US7769306B2 - Storing printer density control parameters in cartridge memory - Google Patents

Storing printer density control parameters in cartridge memory Download PDF

Info

Publication number
US7769306B2
US7769306B2 US11/323,733 US32373305A US7769306B2 US 7769306 B2 US7769306 B2 US 7769306B2 US 32373305 A US32373305 A US 32373305A US 7769306 B2 US7769306 B2 US 7769306B2
Authority
US
United States
Prior art keywords
printer
data
toner cartridge
parity
operating point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US11/323,733
Other versions
US20070154227A1 (en
Inventor
Douglas Anthony Able
William Keith Richardson
Joel Patrick Wittenauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Citic Bank Corp Ltd Guangzhou Branch
Original Assignee
Lexmark International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lexmark International Inc filed Critical Lexmark International Inc
Priority to US11/323,733 priority Critical patent/US7769306B2/en
Assigned to LEXMARK INTERNATIONAL, INC. reassignment LEXMARK INTERNATIONAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ABLE, DOUGLAS ANTHONY, RICHARDSON, WILLIAM KEITH, WITTENAUER, JOEL PATRICK
Publication of US20070154227A1 publication Critical patent/US20070154227A1/en
Application granted granted Critical
Publication of US7769306B2 publication Critical patent/US7769306B2/en
Assigned to CHINA CITIC BANK CORPORATION LIMITED, GUANGZHOU BRANCH, AS COLLATERAL AGENT reassignment CHINA CITIC BANK CORPORATION LIMITED, GUANGZHOU BRANCH, AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: LEXMARK INTERNATIONAL, INC.
Assigned to CHINA CITIC BANK CORPORATION LIMITED, GUANGZHOU BRANCH, AS COLLATERAL AGENT reassignment CHINA CITIC BANK CORPORATION LIMITED, GUANGZHOU BRANCH, AS COLLATERAL AGENT CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT U.S. PATENT NUMBER PREVIOUSLY RECORDED AT REEL: 046989 FRAME: 0396. ASSIGNOR(S) HEREBY CONFIRMS THE PATENT SECURITY AGREEMENT. Assignors: LEXMARK INTERNATIONAL, INC.
Assigned to LEXMARK INTERNATIONAL, INC. reassignment LEXMARK INTERNATIONAL, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CHINA CITIC BANK CORPORATION LIMITED, GUANGZHOU BRANCH, AS COLLATERAL AGENT
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0822Arrangements for preparing, mixing, supplying or dispensing developer
    • G03G15/0863Arrangements for preparing, mixing, supplying or dispensing developer provided with identifying means or means for storing process- or use parameters, e.g. an electronic memory
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0822Arrangements for preparing, mixing, supplying or dispensing developer
    • G03G15/0848Arrangements for testing or measuring developer properties or quality, e.g. charge, size, flowability
    • G03G15/0849Detection or control means for the developer concentration
    • G03G15/0855Detection or control means for the developer concentration the concentration being measured by optical means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0822Arrangements for preparing, mixing, supplying or dispensing developer
    • G03G15/0865Arrangements for supplying new developer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/06Developing structures, details
    • G03G2215/066Toner cartridge or other attachable and detachable container for supplying developer material to replace the used material
    • G03G2215/0695Toner cartridge or other attachable and detachable container for supplying developer material to replace the used material using identification means or means for storing process or use parameters
    • G03G2215/0697Toner cartridge or other attachable and detachable container for supplying developer material to replace the used material using identification means or means for storing process or use parameters being an electronically readable memory

Definitions

  • This invention relates generally to controlling the print density in printers.
  • Mono-laser printers may contain device parameters, commonly called operating points, that control the density or darkness of the print on a page.
  • the density control parameters may be defined for each engine speed and also for special media types.
  • the operating points may be stored in tables in print engine firmware.
  • the table values in the engine firmware are determined during the printer development cycle.
  • a cartridge and printer pair determined to have nominal components is used to determine the values to be stored in the engine firmware tables.
  • a density control operating point table may have sixty rows that determine the laser power, duty cycle, and developer bias voltage.
  • the density control operating point selected by the printer depends on the print engine speed, print resolution, user-selected darkness, media type, and other factors.
  • print engine density control tables are modified through the use of adders that are stored in cartridge memory devices.
  • a four-bit value may be used to encode an adder that has only 16 possible values.
  • the adder is typically applied to more than one operating point table with the possibility of unintended effects.
  • FIG. 1 is a schematic depiction of a printer with an installed toner cartridge
  • FIG. 2 is flow chart for a printer according to one embodiment of the present invention.
  • FIG. 3 shows a data exchange in accordance with one embodiment of the present invention in the course of a read data command
  • FIG. 4 shows a data exchange in response to a write data command in accordance with one embodiment of the present invention.
  • a toner cartridge 14 may be replaceably plugged into a host 12 via an appropriate receptacle.
  • the toner cartridge 14 may be periodically replaced as toner is depleted.
  • An electrical connection is automatically made between a host 12 , in the form of a laser printer, and the toner cartridge 14 when the toner cartridge is properly installed.
  • the host 12 may also be a programming apparatus that programs the cartridge 14 prior to its installation in a laser printer.
  • the host 12 may include a housing 11 .
  • the toner cartridge 14 may include an interface 16 to facilitate communication between a cartridge controller 18 and the host 12 .
  • the controller 18 also communicates with an on-board memory device 20 .
  • the memory device 20 may be any conventional memory, but a non-volatile memory, such as a flash memory, may be advantageous in some cases.
  • the memory device 20 may store density control operating points 22 that enables updating of the printer density control table stored in the host 12 .
  • an updated printer density control table may be supplied with the toner cartridge 14 . All that needs to be done is for the host 12 , in this case the laser printer with the cartridge, to read out the data from the memory device 20 and to store it on board within the host 12 . The host 12 may then implement the new printer density control table.
  • the density control operating point data structure may include four fields.
  • the four fields are implemented through twenty-four bits or three bytes.
  • Bits 0 - 7 may provide the developer bias voltage
  • bits 8 - 15 may provide the laser power
  • bits 16 - 22 give the laser duty index
  • the parity bit may be bit 23 in one embodiment of the present invention.
  • the most significant bit may be the parity bit used to check the integrity of the memory cells that store the data structure.
  • the laser duty index is an index into a table to be included in the engine firmware that holds the available laser duty cycles.
  • the illustration of the three fields and their uses may change over time and other data structures may be used as well.
  • the toner cartridge memory device 20 may be read out.
  • the cartridge memory device 20 responds to a Read Data command from the host by extracting the first requested memory location from the message packet.
  • the memory at the current address is then read.
  • a parity flag is set in the data packet.
  • the cartridge memory device 20 performs a parity check on the three bytes of data making up the data structure. If the data at the current memory location fails the parity check, an error code may replace the three bytes of data in the response from the memory device 20 to the host 12 . If the data structure passes the integrity check, the three bytes will be placed in a response data packet.
  • the packet to be sent to the host or print engine in response to the read data command with parity may contain 180 data bytes in one example, made up of 60 data structures, each of three bytes.
  • the process 22 may be implemented from the memory device 20 by the cartridge 14 .
  • the process may be implemented in software or firmware.
  • a check of diamond 24 determines whether any command has been received from the host 12 . If so, a check of diamond 26 determines whether the received command is a read data command. If so, the first read address is fetched, as indicated in block 28 . The data at the current address is then read, as indicated in block 30 .
  • a check of diamond 32 determines whether a parity flag is set. If so, the data parity is calculated at block 34 .
  • a check of diamond 36 determines whether the calculated parity and bit 23 match. If not, the data is set to an error code as indicated in block 38 . If the calculated parity and the bit 23 match as determined in diamond 36 , or if the parity flag is not set, the data is added to a response packet at block 40 . Then the address pointer is set to the next address in block 42 . Once the last entry is reached, as determined in diamond 44 , a response packet is transmitted as indicated in block 46 .
  • a host read command may include a device address 50 , a command length 52 , a Read command 54 , flags 58 (including parity flag), and addresses 0 - 59 for the sixty data structures.
  • the memory device responds with a memory read with parity response packet.
  • the memory read with parity response packet may include the device address 50 , the command length 52 , a read response 56 , and the requested data as indicated at 60 .
  • DCOP Density Control Operating Point
  • a programming host device writes the data density control operating point to the cartridge memory device at the time of cartridge manufacture.
  • the programming host and the reading hosts are different devices.
  • the programming host device is responsible for calculating the appropriate parity value for bit 23 before writing to the device.
  • the write data command response transmission packet structure is shown.
  • the programming host may be a programmer in a manufacturing facility.
  • the host write command data structure includes the device address 50 , a command length 52 , a write command 64 , and the addresses 68 0 through 68 59 , each of which include the three bytes of data plus the parity bit in one embodiment.
  • the memory device 20 response to the write command may include a device address 50 , a command length 52 , a write command 64 , and a write success or failure indicator 66 in some embodiments.
  • the cartridge 14 may be programmed at the factory and, when received and mounted appropriately as a replacement cartridge within a printer, the printer can read out the memory device obtaining the new printer density control tables. Because of the imposition of parity, the transfer of data may be implemented in a secure, error free fashion in some embodiments.
  • references throughout this specification to “one embodiment” or “an embodiment” mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one implementation encompassed within the present invention. Thus, appearances of the phrase “one embodiment” or “in an embodiment” are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be instituted in other suitable forms other than the particular embodiment illustrated and all such forms may be encompassed within the claims of the present application.

Abstract

Data may be obtained in the form of a printer control density table from a memory within a replacement toner cartridge. The cartridge may include parity bits to ensure the accuracy of the data.

Description

BACKGROUND
This invention relates generally to controlling the print density in printers.
Mono-laser printers may contain device parameters, commonly called operating points, that control the density or darkness of the print on a page. The density control parameters may be defined for each engine speed and also for special media types.
The operating points may be stored in tables in print engine firmware. The table values in the engine firmware are determined during the printer development cycle. A cartridge and printer pair determined to have nominal components is used to determine the values to be stored in the engine firmware tables.
A density control operating point table may have sixty rows that determine the laser power, duty cycle, and developer bias voltage. The density control operating point selected by the printer depends on the print engine speed, print resolution, user-selected darkness, media type, and other factors.
Changing the print engine's density control table is impractical after the start of printer production because of the large number of printers in customer' hands that would need to receive the revised firmware. Thus, print engine density control tables are modified through the use of adders that are stored in cartridge memory devices. The adders, stored in the cartridge memory devices, modify the index of the current density operating point table that is currently selected.
The resolution of available adjustment with an adder is limited. A four-bit value may used to encode an adder that has only 16 possible values. The adder is typically applied to more than one operating point table with the possibility of unintended effects.
Thus, there is a need for better ways to enable modification of density control tables.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic depiction of a printer with an installed toner cartridge;
FIG. 2 is flow chart for a printer according to one embodiment of the present invention;
FIG. 3 shows a data exchange in accordance with one embodiment of the present invention in the course of a read data command;
FIG. 4 shows a data exchange in response to a write data command in accordance with one embodiment of the present invention.
DETAILED DESCRIPTION
Referring to FIG. 1, a toner cartridge 14 may be replaceably plugged into a host 12 via an appropriate receptacle. Thus, the toner cartridge 14 may be periodically replaced as toner is depleted. An electrical connection is automatically made between a host 12, in the form of a laser printer, and the toner cartridge 14 when the toner cartridge is properly installed. The host 12 may also be a programming apparatus that programs the cartridge 14 prior to its installation in a laser printer. The host 12 may include a housing 11.
The toner cartridge 14 may include an interface 16 to facilitate communication between a cartridge controller 18 and the host 12. The controller 18 also communicates with an on-board memory device 20. The memory device 20 may be any conventional memory, but a non-volatile memory, such as a flash memory, may be advantageous in some cases. The memory device 20 may store density control operating points 22 that enables updating of the printer density control table stored in the host 12.
Thus, in accordance with some embodiments of the present invention, when the toner cartridge 14 is replaced because the toner has been consumed, an updated printer density control table may be supplied with the toner cartridge 14. All that needs to be done is for the host 12, in this case the laser printer with the cartridge, to read out the data from the memory device 20 and to store it on board within the host 12. The host 12 may then implement the new printer density control table.
This solves the problem of how to update the printer density control table after production has begun when a large base of installed printers already exists and updating each one manually would be impractical. In this way, as cartridges of toner are consumed, the update of the printer density control table is provided with the replacement toner cartridge. In some cases, the printer density control table is not in need of updating, and in such case, cartridges may be distributed without the memory or with a memory which implements other functions.
Conventionally, the density control operating point data structure may include four fields. In one embodiment, the four fields are implemented through twenty-four bits or three bytes. Bits 0-7 may provide the developer bias voltage, bits 8-15 may provide the laser power, bits 16-22 give the laser duty index, and the parity bit may be bit 23 in one embodiment of the present invention. The most significant bit may be the parity bit used to check the integrity of the memory cells that store the data structure. The laser duty index is an index into a table to be included in the engine firmware that holds the available laser duty cycles. However, the illustration of the three fields and their uses may change over time and other data structures may be used as well.
Once installed within the host 12, the toner cartridge memory device 20 may be read out. The cartridge memory device 20 responds to a Read Data command from the host by extracting the first requested memory location from the message packet. The memory at the current address is then read. For reading density control operating points, a parity flag is set in the data packet. The cartridge memory device 20 performs a parity check on the three bytes of data making up the data structure. If the data at the current memory location fails the parity check, an error code may replace the three bytes of data in the response from the memory device 20 to the host 12. If the data structure passes the integrity check, the three bytes will be placed in a response data packet. The packet to be sent to the host or print engine in response to the read data command with parity may contain 180 data bytes in one example, made up of 60 data structures, each of three bytes.
Referring to FIG. 2, the process 22, shown in FIG. 2, may be implemented from the memory device 20 by the cartridge 14. In some embodiments, the process may be implemented in software or firmware. Initially, a check of diamond 24 determines whether any command has been received from the host 12. If so, a check of diamond 26 determines whether the received command is a read data command. If so, the first read address is fetched, as indicated in block 28. The data at the current address is then read, as indicated in block 30. A check of diamond 32 determines whether a parity flag is set. If so, the data parity is calculated at block 34.
A check of diamond 36 determines whether the calculated parity and bit 23 match. If not, the data is set to an error code as indicated in block 38. If the calculated parity and the bit 23 match as determined in diamond 36, or if the parity flag is not set, the data is added to a response packet at block 40. Then the address pointer is set to the next address in block 42. Once the last entry is reached, as determined in diamond 44, a response packet is transmitted as indicated in block 46.
Thus, referring to FIG. 3, a host read command may include a device address 50, a command length 52, a Read command 54, flags 58 (including parity flag), and addresses 0-59 for the sixty data structures.
In response to the read data command in the format on the left side of FIG. 3, the memory device responds with a memory read with parity response packet. The memory read with parity response packet may include the device address 50, the command length 52, a read response 56, and the requested data as indicated at 60. Thus, Density Control Operating Point (DCOP) data 0.0 to 0.2 are the three bytes of data for one address, et cetera, all the way through addresses 0-59.
Thus, a programming host device writes the data density control operating point to the cartridge memory device at the time of cartridge manufacture. The programming host and the reading hosts are different devices. The programming host device is responsible for calculating the appropriate parity value for bit 23 before writing to the device. Thus, referring to FIG. 4, the write data command response transmission packet structure is shown. In this case, the programming host may be a programmer in a manufacturing facility. The host write command data structure includes the device address 50, a command length 52, a write command 64, and the addresses 68 0 through 68 59, each of which include the three bytes of data plus the parity bit in one embodiment.
The memory device 20 response to the write command may include a device address 50, a command length 52, a write command 64, and a write success or failure indicator 66 in some embodiments.
In this way, the cartridge 14 may be programmed at the factory and, when received and mounted appropriately as a replacement cartridge within a printer, the printer can read out the memory device obtaining the new printer density control tables. Because of the imposition of parity, the transfer of data may be implemented in a secure, error free fashion in some embodiments.
References throughout this specification to “one embodiment” or “an embodiment” mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one implementation encompassed within the present invention. Thus, appearances of the phrase “one embodiment” or “in an embodiment” are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be instituted in other suitable forms other than the particular embodiment illustrated and all such forms may be encompassed within the claims of the present application.
While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.

Claims (12)

1. A replacement toner cartridge for a printer having an existing print density control operating point table, comprising:
a memory device, the memory device storing data including an updated print density control operating point table from a programming host; and
a controller coupled to the memory device and configured to perform a parity check on the data stored in the memory device and, when the replacement cartridge is installed in the printer, to send data including the updated print density control operating point table from the memory device to the printer depending upon the parity check wherein, when received by the printer, the updated print density control operating point table overwrites the existing print density control operating point table in the printer.
2. The replacement toner cartridge of claim 1, wherein the programming host is a programmer in a manufacturing facility.
3. The replacement toner cartridge of claim 1, wherein the controller receives a parity bit from the memory device, calculates data parity and compares the calculated data parity to the received parity bit to perform the parity check.
4. The replacement toner cartridge of claim 1, wherein the controller transmits the updated print density control operating point table to the printer when the replacement toner cartridge is installed in the printer and when the data passes the parity check.
5. The replacement toner cartridge of claim 1, wherein the controller transmits an error signal to the printer when the replacement toner cartridge is installed in the printer and when the data fails the parity check.
6. The replacement toner cartridge of claim 1, wherein the controller provides the updated print density control operating point table to the printer in response to a read request from the printer.
7. The replacement toner cartridge of claim 1, wherein the updated print density control operating point table includes data to be used by the printer to determine laser power, duty cycle and developer bias voltage.
8. A method of confirming and sending data from a memory device in a replacement toner cartridge installed in a printer having an existing print density operating point control table, comprising the steps of:
sending a read command to the memory device in the replacement toner cartridge, the memory device having data including an updated print density operating point control table previously programmed by a programming host;
checking parity of the previously programmed data at the toner cartridge; and
transmitting the data to a printer based on the parity check, the data being transmitted with an error message if the parity check fails, and
if no error message is received by the printer, overwriting the existing print density operating point control table in the printer with the updated print density operating point control table.
9. The method of claim 8, wherein the programming host device is a programmer in a manufacturing facility.
10. The method of claim 8, wherein the step of checking parity at the replacement toner cartridge comprises:
receiving a parity bit;
calculating a data parity; and
comparing the calculated data parity to the received parity bit.
11. The method of claim 8, wherein the printer sends the read command including an address of a requested data and the replacement toner cartridge parity checks and transmits a confirmation message with the requested data to the printer if the parity check passes.
12. The method of claim 8, wherein the updated print density control operating point table includes data to be used by the printer to determine laser power, duty cycle and developer bias voltage.
US11/323,733 2005-12-30 2005-12-30 Storing printer density control parameters in cartridge memory Active US7769306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/323,733 US7769306B2 (en) 2005-12-30 2005-12-30 Storing printer density control parameters in cartridge memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/323,733 US7769306B2 (en) 2005-12-30 2005-12-30 Storing printer density control parameters in cartridge memory

Publications (2)

Publication Number Publication Date
US20070154227A1 US20070154227A1 (en) 2007-07-05
US7769306B2 true US7769306B2 (en) 2010-08-03

Family

ID=38224553

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/323,733 Active US7769306B2 (en) 2005-12-30 2005-12-30 Storing printer density control parameters in cartridge memory

Country Status (1)

Country Link
US (1) US7769306B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090175189A1 (en) * 2006-05-08 2009-07-09 Skyhook Wireless, Inc. Calculation of quality of wlan access point characterization for use in a wlan positioning system
US20110012780A1 (en) * 2009-07-16 2011-01-20 Skyhook Wireless, Inc. Systems and methods for using a satellite positioning system to detect moved wlan access points
US20140240779A1 (en) * 2011-06-23 2014-08-28 Steven Miller Immunizing Cartridge Chip
US10248062B1 (en) 2017-10-27 2019-04-02 Lexmark International, Inc. System and methods for adjusting toner density in an imaging device
US10338496B2 (en) 2017-10-27 2019-07-02 Lexmark International, Inc. System and methods for adjusting toner density in an imaging device
US11076143B1 (en) * 2016-12-12 2021-07-27 Facebook Technologies, Llc In-band tear detection with compression
US11235525B2 (en) 2016-07-22 2022-02-01 Hewlett-Packard Development Company, L.P. Container for an additive manufacturing system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272503A (en) 1992-09-02 1993-12-21 Xerox Corporation Replaceable sub-assemblies for electrostatographic reproducing machines
US5835817A (en) 1994-12-22 1998-11-10 Hewlett Packard Company Replaceable part with integral memory for usage, calibration and other data
US5930553A (en) 1997-04-25 1999-07-27 Hewlett-Packard Company Image forming and office automation device consumable with memory
US6144812A (en) 1998-03-20 2000-11-07 Canon Kabushiki Kaisha Image formation system having a memory device located in an electrophotographic process cartridge for storing data relating to image formation
US6616260B2 (en) 2001-05-25 2003-09-09 Hewlett-Packard Development Company, L.P. Robust bit scheme for a memory of a replaceable printer component
US20040141763A1 (en) * 2002-05-17 2004-07-22 Xerox Corporation Post-launch process optimization through customer replaceable unit memory look-up table
US6914621B2 (en) 2002-07-31 2005-07-05 Fuji Photo Film Co., Ltd. Shading correction method for heat development recording apparatus and heat development recording apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272503A (en) 1992-09-02 1993-12-21 Xerox Corporation Replaceable sub-assemblies for electrostatographic reproducing machines
US5835817A (en) 1994-12-22 1998-11-10 Hewlett Packard Company Replaceable part with integral memory for usage, calibration and other data
US5930553A (en) 1997-04-25 1999-07-27 Hewlett-Packard Company Image forming and office automation device consumable with memory
US6144812A (en) 1998-03-20 2000-11-07 Canon Kabushiki Kaisha Image formation system having a memory device located in an electrophotographic process cartridge for storing data relating to image formation
US6616260B2 (en) 2001-05-25 2003-09-09 Hewlett-Packard Development Company, L.P. Robust bit scheme for a memory of a replaceable printer component
US6769757B2 (en) 2001-05-25 2004-08-03 Hewlett-Packard Development Company, Lp Robust bit scheme for a memory of a replaceable printer component
US20040141763A1 (en) * 2002-05-17 2004-07-22 Xerox Corporation Post-launch process optimization through customer replaceable unit memory look-up table
US6914621B2 (en) 2002-07-31 2005-07-05 Fuji Photo Film Co., Ltd. Shading correction method for heat development recording apparatus and heat development recording apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090175189A1 (en) * 2006-05-08 2009-07-09 Skyhook Wireless, Inc. Calculation of quality of wlan access point characterization for use in a wlan positioning system
US9363785B2 (en) 2006-05-08 2016-06-07 Skyhook Wireless, Inc. Calculation of quality of WLAN access point characterization for use in a WLAN positioning system
US9955358B2 (en) 2006-05-08 2018-04-24 Skyhook Wireless, Inc. Determining quality metrics utilized in building a reference database
US20110012780A1 (en) * 2009-07-16 2011-01-20 Skyhook Wireless, Inc. Systems and methods for using a satellite positioning system to detect moved wlan access points
US8022877B2 (en) 2009-07-16 2011-09-20 Skyhook Wireless, Inc. Systems and methods for using a satellite positioning system to detect moved WLAN access points
US8564481B2 (en) 2009-07-16 2013-10-22 Skyhook Wireless, Inc. Systems and methods for using a satellite positioning system to detect moved WLAN access points
US10031237B2 (en) 2009-07-16 2018-07-24 Skyhook Wireless, Inc. Techniques for selecting SPS measurements to use in determining a final location estimate based on a WLAN-based location estimate
US20140240779A1 (en) * 2011-06-23 2014-08-28 Steven Miller Immunizing Cartridge Chip
US11235525B2 (en) 2016-07-22 2022-02-01 Hewlett-Packard Development Company, L.P. Container for an additive manufacturing system
US11076143B1 (en) * 2016-12-12 2021-07-27 Facebook Technologies, Llc In-band tear detection with compression
US10248062B1 (en) 2017-10-27 2019-04-02 Lexmark International, Inc. System and methods for adjusting toner density in an imaging device
US10338496B2 (en) 2017-10-27 2019-07-02 Lexmark International, Inc. System and methods for adjusting toner density in an imaging device

Also Published As

Publication number Publication date
US20070154227A1 (en) 2007-07-05

Similar Documents

Publication Publication Date Title
US7769306B2 (en) Storing printer density control parameters in cartridge memory
TWI511032B (en) Replaceable printer component including a memory updated atomically
US7065608B2 (en) Apparatus for recording data and method for writing data to flash memory
CN107577560B (en) Storage medium, data processing method and cartridge chip using the same
CN102501613B (en) Storing device and consumable container
US8601464B2 (en) Memory online update system and method
US9283791B2 (en) Replaceable printer component including a memory updated atomically
EP0833252B1 (en) Memory management method for portable terminal
CN100573714C (en) Rewritable nonvolatile memory, electronic equipment and rewrite method
CN101204884A (en) Chip, ink stone and manufacture method of ink stone
JP4586469B2 (en) MEMORY CONTROL DEVICE, MEMORY CONTROL METHOD, PROGRAM
CN110688141B (en) Firmware updating method
US10585633B2 (en) Method for recording chip usage state information, chip of imaging cartridge and imaging cartridge
CN203561835U (en) Imaging box chip and imaging box
JP4645538B2 (en) Recording apparatus and life information calculation method
CN108664355B (en) Backup system and backup method thereof
US20110157647A1 (en) Replaceable Printer Component Including Memory Storing Data Defined by Tags and Sub-Tags
JP2007069514A (en) Ink-jet recording device
JP2007041798A (en) Information processor and memory rewriting method for information processor
US20100037008A1 (en) Apparatus with a flash memory and method for writing data to the flash memory thereof
CN103009817A (en) Consumptive material chip and data remedying method thereof, consumptive material container and imaging device
JP2019020837A (en) Electronic controller
CN219392472U (en) Memory chip, consumable box and image forming device
CN116830108A (en) logic circuit
JP4575112B2 (en) Firmware rewriting method, disk drive device, and information processing system

Legal Events

Date Code Title Description
AS Assignment

Owner name: LEXMARK INTERNATIONAL, INC., KENTUCKY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ABLE, DOUGLAS ANTHONY;RICHARDSON, WILLIAM KEITH;WITTENAUER, JOEL PATRICK;REEL/FRAME:017452/0799

Effective date: 20051219

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552)

Year of fee payment: 8

AS Assignment

Owner name: CHINA CITIC BANK CORPORATION LIMITED, GUANGZHOU BR

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:LEXMARK INTERNATIONAL, INC.;REEL/FRAME:046989/0396

Effective date: 20180402

AS Assignment

Owner name: CHINA CITIC BANK CORPORATION LIMITED, GUANGZHOU BR

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT U.S. PATENT NUMBER PREVIOUSLY RECORDED AT REEL: 046989 FRAME: 0396. ASSIGNOR(S) HEREBY CONFIRMS THE PATENT SECURITY AGREEMENT;ASSIGNOR:LEXMARK INTERNATIONAL, INC.;REEL/FRAME:047760/0795

Effective date: 20180402

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12

AS Assignment

Owner name: LEXMARK INTERNATIONAL, INC., KENTUCKY

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CHINA CITIC BANK CORPORATION LIMITED, GUANGZHOU BRANCH, AS COLLATERAL AGENT;REEL/FRAME:066345/0026

Effective date: 20220713