US3416461A - Diaphragm pump - Google Patents

Diaphragm pump Download PDF

Info

Publication number
US3416461A
US3416461A US576704A US57670466A US3416461A US 3416461 A US3416461 A US 3416461A US 576704 A US576704 A US 576704A US 57670466 A US57670466 A US 57670466A US 3416461 A US3416461 A US 3416461A
Authority
US
United States
Prior art keywords
diaphragm
projection
pump
bore
fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US576704A
Inventor
Mcfarland Rolland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DURION COMPANY Inc
Original Assignee
Hills Maccanna Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hills Maccanna Co filed Critical Hills Maccanna Co
Priority to US576704A priority Critical patent/US3416461A/en
Application granted granted Critical
Publication of US3416461A publication Critical patent/US3416461A/en
Assigned to DURION COMPANY, INC. THE reassignment DURION COMPANY, INC. THE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: HILLS-MCCANNA COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0054Special features particularities of the flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • F04B43/067Pumps having fluid drive the fluid being actuated directly by a piston

Definitions

  • a pump comprising a diaphragm having a central portion of progressively increasing thickness and an integral axially extending projection connected to an actuating member by a fitting extending over the projection and a transversely disposed pin.
  • the present invention relates to a novel pump structure, and more specifically to a novel diaphragm pump.
  • An important object of the present invention is to provide a novel diaphragm pump structure wherein the diaphragm is mechanically actuated in at least one direction and wherein the diaphragm and a mechanical actuating element are constructed and connected in a manner which precludes any possibility of leakage and minimizes any possibility of diaphragm wear.
  • a further important object of the present invention is to provide a novel pump structure of the above described type which is of simple and economical construction which may be easily assembled.
  • FIG. 1 is a partial sectional view showing a pump structure incorporating features of the present invention.
  • FIG. 2 is a fragmentary partal sectional view taken generally along line 2-2 in FIG. 1.
  • the body members 12 and 14 respectively present opposing annular seats 16 and 1-8.
  • a flexible diaphragm 20 which is described more fully below is disposed with its annular margin clamped between the seats 16 and 18 and functions in combination with the body member 14 and defining a pumping chamber 22.
  • the diaphragm also serves to separate the pumping chamber 22 from another chamber 24 in the body member 12 which accommodates hydraulic actuating fiuid as will be described below.
  • the body member 14 is formed with a fluid inlet 26 communicating with the pumping chamber 22 and connected through inlet passageway means 28 with an inlet conduit 30.
  • check valves 32 and 34 are connected in series in the passageway means 28 for preventing the reverse flow of fiuid through the passageway means.
  • the check valves are secured in position by a suitable fitting 36.
  • the body means 14 is also formed with an outlet port 38 communicating with the pumping chamber 22 and with outlet passageway means 40. Additional check valves 42 and 44 are disposed in the outlet passageway means 40 for preventng reverse flow of fiuid. The check valves 42 and 44 are retained in position by a fitting 46 which is adapted to be connected with an outlet conduit 48.
  • the diaphragm 20 is adapted to be flexed back and forth within the chambers 22 and 24 during a pumping operation. As will be understood, movement of the diaphragm toward the left as viewed in FIG. 1 will force or pump fluid from the chamber 22 through the check valves 42 and 44 and into the outlet conduit 48.
  • Means are provided for hydraulically actuating the diaphragm 20 toward the left as viewed in FIG. 1 or, in other words, through its pumping stroke.
  • the chamber 24 is provided for hydraulic actuating fiuid.
  • the chamber 24 communicates with and includes a bore 50 and a reduced diameter bore 52 which are filled with hydraulic fiuid.
  • a reservoir 54 for the hydraulic fiuid' is provided at the upper side of the body member 12 and is enclosed by a cover 56.
  • a valve unit 58 is disposed between the reservoir 54 and passageways 60 and 62 communicating with the chamber 24 and the bore 50.
  • the valve unit 58 is adapted to permit hydraulic fiuid to flow from the reservoir so as completely to fill the spaces of the chamber 24, the bores 50 and 52 and the passageways 60 and 62.
  • the valve unit 58 is constructed for permitting air to escape from these spaces whereby to insure that the spaces are completely filled with the liquid.
  • a mechanical piston or plunger 64 is reciprocably disposed in the bore 52.
  • a pressure relief valve 65 is disposed between the bore 50 and the reservoir for permitting hydraulic fiuid to return to the reservoir in the event the pressure in the chamber 24 increases during the forward or working stroke of the piston to a level which may cause injury to the diaphragm.
  • Any suitable means may be connected with the piston 64 for reciprocating the piston.
  • piston actuating means may be made in accordance with any of a variety of heretofore known and used structures.
  • the valve unit is provided with spring means for actuating the diaphragm toward the right during the return stroke of piston 64 for minimizing any possibility of cavitation in the hydraulic actuating fiuid and for causing the diaphragm more positively to follow the reciprocating movement of the piston.
  • the spring means is constructed and connected with the diaphragm in a manner so as to preclude leakage through the diaphragm and minimize any possibility of injury to the diaphragm while at the same time providing the desired efliciency in operation.
  • the spring means comprises a compression spring 66 disposed within the bore '50 and having one end seating against a fixed annular abutment 68 which in turn is supported by a snap ring 70 disposed in an annular groove or seat in the wall of the bore 50.
  • a hollow tubular connecting rod or stem 72 is connected with the diaphragm in a manner described below and extends axially in the bore 50.
  • the stem has an internal diameter similar to and communicates with the bore 52.
  • Apertures 73 provide communication between the interior of the stem 72 and the bore 50.
  • the stem 72 presents an annular fiange 74 at an end thereof opposite from the abutment 68 which flange is engaged by'the spring 66 so that the stem or connecting rod 72 is biased toward the right as viewed in FIG. l or, in other words, toward a diaphragm retracting position.
  • the diaphragm 20 comprises a 'body having relatively thin planar peripheral portion 76 which merges with a relatively thick central portion 78.
  • the peripheral and central portions are integrally molded from a suitable tough resilient rubber, Synthetic rubber, plastic or other suitable material.
  • the central and peripheral portions are preferably formed so that they provide a substantially coplanar surface facing the working or pumpiug cbarnber 22, which surface preferably covered with a laminated film or sheet material liner 80 of plastic, metal or other material inert to the fluid being pumped through the chamber 22, whereby to protect the main body of the diaphragm from the fiud.
  • the relatively thick central portion 78 of the diaphragm merges with a projection 82 molded integrally therewith and from the same material as the remainder of the diphragm body, which projection extends axially rearwardly of the diaphragm or, in other words, axially into the bore 50.
  • a transverse aperture 84 is provided through the projection 82 for accommodating a pin 86 which in turn extends through ears 88 and 90 of a fitting 92 assembled over the end of the projection 82.
  • the fitting 92 is adapted to be connected with the stem 72.
  • the fitting 92 and the stem 72 are formed with complementary threads 94 for detachably connecting the two parts together.
  • the connection between the diaphragm and the stem '72 is located entirely at one side of the main portions of the diaphragm whereby there is no possibility of leakage through the diaphragm.
  • the aperture which receives the pin 86 is at one side of and does not eXtend through the central portion 78 of the diaphragm.
  • the projection 82 merges with the relatively thick portion 78 of diaphragm which gradually diminishes in thickness from adjacent the projection substantially to the peripheral portion 76, Whereby to accommodate the stresses imposed on the diaphragm by the spring means pulling on the projection 82 and to minimize any concentration of stresses during fiexing of the diaphragm and thereby promote a longer useful working life for the diaphragm.
  • the spring 66 and diaphragm stem 72 are dsposed within the bore 50 and secured in position by the abutment 68 and snap ring 70 prior to assembly with the diaphragm. Then the fitting 92 which has previously been connected to the diaphragm 20 is threaded into the end of the stem 72 and the peripheral portion 76 of the diaphragm is positioned against the seat 16.
  • the peripheral portion of the diaphragm is provided with annular ribs 100 which are adapted to fit within complementary grooves formed in the seat 16 for minimizing any possibility of leakage past the periphery of the diaphragm.
  • valve body member 14 is positioned against the diaphragm and the main body member 12 and is bolted or otherwise secured. If desired, additional annular ribs 102 may be provided on the diaphragrn for engaging in complementary grooves formed in the seat 18 or on the body member 14.
  • a pump comprising means including a fiexible resilient diaphragm providing a pumping chamber having an inlet and an outlet, valve means controlling fiow of fluid through said inlet and outlet, means for reciprocating said diaphragm for accomplishing a pumping action, said last named means including an element connected to said diaphragm for actuating the diaphragm in one direction, said diaphragm comprising a relatively thin flexible annular portion, an integral relatively thick central portion, an axially extending projection integral with said central portion, and means connecting said element to said projection, said means connecting said element to said projection comprises a fitting disposed over said projection, pin means extending in said projection and connected to said fitting, and complementary inter-engaging means on said fitting and said element detachably connecting said fittin g and said element.
  • a pump as defined in claim 1, wherein said projection has transverse aperture means therein, and said pin means extends into said aperture means.
  • a pump as defined in claim 1 wherein said relatively thick central portion is of substantially greater radial extent than said axially extending projection and progressively decreases in thickness from adjacent a junction with said projection substantially to adjacent a junction with said relatively thin annular portion.
  • a pump as defined in claim 1, wherein said complementary inter-engaging means comprise helical thread convolutions on said fitting and said element.

Description

Dec. 17, 1968 R. MCFARLAND 3,415461 DIAPHRAGM PUMP Fnd sept. 1, 1988 United States Patent Office Patented Dec. 17, 1968 3,416,461 DIAPHRAGM PUMP Rolland McFarland, Crystal Lake, Ill., assignor to Hills- McCanna Company, Carpentersville, Ill., a corporation of Illinois Filed Sept. 1, 1966, Ser. No. 576,704 4 Claims. (Cl. 103-150) ABSTRACT OF THE DISCLOSURE` There is disclosed a pump comprising a diaphragm having a central portion of progressively increasing thickness and an integral axially extending projection connected to an actuating member by a fitting extending over the projection and a transversely disposed pin.
The present invention relates to a novel pump structure, and more specifically to a novel diaphragm pump.
It has heretofore been proposed to provide a pump having a flexible diaphragm with means mechanically connected to the diaphragm for actuating the diaphragm in at least one direction during a pumping operation. For
example, it has been proposed to provide a diaphragm structure wherein the diaphragm is hydraulically actuated in one direction and mechanically pulled in an opposite or return direction. While certain of such heretofore proposed pumps have generally been satisfactory, diaphragm wear and leakage problems have been encountered.
An important object of the present invention is to provide a novel diaphragm pump structure wherein the diaphragm is mechanically actuated in at least one direction and wherein the diaphragm and a mechanical actuating element are constructed and connected in a manner which precludes any possibility of leakage and minimizes any possibility of diaphragm wear.
A further important object of the present invention is to provide a novel pump structure of the above described type which is of simple and economical construction which may be easily assembled.
Other objects and advantages of the present invention will be come apparent from the following description and the accompanying drawings wherein:
FIG. 1 is a partial sectional view showing a pump structure incorporating features of the present invention; and
FIG. 2 is a fragmentary partal sectional view taken generally along line 2-2 in FIG. 1.
Referring now more specifically to the drawings wherein like parts are designated by the same numerals throughout the various figures, a pump structure 10 incorporating features of the present invention comprises complementary body members 12 and 14 adapted to be detachably secured together by screws, bolts or other suitable fastening means. The body members 12 and 14 respectively present opposing annular seats 16 and 1-8. A flexible diaphragm 20 which is described more fully below is disposed with its annular margin clamped between the seats 16 and 18 and functions in combination with the body member 14 and defining a pumping chamber 22. The diaphragm also serves to separate the pumping chamber 22 from another chamber 24 in the body member 12 which accommodates hydraulic actuating fiuid as will be described below.
The body member 14 is formed with a fluid inlet 26 communicating with the pumping chamber 22 and connected through inlet passageway means 28 with an inlet conduit 30. In the embodiment shown, check valves 32 and 34 are connected in series in the passageway means 28 for preventing the reverse flow of fiuid through the passageway means. The check valves are secured in position by a suitable fitting 36.
The body means 14 is also formed with an outlet port 38 communicating with the pumping chamber 22 and with outlet passageway means 40. Additional check valves 42 and 44 are disposed in the outlet passageway means 40 for preventng reverse flow of fiuid. The check valves 42 and 44 are retained in position by a fitting 46 which is adapted to be connected with an outlet conduit 48.
The diaphragm 20 is adapted to be flexed back and forth within the chambers 22 and 24 during a pumping operation. As will be understood, movement of the diaphragm toward the left as viewed in FIG. 1 will force or pump fluid from the chamber 22 through the check valves 42 and 44 and into the outlet conduit 48.
Means are provided for hydraulically actuating the diaphragm 20 toward the left as viewed in FIG. 1 or, in other words, through its pumping stroke. As indicated above, the chamber 24, is provided for hydraulic actuating fiuid. The chamber 24 communicates with and includes a bore 50 and a reduced diameter bore 52 which are filled with hydraulic fiuid. A reservoir 54 for the hydraulic fiuid' is provided at the upper side of the body member 12 and is enclosed by a cover 56.
A valve unit 58 is disposed between the reservoir 54 and passageways 60 and 62 communicating with the chamber 24 and the bore 50. The valve unit 58 is adapted to permit hydraulic fiuid to flow from the reservoir so as completely to fill the spaces of the chamber 24, the bores 50 and 52 and the passageways 60 and 62. At the same time the valve unit 58 is constructed for permitting air to escape from these spaces whereby to insure that the spaces are completely filled with the liquid.
In order to actuate the hydraulic fiuid and thus the diaphragm 20 toward the left as viewed in FIG. 1, a mechanical piston or plunger 64 is reciprocably disposed in the bore 52. A pressure relief valve 65 is disposed between the bore 50 and the reservoir for permitting hydraulic fiuid to return to the reservoir in the event the pressure in the chamber 24 increases during the forward or working stroke of the piston to a level which may cause injury to the diaphragm. Any suitable means, not shown, may be connected with the piston 64 for reciprocating the piston. As will be understood, such piston actuating means may be made in accordance with any of a variety of heretofore known and used structures.
While the piston 64 serves to actuate the hydraulic fluid and the diaphragm toward the left, the valve unit is provided with spring means for actuating the diaphragm toward the right during the return stroke of piston 64 for minimizing any possibility of cavitation in the hydraulic actuating fiuid and for causing the diaphragm more positively to follow the reciprocating movement of the piston. In accordance with the features of the present invention the spring means is constructed and connected with the diaphragm in a manner so as to preclude leakage through the diaphragm and minimize any possibility of injury to the diaphragm while at the same time providing the desired efliciency in operation. More specifically, the spring means comprises a compression spring 66 disposed within the bore '50 and having one end seating against a fixed annular abutment 68 which in turn is supported by a snap ring 70 disposed in an annular groove or seat in the wall of the bore 50. A hollow tubular connecting rod or stem 72 is connected with the diaphragm in a manner described below and extends axially in the bore 50. The stem has an internal diameter similar to and communicates with the bore 52. Apertures 73 provide communication between the interior of the stem 72 and the bore 50. The stem 72 presents an annular fiange 74 at an end thereof opposite from the abutment 68 which flange is engaged by'the spring 66 so that the stem or connecting rod 72 is biased toward the right as viewed in FIG. l or, in other words, toward a diaphragm retracting position.
The diaphragm 20 comprises a 'body having relatively thin planar peripheral portion 76 which merges with a relatively thick central portion 78. The peripheral and central portions are integrally molded from a suitable tough resilient rubber, Synthetic rubber, plastic or other suitable material. The central and peripheral portions are preferably formed so that they provide a substantially coplanar surface facing the working or pumpiug cbarnber 22, which surface preferably covered with a laminated film or sheet material liner 80 of plastic, metal or other material inert to the fluid being pumped through the chamber 22, whereby to protect the main body of the diaphragm from the fiud.
As shown in the drawings, the relatively thick central portion 78 of the diaphragm merges with a projection 82 molded integrally therewith and from the same material as the remainder of the diphragm body, which projection extends axially rearwardly of the diaphragm or, in other words, axially into the bore 50. A transverse aperture 84 is provided through the projection 82 for accommodating a pin 86 which in turn extends through ears 88 and 90 of a fitting 92 assembled over the end of the projection 82. The fitting 92 is adapted to be connected with the stem 72.
In the embodiment shown, the fitting 92 and the stem 72 are formed with complementary threads 94 for detachably connecting the two parts together. With this constmction, it is seen that the connection between the diaphragm and the stem '72 is located entirely at one side of the main portions of the diaphragm whereby there is no possibility of leakage through the diaphragm. More precisely, the aperture which receives the pin 86 is at one side of and does not eXtend through the central portion 78 of the diaphragm. Furthermore, it will be observed that the projection 82 merges with the relatively thick portion 78 of diaphragm which gradually diminishes in thickness from adjacent the projection substantially to the peripheral portion 76, Whereby to accommodate the stresses imposed on the diaphragm by the spring means pulling on the projection 82 and to minimize any concentration of stresses during fiexing of the diaphragm and thereby promote a longer useful working life for the diaphragm. In certain instances, it is desirable to hold or otherwise secure a tubular liner 96 within the transverse aperture 84 for accommodating the connecting pin 86 and further minimizing any possibility Of injury to the diaphragm structure.
It will be noted that during assembly of the pump structure, the spring 66 and diaphragm stem 72 are dsposed within the bore 50 and secured in position by the abutment 68 and snap ring 70 prior to assembly with the diaphragm. Then the fitting 92 which has previously been connected to the diaphragm 20 is threaded into the end of the stem 72 and the peripheral portion 76 of the diaphragm is positioned against the seat 16. Prefera'bly the peripheral portion of the diaphragm is provided with annular ribs 100 which are adapted to fit within complementary grooves formed in the seat 16 for minimizing any possibility of leakage past the periphery of the diaphragm. Then the valve body member 14 is positioned against the diaphragm and the main body member 12 and is bolted or otherwise secured. If desired, additional annular ribs 102 may be provided on the diaphragrn for engaging in complementary grooves formed in the seat 18 or on the body member 14.
While a preferred embodiment of the present invention has been shown and described herein, it is obvious that many structural details may be changed without departing from the spirit and scope of the appended claims.
The invention is claimed as follows:
1. A pump comprising means including a fiexible resilient diaphragm providing a pumping chamber having an inlet and an outlet, valve means controlling fiow of fluid through said inlet and outlet, means for reciprocating said diaphragm for accomplishing a pumping action, said last named means including an element connected to said diaphragm for actuating the diaphragm in one direction, said diaphragm comprising a relatively thin flexible annular portion, an integral relatively thick central portion, an axially extending projection integral with said central portion, and means connecting said element to said projection, said means connecting said element to said projection comprises a fitting disposed over said projection, pin means extending in said projection and connected to said fitting, and complementary inter-engaging means on said fitting and said element detachably connecting said fittin g and said element.
2. A pump, as defined in claim 1, Wherein said projection has transverse aperture means therein, and said pin means extends into said aperture means.
3. A pump, as defined in claim 1 wherein said relatively thick central portion is of substantially greater radial extent than said axially extending projection and progressively decreases in thickness from adjacent a junction with said projection substantially to adjacent a junction with said relatively thin annular portion.
4. A pump, as defined in claim 1, wherein said complementary inter-engaging means comprise helical thread convolutions on said fitting and said element.
References Cited UNITED STATES PATENTS 1,711,803 5/1929 Munday 103 150 2,148,957 2/1939 Morris et al 103-150 2,267,280 12/1941 Kuhnel 230` 2,575,398 11/1951 Schroeder 103-150 2,675,758 4/1954 Hughes 103-150 3,075,468 11/1963 Eifel 103-44 WILLIAM L. FREEH, Primary Examiner.
U.S. Cl. X.R.
US576704A 1966-09-01 1966-09-01 Diaphragm pump Expired - Lifetime US3416461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US576704A US3416461A (en) 1966-09-01 1966-09-01 Diaphragm pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US576704A US3416461A (en) 1966-09-01 1966-09-01 Diaphragm pump

Publications (1)

Publication Number Publication Date
US3416461A true US3416461A (en) 1968-12-17

Family

ID=24305618

Family Applications (1)

Application Number Title Priority Date Filing Date
US576704A Expired - Lifetime US3416461A (en) 1966-09-01 1966-09-01 Diaphragm pump

Country Status (1)

Country Link
US (1) US3416461A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503307A (en) * 1967-03-31 1970-03-31 I V Pressure Controllers Ltd Diaphragms
US3884598A (en) * 1973-10-05 1975-05-20 Wanner Engineering Piston assembly for diaphragm pump
US4035107A (en) * 1975-04-07 1977-07-12 Durotech Co. Pump system for high pressure abrasive liquids
FR2482674A1 (en) * 1980-05-16 1981-11-20 Wagner Gmbh J DIAPHRAGM FOR HIGH PRESSURE FILLING PUMPS, COMPRESSORS OR THE LIKE
US4644847A (en) * 1983-05-16 1987-02-24 Fluitron, Inc. Reduction of failure incidence of metallic diaphragms for compressors
EP0223580A2 (en) * 1985-11-18 1987-05-27 Critikon, Inc. Parenteral solution diaphragm pump
US4779641A (en) * 1987-09-09 1988-10-25 Penicillin Assays, Inc. Sanitary control back pressure diaphragm valve and sanitary control system employing said valve
US4860640A (en) * 1986-12-03 1989-08-29 Neway Corp. Air operated diaphragm spring brake
US4968301A (en) * 1989-02-02 1990-11-06 Imed Corporation Disposable infusion device
US5368570A (en) * 1991-11-12 1994-11-29 Imed Corporation Apparatus for infusing medical solutions
US5507217A (en) * 1994-09-30 1996-04-16 Indian Head Industries, Inc. Perforate diaphragm alignment system for spring brake actuators
US5816779A (en) * 1994-05-13 1998-10-06 Abbott Laboratories Disposable fluid infusion pumping cassette having an interrelated flow control and pressure monitoring arrangement
US5848738A (en) * 1997-03-28 1998-12-15 Tetra Laval Holdings & Finance, S.A. Fill system including a fill pump disconnect system
US5863185A (en) * 1994-10-05 1999-01-26 Franklin Electric Co. Liquid pumping system with cooled control module
US6276907B1 (en) * 1999-08-12 2001-08-21 Wagner Spray Tech Corporation Hydraulically driven diaphragm pump
NL1021048C2 (en) * 2002-07-11 2004-01-13 Weir Netherlands B V Piston diaphragm pump.
US20040228748A1 (en) * 2003-05-16 2004-11-18 Wanner Engineering, Inc. Diapharagm pump
US20050196303A1 (en) * 2004-03-02 2005-09-08 Drummond Scientific Company Split-housing pipette pump
US20060027606A1 (en) * 2004-07-21 2006-02-09 Smc Kabushiki Kaisha Pump apparatus
US20070179460A1 (en) * 2006-02-01 2007-08-02 Carmeli Adahan Suctioning system, method and kit
US20080299764A1 (en) * 2005-07-20 2008-12-04 Jun-Hwan Oh Interconnection having dual-level or multi-level capping layer and method of forming the same
US20090157016A1 (en) * 2005-07-24 2009-06-18 Carmeli Adahan Suctioning system, method and kit
US20090264837A1 (en) * 2005-07-24 2009-10-22 Carmeli Adahan Wound closure and drainage system
US20100021326A1 (en) * 2008-07-24 2010-01-28 Fujifilm Corporation Method fo pumping agglomerative liquid and method of producing recording medium
US20100063483A1 (en) * 2007-05-07 2010-03-11 Carmeli Adahan Suction system
US20120312399A1 (en) * 2010-02-18 2012-12-13 Grundfos Management A/S Dosing pump
US20120315157A1 (en) * 2009-12-23 2012-12-13 Jean-Denis Rochat Reciprocating Positive-Displacement Diaphragm Pump For Medical Use
EP2733355A1 (en) * 2012-11-15 2014-05-21 Mindray Medical Sweden AB Extended elasticity of pump membrane with conserved pump force
US9377017B2 (en) 2012-11-15 2016-06-28 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Extended elasticity of pump membrane with conserved pump force
US9638185B2 (en) 2014-02-07 2017-05-02 Graco Minnesota Inc. Pulseless positive displacement pump and method of pulselessly displacing fluid
US9964106B2 (en) 2014-11-04 2018-05-08 Wanner Engineering, Inc. Diaphragm pump with dual spring overfill limiter
EP3550144A1 (en) * 2018-04-02 2019-10-09 Graco Minnesota Inc. Reduced pressurization shift within diaphragm pump cavity
US10876527B2 (en) * 2015-06-22 2020-12-29 Seko S.P.A. Bleed valve and self-bleeding pump provided with such valve
US10919060B2 (en) 2008-10-22 2021-02-16 Graco Minnesota Inc. Portable airless sprayer
US10926275B1 (en) 2020-06-25 2021-02-23 Graco Minnesota Inc. Electrostatic handheld sprayer
US10968903B1 (en) 2020-06-04 2021-04-06 Graco Minnesota Inc. Handheld sanitary fluid sprayer having resilient polymer pump cylinder
US11007545B2 (en) 2017-01-15 2021-05-18 Graco Minnesota Inc. Handheld airless paint sprayer repair
US11022106B2 (en) 2018-01-09 2021-06-01 Graco Minnesota Inc. High-pressure positive displacement plunger pump
US11174854B2 (en) 2020-03-31 2021-11-16 Graco Minnesota Inc. Electrically operated displacement pump control system and method
US11549596B2 (en) * 2017-01-19 2023-01-10 Neoperl Gmbh Diaphragm valve
US11707753B2 (en) 2019-05-31 2023-07-25 Graco Minnesota Inc. Handheld fluid sprayer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1711803A (en) * 1926-01-20 1929-05-07 Munday Reginald Luther Diaphragm pump
US2148957A (en) * 1936-07-01 1939-02-28 Morris Alan Gordon Diaphragm pump
US2267280A (en) * 1937-10-15 1941-12-23 Hermes Patentverwertungs Gmbh Device for conveying fluids
US2575398A (en) * 1949-09-26 1951-11-20 Schroeder John Diaphragm pump
US2675758A (en) * 1949-01-06 1954-04-20 Infilco Inc Chemical feeder
US3075468A (en) * 1960-04-06 1963-01-29 Hills Mccanna Co Hydraulically actuated diaphragm pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1711803A (en) * 1926-01-20 1929-05-07 Munday Reginald Luther Diaphragm pump
US2148957A (en) * 1936-07-01 1939-02-28 Morris Alan Gordon Diaphragm pump
US2267280A (en) * 1937-10-15 1941-12-23 Hermes Patentverwertungs Gmbh Device for conveying fluids
US2675758A (en) * 1949-01-06 1954-04-20 Infilco Inc Chemical feeder
US2575398A (en) * 1949-09-26 1951-11-20 Schroeder John Diaphragm pump
US3075468A (en) * 1960-04-06 1963-01-29 Hills Mccanna Co Hydraulically actuated diaphragm pump

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503307A (en) * 1967-03-31 1970-03-31 I V Pressure Controllers Ltd Diaphragms
US3884598A (en) * 1973-10-05 1975-05-20 Wanner Engineering Piston assembly for diaphragm pump
US4035107A (en) * 1975-04-07 1977-07-12 Durotech Co. Pump system for high pressure abrasive liquids
US4785719A (en) * 1980-05-16 1988-11-22 J. Wagner Gmbh Diaphragm for high pressure pumps, compressors or the like
FR2482674A1 (en) * 1980-05-16 1981-11-20 Wagner Gmbh J DIAPHRAGM FOR HIGH PRESSURE FILLING PUMPS, COMPRESSORS OR THE LIKE
US4644847A (en) * 1983-05-16 1987-02-24 Fluitron, Inc. Reduction of failure incidence of metallic diaphragms for compressors
EP0223580A3 (en) * 1985-11-18 1988-01-13 Critikon, Inc. Parenteral solution diaphragm pump
EP0223580A2 (en) * 1985-11-18 1987-05-27 Critikon, Inc. Parenteral solution diaphragm pump
US4860640A (en) * 1986-12-03 1989-08-29 Neway Corp. Air operated diaphragm spring brake
US4779641A (en) * 1987-09-09 1988-10-25 Penicillin Assays, Inc. Sanitary control back pressure diaphragm valve and sanitary control system employing said valve
US4968301A (en) * 1989-02-02 1990-11-06 Imed Corporation Disposable infusion device
US5368570A (en) * 1991-11-12 1994-11-29 Imed Corporation Apparatus for infusing medical solutions
EP0751794B1 (en) * 1994-05-13 2003-07-16 Abbott Laboratories Disposable fluid infusion pumping chamber cassette having a push button flow stop thereon
US5816779A (en) * 1994-05-13 1998-10-06 Abbott Laboratories Disposable fluid infusion pumping cassette having an interrelated flow control and pressure monitoring arrangement
US5507217A (en) * 1994-09-30 1996-04-16 Indian Head Industries, Inc. Perforate diaphragm alignment system for spring brake actuators
US5863185A (en) * 1994-10-05 1999-01-26 Franklin Electric Co. Liquid pumping system with cooled control module
US5848738A (en) * 1997-03-28 1998-12-15 Tetra Laval Holdings & Finance, S.A. Fill system including a fill pump disconnect system
US6276907B1 (en) * 1999-08-12 2001-08-21 Wagner Spray Tech Corporation Hydraulically driven diaphragm pump
NL1021048C2 (en) * 2002-07-11 2004-01-13 Weir Netherlands B V Piston diaphragm pump.
WO2004007961A1 (en) * 2002-07-11 2004-01-22 Weir Netherlands B.V. Diaphragm pump
DE10392934B4 (en) * 2002-07-11 2015-02-05 Weir Minerals Netherlands B.V. diaphragm pump
US7201097B2 (en) 2002-07-11 2007-04-10 Weir Minerals Netherlands B.V. Diaphragm pump
AU2003257726B2 (en) * 2002-07-11 2008-09-11 Weir Minerals Netherlands B.V. Diaphragm pump
CN100381703C (en) * 2002-07-11 2008-04-16 韦尔矿物荷兰有限公司 Diaphragm pump
US20060110268A1 (en) * 2002-07-11 2006-05-25 De Koning Cornelis J Diaphragm pump
US7090474B2 (en) * 2003-05-16 2006-08-15 Wanner Engineering, Inc. Diaphragm pump with overfill limiter
WO2004104415A3 (en) * 2003-05-16 2005-05-12 Wanner Engineering Diaphragm pump
US20040228748A1 (en) * 2003-05-16 2004-11-18 Wanner Engineering, Inc. Diapharagm pump
US20050196303A1 (en) * 2004-03-02 2005-09-08 Drummond Scientific Company Split-housing pipette pump
US7329104B2 (en) * 2004-03-02 2008-02-12 Drummond Scientific Company Split-housing pipette pump
US20060027606A1 (en) * 2004-07-21 2006-02-09 Smc Kabushiki Kaisha Pump apparatus
US7758321B2 (en) * 2004-07-21 2010-07-20 Smc Kabushiki Kaisha Pump apparatus
US20080299764A1 (en) * 2005-07-20 2008-12-04 Jun-Hwan Oh Interconnection having dual-level or multi-level capping layer and method of forming the same
US20090157016A1 (en) * 2005-07-24 2009-06-18 Carmeli Adahan Suctioning system, method and kit
US20090264837A1 (en) * 2005-07-24 2009-10-22 Carmeli Adahan Wound closure and drainage system
US9248222B2 (en) 2005-07-24 2016-02-02 Carmeli Adahan Wound closure and drainage system
US8858534B2 (en) 2005-07-24 2014-10-14 Carmeli Adahan Wound closure and drainage system
US8506554B2 (en) 2005-07-24 2013-08-13 Carmeli Adahan Wound closure and drainage system
WO2007088530A1 (en) * 2006-02-01 2007-08-09 Carmeli Adahan Suctioning system, method and kit
US7503910B2 (en) 2006-02-01 2009-03-17 Carmeli Adahan Suctioning system, method and kit
US20090198201A1 (en) * 2006-02-01 2009-08-06 Carmeli Adahan Suctioning system, method and kit
US20070179460A1 (en) * 2006-02-01 2007-08-02 Carmeli Adahan Suctioning system, method and kit
US8235972B2 (en) 2006-02-01 2012-08-07 Carmeli Adahan Suctioning system, method and kit
EP2216057A2 (en) 2007-05-07 2010-08-11 Carmeli Adahan Suction system
US8317774B2 (en) 2007-05-07 2012-11-27 Carmeli Adahan Suction system
US20100063483A1 (en) * 2007-05-07 2010-03-11 Carmeli Adahan Suction system
US8297939B2 (en) * 2008-07-24 2012-10-30 Fujifilm Corporation Method of pumping agglomerative liquid and method of producing recording medium
US20100021326A1 (en) * 2008-07-24 2010-01-28 Fujifilm Corporation Method fo pumping agglomerative liquid and method of producing recording medium
US11779945B2 (en) 2008-10-22 2023-10-10 Graco Minnesota Inc. Portable airless sprayer
US11759808B1 (en) 2008-10-22 2023-09-19 Graco Minnesota Inc. Portable airless sprayer
US11623234B2 (en) 2008-10-22 2023-04-11 Graco Minnesota Inc. Portable airless sprayer
US10919060B2 (en) 2008-10-22 2021-02-16 Graco Minnesota Inc. Portable airless sprayer
US11446689B2 (en) 2008-10-22 2022-09-20 Graco Minnesota Inc. Portable airless sprayer
US11446690B2 (en) 2008-10-22 2022-09-20 Graco Minnesota Inc. Portable airless sprayer
US20120315157A1 (en) * 2009-12-23 2012-12-13 Jean-Denis Rochat Reciprocating Positive-Displacement Diaphragm Pump For Medical Use
US9050408B2 (en) * 2009-12-23 2015-06-09 Jean-Denis Rochat Reciprocating positive-displacement diaphragm pump for medical use
US20120312399A1 (en) * 2010-02-18 2012-12-13 Grundfos Management A/S Dosing pump
US9377017B2 (en) 2012-11-15 2016-06-28 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Extended elasticity of pump membrane with conserved pump force
EP2733355A1 (en) * 2012-11-15 2014-05-21 Mindray Medical Sweden AB Extended elasticity of pump membrane with conserved pump force
WO2014076239A1 (en) * 2012-11-15 2014-05-22 Mindray Medical Sweden Ab Extended elasticity of pump membrane with conserved pump force
CN104995407A (en) * 2012-11-15 2015-10-21 迈瑞医疗(瑞典)公司 Extended elasticity of pump membrane with conserved pump force
US10072650B2 (en) 2014-02-07 2018-09-11 Graco Minnesota, Inc. Method of pulselessly displacing fluid
EP3102828A4 (en) * 2014-02-07 2017-09-20 Graco Minnesota Inc. Drive system for a pulseless positive displacement pump
US9638185B2 (en) 2014-02-07 2017-05-02 Graco Minnesota Inc. Pulseless positive displacement pump and method of pulselessly displacing fluid
US10161393B2 (en) 2014-02-07 2018-12-25 Graco Minnesota Inc. Mechanical drive system for a pulseless positive displacement pump
US9784265B2 (en) 2014-02-07 2017-10-10 Graco Minnesota Inc. Electric drive system for a pulseless positive displacement pump
US11867165B2 (en) 2014-02-07 2024-01-09 Graco Minnesota Inc. Drive system for a positive displacement pump
CN108050050B (en) * 2014-02-07 2019-10-11 固瑞克明尼苏达有限公司 Drive system for pulse free positive-dispacement pump
EP3567251A1 (en) * 2014-02-07 2019-11-13 Graco Minnesota Inc. Drive system for a pulseless positive displacement pump
CN108050050A (en) * 2014-02-07 2018-05-18 固瑞克明尼苏达有限公司 For the drive system of pulse free positive-dispacement pump
US9777722B2 (en) 2014-02-07 2017-10-03 Graco Minnesota Inc. Pulseless positive displacement pump and method of pulselessly displacing fluid
EP3102829A4 (en) * 2014-02-07 2017-11-15 Graco Minnesota Inc. Pulseless positive displacement pump and method of pulselessly displacing fluid
US9777721B2 (en) 2014-02-07 2017-10-03 Graco Minnesota Inc. Hydraulic drive system for a pulseless positive displacement pump
US9964106B2 (en) 2014-11-04 2018-05-08 Wanner Engineering, Inc. Diaphragm pump with dual spring overfill limiter
RU2690109C2 (en) * 2014-11-04 2019-05-30 Уоннер Инжиниринг, Инк. Diaphragm pump with double-spring overflow limiter
US10876527B2 (en) * 2015-06-22 2020-12-29 Seko S.P.A. Bleed valve and self-bleeding pump provided with such valve
US11007545B2 (en) 2017-01-15 2021-05-18 Graco Minnesota Inc. Handheld airless paint sprayer repair
US11549596B2 (en) * 2017-01-19 2023-01-10 Neoperl Gmbh Diaphragm valve
US11022106B2 (en) 2018-01-09 2021-06-01 Graco Minnesota Inc. High-pressure positive displacement plunger pump
US11286923B2 (en) 2018-04-02 2022-03-29 Graco Minnesota Inc. Reduced pressurization shift within diaphragm pump cavity
EP3550144A1 (en) * 2018-04-02 2019-10-09 Graco Minnesota Inc. Reduced pressurization shift within diaphragm pump cavity
US11707753B2 (en) 2019-05-31 2023-07-25 Graco Minnesota Inc. Handheld fluid sprayer
US11434892B2 (en) 2020-03-31 2022-09-06 Graco Minnesota Inc. Electrically operated displacement pump assembly
US11174854B2 (en) 2020-03-31 2021-11-16 Graco Minnesota Inc. Electrically operated displacement pump control system and method
US11655810B2 (en) 2020-03-31 2023-05-23 Graco Minnesota Inc. Electrically operated displacement pump control system and method
US10968903B1 (en) 2020-06-04 2021-04-06 Graco Minnesota Inc. Handheld sanitary fluid sprayer having resilient polymer pump cylinder
US11738358B2 (en) 2020-06-25 2023-08-29 Graco Minnesota Inc. Electrostatic handheld sprayer
US10926275B1 (en) 2020-06-25 2021-02-23 Graco Minnesota Inc. Electrostatic handheld sprayer

Similar Documents

Publication Publication Date Title
US3416461A (en) Diaphragm pump
US4474540A (en) Tubular diaphragm pump
US3075468A (en) Hydraulically actuated diaphragm pump
US7425120B2 (en) Diaphragm position control for hydraulically driven pumps
US3957399A (en) Diaphragm pump
US4515180A (en) Valve for self-priming pump system
CA1061641A (en) Diaphragm pump improvement
US3461808A (en) Diaphragm hand pumps
EP0115672B1 (en) Diaphragm pumps
US3357363A (en) Hydraulic machine
US3263618A (en) Windshield washer pump
CA1122479A (en) Double-acting differential piston supply pump
US3500759A (en) Fuel priming pump
US2524129A (en) Valve
US5899671A (en) Hydraulic driven diaphragm pump with mechanical diaphragm stroke limitation
US2180259A (en) Suction mechanism
US3153381A (en) Pump
US3486456A (en) Valving for electromagnetic pump
US4116590A (en) Diaphragm pump with pulse piston position responsive work fluid replenishment
US3181474A (en) Dismountable pressure pump
US3362346A (en) Fluid pumps
US3806283A (en) Pump by-pass
US3250073A (en) Cylinder
US3307492A (en) Pumps for liquids
US4422831A (en) Pump

Legal Events

Date Code Title Description
AS Assignment

Owner name: DURION COMPANY, INC. THE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:HILLS-MCCANNA COMPANY;REEL/FRAME:003884/0069

Effective date: 19810710

Owner name: DURION COMPANY, INC. THE, STATELESS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HILLS-MCCANNA COMPANY;REEL/FRAME:003884/0069

Effective date: 19810710