US3274116A - Iodine detergent solution - Google Patents

Iodine detergent solution Download PDF

Info

Publication number
US3274116A
US3274116A US300063A US30006363A US3274116A US 3274116 A US3274116 A US 3274116A US 300063 A US300063 A US 300063A US 30006363 A US30006363 A US 30006363A US 3274116 A US3274116 A US 3274116A
Authority
US
United States
Prior art keywords
iodine
solution
weight
water
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US300063A
Inventor
Jack F Mills
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Priority to US300063A priority Critical patent/US3274116A/en
Application granted granted Critical
Publication of US3274116A publication Critical patent/US3274116A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/48Medical, disinfecting agents, disinfecting, antibacterial, germicidal or antimicrobial compositions
    • C11D3/485Halophors, e.g. iodophors

Definitions

  • This invention relates to an iodine-containing detergent solution. More particularly, it relates to a combination of iodine with an organic anionic detergent and an alkylene glycol derivative for use as a germicidal cleansing solution.
  • iodine is a desirable and commonly used ingredient in sanitizing rinses and cleansing solutions for industrial and home use.
  • the solubility of iodine in water is low and this dasadvantage has been overcome in the past by using a substance which will form a water-soluble complex with the iodine.
  • Such substances may be an inorganic salt such as potassium iodide or an organic compound such as a nonionic surfactant or relatively high molecular weight.
  • the soluble complexes so formed tend to lessen the effective strength of the iodine solution, for at least some part of the iodine is held in these combinations in a less germicidal or inactive form.
  • iodine is solubilized in a water solution by a combination of a highly water-soluble organic anionic detergent with a lower alkyl monoether of ethylene glycol.
  • the solubilizing effect is a property of this combination and is not exhibited by either of the components alone except on a very limited scale.
  • iodine thus solubilized remains entirely available in the active form and the whole forms a highly stable homogeneous solution capable of extended storage.
  • Such solutions may conveniently be made up as stable concentrates containing about 15% by weight of free iodine and thes concentrates are then suitably diluted for use when needed.
  • Anionic detergents found suitable for this purpose are salts of sulfated or sulfonated organic compounds which are highly soluble in water, that is, to the extent of about 25 ,g./ 100 g. solution or better, and are preferably effective in aqueous acid solution.
  • these are suitably soluble salts of alkylarylsulfonic acids, alkylated arylether sulfonic acids, and sulfated alkyl compounds such as ammonium or alkali metal salts of sulfonated higher alkylbenzenes, higher alkyldiphenyl ether sulfomates, and higher primary alkyl sulfates.
  • alkyldiphenyl ether sulfonates such as disodium dodecyldiphenyl ether disulfonates.
  • the lower alkyl monoethers of ethylene glycol suitable for use in this composition are the methyl, ethyl, propyl, and butyl monoethers.
  • the monomethyl ether, Z-methoxyethanol, is preferred.
  • the iodine may be present as free elemental iodine or as combined iodine, in a water-soluble inorganic iodidebromate or iodide-iodate salt combination which releases free iodine when acidified in water solution.
  • a salt combination is made up of sodium or potassium iodide and bromate in approximately the theoretical proportion of six moles of iodide to one mole of bromate.
  • a small excess of bromate or iodate will regenerate reduced iodine as it forms in the solution after acidification and dilution and such excess bromate or iodate thereby serves to prolong the effective life of the solution.
  • About 15% of excess bromate or iodate based on the available iodine is preferred.
  • the acid may be added to the concentrate just before it is diluted for use.
  • Such a neutral concentrate may be stored indefinitely without loss of iodine.
  • An acid of suitable strength and compatible with the other components is used to release free iodine from the above-mentioned salt combinations.
  • Acid in excess of the amount necessary for this purpose is preferably used and such an acid preferably is also used in a solution made up with elemental iodine in order to obtain good stability.
  • Suitable acids are phosphoric acid, hydrochloric acid, sulfamic acid, oxalic acid, and sodium bisulfate. Mixtures of such acids may be employed.
  • the quantity of acid required to maintain a stable solution and prevent excessive loss of iodine is that amount necessary to provide a solution having a pH less than 6.0 when diluted for use.
  • a pH of about 2-5 is preferred.
  • About l-lO parts of one or more acids such as named per part by Weight of iodine provides a suitably acidic solution.
  • the proportions of the detergent and glycol ether components may be varied somewhat in the germicidal formulation. About 5 to about 15 parts by weight of detergent and about 5 to about 15 parts of glycol ether per part of iodine gives stable, homogeneous solutions. For most effective solubilization of the iodine, the detergent and the glycol ether are employed in approximately equal Weights.
  • formulations As concentrated aqueous solutions containing about 1-5% by weight of iodine and the other components in amounts as described above.
  • concentrates contain 5-15 by weight of a suitable acid or acid mixture.
  • Phosphoric acid or mixtures of phosphoric and hydrochloric acids are ordinarily used.
  • Formulations embodying my invention may be made up with widely varying compositions in the above approximate ranges to suit different applications. These concentr-ated formulations can then be diluted as required for a particular use.
  • Benax 2A1 surfactant a product of The Dow Chemical Company, is disodium dodecyldiphenyl ether disulfonate.
  • the potassium iodide and sodium bromate were dissolved in the Benax 2A1 solution.
  • the 2-methoxyethanol and phosphoric acid were stirred in and the Whole was diluted with water to make a total of g. of a clear homogeneous solution containing the theoretical quantity of available iodine.
  • This solution was exceptionally stable and showed little loss of iodine on long standing. No decrease in available iodine content was found after one weeks standing at room temperature. Better than 90% of the original iodine was present in available form after the solution had stood for one year.
  • Example 2 Using the same materials, a more concentrated formulation was prepared.
  • Example 2 The components were mixed as in Example 1 to give a clear and stable, although somewhat more viscous solu- Iodimetric titration showed the presence in the solution of 1.74% by weight of available iodine, 99% of that theoretically possible.
  • Example 4 A solution was made up from the same quantities of materials shown in Example 3 except that the glycol ether was 2-butoxyethanol. This solution was homogeneous and stable on standing. The theoretical quantity of iodine was present in available form.
  • any of various sulfated or sulfonated organic surface active agents may be used as the anionic detergent component of these iodine solutions with approximately equal effectiveness. Examples 5 and 6 illustrate such compositions.
  • Example 5 The following ingredients were mixed to obtain a clear solution:
  • U1trawet K is a trademark for a commercially available sorhum alkylbenzcne sulfonate.
  • Example 6 A solution was made up as in Example 5 wherein the Ultrawet K was replaced by an equal quantity of Duponol MER This solution was also clear and stable. It contained the theoretical amount of free iodine.
  • Such solutions can be stored for many months without substantial loss of iodine. Solutions prepared with 2-methoxyethanolcan be stored under ordinary conditions for one to two years and still retain or more of the original available iodine.
  • a water-soluble organic anionic detergent selected from the group consisting of the alkali metal and ammonium higher alkylbenzenesul-fonates, higher alkyldiphenyl ether sulfonates and higher primary alkylsulfates and which is soluble in water at least to the extent of about 25 g. per g. of solution, and about 5 to about 15 parts of a lower alkyl monoether of
  • a solution as described in claim 1 containing 1-10 parts by weight per part of iodine of an acid which is phosphoric acid, hydrochloric acid, oxalic acid, sulfarnic acid, sodium bisulfate, or a mixture thereof.
  • a solution as described in claim 1 wherein the monoether of ethylene glycol is 2-methoxyethanol.
  • An aqueous germicidal composition consisting essentialy of one part by weight of elemental iodine, 5-15 *Duponol ME is a trademark for a commercially available grade of sodium lauryl sulfate.

Description

United States Patent 3,274,116 IODINE DETERGENT SOLUTION Jack F. Mills, Midland, Mich., assignor to The Dow Chemical Company, Midland, Mich., a corporation of Delaware N0 Drawing. Filed Aug. 5, 1963, Ser. No. 300,063 5 Claims. '(Cl. 252-406) This application is a continuation-in-part of my copending application, Serial No. 51,547, filed on August 24, 1960, now abandoned.
This invention relates to an iodine-containing detergent solution. More particularly, it relates to a combination of iodine with an organic anionic detergent and an alkylene glycol derivative for use as a germicidal cleansing solution.
Because of its germicidal properties, iodine is a desirable and commonly used ingredient in sanitizing rinses and cleansing solutions for industrial and home use. The solubility of iodine in water is low and this dasadvantage has been overcome in the past by using a substance which will form a water-soluble complex with the iodine. Such substances may be an inorganic salt such as potassium iodide or an organic compound such as a nonionic surfactant or relatively high molecular weight. The soluble complexes so formed tend to lessen the effective strength of the iodine solution, for at least some part of the iodine is held in these combinations in a less germicidal or inactive form.
I have found that iodine is solubilized in a water solution by a combination of a highly water-soluble organic anionic detergent with a lower alkyl monoether of ethylene glycol. The solubilizing effect is a property of this combination and is not exhibited by either of the components alone except on a very limited scale. I have found further that iodine thus solubilized remains entirely available in the active form and the whole forms a highly stable homogeneous solution capable of extended storage. Such solutions may conveniently be made up as stable concentrates containing about 15% by weight of free iodine and thes concentrates are then suitably diluted for use when needed.
Anionic detergents found suitable for this purpose are salts of sulfated or sulfonated organic compounds which are highly soluble in water, that is, to the extent of about 25 ,g./ 100 g. solution or better, and are preferably effective in aqueous acid solution. Examples of these are suitably soluble salts of alkylarylsulfonic acids, alkylated arylether sulfonic acids, and sulfated alkyl compounds such as ammonium or alkali metal salts of sulfonated higher alkylbenzenes, higher alkyldiphenyl ether sulfomates, and higher primary alkyl sulfates. Particularly useful because of their high solubility in water and in aqueous solutions of electrolytes are salts of alkyldiphenyl ether sulfonates such as disodium dodecyldiphenyl ether disulfonates.
The lower alkyl monoethers of ethylene glycol suitable for use in this composition are the methyl, ethyl, propyl, and butyl monoethers. The monomethyl ether, Z-methoxyethanol, is preferred.
The iodine may be present as free elemental iodine or as combined iodine, in a water-soluble inorganic iodidebromate or iodide-iodate salt combination which releases free iodine when acidified in water solution. Preferably, such a salt combination is made up of sodium or potassium iodide and bromate in approximately the theoretical proportion of six moles of iodide to one mole of bromate. A small excess of bromate or iodate will regenerate reduced iodine as it forms in the solution after acidification and dilution and such excess bromate or iodate thereby serves to prolong the effective life of the solution. About 15% of excess bromate or iodate based on the available iodine is preferred.
If such a salt combination is used as a source of iodine, the acid may be added to the concentrate just before it is diluted for use. Such a neutral concentrate may be stored indefinitely without loss of iodine.
An acid of suitable strength and compatible with the other components is used to release free iodine from the above-mentioned salt combinations. Acid in excess of the amount necessary for this purpose is preferably used and such an acid preferably is also used in a solution made up with elemental iodine in order to obtain good stability. Suitable acids are phosphoric acid, hydrochloric acid, sulfamic acid, oxalic acid, and sodium bisulfate. Mixtures of such acids may be employed.
The quantity of acid required to maintain a stable solution and prevent excessive loss of iodine is that amount necessary to provide a solution having a pH less than 6.0 when diluted for use. A pH of about 2-5 is preferred. About l-lO parts of one or more acids such as named per part by Weight of iodine provides a suitably acidic solution.
The proportions of the detergent and glycol ether components may be varied somewhat in the germicidal formulation. About 5 to about 15 parts by weight of detergent and about 5 to about 15 parts of glycol ether per part of iodine gives stable, homogeneous solutions. For most effective solubilization of the iodine, the detergent and the glycol ether are employed in approximately equal Weights.
It is ordinarily most convenient to make up these formulations as concentrated aqueous solutions containing about 1-5% by weight of iodine and the other components in amounts as described above. Preferably, such concentrates contain 5-15 by weight of a suitable acid or acid mixture. Phosphoric acid or mixtures of phosphoric and hydrochloric acids are ordinarily used. Formulations embodying my invention may be made up with widely varying compositions in the above approximate ranges to suit different applications. These concentr-ated formulations can then be diluted as required for a particular use.
Some illustrative formulations are shown in the following examples:
Benax 2A1 surfactant, a product of The Dow Chemical Company, is disodium dodecyldiphenyl ether disulfonate.
The potassium iodide and sodium bromate were dissolved in the Benax 2A1 solution. The 2-methoxyethanol and phosphoric acid were stirred in and the Whole was diluted with water to make a total of g. of a clear homogeneous solution containing the theoretical quantity of available iodine. This solution was exceptionally stable and showed little loss of iodine on long standing. No decrease in available iodine content was found after one weeks standing at room temperature. Better than 90% of the original iodine was present in available form after the solution had stood for one year.
Example 2 Using the same materials, a more concentrated formulation was prepared.
50% aqueous Benax 2A1 64.6 Potassium iodide 4.7 Sodium bromate 0.7 Z-methoxyethanol 20.0 85% phosphoric acid -a 10.0
Total 100.0
The components were mixed as in Example 1 to give a clear and stable, although somewhat more viscous solu- Iodimetric titration showed the presence in the solution of 1.74% by weight of available iodine, 99% of that theoretically possible.
Example 4 A solution was made up from the same quantities of materials shown in Example 3 except that the glycol ether was 2-butoxyethanol. This solution was homogeneous and stable on standing. The theoretical quantity of iodine was present in available form.
Homogeneous solutions of good stability are obtained when the iodide-bromate salt combination used in these examples is replaced by an equivalent quantity of elemental iodine. The retention of available iodine in such solutions is improved when a small amount of bromate or iodate is also present in the solution. About 15% by weight of sodium bromate based on the iodine present is a suitable quantity.
Any of various sulfated or sulfonated organic surface active agents may be used as the anionic detergent component of these iodine solutions with approximately equal effectiveness. Examples 5 and 6 illustrate such compositions.
Example 5 The following ingredients were mixed to obtain a clear solution:
U1trawet K is a trademark for a commercially available sorhum alkylbenzcne sulfonate.
The solution was stable on standing and it contained. the theoretical quantity of titratable free iodine.
4 Example 6 A solution was made up as in Example 5 wherein the Ultrawet K was replaced by an equal quantity of Duponol MER This solution was also clear and stable. It contained the theoretical amount of free iodine.
The solutions of Examples 1, 3, and 4 and various similar solutions using other glycol others or various glycols and alcohols in place of the glycol ether component were made up and tested for stability and for iodine loss on standing. Iodine loss was determined by titration for available iodine of the freshly compounded solution and of the solution after standing at room temperature in an open flask. The difference in iodine content thereby found is the loss of iodine and this is listed in the table below as loss in milligrams per gram of iodine per day.
Alcohol or glycol component: Iodine loss 1 Later precipitated I2.
Solutions as shown above wherein the iodine loss exceeded 10 milligrams per gram of iodine per day had unsatisfactory keeping qualities in that the iodine loss tended to continue at a considerable although lessened rate so that storage of such solutions beyond a very few weeks resulted in substantial loss of germicidal power. In contrast, solutions whose initial weeks loss of iodine averaged less than about 10 milligrams per day retained most of their germicidal effectiveness during long storage, ior their iodine loss decreased rapidly after the first few days and soon became insignificant. Such solutions can be stored for many months without substantial loss of iodine. Solutions prepared with 2-methoxyethanolcan be stored under ordinary conditions for one to two years and still retain or more of the original available iodine.
I claim: 7
1. An aqueous germicidal solution of one part by weight of elemental iodine, about 5 to about 15 parts by weight of a water-soluble organic anionic detergent selected from the group consisting of the alkali metal and ammonium higher alkylbenzenesul-fonates, higher alkyldiphenyl ether sulfonates and higher primary alkylsulfates and which is soluble in water at least to the extent of about 25 g. per g. of solution, and about 5 to about 15 parts of a lower alkyl monoether of ethylene glycol.
2. A solution as described in claim 1 containing 1-10 parts by weight per part of iodine of an acid which is phosphoric acid, hydrochloric acid, oxalic acid, sulfarnic acid, sodium bisulfate, or a mixture thereof.
3. A solution as described in claim 1 wherein the monoether of ethylene glycol is 2-methoxyethanol.
4. A solution as described in claim 1 wherein the monoether of ethylene glycol is Zethoxyethanol.
5. An aqueous germicidal composition consisting essentialy of one part by weight of elemental iodine, 5-15 *Duponol ME is a trademark for a commercially available grade of sodium lauryl sulfate.
5 narts of disodium dodecyld-iphenyl ether disulfonate 5-15 parts of Z-methoxyethanol, 1-10 parts of phosphoric acid, and sutficient Water to make a homogeneous solution.
References Cited by the Examiner 5 UNITED STATES PATENTS 1,429,276 9/1922 Davis 167270 2,599,140 6/1952 Taub 252 -107 2,739,922 3/ 1956 Shelanski 252-406 X 2,354,477 9/1958 Steinhauer 252-353 X 10 2,918,400 12/1959 Loonam 167-17 2,977,315 3/1961 Scheib et a1. 252- .106 3,032,505 5/ 1962 Glynn et a1. 252-107 X 6 OTHER REFERENCES Al lawala et aL, J. American Pharmaceutical Assn., Scientific Edition, Vol. 42, No. 7, July 1953, pp. 396- 401.
Terry et a1., Proceedings of the Chemical Specialties Manufacturers Assn, December 1951, pp. 69-73.
Synthetic Organic Chemicals, =pul11. of Carbide and Carbon Chem. Co., 1952, 13th Edition, pp. 32-35 and 5056.
LEON D. ROSDOL, Primary Examiner.
A. T. MEYERS, JULIUS GREENWALD,
Assistant Examiners.

Claims (1)

1. AN AQUEOUS GERMICIDAL SOLUTION OF ONE PART BY WEIGHT OF ELEMENTAL IODINE, ABOUT 5 TO ABOUT 15 PARTS BY WEIGHT OF A WATER-SOLUBLE ORGANIC ANIONIC DETERGENT SELECTED FROM THE GROUP CONSISTING OF THE ALKALI METAL AND AMMONIUM HIGHER ALKYLBENZENESULFONATES, HIGHER ALKYLDIPHENYL ETHER SULFONATES AND HIGHER PRIMARY ALKYLSULFATES AND WHICH IS SOLUBLE IN WATER AT LEAST TO THE EXTENT OF ABOUT 25 G. PER 100 G. OF SOLUTION, AND ABOUT 5 TO ABOUT 15 PARTS OF A LOWER ALKYL MONOETHER OF ETHYLENE GLYCOL.
US300063A 1963-08-05 1963-08-05 Iodine detergent solution Expired - Lifetime US3274116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US300063A US3274116A (en) 1963-08-05 1963-08-05 Iodine detergent solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US300063A US3274116A (en) 1963-08-05 1963-08-05 Iodine detergent solution

Publications (1)

Publication Number Publication Date
US3274116A true US3274116A (en) 1966-09-20

Family

ID=23157549

Family Applications (1)

Application Number Title Priority Date Filing Date
US300063A Expired - Lifetime US3274116A (en) 1963-08-05 1963-08-05 Iodine detergent solution

Country Status (1)

Country Link
US (1) US3274116A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3950261A (en) * 1975-05-29 1976-04-13 American Cyanamid Company Anhydrous liquid iodophor solution
US4444756A (en) * 1981-09-19 1984-04-24 Henkel Kgaa Iodine containing disinfectants
US4627936A (en) * 1984-10-05 1986-12-09 Gould Paper Corp. Towel premoistened with antistatic solution for cleaning cathode-ray tubes and the like
US4822513A (en) * 1984-11-12 1989-04-18 Diversey Corporation Cleaning/disinfecting process and composition
US4994280A (en) * 1988-06-28 1991-02-19 Kochinsky Lyle J Iodophor composition for aquaculture
US5116623A (en) * 1991-01-22 1992-05-26 Becton, Dickinson And Company Periodate iodophor composition with increased stability
FR2702930A1 (en) * 1993-03-26 1994-09-30 Diversey Corp Advanced iodophores, their production and use.
WO2000038525A1 (en) * 1998-12-24 2000-07-06 Reckitt Benckiser, Inc. An aqueous iodine containing disinfectant composition
WO2021064417A1 (en) * 2019-10-04 2021-04-08 Macdermid, Inc. Prevention of unwanted plating on rack coatings for electrodeposition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1429276A (en) * 1921-11-26 1922-09-19 Brewer & Company Inc Tablet for producing iodine
US2599140A (en) * 1949-03-30 1952-06-03 Benjamin Clayton Iodine detergent
US2739922A (en) * 1952-03-13 1956-03-27 Herman A Shelanski Mixtures of polymeric n-vinyl pyrrolidone and halogens
US2854477A (en) * 1956-11-20 1958-09-30 Dow Chemical Co Method of making alkyl diphenyl ether sulfonates
US2918400A (en) * 1956-04-16 1959-12-22 Chilean Nitrate Sales Corp Sanitizing compositions
US2977315A (en) * 1956-09-12 1961-03-28 Lazarus Lab Inc Water soluble iodine-phosphoric-acidsynthetic detergent composition
US3032505A (en) * 1955-07-13 1962-05-01 Armour & Co Bar soap manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1429276A (en) * 1921-11-26 1922-09-19 Brewer & Company Inc Tablet for producing iodine
US2599140A (en) * 1949-03-30 1952-06-03 Benjamin Clayton Iodine detergent
US2739922A (en) * 1952-03-13 1956-03-27 Herman A Shelanski Mixtures of polymeric n-vinyl pyrrolidone and halogens
US3032505A (en) * 1955-07-13 1962-05-01 Armour & Co Bar soap manufacture
US2918400A (en) * 1956-04-16 1959-12-22 Chilean Nitrate Sales Corp Sanitizing compositions
US2977315A (en) * 1956-09-12 1961-03-28 Lazarus Lab Inc Water soluble iodine-phosphoric-acidsynthetic detergent composition
US2854477A (en) * 1956-11-20 1958-09-30 Dow Chemical Co Method of making alkyl diphenyl ether sulfonates

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3950261A (en) * 1975-05-29 1976-04-13 American Cyanamid Company Anhydrous liquid iodophor solution
US4444756A (en) * 1981-09-19 1984-04-24 Henkel Kgaa Iodine containing disinfectants
US4627936A (en) * 1984-10-05 1986-12-09 Gould Paper Corp. Towel premoistened with antistatic solution for cleaning cathode-ray tubes and the like
US4822513A (en) * 1984-11-12 1989-04-18 Diversey Corporation Cleaning/disinfecting process and composition
US4994280A (en) * 1988-06-28 1991-02-19 Kochinsky Lyle J Iodophor composition for aquaculture
US5116623A (en) * 1991-01-22 1992-05-26 Becton, Dickinson And Company Periodate iodophor composition with increased stability
FR2702930A1 (en) * 1993-03-26 1994-09-30 Diversey Corp Advanced iodophores, their production and use.
US5558881A (en) * 1993-03-26 1996-09-24 Diversey Corporation Iodophors, production and use thereof
WO2000038525A1 (en) * 1998-12-24 2000-07-06 Reckitt Benckiser, Inc. An aqueous iodine containing disinfectant composition
WO2021064417A1 (en) * 2019-10-04 2021-04-08 Macdermid, Inc. Prevention of unwanted plating on rack coatings for electrodeposition

Similar Documents

Publication Publication Date Title
US2977315A (en) Water soluble iodine-phosphoric-acidsynthetic detergent composition
US3560389A (en) Liquid detergent bleach composition
US3969258A (en) Low foaming acid-anionic surfactant sanitizer compositions
JP3286358B2 (en) Storage stable formulations of optical brightening mixtures
US3274116A (en) Iodine detergent solution
JPS6092398A (en) Viscosified liquid bleaching agent composition
US2918400A (en) Sanitizing compositions
US3594323A (en) Triethanolamine straight chain secondary alkylbenzene sulfonate liquid detergent compositions
WO1995018209A1 (en) Thickened alkaly metal hypochlorite compositions
US4408001A (en) Degeneration inhibited sanitizing complexes
ES8306174A1 (en) Foam enhancing agent for light duty liquid detergent
US3377290A (en) Liquid or paste detergent preparations having sulfofatty acid salts as viscosity reducing agents
US4029591A (en) Liquid detersive bleaching composition
US3095381A (en) Cleaning compositions
GB1123490A (en) Germicidal detergent compositions
EP0109022B1 (en) Concentrated liquid detergent composition adapted for preparing liquid light duty laundry or dishwashing detergents
US6147044A (en) High foaming, grease cutting light duty liquid detergent
US2320280A (en) Detergent and sterilizing composition
US2863798A (en) Iodine chloride preparation for controlling microorganisms
US2743208A (en) Dry free-flowing iodine compositions
DE2165863A1 (en) Detergent
US2562155A (en) Wetting and detergent composition
US2562154A (en) Wetting and detergent composition
US3424689A (en) Heavy-duty liquid detergent composition
GB825676A (en) Germicidal iodine complexes