Transactions, Inc. System and method to correlate and access related text with locations on an electronically displayed map
US6535815B2 (en) 2000-12-22 2003-03-18 Telefonaktiebolaget L. M. Ericsson Position updating method for a mobile terminal equipped with a positioning receiver
US7551931B2 (en) 2001-01-24 2009-06-23 Motorola, Inc. Method and system for validating a mobile station location fix
US6571169B2 (en) 2001-03-16 2003-05-27 Alpine Electronics, Inc. Destination input method in navigation system and navigation system
WO2002079981A1 (en) 2001-03-30 2002-10-10 Nokia Corporation Downloading application software to a mobile terminal
US6529131B2 (en) 2001-06-13 2003-03-04 Robert E. Wentworth Electronic tether
US7219108B2 (en) 2001-06-22 2007-05-15 Oracle International Corporation Query prunning using exterior tiles in an R-tree index
US6904362B2 (en) 2001-08-09 2005-06-07 Aisin Aw Co., Ltd. Route guidance system, information delivery center, and vehicular route guidance apparatus
US6507785B1 (en) 2001-09-21 2003-01-14 General Motors Corportion Method and system for detecting and correcting off route navigation for server based route guidance systems
US6664896B2 (en) 2001-10-11 2003-12-16 Mcdonald Jill Elizabeth Article locating device using position location
US6424912B1 (en) 2001-11-09 2002-07-23 General Motors Corporation Method for providing vehicle navigation instructions
US6636803B1 (en) 2001-11-30 2003-10-21 Corus Home Realty Real-estate information search and retrieval system
US6897861B2 (en) 2002-01-09 2005-05-24 Nissan Motor Co., Ltd. Map image display device, map image display method and map image display program
EP1770652B1 (en) 2002-03-21 2010-09-01 United Parcel Service Of America, Inc. Telematic programming logic control unit
JP4199475B2 (en) 2002-04-11 2008-12-17 日本電気株式会社 Positioning gateway device, terminal location information request processing method and program
EP2463627B1 (en) 2002-04-30 2017-07-19 Intel Corporation Navigation system using corridor maps
US7236799B2 (en) 2002-06-14 2007-06-26 Cingular Wireless Ii, Llc Apparatus and systems for providing location-based services within a wireless network
US6873329B2 (en) 2002-07-05 2005-03-29 Spatial Data Technologies, Inc. System and method for caching and rendering images
US7313476B2 (en) 2002-08-15 2007-12-25 Trimble Navigation Limited Method and system for controlling a valuable movable item
US20040203873A1 (en) 2002-09-19 2004-10-14 William H. Gray Method and system of informing WAN user of nearby WLAN access point
US20040203603A1 (en) 2003-01-06 2004-10-14 William Pierce Inter-network communications with subscriber devices in wireless communications networks
JP4474831B2 (en) 2003-01-28 2010-06-09 日本電気株式会社 Mobile station location system, control device and mobile station in mobile communication network
KR101168423B1 (en) * 2003-02-05 2012-07-25 가부시키가이샤 자나비 인포메틱스 Path search method of navigation apparatus and display method of traffic information
GB0303888D0 (en) 2003-02-19 2003-03-26 Sec Dep Acting Through Ordnanc Image streaming
JP4255007B2 (en) * 2003-04-11 2009-04-15 株式会社ザナヴィ・インフォマティクス Navigation device and travel time calculation method thereof
US20040224702A1 (en) 2003-05-09 2004-11-11 Nokia Corporation System and method for access control in the delivery of location information
US7155339B2 (en) 2003-06-13 2006-12-26 Alpine Electronics, Inc. Display method and apparatus for navigation system for searching POI and arranging listing order of POI
US6954697B1 (en) 2003-08-04 2005-10-11 America Online, Inc. Using a corridor search to identify locations of interest along a route
US6940407B2 (en) 2003-08-28 2005-09-06 Motorola, Inc. Method and apparatus for detecting loss and location of a portable communications device
US8046000B2 (en) 2003-12-24 2011-10-25 Nortel Networks Limited Providing location-based information in local wireless zones
JP3928639B2 (en) * 2003-12-26 2007-06-13 アイシン・エィ・ダブリュ株式会社 Car navigation system
JP4377246B2 (en) 2004-01-05 2009-12-02 パイオニア株式会社 Information processing apparatus, system thereof, method thereof, program thereof, and recording medium recording the program
CN100576159C (en) 2004-02-23 2009-12-30 希尔克瑞斯特实验室公司 Method of real-time incremental zooming
JP4346472B2 (en) * 2004-02-27 2009-10-21 株式会社ザナヴィ・インフォマティクス Traffic information prediction device
US7373244B2 (en) 2004-04-20 2008-05-13 Keith Kreft Information mapping approaches
US7412248B2 (en) 2004-06-15 2008-08-12 Technocom Corporation System and method for location determination
KR100697098B1 (en) 2004-06-30 2007-03-20 에스케이 주식회사 System and method for providing telematics service using guidance point map
FI20040978A0 (en) 2004-07-13 2004-07-13 Nokia Corp System, Method, Web Objects, and Computer Programs to Manage Dynamic Host Configuration Policy Frame Configuration
US20060023626A1 (en) 2004-07-29 2006-02-02 Manuel Krausz System and method for preventing loss of personal items
US7739029B2 (en) * 2004-09-08 2010-06-15 Aisin Aw Co., Ltd. Navigation apparatus and method with traffic ranking and display
US7451405B2 (en) 2004-09-15 2008-11-11 Research In Motion Limited Method for requesting and viewing a zoomed area of detail from an image attachment on a mobile communication device
EP1640691B1 (en) * 2004-09-24 2015-05-06 Aisin Aw Co., Ltd. Navigation systems, methods, and programs
US7480566B2 (en) 2004-10-22 2009-01-20 Alpine Electronics, Inc. Method and apparatus for navigation system for searching easily accessible POI along route
US8150617B2 (en) 2004-10-25 2012-04-03 A9.Com, Inc. System and method for displaying location-specific images on a mobile device
US7706977B2 (en) 2004-10-26 2010-04-27 Honeywell International Inc. Personal navigation device for use with portable device
US7835859B2 (en) 2004-10-29 2010-11-16 Aol Inc. Determining a route to a destination based on partially completed route
US20060105782A1 (en) 2004-11-12 2006-05-18 Cameron Brock Method and apparatus for controlling a geo-tracking device
US8606516B2 (en) 2004-11-30 2013-12-10 Dash Navigation, Inc. User interface system and method for a vehicle navigation device
US20060116818A1 (en) 2004-12-01 2006-06-01 Televigation, Inc. Method and system for multiple route navigation
US7187936B2 (en) 2004-12-21 2007-03-06 J3 Keeper, L.L.C. Wireless tracking system for personal items
US7877405B2 (en) 2005-01-07 2011-01-25 Oracle International Corporation Pruning of spatial queries using index root MBRS on partitioned indexes
US7444237B2 (en) 2005-01-26 2008-10-28 Fujitsu Limited Planning a journey that includes waypoints
JP4728003B2 (en) * 2005-01-27 2011-07-20 クラリオン株式会社 Navigation system
US20060200308A1 (en) 2005-03-03 2006-09-07 Arutunian Ethan B Server-based interactive enhanced map imagery engine
KR100696801B1 (en) 2005-03-04 2007-03-19 엘지전자 주식회사 Navigation system and interesting location seaching method thereof
US20060206586A1 (en) 2005-03-09 2006-09-14 Yibei Ling Method, apparatus and system for a location-based uniform resource locator
US7353034B2 (en) 2005-04-04 2008-04-01 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
US7499713B2 (en) 2005-04-28 2009-03-03 Northrop Grumann Corporation Systems and methods for condition and location monitoring of mobile entities
US7565239B2 (en) 2005-05-06 2009-07-21 Alpine Electronics, Inc. Method and apparatus for navigation system for searching selected type of information along route to destination
US7627656B1 (en) 2005-05-16 2009-12-01 Cisco Technology, Inc. Providing configuration information to an endpoint
WO2006125291A1 (en) 2005-05-25 2006-11-30 Hiroyuki Takada System and method for estimating travel times of a traffic probe
US7373246B2 (en) 2005-05-27 2008-05-13 Google Inc. Using boundaries associated with a map view for business location searching
JP2006337182A (en) * 2005-06-02 2006-12-14 Xanavi Informatics Corp Car navigation system, traffic information providing device, car navigation device, traffic information providing method, and traffic information providing program
WO2007002800A2 (en) 2005-06-28 2007-01-04 Metacarta, Inc. User interface for geographic search
US20070015518A1 (en) 2005-07-15 2007-01-18 Agilis Systems, Inc. Mobile resource location-based customer contact systems
US8537997B2 (en) 2005-07-27 2013-09-17 Cisco Technology, Inc. RFID for available resources not connected to the network
US7280810B2 (en) 2005-08-03 2007-10-09 Kamilo Feher Multimode communication system
KR100732969B1 (en) 2005-09-09 2007-06-29 엘지전자 주식회사 A method and apparatus of finding person using mobile messenger service
US8265864B1 (en) 2005-09-12 2012-09-11 Navteq B.V. Method of providing geographic information for a navigation system
US7409219B2 (en) 2005-09-29 2008-08-05 Nextel Communications Inc. System and method for recovering a lost or stolen wireless device
US7574428B2 (en) 2005-10-11 2009-08-11 Telmap Ltd Geometry-based search engine for navigation systems
US8005943B2 (en) 2005-10-12 2011-08-23 Computer Associates Think, Inc. Performance monitoring of network applications
WO2007056450A2 (en) 2005-11-07 2007-05-18 Google Inc. Local search and mapping for mobile devices
CN101430209B (en) 2005-12-07 2011-05-25 松下电器产业株式会社 Route information display device and route information display method
US20070153983A1 (en) 2006-01-03 2007-07-05 Sony Ericsson Mobile Communications Ab Method and Apparatus for Routing Emergency Calls in a VoIP System
JP4878160B2 (en) * 2006-01-04 2012-02-15 クラリオン株式会社 Traffic information display method and navigation system
US7561964B2 (en) 2006-01-05 2009-07-14 Alpine Electronics, Inc. Off-route recalculation method and apparatus for navigation system
WO2007082307A2 (en) 2006-01-13 2007-07-19 Invenda Corporation Coupon and internet search method and system with mapping engine
US7844247B2 (en) 2006-01-25 2010-11-30 International Business Machines Corporation System for automatic wireless utilization of cellular telephone devices in an emergency by co-opting nearby cellular telephone devices
US7813870B2 (en) * 2006-03-03 2010-10-12 Inrix, Inc. Dynamic time series prediction of future traffic conditions
US7899611B2 (en) * 2006-03-03 2011-03-01 Inrix, Inc. Detecting anomalous road traffic conditions
US7912628B2 (en) * 2006-03-03 2011-03-22 Inrix, Inc. Determining road traffic conditions using data from multiple data sources
US20070208498A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Displaying road traffic condition information and user controls
US7519470B2 (en) 2006-03-15 2009-04-14 Microsoft Corporation Location-based caching for mobile devices
JP5362544B2 (en) 2006-03-15 2013-12-11 クゥアルコム・インコーポレイテッド Method and apparatus for determining relevant target point information based on user's route
ATE498109T1 (en) 2006-03-31 2011-02-15 Research In Motion Ltd METHOD AND SYSTEM FOR DISTRIBUTING CARTOGRAPHIC CONTENT TO MOBILE COMMUNICATION DEVICES
US7743056B2 (en) 2006-03-31 2010-06-22 Aol Inc. Identifying a result responsive to a current location of a client device
CA2648294A1 (en) 2006-04-05 2007-10-11 James Andrew Wanless A method and system for smart route dialling to a destination identifier using a telephone
US7464101B2 (en) 2006-04-11 2008-12-09 Alcatel-Lucent Usa Inc. Fuzzy alphanumeric search apparatus and method
US20070253642A1 (en) 2006-04-27 2007-11-01 Mapinfo Corporation Method and apparatus for indexing, storing and retrieving raster (GRID) data in a combined raster vector system
US20070281690A1 (en) 2006-06-01 2007-12-06 Flipt, Inc Displaying and tagging places of interest on location-aware mobile communication devices in a local area network
US8073936B2 (en) 2006-06-08 2011-12-06 Cisco Technology, Inc. Providing support for responding to location protocol queries within a network node
US8750892B2 (en) 2006-06-21 2014-06-10 Scenera Mobile Technologies, Llc System and method for naming a location based on user-specific information
JP2008039698A (en) 2006-08-09 2008-02-21 Univ Nagoya Sequential map-matching system, sequential map-matching method, and sequential map-matching program
US8285481B2 (en) 2006-08-10 2012-10-09 Alpine Electronics, Inc. Method and apparatus for associating brand icon with POI location for navigation system
JP4652307B2 (en) * 2006-10-18 2011-03-16 アイシン・エィ・ダブリュ株式会社 Traffic information distribution device
US20080140307A1 (en) 2006-10-18 2008-06-12 Kenny Chen Method and apparatus for keyboard arrangement for efficient data entry for navigation system
US8818344B2 (en) 2006-11-14 2014-08-26 Microsoft Corporation Secured communication via location awareness
US7969930B2 (en) 2006-11-30 2011-06-28 Kyocera Corporation Apparatus, system and method for managing wireless local area network service based on a location of a multi-mode portable communication device
US20080139114A1 (en) 2006-12-06 2008-06-12 Motorola, Inc. Method for determining user location based on association with seamless mobility context
US7949711B2 (en) 2007-01-24 2011-05-24 Chang Ypaul L Method, system, and program for integrating disjoined but related network components into collaborative communities
JP2008209208A (en) * 2007-02-26 2008-09-11 Denso Corp Car navigation device
US7719467B2 (en) 2007-03-08 2010-05-18 Trimble Navigation Limited Digital camera with GNSS picture location determination
US8756659B2 (en) 2007-04-19 2014-06-17 At&T Intellectual Property I, L.P. Access authorization servers, methods and computer program products employing wireless terminal location
US8483947B2 (en) 2007-04-25 2013-07-09 Research In Motion Limited Bitmap array for optimally distributing map data content to wireless communications devices
KR20080097321A (en) * 2007-05-01 2008-11-05 엘지전자 주식회사 Method of selecting a route and terminal thereof
US20080280599A1 (en) 2007-05-08 2008-11-13 Mediatek Inc. Call processing method and system
US20080307445A1 (en) 2007-06-05 2008-12-11 Sukesh Garg Method and apparatus for providing a unified system for interaction with cellular and internet protocol devices
US20080319652A1 (en) 2007-06-20 2008-12-25 Radiofy Llc Navigation system and methods for map navigation
US9360337B2 (en) 2007-06-20 2016-06-07 Golba Llc Navigation system and methods for route navigation
US8643544B2 (en) 2007-07-06 2014-02-04 Qualcomm Incorporated Location obtained by combining last known reliable position with position changes
US7877087B2 (en) 2007-07-25 2011-01-25 Sony Ericsson Mobile Communications Ab Methods of remotely updating lists in mobile terminals and related systems and computer program products
US20090055087A1 (en) 2007-08-07 2009-02-26 Brandon Graham Beacher Methods and systems for displaying and automatic dynamic re-displaying of points of interest with graphic image
WO2009029910A2 (en) * 2007-08-31 2009-03-05 Proxpro, Inc. Situation-aware personal information management for a mobile device
EP2220457B1 (en) 2007-11-09 2016-06-22 TeleCommunication Systems, Inc. Points-of-interest panning on a displayed map with a persistent search on a wireless phone
US8095434B1 (en) 2007-12-17 2012-01-10 Zillow, Inc. Automatically performing varying levels of summarization of geographic data points in response to a user's selection of zoom level
TW200941828A (en) 2008-03-19 2009-10-01 Quanta Comp Inc Ultra-wideband antenna
KR20110026433A (en) * 2008-06-25 2011-03-15 톰톰 인터내셔날 비.브이. Navigation apparatus and method of detection that a parking facility is sought
WO2010011467A1 (en) 2008-06-29 2010-01-28 Oceans' Edge, Inc. Mobile telephone firewall and compliance enforcement system and method
WO2010019568A1 (en) 2008-08-11 2010-02-18 Telcordia Technologies, Inc. System and method for using networked mobile devices in vehicles
WO2010042173A1 (en) 2008-10-07 2010-04-15 Telecommunication Systems, Inc. User interface for dynamic user-defined stopovers during guided navigation ("side trips")
CN103632542A (en) * 2012-08-27 2014-03-12 国际商业机器公司 Traffic information processing method, device and corresponding equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018161533A1 (en) * 2017-03-06 2018-09-13 广东欧珀移动通信有限公司 Method and device for presenting traffic information, computer device, and computer readable storage medium
CN109612453A (en) * 2018-11-23 2019-04-12 杭州优行科技有限公司 Navigate place amending method and device

Also Published As

Publication number Publication date
US9372091B2 (en) 2016-06-21
US9200913B2 (en) 2015-12-01
US20160047668A1 (en) 2016-02-18
US20100088020A1 (en) 2010-04-08

Similar Documents

Publication Publication Date Title
US9372091B2 (en) User interface for predictive traffic
US20210318131A1 (en) Systems and methods for providing mobile mapping services including trip prediction and route recommendation
US20150253144A1 (en) Methods and route planning systems for dynamic trip modifications and quick and easy alternative routes
EP3098567B1 (en) Ride sharing navigation
US10860986B2 (en) Schedule management apparatus
US11493347B2 (en) Using historical location data to improve estimates of location
US9488487B2 (en) Route detection in a trip-oriented message data communications system
US6629034B1 (en) Driving profile method and system
US20080046298A1 (en) System and Method For Travel Planning
US9568331B1 (en) Predictive travel planning system
US7831384B2 (en) Determining a route to destination based on partially completed route
US8489324B2 (en) Retrieval of vehicular traffic information optimized for wireless mobile environments
US20160061618A1 (en) Technique for navigating a vehicle to a parking place
EP1447646A1 (en) Information display system
JP4266173B2 (en) Guide route search device
US20080033640A1 (en) Guide Report Device, System Thereof, Method Thereof, Program For Executing The Method, And Recording Medium Containing The Program
US20110087426A1 (en) Navigation system with event of interest routing mechanism and method of operation thereof
US20160321764A1 (en) Method of and system for planning and redistributing congested flows based on integrated calendar information
JP2010151835A (en) Computer system
EP4019903A1 (en) Dynamic tourist travel planner service
US20170032421A1 (en) Merchant-Traveler Messaging Systems And Methods
Czioska et al. Location-and time-dependent meeting point recommendations for shared interurban rides
US20170023368A1 (en) Multi-waypoint semantic-driven itinerary guidance to situses within buildings
US11054269B2 (en) Providing navigation directions
KR101632703B1 (en) Device, method and computer readable recording medium for user schedule alarm using realtime traffic information

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION