US7925540B1 - Method and system for an automated trip planner - Google Patents

Method and system for an automated trip planner Download PDF

Info

Publication number
US7925540B1
US7925540B1 US10/966,561 US96656104A US7925540B1 US 7925540 B1 US7925540 B1 US 7925540B1 US 96656104 A US96656104 A US 96656104A US 7925540 B1 US7925540 B1 US 7925540B1
Authority
US
United States
Prior art keywords
user
service
services
travel
offering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US10/966,561
Inventor
Mark Orttung
Mike Mcevoy
Geff Gilligan
Jay GaBany
Rick Hernandez
Sean Handel
Anson Mah
Jerome Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deem Inc
Original Assignee
Rearden Commerce Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/966,561 priority Critical patent/US7925540B1/en
Assigned to TALARIS CORPORATION reassignment TALARIS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, JEROME, GABANY, JAY, GILLIGAN, GEFF, HANDEL, SEAN, HERNANDEZ, RICK, MAH, ANSON, MCEVOY, MIKE, ORTTUNG, MARK
Application filed by Rearden Commerce Inc filed Critical Rearden Commerce Inc
Assigned to REARDEN COMMERCE INC. reassignment REARDEN COMMERCE INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, JEROME, GABANY, JAY, GILLIGAN, GEFF, HANDEL, SEAN, HERNANDEZ, RICK, MAH, ANSON, MCEVOY, MIKE, ORTTUNG, MARK
Assigned to LABMORGAN INVESTMENT CORPORATION reassignment LABMORGAN INVESTMENT CORPORATION SECURITY AGREEMENT Assignors: REARDEN COMMERCE, INC.
Assigned to GOLD HILL CAPITAL 2008, LP reassignment GOLD HILL CAPITAL 2008, LP SECURITY AGREEMENT Assignors: REARDEN COMMERCE, INC.
Application granted granted Critical
Publication of US7925540B1 publication Critical patent/US7925540B1/en
Assigned to REARDEN COMMERCE, INC. reassignment REARDEN COMMERCE, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: GOLD HILL CAPITAL 2008, LP
Assigned to REARDEN COMMERCE, INC. reassignment REARDEN COMMERCE, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: LABMORGAN INVESTMENT CORPORATION
Assigned to LABMORGAN INVESTMENT CORPORATION reassignment LABMORGAN INVESTMENT CORPORATION SECURITY AGREEMENT Assignors: REARDEN COMMERCE, INC.
Assigned to REARDEN COMMERCE, INC. reassignment REARDEN COMMERCE, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: LABMORGAN INVESTMENT CORPORATION
Assigned to REARDEN COMMERCE INC. reassignment REARDEN COMMERCE INC. CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNOR PREVIOUSLY RECORDED ON REEL 017556 FRAME 0230. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME. Assignors: TALARIS CORPORATION
Assigned to DEEM, INC. reassignment DEEM, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: REARDEN COMMERCE, INC.
Assigned to WILMINGTON SAVINGS FUND SOCIETY, FSB reassignment WILMINGTON SAVINGS FUND SOCIETY, FSB GRANT OF SECURITY INTEREST IN PATENT RIGHTS Assignors: DEEM, INC., Travelport International Operations Limited, TRAVELPORT OPERATIONS, INC., TRAVELPORT, INC., TRAVELPORT, LP [COMPOSED OF: TRAVELPORT HOLDINGS, LLC]
Assigned to WILMINGTON SAVINGS FUND SOCIETY, FSB, AS COLLATERAL AGENT reassignment WILMINGTON SAVINGS FUND SOCIETY, FSB, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEEM, INC., TRAVELPORT OPERATIONS, INC., TRAVELPORT, INC.
Assigned to WILMINGTON TRUST, NATIONAL ASSOCIATION reassignment WILMINGTON TRUST, NATIONAL ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEEM, INC., Travelport International Operations Limited, TRAVELPORT, LP
Assigned to TRAVELPORT, LP, TRAVELPORT, INC., TRAVELPORT OPERATIONS, INC., DEEM, INC., Travelport International Operations Limited reassignment TRAVELPORT, LP TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS Assignors: WILMINGTON SAVINGS FUND SOCIETY, FSB
Assigned to TRAVELPORT, LP, DEEM, INC., Travelport International Operations Limited reassignment TRAVELPORT, LP RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WILMINGTON TRUST, NATIONAL ASSOCIATION
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/109Time management, e.g. calendars, reminders, meetings or time accounting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0631Item recommendations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/14Travel agencies

Definitions

  • This invention relates generally to procurement of services, and more particularly to an automated trip planner in one embodiment.
  • a first entity in response to an event, is automatically identified to adjust travel plans pre-established for one or more travel members.
  • the identified first entity adjusts the pre-established travel plans for one or more members, and notifies one or more travel members of the adjustment to the pre-established travel plans.
  • the identified first entity is at least one of the one or more travel members, not one of the one or more travel members, or a software agent.
  • a predetermined alternative first entity in response to an unavailability of the first entity, is identified to adjust the pre-established travel plans.
  • the one or more travel members in response to receiving a decline from one or more travel members, are presented with one or more second travel adjustments.
  • the adjusting of the pre-established travel plans is based at least in part on a profile of one or more travel members.
  • FIGS. 1A-C are diagrams illustrating a system-level overview of an embodiment of the invention.
  • FIGS. 2A-C are flowcharts of methods to be performed typically by computers in executing the embodiment of the invention illustrated in FIGS. 1A-C ;
  • FIG. 3 is a flowchart of an optional method to be performed by a computer in executing the embodiment of the invention illustrated in FIGS. 1A-C ;
  • FIG. 4A is a diagram of one embodiment of an operating environment suitable for practicing the present invention.
  • FIG. 4B is a diagram of one embodiment of a computer system suitable for use in the operating environment of FIG. 4A .
  • FIG. 5 illustrates screen shot as it would be seen by a group member, in accordance with one embodiment.
  • FIG. 6 illustrates block diagram of an alternative embodiment.
  • FIG. 7 illustrates one embodiment of a trip planner system.
  • FIG. 8 illustrates one embodiment of a travelers' personal preferences.
  • FIG. 9 illustrates an example of building a template for a trip, on time axis, in accordance with one embodiment.
  • the service includes offering a travel itinerary.
  • the profile of the user is based on previously obtained data.
  • the offering is performed automatically in response to the identification of the event and user.
  • the offering of the itinerary to the user based on the profile of the user comprises accessing data from at least one of a preference database and a contextual content database.
  • the offering of the itinerary may comprise offering at least one of travel times for the user traveling to a selected area, ground transportation for the user arriving at a selected area, and costs for multiple modes of transportation.
  • the offering of the service is based in part on one of a type of service, a location, and a partner.
  • FIGS. 1A-C A system level overview of the operation of one embodiment of an automatic services exchange system 100 is described by reference to FIGS. 1A-C .
  • the automatic services exchange system 100 is illustrated as having an automatic services exchange component 101 and an optional call center backup component 103 .
  • the automatic services exchange component 101 allows users such as a user A 105 , user B 109 , user C 113 , and user D 117 to request services from the exchange.
  • the service requests may be sent to the exchange component 101 through various communication media.
  • user A 105 sends its request A 107 to the exchange component 101 through an interactive voice response system (IVR)
  • user B 109 sends its request B 111 to the exchange component 101 through e-mail (typically a structured e-mail)
  • user C 113 sends its request C 115 via a Web browser, such as Internet Explorer or Netscape or a micro-browser on a WAP enabled cellular telephone
  • user D 117 send its request D 119 through an instant messaging system (IM).
  • IVR interactive voice response system
  • e-mail typically a structured e-mail
  • user C 113 sends its request C 115 via a Web browser, such as Internet Explorer or Netscape or a micro-browser on a WAP enabled cellular telephone
  • user D 117 send its request D 119 through an instant messaging system (IM).
  • IM instant messaging system
  • FIG. 1A illustrates that user A 105 receives its response through e-mail, user B 109 receives its response via instant messaging, and user D 117 receives its response via fax.
  • user C 113 the same communication medium, Web, used to send the request is also used to send the response.
  • the services available through the exchange component 101 include travel services, entertainment service, personal services (e.g., haircutting), educational services, business administrative services and the like. Some services may be time critical, e.g., a dinner reservation at a particular time.
  • the service request specifies other required criteria for the service, such as location (e.g., a certain geographic area), type, duration, quantity, price information (e.g., preferred price or price range and maximum price), etc.
  • a single service request may actually require services from multiple different service providers which are linked or associated. For example, if a user is planning a business trip, the request will often require services from airlines, hotels and car rental agencies and perhaps other services which are linked to or associated with the business trip.
  • the automatic services exchange component 101 automatically sends the service request to various service providers. In one embodiment, this transmission may be through several different electronic communication media such as structured e-mail, XML, IVR, etc.
  • the request is transferred to the backup call center component 103 .
  • the request C 115 is sent to the backup call center 103 along with other information such as which service providers have already been contacted for the service.
  • One of the human agents or operators at the backup call center 103 attempts to find a service provider for the request.
  • the backup call center 103 determines that the request can or cannot be satisfied, it communicates the result to the corresponding user who made the request. In the example, the result is sent to user C 113 through e-mail.
  • FIGS. 1B and 1C show the operation of the automatic services exchange component 101 in more detail.
  • a requestor 121 sends a service request 123 to the automatic services exchange 101 .
  • a broker function 131 receives a service request and passes it onto various service providers, such as service provider 133 and service provider 135 .
  • the service request may also be sent to an aggregator that represents multiple service providers, such as aggregator 137 that handles requests for service provider 139 and service provider 141 , instead of directly to the service providers.
  • the service request is sent using an automatic system, such as an IVR system, that asks for a positive or negative reply to the request (e.g., a voice over the telephone says “press 1 if you have a table for two at 6:30 p.m. at your restaurant on XYZ date, press 2 if you do not”).
  • an automatic system such as an IVR system
  • Each of the service providers 133 , 135 and the aggregator 137 replies to the broker 131 indicating whether they are able to provide the requested service.
  • the responses to broker 131 may be through different communication media such as the Internet (e.g., via an XML page), structured e-mail, or IVR.
  • the broker 131 sends a response 127 to the requestor 121 with the results indicating at least one response matched the request.
  • the broker may choose the best match based on the required or predetermined criteria or it may send responses for all the positive replies to the requestor 121 for selection.
  • the requestor 121 may also authorize the broker 131 to contract for the service under certain circumstances without waiting for approval from the requestor 121 .
  • a match to request typically means that the response from the service provider is within the range of acceptable requesting parameters such as time of service, location of service, price of service, level (e.g., quality requested) of service, and other parameters specified by the request.
  • the broker 131 may also send the response 127 to others 125 specified by the requestor 121 .
  • the requester 121 may be in charge of obtaining the reservation, but the other people involved should receive notification of the particulars.
  • a change notice 129 is sent to the requestor 121 if a procured service changes before its performance date. This change may occur by a modified request which is issued by the requestor 121 . Similarly, the change notice 129 may also be sent to others 125 specified by the requestor 121 .
  • the requester can approve the change if the change is satisfactory, or submit a new service request if the change is unsatisfactory, or if the service is now unavailable from the original provider (not shown).
  • the exchange system of the invention in one embodiment, can automatically respond to a modified request.
  • the broker 131 reviews, through an automatic machine implemented process, the service requests to determine if the service request is actually a request for multiple services, such as multiple services which are linked or associated such as those associated with an event (e.g., a business trip which requires airline tickets, rental car reservation and hotel reservation).
  • the resulting operation is illustrated in FIG. 1C .
  • the broker 131 breaks such a request into sub-service requests 143 and 145 and sends each to the appropriate service providers.
  • sub-service request A 143 is sent to service providers 147 , 149
  • sub-service request B 145 is sent to service provider 151 and aggregator 153 , which aggregates the services from service providers 155 and 157 .
  • each service provider/aggregator typically returns a message to the broker 131 specifying its ability to provide the service.
  • Each sub-service response 159 may be sent separately to the requestor 121 or the broker 131 may wait until all service providers/aggregators have responded or until a match to each sub-service request has been found.
  • change notices 161 also will be sent to the user 121 upon a change in a procured service. Additionally, the responses 159 and the change notices 161 may be sent to others 125 specified by the requestor 121 .
  • the particular methods of the invention are now described in terms of computer software with reference to a series of flowcharts.
  • the methods to be performed by a computer constitute computer programs made up of computer-executable instructions illustrated as blocks (acts). Describing the methods by reference to a flowchart enables one skilled in the art to develop such programs including such instructions to carry out the methods on suitably configured computers (e.g., the processor of the computer executing the instructions from computer-readable media).
  • the computer-executable instructions may be written in a computer programming language or may be embodied in firmware logic. If written in a programming language conforming to a recognized standard, such instructions can be executed on a variety of hardware platforms and for interface to a variety of operating systems.
  • FIGS. 2A and 2B illustrate the acts to be performed by a computer, or set of computers, acting as the automatic services exchange component 101 of FIG. 1A in processing service requests.
  • FIG. 2C illustrates the acts to be performed by a computer acting in conjunction with the backup call center 103 in FIG. 1A .
  • FIG. 3 illustrates the acts to be performed by the computer acting as the automatic services exchange component when the optional change notification is desired.
  • a service request method 200 receives a service request method (block 201 ) and examines it to determine if there are multiple, related services requested (block 203 ). If so, the service request method 200 creates a request for each service (block 205 ). Once the multiple requests are created, or if there is only one request, the service requests are sent to the appropriate providers (including aggregators) for the services (block 207 ).
  • the service request method 200 processes the replies for each request separately as illustrated by request loop starting at block 209 . It will be appreciated that multiple request loops may be running concurrently.
  • the requestor may specify a time which is associated with a deadline for completion of a search for a match to a request.
  • the requestor specifies a predetermined required period of time (time out period or deadline) within which replies must be received or by which time the requestor should be contacted by the exchange to inform the requestor of the incomplete status of a request.
  • the time out period is determined by the method 200 based on time criteria specified in the request.
  • the request loop waits at block 209 until an incoming reply is received or until the time out period expires.
  • the request loop When the request loop is activated by an incoming reply (block 211 ), the reply is recorded at block 213 . If all replies have not yet been received, the request loop returns to its wait state. If all replies have been received, the particular request loop ends (block 215 ) and the method 200 proceeds to block 217 to evaluate the replies. Alternatively, if the time out period expires before any or all replies are received, the method 200 also proceeds to block 217 . The time out period can provide the exchange system with some time to attempt to “manually” (through the intervention of a human operator) procure the service with enough time before the service is actually required.
  • the exchange system may specify a default time out period which is at least several hours before the requested time of the service (e.g., a 4:30 p.m. time out for a dinner reservation at 7:30 p.m.) or at least one day before the requested date of the service. Further, this time out period also allows the requestor to be notified of a failure to procure a service before the time requested for the service so that the requestor can take appropriate actions.
  • the method 200 determines if any positive replies were received. If not, the corresponding request is transferred to the backup call center (which includes human operators) for processing along with all replies (block 219 ) so the backup call center knows the current status of the request (e.g., who has replied to the request, who has not, etc.).
  • the backup call center which includes human operators
  • the method 200 determines if at least one service provider has replied positively to each service request (block 221 ). Requests that cannot been procured are sent to the backup call center at block 219 , while positive replies are processed at block 223 (e.g., by sending out confirmations to the requestor and the service providers to secure the providing of the service). Similarly, if only one service was requested and at least one reply is positive, the method 200 proceeds to block 223 to process the reply. The processing represented by block 223 is described next.
  • FIG. 2B One embodiment of a process reply method 230 is illustrated in FIG. 2B . It will be appreciated that multiple instances of the method 230 may be executing simultaneously based on the number of service requests that were made. For each service requested (block 231 ), the process reply method 230 determines if multiple positive replies for a service were received (block 233 ). If so, but only one match has been requested (block 235 ), the method 230 filters the replies to find a single match that best satisfies the criteria specified by the requestor (or specified as defaults by the system of the exchange service) (block 237 ).
  • the method 230 determines if the requestor has authorized the automatic services exchange system to automatically procure the service (block 239 ). If so, the method 230 contracts or otherwise reserves the service from the corresponding service provider (block 241 ) and sends a confirmation request confirmation to the requestor that the service has been procured (block 243 ).
  • the automatic services exchange provides payment information (e.g., credit card name, number and expiration date) previously provided by the requestor to the automatic services exchange or requests that this information be provided by the requestor to either the exchange (so it can be forwarded to the service provider) or to the service provider directly.
  • payment information e.g., credit card name, number and expiration date
  • the information in the reply is sent to the requestor at block 245 and the method 230 waits to receive approval from the requestor. If approval is received (block 249 ), the method 230 contracts for or otherwise reserves the approved service and sends a confirmation as previously described. However, if approval of the particular service is not received from the requestor, the service request is terminated.
  • a response containing all positive replies is sent to the requestor for selection (block 247 ) and the method 230 waits to receive approval of one of the providers at block 249 .
  • the method 230 contracts for or otherwise reserves the service from the approved provider at block 241 and returns a confirmation message at block 243 , or the request is terminated if no approval is received.
  • FIG. 2C one embodiment of an information transfer method 260 for a backup call center is illustrated.
  • a reply may be invalid such as when a person, in response to questions from an IVR system, presses an incorrect digit on a telephone key pad or hangs up without replying or if the call is unanswered.
  • the method 260 selects those service providers that gave invalid replies (block 263 ).
  • Each of the selected service providers (block 265 ) will be called by a human agent (block 267 ) until one provider is able to provide the service (block 269 ) or until all have been called (block 271 ). If no service provider can fulfill the service request, the method 260 sends a failure message to the requester at block 273 . If there are no further related service requests (block 251 ), the method 260 terminates.
  • the first positive reply at block 269 causes the method 260 to determine if the requester has authorized the automatic services exchange system to automatically procure the service (block 277 ). If so, the method 260 contracts or otherwise reserves the service from the corresponding service provider (block 279 ) and sends a confirmation request confirmation to the requestor that the service has been procured (block 281 ). If, however, there is no authorization at block 277 , the information in the reply is sent to the requestor (block 283 ) and the method 260 waits to receive approval from the requestor. If approval is received (block 285 ), the method 260 contracts for or otherwise reserves the approved service and sends a confirmation as previously described. However, if approval of the particular service is not received from the requestor, a failure message is sent to the requester at block 272 .
  • the automatic services exchange system optionally can send change notices to the requester to alert him/her of changes in a procured service or receive a modified request from the requestor even after the services have been procured.
  • a service change method 300 that communicates changes is illustrated in FIG. 3 .
  • the method 300 receives notification of a change in a procured service (block 301 )
  • it notifies the requester and asks if the requester approves the change or wishes to submit a new service request (block 303 ).
  • a message is sent to the service provider to contract for the changed service (block 307 ) and the change is confirmed to the requester (block 309 ).
  • the change is not approved but a new service request is submitted (block 311 )
  • the new request is resubmitted into the automatic services exchange system at block 313 .
  • FIGS. 2A-C and 3 The particular methods performed by computers acting as the automatic services exchange and backup call center components for one embodiment of the invention have been described with reference to flowcharts in FIGS. 2A-C and 3 , including all the acts from 201 until 223 , from 231 until 251 , from 261 until 285 , and 301 until 313 , respectively. It will be appreciated that more or fewer processes may be incorporated into the methods illustrated in FIGS. 2A-C and 3 without departing from the scope of the invention and that no particular order is implied by the arrangement of blocks shown and described herein and that alternative orders of the operations are within the scope of the invention.
  • FIGS. 4A-B The following description of FIGS. 4A-B is intended to provide an overview of computer hardware and other operating components suitable for performing the methods of the invention described above, but is not intended to limit the applicable environments.
  • One of skill in the art will immediately appreciate that the invention can be practiced with other computer system configurations, including hand-held devices (e.g., PDAs—personal digital assistants such as a Palm Pilot; or cell phones, etc.), multiprocessor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like.
  • the invention can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network having a physical or wireless infrastructure, or a combination of both.
  • FIG. 4A shows several computer systems that are coupled together through a network 3 , such as the Internet.
  • the term “Internet” as used herein refers to a network of networks which uses certain protocols, such as the TCP/IP protocol, and possibly other protocols such as the hypertext transfer protocol (HTTP) for hypertext markup language (HTML) documents that make up the World Wide Web (web).
  • HTTP hypertext transfer protocol
  • HTML hypertext markup language
  • the physical connections of the Internet and the protocols and communication procedures of the Internet are well known to those of skill in the art.
  • Access to the Internet 3 is typically provided by Internet service providers (ISP), such as the ISPs 5 and 7 , through either physical or wireless interfaces.
  • ISP Internet service providers
  • client computer systems 21 , 25 , 35 , and 37 obtain access to the Internet through the Internet service providers, such as ISPs 5 and 7 .
  • Access to the Internet allows users of the client computer systems to exchange information, receive and send e-mails, and view documents, such as documents which have been prepared in the HTML format.
  • These documents are often provided by web servers, such as web server 9 which is considered to be “on” the Internet.
  • web servers are provided by the ISPs, such as ISP 5 , although a computer system can be set up and connected to the Internet without that system being also an ISP as is well known in the art.
  • the web server 9 is typically at least one computer system which operates as a server computer system and is configured to operate with the protocols of the World Wide Web and is coupled to the Internet.
  • the web server 9 can be part of an ISP which provides access to the Internet for client systems.
  • the web server 9 is shown coupled to the server computer system 11 which itself is coupled to web content 10 , which can be considered a form of a media database. It will be appreciated that while two computer systems 9 and 11 are shown in FIG. 4A , the web server system 9 and the server computer system 11 can be one computer system having different software components providing the web server functionality and the server functionality provided by the server computer system 11 which will be described further below.
  • Client computer systems 21 , 25 , 35 , and 37 can each, with the appropriate web browsing software, view HTML pages provided by the web server 9 .
  • the ISP 5 provides Internet connectivity to the client computer system 21 through the modem interface 23 which can be considered part of the client computer system 21 .
  • the client computer system can be a personal computer system, a network computer, a Web TV system, a handheld wireless device, or other such computer system.
  • the ISP 7 provides Internet connectivity for client systems 25 , 35 , and 37 , although as shown in FIG. 4A , the connections are not the same for these three computer systems.
  • Client computer system 25 is coupled through a modem interface 27 while client computer systems 35 and 37 are part of a LAN. While FIG.
  • each of these interfaces can be an analog modem, ISDN modem, cable modem, satellite transmission interface (e.g., “Direct PC”), radio frequency (RF), cellular, or other interfaces for coupling a computer system to other computer systems.
  • Client computer systems 35 and 37 are coupled to a LAN 33 through network interfaces 39 and 41 , which can be Ethernet network or other network interfaces.
  • the LAN 33 is also coupled to a gateway computer system 31 which can provide firewall and other Internet related services for the local area network.
  • This gateway computer system 31 is coupled to the ISP 7 to provide Internet connectivity to the client computer systems 35 and 37 .
  • the gateway computer system 31 can be a conventional server computer system.
  • the web server system 9 can be a conventional server computer system.
  • a server computer system 43 can be directly coupled to the LAN 33 through a network interface 45 to provide files 47 and other services to the clients 35 , 37 , without the need to connect to the Internet through the gateway system 31 .
  • FIG. 4B shows one example of a conventional computer system that can be used as a client computer system or a server computer system or as a web server system. It will also be appreciated that such a computer system can be used to perform many of the functions of an Internet service provider, such as ISP 5 .
  • the computer system 51 interfaces to external systems through the modem or network interface 53 . It will be appreciated that the modem or network interface 53 can be considered to be part of the computer system 51 .
  • This interface 53 can be an analog modem, ISDN modem, cable modem, token ring interface, satellite transmission interface (e.g., “Direct PC”), radio frequency (RF), cellular, or other interfaces for coupling a computer system to other computer systems.
  • RF radio frequency
  • the computer system 51 includes a processing unit 55 , which can be a conventional microprocessor such as an Intel Pentium microprocessor or Motorola Power PC microprocessor.
  • Memory 59 is coupled to the processor 55 by a bus 57 .
  • Memory 59 can be dynamic random access memory (DRAM) and can also include static RAM (SRAM).
  • the bus 57 couples the processor 55 to the memory 59 and also to non-volatile storage 65 and to display controller 61 and to the input/output (I/O) controller 67 .
  • the display controller 61 controls in the conventional manner a display on a display device 63 which can be a cathode ray tube (CRT) or liquid crystal display.
  • CTR cathode ray tube
  • the input/output devices 69 can include a keyboard, disk drives, printers, a scanner, and other input and output devices, including a mouse or other pointing device.
  • the display controller 61 and the I/O controller 67 can be implemented with conventional well known technology.
  • a digital image input device 61 can be a digital camera which is coupled to an I/O controller 67 in order to allow images from the digital camera to be input into the computer system 51 .
  • the non-volatile storage 65 is often a magnetic hard disk, an optical disk, or another form of storage for large amounts of data. Some of this data is often written, by a direct memory access process, into memory 59 during execution of software in the computer system 51 .
  • the term “computer-readable medium” includes any type of storage device that is accessible by the processor 55 and also encompasses a carrier wave that encodes a data signal.
  • the computer system 51 is one example of many possible computer systems which have different architectures.
  • personal computers based on an Intel microprocessor often have multiple buses, one of which can be an input/output (I/O) bus for the peripherals and one that directly connects the processor 55 and the memory 59 (often referred to as a memory bus).
  • the buses are connected together through bridge components that perform any necessary translation due to differing bus protocols.
  • Network computers are another type of computer system that can be used with the present invention.
  • Network computers do not usually include a hard disk or other mass storage, and the executable programs are loaded from a network connection into the memory 59 for execution by the processor 55 .
  • a Web TV system which is known in the art, is also considered to be a computer system according to the present invention, but it may lack some of the features shown in FIG. 4B , such as certain input or output devices.
  • a typical computer system will usually include at least a processor, memory, and a bus coupling the memory to the processor. Further, mobile devices, such as PDAs, browsing web phones etc. and their respective supporting infrastructure may also be used as clients etc.
  • the computer system 51 is controlled by operating system software which includes a file management system, such as a disk operating system, which is part of the operating system software.
  • a file management system such as a disk operating system
  • One example of an operating system software with its associated file management system software is the family of operating systems known as Windows® from Microsoft Corporation of Redmond, Wash., and their associated file management systems.
  • the file management system is typically stored in the non-volatile storage 65 and causes the processor 55 to execute the various acts required by the operating system to input and output data and to store data in memory, including storing files on the non-volatile storage 65 .
  • One embodiment of the present invention permits group members to add additional reservations onto an existing reservation of a group leader, supervisor or any other member of the group in such a manner as to synchronize travel plans and coordinate locations, etc., both in terms of travel time, sharing rides, staying at the same hotel, tee times, and other services one may desire when attending an event. But rather than book all group members at once, individual group members may make plans separately, to accommodate instances in which group members are, for example, traveling from different locations, or are arriving at different times, etc. For example, a sales person may be coming from a different customer site in another city, while the marketing person and the technical person may be coming from the home office.
  • FIG. 5 shows a screen as it would be seen by such a group member.
  • the data as displayed on the screen may be shared with the group members via an Internet media, or other alternative media.
  • Section 500 is the header bar of the browser window
  • section 501 is the application window for a specific set of services—in this case, travel and accommodations for a business meeting at a customer site.
  • Heading section 502 for the event shows that members of the company Talaris are visiting Forrester Research in Waltham, Mass. Group members can see the travel itinerary of the group leader respectively the first person to book travel in section 503 .
  • the system automatically notifies, via the Internet or other media, the other members of the group and asks if they want to book identical travel services or similar travel services (e.g., start in a different location and ultimately end up at a destination together at a specific time).
  • the system automatically would also coordinate sharing of resources such as a rental car or hotel rooms. Further, the system would enforce corporate policies related to the services being procured. For example, the system might require employees to share a rental car, a limo, a shuttle bus etc. if two or more employees are traveling on a similar trip.
  • Section 510 is an option to book an identical itinerary, which would be suitable for a person starting the trip from the same location at the same time. This option allows group members to travel together.
  • Section 512 allows group members to book separate, identical air and hotel reservations, but has them share a single car rental; section 513 allows members to meet at the airport upon arrival (in this example, at the Boston airport) so a group member flying in from, for example, New York, could meet with members flying in from San Francisco, to share the car into Walton; and section 514 allows for only booking rooms at the same hotel, so group members may come and go separately but stay at the same hotel, allowing them to meet and travel together to the company site conveniently.
  • the system illustrated in FIG. 5 is just one embodiment of the novel art of this disclosure for automated coordination of services procurement for a group of individuals involved in a common goal or event.
  • one of the individuals (the leader) would define the attributes of the event and specify the other individuals to be involved in the event (the “group”). All of the individuals would be automatically notified, via the Internet or other media, by the system that they are invited to participate in the goal or event, and all individuals would be able to accept or decline membership in the group event or goal, in some cases in accordance with company policies for such participation, expense rules, privacy rules etc. Likewise, all individuals who accept group membership would be able to procure a combination of services required to execute the event.
  • the system is able to coordinate sharing of the services based on its understanding of the mutual requirements of the group, and is also able to adjust the services procured by members of the group to better meet the overall group's objectives.
  • the system is likewise able to adjust the services procured by the members to optimize the use of the services by the group as a whole, or to intelligently cancel services based on changes in requirements input by one or more members of the group.
  • corporate policy may allow some participants to exceed their usual settings in context of a group event.
  • the type of services that may be procured are not limited to services related to travel, but rather may also include other services related to attending an event, or other activities to participate in while visiting a location.
  • a member may not share in some aspects, such as the share car ride for example etc.
  • the member may break out of the group arrangements. This may be on a case by case basis, with approval and or notification of the group leader, his supervisor etc., or may be pre-defined in the member's profile in some cases.
  • FIG. 6 illustrates a block diagram of an integration of the embodiment for providing coordination of group procurement of services integrated in the system of FIG. 1 b , as discussed above.
  • the integration includes the addition of a group information block 600 that allows the original requester 121 to export his travel plans via function 601 into block 600 .
  • the requester can assign group members into a group data base 610 , so that when the designated group members log in as other users 125 , they can see what travel options are available, pull them down via function 602 , and then participate in making travel plans, as described above in relation to FIG. 5 .
  • group member may receive a particular invitation, and in some cases, that may require a supervisor's approval.
  • a user may be able to forward their service request in an automatic fashion. For example, a user could initiate a group by inviting others to join for a meeting at a specific date, time, and location. Once they have done this, they have formed a group. Once one member of the group has booked their travel for this particular meeting, they would be prompted to see if they are willing to share their itinerary with the other members of the group. If they give permission for the other members to see the itinerary, all other members of the group would be automatically notified by the system. When notified, the other members of the group would be given options to book similar or identical services. When other group members select an option, a service request such as ( 123 ) in FIG. 6 is automatically generated and sent to the services exchange.
  • a service request such as ( 123 ) in FIG. 6 is automatically generated and sent to the services exchange.
  • Trips may often be complicated, multi-event expeditions that require a complex orchestration of events and services to meet all the requirements of all parties.
  • a traveler would like to rely on a personal assistant who, from long experience, knows the preferences of the traveler and therefore can quickly and easily book all the arrangements for services and events of the trip.
  • advanced travel service systems such as Expedia, Travelocity, or airline vacation package services still require the user to specify each element separately.
  • the only convenience offered to the user is that he does not need to seek another provider or re-enter his payment information for each booking. He still has to indicate each desired service separately.
  • FIG. 7 shows the one embodiment of a trip planner system 700 , which uses preferences database 701 and contextual content database 702 .
  • the system 700 interacts with a services procurement system 710 , such as the Talaris services platform, and with user 705 . Interaction with the user may be done directly by the trip planner 700 or through the services platform 710 .
  • the system 700 may extract certain location or context-specific information.
  • the system might have a history of typical travel times or patterns for a given city of a traveler.
  • the system might also have data on what options for ground transportation exist at a given airport, such as, for example, shuttle, taxi, subway, and limo.
  • the system would also know how to calculate the cost of the various modes of transportation.
  • the system might know how much the hotel charges for parking a car overnight and take that into account when making a recommendation.
  • the contextual information could also include the availability of other services and factor that into decisions on how to plan the trip.
  • the system could know that at a certain airport rental offices (e.g., Laptop Lane) or a Wi-Fi hot spot are available etc. Based on this information, the system might determine that it is better to take certain layovers than others.
  • FIG. 8 shows, at the center, one embodiment of one traveler's personal preferences set 701 a , which is a subset of the preferences in database 701 , shown in FIG. 7 .
  • FIG. 8 illustrates an alternative way the system may accumulate knowledge of, and interact with, personal preferences set 701 a.
  • a personal preference editor 801 allows a user to view and modify records of his preferences.
  • the records could be ordered by type of service (hotel, airline, ground transport, restaurant, etc.), or by location (i.e., when traveling to New York, when traveling to Boston etc.), or by customer/partner to be visited, etc.
  • a personal preference wizard 802 could interview the user to initially obtain a comprehensive set of preferences.
  • a personal preferences parser 803 could, for example, parse a historical transaction databases 810 , which can be extracted from system 710 , for example a services reservation system.
  • an interactive change monitor 804 could track interactive changes occurring during trips as changes are required and the user makes choices. These changes may then be recorded in preferences set 701 a . In other cases, they may be culled on a regular basis by refresh reviewing of historic data.
  • One embodiment of the interactive change monitor 804 may also include the ability to generate automated updates of preferences based on past events or trips. For example, a traveler may consistently stay in a Hilton when visiting a certain city, or ask for certain amenities, etc. In one embodiment, the interactive change monitor 804 extracts these patterns and trends and adjust the preferences and hence the search results (or query) accordingly. As a result the traveler is presented with more targeted results in regards to what they are likely to select as a trip segment.
  • FIG. 9 shows an example of building a template 900 for a trip, on time axis 901 .
  • a user may need to plan for a trip to a meeting M 1 902 .
  • the meeting time is set for 9 a.m. to noon on 1 Jul. 2004.
  • a large set of services and interactions leads up to the meeting, such as ground transportation 907 from home or office to the airport, flight 906 to the meeting, ground transportation 905 from the airport to the hotel, hotel accommodations 904 , ground transportation 903 from hotel to meeting.
  • the meeting may be a restaurant booking 908 .
  • preferences may be influenced by many factors and may vary according to each situation. Factors may include location, time of day, time of year, customer, country, and many other variables. Based on each factor or combination of factors, event or service preferences may vary.
  • a traveler may prefer to use the subway, but at night (after 8 p.m.) the traveler may prefer to use a taxi or limo service.
  • the traveler may prefer a rental car, while in New York, he may prefer public transportation (subway by day; limo at night, as stated above). Hotel preferences may also vary, according to each location (city), according to the specific customer visited, or according to some other set or combination of factors.
  • the system may issue status updates based on location of a service provider. For example, it may alert a user that a limo is 15 minutes behind schedule based on GPS/driving time estimates and, if necessary, move a flight time based on the resulting schedule change.
  • one embodiment may also be used for services unrelated or not directly related to travel.
  • an invitation to a meeting might first ask invitees if they will attend in person or virtually. If they elect to attend virtually, the system could arrange for audio and web conferencing or possibly video conferencing. Phone available time as discussed above may be scheduled during a trip to a meeting for another meeting. If they elect to attend in person, the system could arrange for travel, as described in the description. Other, additional types of services may also be scheduled through the system.
  • a trip involving a single customer visit there may be different templates for a trip involving a single customer visit; a multi-event trip; a multi-city, multi-event trip; etc.
  • one embodiment disclosed herein may automatically suggest templates based on the particulars of the trip, or the user may manually select a specific template type.
  • trips that are automatically planned may have an additional feature or parameter in personal calendar software or web based systems, such as MS Outlook/ExchangeTM, IBM Lotus NotesTM, Yahoo Calendar, or other, similar software that causes the trip planner 700 to transfer the information to the services platform system 710 to be booked accordingly.
  • trip planner 700 can then block out times for each segment of a trip.
  • various components of the trip could be entered into a user's calendar with differing definitions of “busy.” For example, when a user is in a limo, the calendar might say that they are free for phone calls. Or in another example, the traveler might be available for email on certain flights, based on contextual information about airline email availability and the company's agreement and or rules for use of such facilities, etc.
  • the system may offer a search function for previous bookings. For example, a user may search by keyword; such as finding all past trips with “Chicago” and “May” or “Hertz.” More generally, this feature may be a mechanism whereby a user can search all previous transactions.
  • the system may automatically offer services based on event information. For example, if person's mother dies, it may suggest sending flowers, or if person's calendar says “Meeting in New York,” it may suggest a flight.
  • automated rules-based changes to services may be included. For example, a terrorist attack in France could cause all flights to France in the next month to be canceled, so the system would send an alert to users. Similarly, automated changes may be based on status updates from service providers. For example, a flight cancellation due to bad weather may cause a travel record to be “protected” so that alternative flights are put in the passenger name record for a user rather than just canceling the whole trip.
  • Before final bookings are confirmed in one embodiment of the system may send a trip proposal to the user by email, for example, or may send an invitation for the user to review the proposal on a web page.
  • the processes described above can be stored in a memory of a computer system as a set of instructions to be executed.
  • the instructions to perform the processes described above could alternatively be stored on other forms of machine-readable media, including magnetic and optical disks.
  • the processes described could be stored on machine-readable media, such as magnetic disks or optical disks, which are accessible via a disk drive (or computer-readable medium drive).
  • the instructions can be downloaded into a computing device over a data network in a form of compiled and linked version.
  • the logic to perform the processes as discussed above could be implemented in additional computer and/or machine readable media, such as discrete hardware components as large-scale integrated circuits (LSI's), application-specific integrated circuits (ASIC's), firmware such as electrically erasable programmable read-only memory (EEPROM's); and electrical, optical, acoustical and other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.); etc.
  • LSI's large-scale integrated circuits
  • ASIC's application-specific integrated circuits
  • firmware such as electrically erasable programmable read-only memory (EEPROM's)
  • EEPROM's electrically erasable programmable read-only memory
  • electrical, optical, acoustical and other forms of propagated signals e.g., carrier waves, infrared signals, digital signals, etc.

Abstract

A method and system to offer a service to a user based on a profile of the user, in response to an identification of an event. In one embodiment, the service includes offering a travel itinerary. In one embodiment, the profile of the user is based on previously obtained data. In one embodiment, the offering is performed automatically in response to the identification of the event and user. In one embodiment, the offering of the itinerary to the user based on the profile of the user comprises accessing data from at least one of a preference database and a contextual content database. The offering of the itinerary may comprise offering at least one of travel times for the user traveling to a selected area, ground transportation for the user arriving at a selected area, and costs for multiple modes of transportation. In one embodiment, the offering of the service is based in part on one of a type of service, a location, and a partner.

Description

This application also claims the benefit of related U.S. continuation in part patent application Ser. No. 10/943,608, which was filed on Sep. 17, 2004; titled “Delegation of Travel Arrangements by a Temporary Agent”, which claims priority to provisional patent application No. 60/347,769 filed Jan. 9, 2002 titled “Automatic Services Exchange”. This application also claims priority to nonprovisional patent application Ser. No. 10/338,363 filed Jan. 7, 2003 titled “Automatic Services Exchange” by the same. These applications are incorporated herein by reference.
FIELD OF THE INVENTION
This invention relates generally to procurement of services, and more particularly to an automated trip planner in one embodiment.
COPYRIGHT NOTICE/PERMISSION
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
BACKGROUND OF THE INVENTION
The increasingly mobile, remote and distributed nature of today's workforce makes it difficult for an organization to provide adequate administrative support for their workers. As a result, the workers themselves must spend part of their working day identifying, procuring, managing, coordinating and accessing the services they need to perform their job. Additionally, even people who are not mobile or remote workers find that they have less time to spend in organizing the services they need for their business or personal life.
This problem is further exacerbated when many workers must attend off-site events requiring travel plans including airfare, sleeping accommodations and local transportation. The distributed nature of the workforce could result in numerous people staying in varying hotels, renting individual cars and/or transportation to and from airports and event locations. This can add up to the redundant cost of travel-related services.
Another problem is the inherent lack of knowledge between workers as to who is attending a given event, further hindering a chance for coordinated travel arrangements. Online systems such as Evite, Yahoo Calendar and Microsoft Outlook have brought together group notices of events and meetings. This has allowed workers to know who has been invited and whether they plan to attend a given event. However such systems do not alleviate the problem of redundancy in the booking of event-related services to attend such off-site events. Organizations have an interest in reducing redundant expenses such as individual rental cars and hotel rooms. However, they often lack the bandwidth to coordinate a sharing of such services.
When people are traveling, sometimes events can require changes in the trip. Such changes may be due to outside influences, such as weather or equipment problems, or they may be due to schedule changes by another party whose plans and actions affect the schedule of the traveler(s). Such changes may then create the myriad of phone calls and confusion to address the unexpected changes.
As a result, what is further needed when changes occur during a trip, is that rather than each traveler in a group traveling together being responsible for making his own travel arrangements by himself, is a process to makes arrangements for the entire group during the travel.
SUMMARY OF THE INVENTION
Various systems and methods are described in connection with a coordination of group procurement of services. According to one aspect of the present invention, in response to an event, a first entity is automatically identified to adjust travel plans pre-established for one or more travel members. The identified first entity adjusts the pre-established travel plans for one or more members, and notifies one or more travel members of the adjustment to the pre-established travel plans. In one embodiment, the identified first entity is at least one of the one or more travel members, not one of the one or more travel members, or a software agent. In one embodiment, in response to an unavailability of the first entity, a predetermined alternative first entity is identified to adjust the pre-established travel plans. In one embodiment, in response to receiving a decline from one or more travel members, the one or more travel members are presented with one or more second travel adjustments. In one embodiment, the adjusting of the pre-established travel plans is based at least in part on a profile of one or more travel members.
The present invention describes systems, clients, servers, methods, and computer-readable media of varying scope. In addition to the aspects and advantages of the present invention described in this summary, further aspects and advantages of the invention will become apparent by reference to the drawings and by reading the detailed description that follows.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1A-C are diagrams illustrating a system-level overview of an embodiment of the invention;
FIGS. 2A-C are flowcharts of methods to be performed typically by computers in executing the embodiment of the invention illustrated in FIGS. 1A-C;
FIG. 3 is a flowchart of an optional method to be performed by a computer in executing the embodiment of the invention illustrated in FIGS. 1A-C;
FIG. 4A is a diagram of one embodiment of an operating environment suitable for practicing the present invention; and
FIG. 4B is a diagram of one embodiment of a computer system suitable for use in the operating environment of FIG. 4A.
FIG. 5 illustrates screen shot as it would be seen by a group member, in accordance with one embodiment.
FIG. 6 illustrates block diagram of an alternative embodiment.
FIG. 7 illustrates one embodiment of a trip planner system.
FIG. 8 illustrates one embodiment of a travelers' personal preferences.
FIG. 9 illustrates an example of building a template for a trip, on time axis, in accordance with one embodiment.
SUMMARY
A method and system to offer a service to a user based on a profile of the user, in response to an identification of an event. In one embodiment, the service includes offering a travel itinerary. In one embodiment, the profile of the user is based on previously obtained data. In one embodiment, the offering is performed automatically in response to the identification of the event and user. In one embodiment, the offering of the itinerary to the user based on the profile of the user comprises accessing data from at least one of a preference database and a contextual content database. The offering of the itinerary may comprise offering at least one of travel times for the user traveling to a selected area, ground transportation for the user arriving at a selected area, and costs for multiple modes of transportation. In one embodiment, the offering of the service is based in part on one of a type of service, a location, and a partner.
The present invention describes systems, clients, servers, methods, and computer-readable media of varying scope. In addition to the aspects and advantages of the present invention described in this summary, further aspects and advantages of the invention will become apparent by reference to the drawings and by reading the detailed description that follows.
DETAILED DESCRIPTION OF THE INVENTION
In the following detailed description of embodiments of the invention, reference is made to the accompanying drawings in which like references indicate similar elements, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that logical, mechanical, electrical, functional, and other changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
Automatic Service Exchange
A system level overview of the operation of one embodiment of an automatic services exchange system 100 is described by reference to FIGS. 1A-C. In FIG. 1A, the automatic services exchange system 100 is illustrated as having an automatic services exchange component 101 and an optional call center backup component 103. The automatic services exchange component 101 allows users such as a user A 105, user B 109, user C 113, and user D 117 to request services from the exchange. The service requests may be sent to the exchange component 101 through various communication media. For example, user A 105 sends its request A 107 to the exchange component 101 through an interactive voice response system (IVR), user B 109 sends its request B 111 to the exchange component 101 through e-mail (typically a structured e-mail), user C 113 sends its request C 115 via a Web browser, such as Internet Explorer or Netscape or a micro-browser on a WAP enabled cellular telephone, and user D 117 send its request D 119 through an instant messaging system (IM). These different communication media typically have different data formats, such as structured e-mail, or an Internet based markup language such as XML, or IVR voice recognition. Regardless of the communication media used to send the request to the exchange component 101, a response to a request may be sent back to the user through a different media. Thus, FIG. 1A illustrates that user A 105 receives its response through e-mail, user B 109 receives its response via instant messaging, and user D 117 receives its response via fax. In the case of user C 113, the same communication medium, Web, used to send the request is also used to send the response.
The services available through the exchange component 101 include travel services, entertainment service, personal services (e.g., haircutting), educational services, business administrative services and the like. Some services may be time critical, e.g., a dinner reservation at a particular time. The service request specifies other required criteria for the service, such as location (e.g., a certain geographic area), type, duration, quantity, price information (e.g., preferred price or price range and maximum price), etc. Additionally, a single service request may actually require services from multiple different service providers which are linked or associated. For example, if a user is planning a business trip, the request will often require services from airlines, hotels and car rental agencies and perhaps other services which are linked to or associated with the business trip.
The automatic services exchange component 101 automatically sends the service request to various service providers. In one embodiment, this transmission may be through several different electronic communication media such as structured e-mail, XML, IVR, etc. In the event that the exchange component 101 is unable to automatically procure the service requested by the user, the request is transferred to the backup call center component 103. For example, assume that request C 115 from user C 113 could not be automatically fulfilled by the exchange component 101. As illustrated in FIG. 1A, the request C 115 is sent to the backup call center 103 along with other information such as which service providers have already been contacted for the service. One of the human agents or operators at the backup call center 103 attempts to find a service provider for the request. Once the backup call center 103 determines that the request can or cannot be satisfied, it communicates the result to the corresponding user who made the request. In the example, the result is sent to user C 113 through e-mail.
FIGS. 1B and 1C show the operation of the automatic services exchange component 101 in more detail. In FIG. 1B, a requestor 121 sends a service request 123 to the automatic services exchange 101. A broker function 131 receives a service request and passes it onto various service providers, such as service provider 133 and service provider 135. The service request may also be sent to an aggregator that represents multiple service providers, such as aggregator 137 that handles requests for service provider 139 and service provider 141, instead of directly to the service providers. In one embodiment, the service request is sent using an automatic system, such as an IVR system, that asks for a positive or negative reply to the request (e.g., a voice over the telephone says “press 1 if you have a table for two at 6:30 p.m. at your restaurant on XYZ date, press 2 if you do not”). Each of the service providers 133, 135 and the aggregator 137 replies to the broker 131 indicating whether they are able to provide the requested service. The responses to broker 131 may be through different communication media such as the Internet (e.g., via an XML page), structured e-mail, or IVR.
Assuming there is at least one positive reply, the broker 131 sends a response 127 to the requestor 121 with the results indicating at least one response matched the request. Depending on parameters set by the requestor 121, if multiple positive replies are received by the broker 131, the broker may choose the best match based on the required or predetermined criteria or it may send responses for all the positive replies to the requestor 121 for selection. The requestor 121 may also authorize the broker 131 to contract for the service under certain circumstances without waiting for approval from the requestor 121. A match to request typically means that the response from the service provider is within the range of acceptable requesting parameters such as time of service, location of service, price of service, level (e.g., quality requested) of service, and other parameters specified by the request.
As illustrated in phantom in FIG. 1B, the broker 131 may also send the response 127 to others 125 specified by the requestor 121. For example, when multiple people are planning a dinner, one person, the requester 121, may be in charge of obtaining the reservation, but the other people involved should receive notification of the particulars.
Also shown in phantom in FIG. 1B, is the capability of sending a change notice 129 to the requestor 121 if a procured service changes before its performance date. This change may occur by a modified request which is issued by the requestor 121. Similarly, the change notice 129 may also be sent to others 125 specified by the requestor 121. The requester can approve the change if the change is satisfactory, or submit a new service request if the change is unsatisfactory, or if the service is now unavailable from the original provider (not shown). The exchange system of the invention, in one embodiment, can automatically respond to a modified request.
The broker 131 reviews, through an automatic machine implemented process, the service requests to determine if the service request is actually a request for multiple services, such as multiple services which are linked or associated such as those associated with an event (e.g., a business trip which requires airline tickets, rental car reservation and hotel reservation). The resulting operation is illustrated in FIG. 1C. The broker 131 breaks such a request into sub-service requests 143 and 145 and sends each to the appropriate service providers. Thus, in FIG. 1C, sub-service request A 143 is sent to service providers 147, 149, while sub-service request B 145 is sent to service provider 151 and aggregator 153, which aggregates the services from service providers 155 and 157. As before, each service provider/aggregator typically returns a message to the broker 131 specifying its ability to provide the service. Each sub-service response 159 may be sent separately to the requestor 121 or the broker 131 may wait until all service providers/aggregators have responded or until a match to each sub-service request has been found. As in FIG. 1C, change notices 161 also will be sent to the user 121 upon a change in a procured service. Additionally, the responses 159 and the change notices 161 may be sent to others 125 specified by the requestor 121.
The particular methods of the invention are now described in terms of computer software with reference to a series of flowcharts. The methods to be performed by a computer constitute computer programs made up of computer-executable instructions illustrated as blocks (acts). Describing the methods by reference to a flowchart enables one skilled in the art to develop such programs including such instructions to carry out the methods on suitably configured computers (e.g., the processor of the computer executing the instructions from computer-readable media). The computer-executable instructions may be written in a computer programming language or may be embodied in firmware logic. If written in a programming language conforming to a recognized standard, such instructions can be executed on a variety of hardware platforms and for interface to a variety of operating systems. In addition, the present invention is not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the invention as described herein. Furthermore, it is common in the art to speak of software, in one form or another (e.g., program, procedure, process, application, module, logic . . . ), as taking an action or causing a result. Such expressions are merely a shorthand way of saying that execution of the software by a computer causes the processor of the computer to perform an action or a produce a result.
FIGS. 2A and 2B illustrate the acts to be performed by a computer, or set of computers, acting as the automatic services exchange component 101 of FIG. 1A in processing service requests. FIG. 2C illustrates the acts to be performed by a computer acting in conjunction with the backup call center 103 in FIG. 1A. FIG. 3 illustrates the acts to be performed by the computer acting as the automatic services exchange component when the optional change notification is desired.
Referring first to FIG. 2A, a service request method 200 receives a service request method (block 201) and examines it to determine if there are multiple, related services requested (block 203). If so, the service request method 200 creates a request for each service (block 205). Once the multiple requests are created, or if there is only one request, the service requests are sent to the appropriate providers (including aggregators) for the services (block 207).
The service request method 200 processes the replies for each request separately as illustrated by request loop starting at block 209. It will be appreciated that multiple request loops may be running concurrently. The requestor may specify a time which is associated with a deadline for completion of a search for a match to a request. In one embodiment, the requestor specifies a predetermined required period of time (time out period or deadline) within which replies must be received or by which time the requestor should be contacted by the exchange to inform the requestor of the incomplete status of a request. In another embodiment, the time out period is determined by the method 200 based on time criteria specified in the request. The request loop waits at block 209 until an incoming reply is received or until the time out period expires. When the request loop is activated by an incoming reply (block 211), the reply is recorded at block 213. If all replies have not yet been received, the request loop returns to its wait state. If all replies have been received, the particular request loop ends (block 215) and the method 200 proceeds to block 217 to evaluate the replies. Alternatively, if the time out period expires before any or all replies are received, the method 200 also proceeds to block 217. The time out period can provide the exchange system with some time to attempt to “manually” (through the intervention of a human operator) procure the service with enough time before the service is actually required. If the user/requestor fails to specify a time out period, the exchange system may specify a default time out period which is at least several hours before the requested time of the service (e.g., a 4:30 p.m. time out for a dinner reservation at 7:30 p.m.) or at least one day before the requested date of the service. Further, this time out period also allows the requestor to be notified of a failure to procure a service before the time requested for the service so that the requestor can take appropriate actions.
At block 217, the method 200 determines if any positive replies were received. If not, the corresponding request is transferred to the backup call center (which includes human operators) for processing along with all replies (block 219) so the backup call center knows the current status of the request (e.g., who has replied to the request, who has not, etc.). The processing represented by block 219 is described in more detail in conjunction with FIG. 2C further below.
If multiple services were requested, the method 200 determines if at least one service provider has replied positively to each service request (block 221). Requests that cannot been procured are sent to the backup call center at block 219, while positive replies are processed at block 223 (e.g., by sending out confirmations to the requestor and the service providers to secure the providing of the service). Similarly, if only one service was requested and at least one reply is positive, the method 200 proceeds to block 223 to process the reply. The processing represented by block 223 is described next.
One embodiment of a process reply method 230 is illustrated in FIG. 2B. It will be appreciated that multiple instances of the method 230 may be executing simultaneously based on the number of service requests that were made. For each service requested (block 231), the process reply method 230 determines if multiple positive replies for a service were received (block 233). If so, but only one match has been requested (block 235), the method 230 filters the replies to find a single match that best satisfies the criteria specified by the requestor (or specified as defaults by the system of the exchange service) (block 237). If there was only one positive reply for the service, or once a single reply has been filtered out in block 237, the method 230 determines if the requestor has authorized the automatic services exchange system to automatically procure the service (block 239). If so, the method 230 contracts or otherwise reserves the service from the corresponding service provider (block 241) and sends a confirmation request confirmation to the requestor that the service has been procured (block 243). In these situations where the service provider requires a commitment (e.g., a down payment or a deposit) from the requestor, the automatic services exchange provides payment information (e.g., credit card name, number and expiration date) previously provided by the requestor to the automatic services exchange or requests that this information be provided by the requestor to either the exchange (so it can be forwarded to the service provider) or to the service provider directly. If, however, there is no authorization (block 239), the information in the reply is sent to the requestor at block 245 and the method 230 waits to receive approval from the requestor. If approval is received (block 249), the method 230 contracts for or otherwise reserves the approved service and sends a confirmation as previously described. However, if approval of the particular service is not received from the requestor, the service request is terminated.
If more than one match is wanted at block 235 (as specified by a predetermined preference sent by the requestor or as set as a default by a system of the exchange service), a response containing all positive replies is sent to the requestor for selection (block 247) and the method 230 waits to receive approval of one of the providers at block 249. As in the case of a single reply, the method 230 contracts for or otherwise reserves the service from the approved provider at block 241 and returns a confirmation message at block 243, or the request is terminated if no approval is received.
Turning now to FIG. 2C, one embodiment of an information transfer method 260 for a backup call center is illustrated. When the service request is sent to the providers through an automatic system, a reply may be invalid such as when a person, in response to questions from an IVR system, presses an incorrect digit on a telephone key pad or hangs up without replying or if the call is unanswered. For each unfulfilled related service request (block 261), the method 260 selects those service providers that gave invalid replies (block 263). Each of the selected service providers (block 265) will be called by a human agent (block 267) until one provider is able to provide the service (block 269) or until all have been called (block 271). If no service provider can fulfill the service request, the method 260 sends a failure message to the requester at block 273. If there are no further related service requests (block 251), the method 260 terminates.
The first positive reply at block 269 causes the method 260 to determine if the requester has authorized the automatic services exchange system to automatically procure the service (block 277). If so, the method 260 contracts or otherwise reserves the service from the corresponding service provider (block 279) and sends a confirmation request confirmation to the requestor that the service has been procured (block 281). If, however, there is no authorization at block 277, the information in the reply is sent to the requestor (block 283) and the method 260 waits to receive approval from the requestor. If approval is received (block 285), the method 260 contracts for or otherwise reserves the approved service and sends a confirmation as previously described. However, if approval of the particular service is not received from the requestor, a failure message is sent to the requester at block 272.
As described previously, the automatic services exchange system optionally can send change notices to the requester to alert him/her of changes in a procured service or receive a modified request from the requestor even after the services have been procured. One embodiment of a service change method 300 that communicates changes is illustrated in FIG. 3. When the method 300 receives notification of a change in a procured service (block 301), it notifies the requester and asks if the requester approves the change or wishes to submit a new service request (block 303). If the change is approved (block 305), a message is sent to the service provider to contract for the changed service (block 307) and the change is confirmed to the requester (block 309). If the change is not approved but a new service request is submitted (block 311), the new request is resubmitted into the automatic services exchange system at block 313.
The particular methods performed by computers acting as the automatic services exchange and backup call center components for one embodiment of the invention have been described with reference to flowcharts in FIGS. 2A-C and 3, including all the acts from 201 until 223, from 231 until 251, from 261 until 285, and 301 until 313, respectively. It will be appreciated that more or fewer processes may be incorporated into the methods illustrated in FIGS. 2A-C and 3 without departing from the scope of the invention and that no particular order is implied by the arrangement of blocks shown and described herein and that alternative orders of the operations are within the scope of the invention.
The following description of FIGS. 4A-B is intended to provide an overview of computer hardware and other operating components suitable for performing the methods of the invention described above, but is not intended to limit the applicable environments. One of skill in the art will immediately appreciate that the invention can be practiced with other computer system configurations, including hand-held devices (e.g., PDAs—personal digital assistants such as a Palm Pilot; or cell phones, etc.), multiprocessor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like. The invention can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network having a physical or wireless infrastructure, or a combination of both.
FIG. 4A shows several computer systems that are coupled together through a network 3, such as the Internet. The term “Internet” as used herein refers to a network of networks which uses certain protocols, such as the TCP/IP protocol, and possibly other protocols such as the hypertext transfer protocol (HTTP) for hypertext markup language (HTML) documents that make up the World Wide Web (web). The physical connections of the Internet and the protocols and communication procedures of the Internet are well known to those of skill in the art. Access to the Internet 3 is typically provided by Internet service providers (ISP), such as the ISPs 5 and 7, through either physical or wireless interfaces. Users on client systems, such as client computer systems 21, 25, 35, and 37 obtain access to the Internet through the Internet service providers, such as ISPs 5 and 7. Access to the Internet allows users of the client computer systems to exchange information, receive and send e-mails, and view documents, such as documents which have been prepared in the HTML format. These documents are often provided by web servers, such as web server 9 which is considered to be “on” the Internet. Often these web servers are provided by the ISPs, such as ISP 5, although a computer system can be set up and connected to the Internet without that system being also an ISP as is well known in the art.
The web server 9 is typically at least one computer system which operates as a server computer system and is configured to operate with the protocols of the World Wide Web and is coupled to the Internet. Optionally, the web server 9 can be part of an ISP which provides access to the Internet for client systems. The web server 9 is shown coupled to the server computer system 11 which itself is coupled to web content 10, which can be considered a form of a media database. It will be appreciated that while two computer systems 9 and 11 are shown in FIG. 4A, the web server system 9 and the server computer system 11 can be one computer system having different software components providing the web server functionality and the server functionality provided by the server computer system 11 which will be described further below.
Client computer systems 21, 25, 35, and 37 can each, with the appropriate web browsing software, view HTML pages provided by the web server 9. The ISP 5 provides Internet connectivity to the client computer system 21 through the modem interface 23 which can be considered part of the client computer system 21. The client computer system can be a personal computer system, a network computer, a Web TV system, a handheld wireless device, or other such computer system. Similarly, the ISP 7 provides Internet connectivity for client systems 25, 35, and 37, although as shown in FIG. 4A, the connections are not the same for these three computer systems. Client computer system 25 is coupled through a modem interface 27 while client computer systems 35 and 37 are part of a LAN. While FIG. 4A shows the interfaces 23 and 27 as generically as a “modem,” it will be appreciated that each of these interfaces can be an analog modem, ISDN modem, cable modem, satellite transmission interface (e.g., “Direct PC”), radio frequency (RF), cellular, or other interfaces for coupling a computer system to other computer systems. Client computer systems 35 and 37 are coupled to a LAN 33 through network interfaces 39 and 41, which can be Ethernet network or other network interfaces. The LAN 33 is also coupled to a gateway computer system 31 which can provide firewall and other Internet related services for the local area network. This gateway computer system 31 is coupled to the ISP 7 to provide Internet connectivity to the client computer systems 35 and 37. The gateway computer system 31 can be a conventional server computer system. Also, the web server system 9 can be a conventional server computer system.
Alternatively, as well-known, a server computer system 43 can be directly coupled to the LAN 33 through a network interface 45 to provide files 47 and other services to the clients 35, 37, without the need to connect to the Internet through the gateway system 31.
FIG. 4B shows one example of a conventional computer system that can be used as a client computer system or a server computer system or as a web server system. It will also be appreciated that such a computer system can be used to perform many of the functions of an Internet service provider, such as ISP 5. The computer system 51 interfaces to external systems through the modem or network interface 53. It will be appreciated that the modem or network interface 53 can be considered to be part of the computer system 51. This interface 53 can be an analog modem, ISDN modem, cable modem, token ring interface, satellite transmission interface (e.g., “Direct PC”), radio frequency (RF), cellular, or other interfaces for coupling a computer system to other computer systems. The computer system 51 includes a processing unit 55, which can be a conventional microprocessor such as an Intel Pentium microprocessor or Motorola Power PC microprocessor. Memory 59 is coupled to the processor 55 by a bus 57. Memory 59 can be dynamic random access memory (DRAM) and can also include static RAM (SRAM). The bus 57 couples the processor 55 to the memory 59 and also to non-volatile storage 65 and to display controller 61 and to the input/output (I/O) controller 67. The display controller 61 controls in the conventional manner a display on a display device 63 which can be a cathode ray tube (CRT) or liquid crystal display. The input/output devices 69 can include a keyboard, disk drives, printers, a scanner, and other input and output devices, including a mouse or other pointing device. The display controller 61 and the I/O controller 67 can be implemented with conventional well known technology. A digital image input device 61 can be a digital camera which is coupled to an I/O controller 67 in order to allow images from the digital camera to be input into the computer system 51. The non-volatile storage 65 is often a magnetic hard disk, an optical disk, or another form of storage for large amounts of data. Some of this data is often written, by a direct memory access process, into memory 59 during execution of software in the computer system 51. One of skill in the art will immediately recognize that the term “computer-readable medium” includes any type of storage device that is accessible by the processor 55 and also encompasses a carrier wave that encodes a data signal.
It will be appreciated that the computer system 51 is one example of many possible computer systems which have different architectures. For example, personal computers based on an Intel microprocessor often have multiple buses, one of which can be an input/output (I/O) bus for the peripherals and one that directly connects the processor 55 and the memory 59 (often referred to as a memory bus). The buses are connected together through bridge components that perform any necessary translation due to differing bus protocols.
Network computers are another type of computer system that can be used with the present invention.
Network computers do not usually include a hard disk or other mass storage, and the executable programs are loaded from a network connection into the memory 59 for execution by the processor 55. A Web TV system, which is known in the art, is also considered to be a computer system according to the present invention, but it may lack some of the features shown in FIG. 4B, such as certain input or output devices. A typical computer system will usually include at least a processor, memory, and a bus coupling the memory to the processor. Further, mobile devices, such as PDAs, browsing web phones etc. and their respective supporting infrastructure may also be used as clients etc.
It will also be appreciated that the computer system 51 is controlled by operating system software which includes a file management system, such as a disk operating system, which is part of the operating system software. One example of an operating system software with its associated file management system software is the family of operating systems known as Windows® from Microsoft Corporation of Redmond, Wash., and their associated file management systems. The file management system is typically stored in the non-volatile storage 65 and causes the processor 55 to execute the various acts required by the operating system to input and output data and to store data in memory, including storing files on the non-volatile storage 65.
Coordination for Group Procurement of Services
One embodiment of the present invention permits group members to add additional reservations onto an existing reservation of a group leader, supervisor or any other member of the group in such a manner as to synchronize travel plans and coordinate locations, etc., both in terms of travel time, sharing rides, staying at the same hotel, tee times, and other services one may desire when attending an event. But rather than book all group members at once, individual group members may make plans separately, to accommodate instances in which group members are, for example, traveling from different locations, or are arriving at different times, etc. For example, a sales person may be coming from a different customer site in another city, while the marketing person and the technical person may be coming from the home office.
FIG. 5 shows a screen as it would be seen by such a group member. The data as displayed on the screen may be shared with the group members via an Internet media, or other alternative media. Section 500 is the header bar of the browser window, and section 501 is the application window for a specific set of services—in this case, travel and accommodations for a business meeting at a customer site. Heading section 502 for the event shows that members of the company Talaris are visiting Forrester Research in Waltham, Mass. Group members can see the travel itinerary of the group leader respectively the first person to book travel in section 503. As each member books travel and other services related to the meeting, the system automatically notifies, via the Internet or other media, the other members of the group and asks if they want to book identical travel services or similar travel services (e.g., start in a different location and ultimately end up at a destination together at a specific time). The system automatically would also coordinate sharing of resources such as a rental car or hotel rooms. Further, the system would enforce corporate policies related to the services being procured. For example, the system might require employees to share a rental car, a limo, a shuttle bus etc. if two or more employees are traveling on a similar trip.
Thus in the example embodiment shown in FIG. 5, group members have the options shown in section 510 to choose one of four travel options. It is clear that in other example embodiments, other, similar options, additional options, or fewer options may be offered. Section 511 is an option to book an identical itinerary, which would be suitable for a person starting the trip from the same location at the same time. This option allows group members to travel together. Section 512 allows group members to book separate, identical air and hotel reservations, but has them share a single car rental; section 513 allows members to meet at the airport upon arrival (in this example, at the Boston airport) so a group member flying in from, for example, New York, could meet with members flying in from San Francisco, to share the car into Walton; and section 514 allows for only booking rooms at the same hotel, so group members may come and go separately but stay at the same hotel, allowing them to meet and travel together to the company site conveniently.
The system illustrated in FIG. 5 is just one embodiment of the novel art of this disclosure for automated coordination of services procurement for a group of individuals involved in a common goal or event. In this and other embodiments, one of the individuals (the leader) would define the attributes of the event and specify the other individuals to be involved in the event (the “group”). All of the individuals would be automatically notified, via the Internet or other media, by the system that they are invited to participate in the goal or event, and all individuals would be able to accept or decline membership in the group event or goal, in some cases in accordance with company policies for such participation, expense rules, privacy rules etc. Likewise, all individuals who accept group membership would be able to procure a combination of services required to execute the event. All individuals who accepted the invitation to join the group would be notified of the booking of services by the other members of the group, and each individual in the group would be able to make a services procurement request for the services procured by any other individual or individual(s) in the group. The system is able to coordinate sharing of the services based on its understanding of the mutual requirements of the group, and is also able to adjust the services procured by members of the group to better meet the overall group's objectives. The system is likewise able to adjust the services procured by the members to optimize the use of the services by the group as a whole, or to intelligently cancel services based on changes in requirements input by one or more members of the group. In some cases, corporate policy may allow some participants to exceed their usual settings in context of a group event. In other cases, it may notify additionally their supervisor, procurement group, or human resources, and in yet other cases, it may require a confirmation by e-mail from a supervisor or similar. The type of services that may be procured are not limited to services related to travel, but rather may also include other services related to attending an event, or other activities to participate in while visiting a location.
Yet in some cases, if a member needs to come in late, for example due to a previous meeting, he may not share in some aspects, such as the share car ride for example etc. In other circumstances, if a member needs special facilities, not available at the hotel/car/flight chosen for the group, the member may break out of the group arrangements. This may be on a case by case basis, with approval and or notification of the group leader, his supervisor etc., or may be pre-defined in the member's profile in some cases.
FIG. 6 illustrates a block diagram of an integration of the embodiment for providing coordination of group procurement of services integrated in the system of FIG. 1 b, as discussed above. The integration includes the addition of a group information block 600 that allows the original requester 121 to export his travel plans via function 601 into block 600. The requester can assign group members into a group data base 610, so that when the designated group members log in as other users 125, they can see what travel options are available, pull them down via function 602, and then participate in making travel plans, as described above in relation to FIG. 5. Furthermore, as mentioned above, group member may receive a particular invitation, and in some cases, that may require a supervisor's approval.
In yet other cases, a user may be able to forward their service request in an automatic fashion. For example, a user could initiate a group by inviting others to join for a meeting at a specific date, time, and location. Once they have done this, they have formed a group. Once one member of the group has booked their travel for this particular meeting, they would be prompted to see if they are willing to share their itinerary with the other members of the group. If they give permission for the other members to see the itinerary, all other members of the group would be automatically notified by the system. When notified, the other members of the group would be given options to book similar or identical services. When other group members select an option, a service request such as (123) in FIG. 6 is automatically generated and sent to the services exchange.
Automated Trip Planner
Trips, particularly business trips involving multiple persons, may often be complicated, multi-event expeditions that require a complex orchestration of events and services to meet all the requirements of all parties. Typically, a traveler would like to rely on a personal assistant who, from long experience, knows the preferences of the traveler and therefore can quickly and easily book all the arrangements for services and events of the trip. Even advanced travel service systems, such as Expedia, Travelocity, or airline vacation package services still require the user to specify each element separately. The only convenience offered to the user is that he does not need to seek another provider or re-enter his payment information for each booking. He still has to indicate each desired service separately.
What is clearly needed is a system and method for trip planning that, based on the specifics of the planned event and on a user profile compiled from historical experience and known user preferences, can propose a complete trip package instead of asking the user for responses on each element.
FIG. 7 shows the one embodiment of a trip planner system 700, which uses preferences database 701 and contextual content database 702. In one embodiment, the system 700 interacts with a services procurement system 710, such as the Talaris services platform, and with user 705. Interaction with the user may be done directly by the trip planner 700 or through the services platform 710.
Further, the system 700 may extract certain location or context-specific information. For example, the system might have a history of typical travel times or patterns for a given city of a traveler. The system might also have data on what options for ground transportation exist at a given airport, such as, for example, shuttle, taxi, subway, and limo. The system would also know how to calculate the cost of the various modes of transportation. Similarly, the system might know how much the hotel charges for parking a car overnight and take that into account when making a recommendation. The contextual information could also include the availability of other services and factor that into decisions on how to plan the trip. For example, the system could know that at a certain airport rental offices (e.g., Laptop Lane) or a Wi-Fi hot spot are available etc. Based on this information, the system might determine that it is better to take certain layovers than others.
FIG. 8 shows, at the center, one embodiment of one traveler's personal preferences set 701 a, which is a subset of the preferences in database 701, shown in FIG. 7. FIG. 8 illustrates an alternative way the system may accumulate knowledge of, and interact with, personal preferences set 701 a.
For example, in one embodiment, a personal preference editor 801 allows a user to view and modify records of his preferences. The records could be ordered by type of service (hotel, airline, ground transport, restaurant, etc.), or by location (i.e., when traveling to New York, when traveling to Boston etc.), or by customer/partner to be visited, etc.
In one embodiment, a personal preference wizard 802 could interview the user to initially obtain a comprehensive set of preferences. In one embodiment, a personal preferences parser 803 could, for example, parse a historical transaction databases 810, which can be extracted from system 710, for example a services reservation system.
In one embodiment, an interactive change monitor 804 could track interactive changes occurring during trips as changes are required and the user makes choices. These changes may then be recorded in preferences set 701 a. In other cases, they may be culled on a regular basis by refresh reviewing of historic data.
One embodiment of the interactive change monitor 804 may also include the ability to generate automated updates of preferences based on past events or trips. For example, a traveler may consistently stay in a Hilton when visiting a certain city, or ask for certain amenities, etc. In one embodiment, the interactive change monitor 804 extracts these patterns and trends and adjust the preferences and hence the search results (or query) accordingly. As a result the traveler is presented with more targeted results in regards to what they are likely to select as a trip segment.
FIG. 9 shows an example of building a template 900 for a trip, on time axis 901. For example, a user may need to plan for a trip to a meeting M1 902. The meeting time is set for 9 a.m. to noon on 1 Jul. 2004. A large set of services and interactions leads up to the meeting, such as ground transportation 907 from home or office to the airport, flight 906 to the meeting, ground transportation 905 from the airport to the hotel, hotel accommodations 904, ground transportation 903 from hotel to meeting. After the meeting may be a restaurant booking 908.
In one embodiment, preferences may be influenced by many factors and may vary according to each situation. Factors may include location, time of day, time of year, customer, country, and many other variables. Based on each factor or combination of factors, event or service preferences may vary.
For example, during the day in New York a traveler may prefer to use the subway, but at night (after 8 p.m.) the traveler may prefer to use a taxi or limo service. When meeting with a certain customer, he may have a particular restaurant preference, or for that specific customer his preference may be to let the customer choose the restaurant. In Los Angeles, the traveler may prefer a rental car, while in New York, he may prefer public transportation (subway by day; limo at night, as stated above). Hotel preferences may also vary, according to each location (city), according to the specific customer visited, or according to some other set or combination of factors.
In addition, in one embodiment the system may issue status updates based on location of a service provider. For example, it may alert a user that a limo is 15 minutes behind schedule based on GPS/driving time estimates and, if necessary, move a flight time based on the resulting schedule change.
In some cases, one embodiment may also be used for services unrelated or not directly related to travel. For example, an invitation to a meeting might first ask invitees if they will attend in person or virtually. If they elect to attend virtually, the system could arrange for audio and web conferencing or possibly video conferencing. Phone available time as discussed above may be scheduled during a trip to a meeting for another meeting. If they elect to attend in person, the system could arrange for travel, as described in the description. Other, additional types of services may also be scheduled through the system.
There are many situational elements that affect preferences, resulting in a complex set of preference rules that may be deduced from the traveler's historical selections and augmented by preference selections input by the traveler. These historical records and stated preferences are used to book a trip according to template 900, in one embodiment.
There may be different templates for a trip involving a single customer visit; a multi-event trip; a multi-city, multi-event trip; etc. Accordingly, one embodiment disclosed herein may automatically suggest templates based on the particulars of the trip, or the user may manually select a specific template type. For example, trips that are automatically planned may have an additional feature or parameter in personal calendar software or web based systems, such as MS Outlook/Exchange™, IBM Lotus Notes™, Yahoo Calendar, or other, similar software that causes the trip planner 700 to transfer the information to the services platform system 710 to be booked accordingly.
Further, in one embodiment trip planner 700 can then block out times for each segment of a trip. In one case, various components of the trip could be entered into a user's calendar with differing definitions of “busy.” For example, when a user is in a limo, the calendar might say that they are free for phone calls. Or in another example, the traveler might be available for email on certain flights, based on contextual information about airline email availability and the company's agreement and or rules for use of such facilities, etc.
In one embodiment, the system may offer a search function for previous bookings. For example, a user may search by keyword; such as finding all past trips with “Chicago” and “May” or “Hertz.” More generally, this feature may be a mechanism whereby a user can search all previous transactions.
In one embodiment, the system may automatically offer services based on event information. For example, if person's mother dies, it may suggest sending flowers, or if person's calendar says “Meeting in New York,” it may suggest a flight.
In one embodiment, automated rules-based changes to services may be included. For example, a terrorist attack in France could cause all flights to France in the next month to be canceled, so the system would send an alert to users. Similarly, automated changes may be based on status updates from service providers. For example, a flight cancellation due to bad weather may cause a travel record to be “protected” so that alternative flights are put in the passenger name record for a user rather than just canceling the whole trip.
Before final bookings are confirmed in one embodiment of the system may send a trip proposal to the user by email, for example, or may send an invitation for the user to review the proposal on a web page.
The processes described above can be stored in a memory of a computer system as a set of instructions to be executed. In addition, the instructions to perform the processes described above could alternatively be stored on other forms of machine-readable media, including magnetic and optical disks. For example, the processes described could be stored on machine-readable media, such as magnetic disks or optical disks, which are accessible via a disk drive (or computer-readable medium drive). Further, the instructions can be downloaded into a computing device over a data network in a form of compiled and linked version.
Alternatively, the logic to perform the processes as discussed above could be implemented in additional computer and/or machine readable media, such as discrete hardware components as large-scale integrated circuits (LSI's), application-specific integrated circuits (ASIC's), firmware such as electrically erasable programmable read-only memory (EEPROM's); and electrical, optical, acoustical and other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.); etc.
Whereas many alterations and modifications of the present invention will no doubt become apparent to a person of ordinary skill in the art after having read the foregoing description, it is to be understood that any particular embodiment shown and described by way of illustration is in no way intended to be considered limiting. Therefore, references to details of various embodiments are not intended to limit the scope of the claims which in them selves recite only those features regarded as essential to the invention.

Claims (24)

1. A computer implemented method comprising:
in response to an identification of a user and an event attended by at least the user, automatically offering, via a computing device, a travel itinerary comprising at least one service to the user based on:
an electronic profile of the user, the profile including historical travel data of the user and known user preferences of the user from a first database; and
contextual information from a second database different from the first database, the second database not containing profile information, the travel data, and the known user preferences of the user, the contextual information unrelated to the profile information, travel data, and the known user preferences of the user, wherein the contextual information comprises: historical travel patterns for a plurality of destinations, ground transportation options at a plurality of airports, costs for the ground transportation options at each of the plurality of airports, transportation, Wi-Fi hot spots, the existence of rental services at the plurality of airports, and information relating to availability of electronic communications at a plurality of locations, and
providing the services on a personal calendar of the user, the providing the services including:
calendaring time segments on the calendar for one or more segments of a trip; and
identifying, on the calendar, communication options for different segments of the trip, the communication options indicating a plurality of modes of communication preferred by the user based on availability of the user and the contextual information during each of the different segments.
2. The method of claim 1, wherein the profile of the user is based on previously obtained data.
3. The method of claim 1, wherein the profile of the user is based on prior travel of the user.
4. The method of claim 1, wherein the profile of the user is based on preferences previously provided by the user.
5. The method of claim 1, wherein the offering of the itinerary is provided in response to accessing a service procurement system.
6. The method of claim 1, wherein the offering of the itinerary comprises offering at least one of travel times for the user traveling to a selected area, ground transportation for the user arriving at a selected area, and costs for multiple modes of transportation.
7. The method of claim 6, wherein the offering of the itinerary includes offering network access for the user based on the profile of the user and availability of network access for the itinerary.
8. The method of claim 1, wherein the offering of the at least one service based in part on one of a type of service, a location, and a partner.
9. The method of claim 1, further including a personal preference unit obtaining personal preferences from the user.
10. The method of claim 1, further including an interactive change monitor tracking the user and updating the personal preference database of the user.
11. The method of claim 1, further including a personal preferences editor providing a view to modify preferences of the user.
12. The method of claim 1, wherein the offering of the travel itinerary response to the identification of the event further includes offering of the travel itinerary in response to identification of a location, time of day, time of year, customer, and country.
13. The method of claim 1, wherein the offering of the services includes inviting at least a second user to attend the event.
14. The method of claim 13, wherein the inviting the second user includes determining if the second user will attend the event in person or virtually.
15. The method of claim 14, wherein the determining if the second user will attend the event virtually includes determining if the second user will attend via one of audio, web, or video conferencing, and scheduling the virtual attendance of the second user.
16. The method of claim 1, wherein the plurality of modes includes email and phone.
17. The method of claim 1, further including automated updated service offerings in response to secondary events.
18. A machine readable medium embodied in an article of manufacture having stored thereon a set of instructions which when executed by a machine, perform a method comprising:
in response to an identification of a user and an event attended by at least the user, automatically offering, via a computing device, a travel itinerary comprising at least one service to the user based on:
an electronic profile of the user, the profile including historical travel data of the user and known user preferences of the user from a first database; and
contextual information from a second database different from the first database, the second database not containing profile information, the travel data, and the known user preferences of the user, the contextual information unrelated to the profile information, travel data, and the known user preferences of the user, wherein the contextual information comprises: historical travel patterns for a plurality of destinations, ground transportation options at a plurality of airports, costs for the ground transportation options at each of the plurality of airports, transportation, Wi-Fi hot spots, the existence of rental services at the plurality of airports, and information relating to availability of electronic communications at a plurality of locations, and
providing the services on a personal calendar of the user, the providing the services including:
calendaring time segments on the calendar for one or more segments of a trip; and
identifying, on the calendar, communication options for different segments of the trip, the communication options indicating a plurality of modes of communication preferred by the user based on availability of the user and the contextual information during each of the different segments.
19. A computer system comprising:
in response to an identification of a user and an event attended by at least the user, automatically offering, via a computing device, a travel itinerary comprising at least one service to the user based on:
an electronic profile of the user, the profile including historical travel data of the user and known user preferences of the user from a first database; and
contextual information from a second database different from the first database, the second database not containing profile information, the travel data, and the known user preferences of the user, the contextual information unrelated to the profile information, travel data, and the known user preferences of the user, wherein the contextual information comprises: historical travel patterns for a plurality of destinations, ground transportation options at a plurality of airports, costs for the ground transportation options at each of the plurality of airports, transportation, Wi-Fi hot spots, the existence of rental services at the plurality of airports, and information relating to availability of electronic communications at a plurality of locations, and
providing the services on a personal calendar of the user, the providing the services including:
calendaring time segments on the calendar for one or more segments of a trip; and
identifying, on the calendar, communication options for different segments of the trip, the communication options indicating a plurality of modes of communication preferred by the user based on availability of the user and the contextual information during each of the different segments.
20. The method of claim 1, wherein the contextual information further comprising information relating to availability of electronic communications additionally comprises a plurality of locations, and information relating to the availability of electronic communications on a plurality of common carrier transportation providers, wherein such contextual information is used in identifying the communication options for the different segments of the trip.
21. The method of claim 20, wherein the contextual information relating to the availability of electronic communications on a plurality of common carrier transportation providers includes rules of at least one company regarding use of such electronic communications.
22. The method of claim 1, comprising the additional step of:
receiving a selection of one of a plurality of trip template types from the user, wherein the selected template type is used to create the travel itinerary.
23. The method of claim 1, wherein the user and the event are automatically identified in the personal calendar of the user.
24. The method of claim 1, comprising the additional steps of:
receiving notification of a change to at least one of the time segments on the calendar; and
changing at least one of the services on the travel itinerary in accordance with the change to the at least one of the time segments on the calendar.
US10/966,561 2004-10-15 2004-10-15 Method and system for an automated trip planner Active 2027-09-16 US7925540B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/966,561 US7925540B1 (en) 2004-10-15 2004-10-15 Method and system for an automated trip planner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/966,561 US7925540B1 (en) 2004-10-15 2004-10-15 Method and system for an automated trip planner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US29/256,670 Continuation-In-Part USD538640S1 (en) 2004-10-13 2006-03-23 Storage container

Publications (1)

Publication Number Publication Date
US7925540B1 true US7925540B1 (en) 2011-04-12

Family

ID=43837195

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/966,561 Active 2027-09-16 US7925540B1 (en) 2004-10-15 2004-10-15 Method and system for an automated trip planner

Country Status (1)

Country Link
US (1) US7925540B1 (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080201197A1 (en) * 2007-02-16 2008-08-21 Rearden Commerce, Inc. System and Method for Peer Person- And Situation-Based Recommendations
US20090030769A1 (en) * 2007-07-27 2009-01-29 Rearden Commerce, Inc. System and Method for Latency Management Assistant
US20090030609A1 (en) * 2007-07-27 2009-01-29 Rearden Commerce, Inc. System and Method for Proactive Agenda Management
US20100023407A1 (en) * 2004-06-15 2010-01-28 Rearden Commerce, Inc. System and Method for Availability-Based Limited-Time Offerings and Transactions
US20100076862A1 (en) * 2008-09-10 2010-03-25 Vegas.Com System and method for reserving and purchasing events
US20100312586A1 (en) * 2009-06-03 2010-12-09 Drefs Martin J Generation of Travel-Related Offerings
US20110054994A1 (en) * 2009-08-31 2011-03-03 Anne Kelly Infrastructure for marketing disparate services
US20130019004A1 (en) * 2011-07-12 2013-01-17 Genband Inc. Methods, systems, and computer readable media for deriving user availability from user context and user responses to communications requests
US20140058769A1 (en) * 2012-08-22 2014-02-27 Xinyu Zhang Social network for tour planning
WO2014071043A1 (en) * 2012-10-31 2014-05-08 DoWhatILikeBest, LLC Favorite and serendipitous event correlation and notification
US8751295B2 (en) 2006-07-18 2014-06-10 America Express Travel Related Services Company, Inc. System and method for providing international coupon-less discounts
US20140236646A1 (en) * 2004-02-19 2014-08-21 Idss (Internet Destination Sales System) Internet Destination Sales System with ASP-Hosted Member Interface
WO2014149513A1 (en) * 2013-03-15 2014-09-25 Expedia, Inc. Managing item queries
US8849699B2 (en) 2011-09-26 2014-09-30 American Express Travel Related Services Company, Inc. Systems and methods for targeting ad impressions
US8868444B2 (en) 2012-09-16 2014-10-21 American Express Travel Related Services Company, Inc. System and method for rewarding in channel accomplishments
WO2014186735A1 (en) * 2013-05-16 2014-11-20 MobileRQ, Inc. Harnessing large data sources to define a mobile user's real-time context then determining and delivering highly relevant mobile messages based on that context
WO2015095828A1 (en) * 2013-12-20 2015-06-25 Urban Engines, Inc. Transportation system reconstruction
US20150199441A1 (en) * 2014-01-10 2015-07-16 Dabeeo, Inc. Method and apparatus for providing tour plan service
US9195988B2 (en) 2012-03-13 2015-11-24 American Express Travel Related Services Company, Inc. Systems and methods for an analysis cycle to determine interest merchants
US9412102B2 (en) 2006-07-18 2016-08-09 American Express Travel Related Services Company, Inc. System and method for prepaid rewards
US9430773B2 (en) 2006-07-18 2016-08-30 American Express Travel Related Services Company, Inc. Loyalty incentive program using transaction cards
US9449288B2 (en) 2011-05-20 2016-09-20 Deem, Inc. Travel services search
US9454768B2 (en) 2014-11-26 2016-09-27 Mastercard International Incorporated Method and system for estimating a price of a trip based on transaction data
US20160298974A1 (en) * 2015-04-09 2016-10-13 Mapquest, Inc. Systems and methods for learning and displaying customized geographical navigational options
US9489680B2 (en) 2011-02-04 2016-11-08 American Express Travel Related Services Company, Inc. Systems and methods for providing location based coupon-less offers to registered card members
US9514483B2 (en) 2012-09-07 2016-12-06 American Express Travel Related Services Company, Inc. Marketing campaign application for multiple electronic distribution channels
US9530151B2 (en) 2014-11-26 2016-12-27 Mastercard International Incorporated Method and system for recommending a merchant based on transaction data
US9552599B1 (en) 2004-09-10 2017-01-24 Deem, Inc. Platform for multi-service procurement
US9569789B2 (en) 2006-07-18 2017-02-14 American Express Travel Related Services Company, Inc. System and method for administering marketing programs
US9576294B2 (en) 2006-07-18 2017-02-21 American Express Travel Related Services Company, Inc. System and method for providing coupon-less discounts based on a user broadcasted message
EP3133536A1 (en) 2015-08-20 2017-02-22 Xerox Corporation System and method for multi-factored-based ranking of trips
US9613361B2 (en) 2006-07-18 2017-04-04 American Express Travel Related Services Company, Inc. System and method for E-mail based rewards
US9634976B2 (en) 2014-08-29 2017-04-25 Google Inc. Systems and methods for organizing the display of messages
US9665874B2 (en) 2012-03-13 2017-05-30 American Express Travel Related Services Company, Inc. Systems and methods for tailoring marketing
US9934537B2 (en) 2006-07-18 2018-04-03 American Express Travel Related Services Company, Inc. System and method for providing offers through a social media channel
WO2019032988A1 (en) * 2017-08-11 2019-02-14 Uber Technologies, Inc. Dynamic scheduling system for planned service requests
US10217131B2 (en) 2005-12-28 2019-02-26 Deem, Inc. System for resource service provider
US10395237B2 (en) 2014-05-22 2019-08-27 American Express Travel Related Services Company, Inc. Systems and methods for dynamic proximity based E-commerce transactions
US10438269B2 (en) 2013-03-12 2019-10-08 Mastercard International Incorporated Systems and methods for recommending merchants
US10504132B2 (en) 2012-11-27 2019-12-10 American Express Travel Related Services Company, Inc. Dynamic rewards program
US10552849B2 (en) 2009-04-30 2020-02-04 Deem, Inc. System and method for offering, tracking and promoting loyalty rewards
US10664883B2 (en) 2012-09-16 2020-05-26 American Express Travel Related Services Company, Inc. System and method for monitoring activities in a digital channel
US10664929B2 (en) 2018-06-19 2020-05-26 International Business Machines Corporation Extracting data for professional event and participant grouping recommendations
CN112889043A (en) * 2018-10-04 2021-06-01 微软技术许可有限责任公司 User-centric browser location
US11099016B2 (en) 2019-03-29 2021-08-24 Naver Corporation System and method for generating pedestrian tours
US11300418B2 (en) 2019-05-20 2022-04-12 International Business Machines Corporation Customized trip grouping based on individualized user preferences
US11822593B1 (en) * 2022-09-29 2023-11-21 Discovery.Com, Llc Systems and methods for establishing an itinerary based on multimedia content of interest

Citations (232)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969136A (en) 1986-08-08 1990-11-06 Chamberlin David B Communications network and method with appointment information communication capabilities
US5289531A (en) 1989-08-24 1994-02-22 Levine Alfred B Remote scheduling of appointments with interactivety using a caller's unit
US5459859A (en) 1991-06-18 1995-10-17 Mitsubishi Denki Kabushiki Kaisha Apparatus and system for providing information required for meeting with desired person while travelling
US5513126A (en) * 1993-10-04 1996-04-30 Xerox Corporation Network having selectively accessible recipient prioritized communication channel profiles
US5615121A (en) * 1995-01-31 1997-03-25 U S West Technologies, Inc. System and method for scheduling service providers to perform customer service requests
US5623404A (en) 1994-03-18 1997-04-22 Minnesota Mining And Manufacturing Company System and method for producing schedules of resource requests having uncertain durations
US5655081A (en) 1995-03-08 1997-08-05 Bmc Software, Inc. System for monitoring and managing computer resources and applications across a distributed computing environment using an intelligent autonomous agent architecture
US5765140A (en) 1995-11-17 1998-06-09 Mci Corporation Dynamic project management system
US5790974A (en) 1996-04-29 1998-08-04 Sun Microsystems, Inc. Portable calendaring device having perceptual agent managing calendar entries
US5802492A (en) 1994-06-24 1998-09-01 Delorme Publishing Company, Inc. Computer aided routing and positioning system
US5812844A (en) 1995-12-07 1998-09-22 Microsoft Corporation Method and system for scheduling the execution of threads using optional time-specific scheduling constraints
US5832451A (en) * 1996-01-23 1998-11-03 Electronic Data Systems Corporation Automated travel service management information system
US5875436A (en) 1996-08-27 1999-02-23 Data Link Systems, Inc. Virtual transcription system
US5892909A (en) 1996-09-27 1999-04-06 Diffusion, Inc. Intranet-based system with methods for co-active delivery of information to multiple users
US5943652A (en) * 1994-02-25 1999-08-24 3M Innovative Properties Company Resource assignment and scheduling system
US5948040A (en) * 1994-06-24 1999-09-07 Delorme Publishing Co. Travel reservation information and planning system
US5953706A (en) * 1996-10-21 1999-09-14 Orissa, Inc. Transportation network system
US5966658A (en) * 1996-09-26 1999-10-12 Highwaymaster Communications, Inc. Automated selection of a communication path
US6009408A (en) 1996-04-01 1999-12-28 Electronic Data Systems Corporation Automated processing of travel related expenses
US6023679A (en) * 1994-10-04 2000-02-08 Amadeus Global Travel Distribution Llc Pre- and post-ticketed travel reservation information management system
US6052563A (en) * 1997-12-10 2000-04-18 Motorola Communication device controlled by appointment information stored therein, and method therefor
US6091956A (en) * 1997-06-12 2000-07-18 Hollenberg; Dennis D. Situation information system
US6094681A (en) 1998-03-31 2000-07-25 Siemens Information And Communication Networks, Inc. Apparatus and method for automated event notification
US6104788A (en) 1997-12-04 2000-08-15 Siemens Information And Communication Networks, Inc. Apparatus and method for using a telephone for remote scheduling
US6134534A (en) * 1996-09-04 2000-10-17 Priceline.Com Incorporated Conditional purchase offer management system for cruises
US6157945A (en) * 1998-07-01 2000-12-05 Ricoh Company, Ltd. Digital communication device and method including a routing function
US6202062B1 (en) * 1999-02-26 2001-03-13 Ac Properties B.V. System, method and article of manufacture for creating a filtered information summary based on multiple profiles of each single user
US6249252B1 (en) * 1996-09-09 2001-06-19 Tracbeam Llc Wireless location using multiple location estimators
US6253369B1 (en) 1994-11-30 2001-06-26 International Business Machines Corp. Workflow object compiler with user interrogated information incorporated into skeleton of source code for generating executable workflow objects
US20010014867A1 (en) * 1997-06-19 2001-08-16 Douglas Walter Conmy Electronic calendar with group scheduling
US20010021928A1 (en) 2000-01-07 2001-09-13 Ludwig Heiko H. Method for inter-enterprise role-based authorization
US6292830B1 (en) 1997-08-08 2001-09-18 Iterations Llc System for optimizing interaction among agents acting on multiple levels
US6295521B1 (en) * 1998-07-02 2001-09-25 Ita Software, Inc. Travel planning system
US20010025314A1 (en) 2000-03-24 2001-09-27 Fujitsu Limited Communication system
US20010029425A1 (en) 2000-03-17 2001-10-11 David Myr Real time vehicle guidance and traffic forecasting system
US6317686B1 (en) 2000-07-21 2001-11-13 Bin Ran Method of providing travel time
US20010044748A1 (en) * 1999-12-07 2001-11-22 Maier Robert J. Methods and systems for selecting travel products
US20010051876A1 (en) * 2000-04-03 2001-12-13 Seigel Ronald E. System and method for personalizing, customizing and distributing geographically distinctive products and travel information over the internet
US6334109B1 (en) * 1998-10-30 2001-12-25 International Business Machines Corporation Distributed personalized advertisement system and method
US20010056443A1 (en) * 1998-11-20 2001-12-27 Kuniharu Takayama Apparatus and method for presenting navigation information based on instructions described in a script
US20020006788A1 (en) * 2000-05-05 2002-01-17 Per Knutsson Method and apparatus for a mobile access system delivering location based information and services
US20020010604A1 (en) * 2000-06-09 2002-01-24 David Block Automated internet based interactive travel planning and reservation system
US20020013729A1 (en) * 2000-07-31 2002-01-31 Nec Corporation. Advertisement presentation system
US20020016723A1 (en) * 2000-07-31 2002-02-07 Kazuki Matsui Information broadcasting method and device
US20020022491A1 (en) * 2000-08-16 2002-02-21 Mccann Stephen LAN services delivery system
US20020026356A1 (en) 1999-05-21 2002-02-28 Bergh Christopher P. Offer delivery system
US20020032591A1 (en) 2000-09-08 2002-03-14 Agentai, Inc. Service request processing performed by artificial intelligence systems in conjunctiion with human intervention
US6366856B1 (en) * 2000-11-21 2002-04-02 Qualcomm Incorporated Method and apparatus for orienting a map display in a mobile or portable device
US20020039882A1 (en) * 2000-08-15 2002-04-04 Lockheed Martin Corporation Method and apparatus for determining the context of a handheld device
US6370566B2 (en) 1998-04-10 2002-04-09 Microsoft Corporation Generating meeting requests and group scheduling from a mobile device
US20020049644A1 (en) 2000-09-28 2002-04-25 Kargman James B. Method for simplified one-touch ordering of goods and services from a wired or wireless phone or terminal
US6381640B1 (en) 1998-09-11 2002-04-30 Genesys Telecommunications Laboratories, Inc. Method and apparatus for automated personalization and presentation of workload assignments to agents within a multimedia communication center
US6381578B1 (en) 1998-07-02 2002-04-30 Ita Software, Inc. Factored representation of a set of priceable units
US20020055817A1 (en) * 2000-08-18 2002-05-09 Yue-Hong Chou Real-time smart mobile device for location information processing
US6389454B1 (en) 1999-05-13 2002-05-14 Medical Specialty Software Multi-facility appointment scheduling system
US20020057212A1 (en) * 1999-04-20 2002-05-16 Lula Renee Hamilton Multimodal multimedia transportation information system
US6392669B1 (en) 1998-08-10 2002-05-21 International Business Machines Corporation Schedule management system and method for displaying, managing, and changing a schedule and recording medium for storing the same
US6397191B1 (en) 1998-06-05 2002-05-28 I2 Technologies Us, Inc. Object-oriented workflow for multi-enterprise collaboration
US20020065688A1 (en) 2000-08-29 2002-05-30 David Charlton Electronic reservation system
US20020069093A1 (en) * 2000-12-04 2002-06-06 Stanfield Richard C. Electronic reservation referral system and method
US20020072938A1 (en) 2000-08-23 2002-06-13 Black Christopher M. Ground transportation internet reservation system
US20020077122A1 (en) 2000-12-14 2002-06-20 Koninklijke Philips Electronics N.V. Method of providing travel information to a mobile communications device
US6414635B1 (en) * 2000-10-23 2002-07-02 Wayport, Inc. Geographic-based communication service system with more precise determination of a user's known geographic location
US20020095454A1 (en) 1996-02-29 2002-07-18 Reed Drummond Shattuck Communications system
US6424909B2 (en) * 2000-03-17 2002-07-23 Alpine Electronics, Inc. Method and system for retrieving information for a navigation system
US20020099613A1 (en) 2000-06-14 2002-07-25 Garret Swart Method for forming and expressing reservables and engagements in a database for a transaction service
US20020103693A1 (en) * 2001-01-30 2002-08-01 Horst Bayer System and method for aggregating and analyzing feedback
US20020105934A1 (en) * 1998-10-02 2002-08-08 Samsung Electronics Co., Ltd. Device for data communications between wireless application protocol terminal and wireless application server, and method thereof
US20020116266A1 (en) 2001-01-12 2002-08-22 Thaddeus Marshall Method and system for tracking and providing incentives for time and attention of persons and for timing of performance of tasks
US20020115430A1 (en) 2000-12-21 2002-08-22 Hall William David Motion dispatch system
US20020120519A1 (en) * 2000-05-23 2002-08-29 Martin Jeffrey W. Distributed information methods and systems used to collect and correlate user information and preferences with products and services
US20020123280A1 (en) 2001-03-02 2002-09-05 Tissage Et Enduction Serge Ferrari Sa Textile possessing antilaceration properties
US20020131565A1 (en) * 2001-02-09 2002-09-19 Scheuring Jerome James Calendaring systems and methods
US20020133380A1 (en) * 1998-02-19 2002-09-19 Masataka Okayama Portable information terminal surrounding formulation of an optimum plan
US6457062B1 (en) 1999-04-08 2002-09-24 Palm, Inc. System and method for synchronizing multiple calendars over wide area network
US6457132B1 (en) * 1999-06-30 2002-09-24 International Business Machines Corporation Calendar-based power management
US20020143655A1 (en) * 2001-04-02 2002-10-03 Stephen Elston Remote ordering system for mobile commerce
US20020152190A1 (en) * 2001-02-07 2002-10-17 International Business Machines Corporation Customer self service subsystem for adaptive indexing of resource solutions and resource lookup
US20020156731A1 (en) * 2001-04-19 2002-10-24 Fujitsu Limited Of Kawasaki, Japan System and method for supporting delivery of services
US20020156659A1 (en) 1997-07-08 2002-10-24 Walker Jay S. Method and apparatus for the sale of airline-specified flight tickets
US20020156661A1 (en) * 1998-08-27 2002-10-24 Jones Terrell B. Goal oriented travel planning system
US20020160745A1 (en) * 2000-07-20 2002-10-31 Ray Wang Method and system for location-aware wireless mobile devices including mobile user network message interfaces and protocol
US6477503B1 (en) * 1999-07-08 2002-11-05 Robert O. Mankes Active reservation system
US6480830B1 (en) 1998-01-29 2002-11-12 International Business Machines Corporation Active calendar system
US6484033B2 (en) 2000-12-04 2002-11-19 Motorola, Inc. Wireless communication system for location based schedule management and method therefor
US20020178226A1 (en) 2001-05-24 2002-11-28 Anderson Andrew V. Method and apparatus for message escalation by digital assistants
US20020178034A1 (en) * 1996-04-10 2002-11-28 Christopher W. Gardner Airline travel technologies
US6496568B1 (en) 1999-04-12 2002-12-17 Avaya Technology Corp. Method and apparatus for providing automated notification to a customer of a real-time notification system
US20020194037A1 (en) * 2000-07-19 2002-12-19 Jeff Creed Method and apparatus for arranging flexible and cost-efficient private air travel
US20020198991A1 (en) * 2001-06-21 2002-12-26 International Business Machines Corporation Intelligent caching and network management based on location and resource anticipation
US20020198747A1 (en) 2001-06-26 2002-12-26 Boyer Stanley Gene Event driven airport
US20030004762A1 (en) * 2001-06-29 2003-01-02 International Business Machines Corporation Apparatus and method for augmenting a reservation system to provide user defined customized service
US20030004937A1 (en) * 2001-05-15 2003-01-02 Jukka-Pekka Salmenkaita Method and business process to maintain privacy in distributed recommendation systems
US20030023499A1 (en) 2001-07-25 2003-01-30 International Business Machines Corporation Apparatus, system and method for automatically making operational purchasing decisions
US20030023463A1 (en) * 2001-04-16 2003-01-30 Frank Dombroski Method and system for automatically planning, booking, and calendaring travel arrangements
US20030023450A1 (en) * 2001-07-24 2003-01-30 Fabio Casati Modeling tool for electronic services and associated methods and business
US20030028390A1 (en) * 2001-07-31 2003-02-06 Stern Edith H. System to provide context-based services
US20030033164A1 (en) 2001-07-30 2003-02-13 Boi Faltings Systems and methods for graphically displaying travel information
US20030036928A1 (en) 2001-03-13 2003-02-20 Galit Kenigsberg Must fly
US20030040944A1 (en) 2001-08-22 2003-02-27 Hileman Ryan M. On-demand transportation system
US6529136B2 (en) 2001-02-28 2003-03-04 International Business Machines Corporation Group notification system and method for implementing and indicating the proximity of individuals or groups to other individuals or groups
US20030050964A1 (en) * 2001-09-07 2003-03-13 Philippe Debaty Method and system for context manager proxy
US20030055689A1 (en) * 2000-06-09 2003-03-20 David Block Automated internet based interactive travel planning and management system
US20030053611A1 (en) 2001-09-20 2003-03-20 Lee Seung-Ku Method for providing outgoing call reservation service in exchange system
US20030058842A1 (en) 2000-02-24 2003-03-27 Andrew Bud System and method for providing information services to a mobile device user
US6549939B1 (en) 1999-08-31 2003-04-15 International Business Machines Corporation Proactive calendar notification agent
US6553346B1 (en) * 1996-09-04 2003-04-22 Priceline.Com Incorporated Conditional purchase offer (CPO) management system for packages
US20030076935A1 (en) * 2000-06-02 2003-04-24 Gosney Peter J Face-to-face rendezvous method and system
US6560456B1 (en) 1999-05-24 2003-05-06 Openwave Systems, Inc. System and method for providing subscriber-initiated information over the short message service (SMS) or a microbrowser
US20030097485A1 (en) * 2001-03-14 2003-05-22 Horvitz Eric J. Schemas for a notification platform and related information services
US6574605B1 (en) 1998-11-17 2003-06-03 Citibank, N.A. Method and system for strategic services enterprise workload management
US6578005B1 (en) 1996-11-22 2003-06-10 British Telecommunications Public Limited Company Method and apparatus for resource allocation when schedule changes are incorporated in real time
US6580914B1 (en) * 1998-08-17 2003-06-17 At&T Wireless Services, Inc. Method and apparatus for automatically providing location-based information content on a wireless device
US6584489B1 (en) 1995-12-07 2003-06-24 Microsoft Corporation Method and system for scheduling the use of a computer system resource using a resource planner and a resource provider
US20030120530A1 (en) * 2001-12-21 2003-06-26 Fabio Casati Method and system for performing a context-dependent service
US20030126205A1 (en) 2001-12-27 2003-07-03 Steven Lurie Apparatus and method for scheduling live advice communication with a selected service provider
US20030126095A1 (en) * 2001-12-28 2003-07-03 Docomo Communications Laboratories Usa, Inc. Context-aware market-making service
US6591263B1 (en) * 1997-04-30 2003-07-08 Lockheed Martin Corporation Multi-modal traveler information system
US20030140172A1 (en) 1998-05-26 2003-07-24 Randy D. Woods Distributed computing environment using real-time scheduling logic and time deterministic architecture
US20030149781A1 (en) 2001-12-04 2003-08-07 Peter Yared Distributed network identity
US20030177045A1 (en) 2002-01-25 2003-09-18 Matt Fitzgerald System and method for processing trip requests
US20030187705A1 (en) 1999-12-03 2003-10-02 Schiff Martin R. Systems and methods of comparing product information
US20030195811A1 (en) * 2001-06-07 2003-10-16 Hayes Marc F. Customer messaging service
US20030200146A1 (en) 1995-07-25 2003-10-23 Hillel Levin Interactive marketing network and process using electronic certificates
US20030208754A1 (en) 2002-05-01 2003-11-06 G. Sridhar System and method for selective transmission of multimedia based on subscriber behavioral model
US20030212800A1 (en) * 2001-12-03 2003-11-13 Jones Bryce A. Method and system for allowing multiple service providers to serve users via a common access network
US6650902B1 (en) * 1999-11-15 2003-11-18 Lucent Technologies Inc. Method and apparatus for wireless telecommunications system that provides location-based information delivery to a wireless mobile unit
US20030220835A1 (en) * 2002-05-23 2003-11-27 Barnes Melvin L. System, method, and computer program product for providing location based services and mobile e-commerce
US20030225600A1 (en) 2001-09-24 2003-12-04 Slivka Daria M. Methods, systems, and articles of manufacture for re-accommodating passengers following a travel disruption
US20030229900A1 (en) 2002-05-10 2003-12-11 Richard Reisman Method and apparatus for browsing using multiple coordinated device sets
US20030233278A1 (en) 2000-11-27 2003-12-18 Marshall T. Thaddeus Method and system for tracking and providing incentives for tasks and activities and other behavioral influences related to money, individuals, technology and other assets
US20030233365A1 (en) 2002-04-12 2003-12-18 Metainformatics System and method for semantics driven data processing
US20040002876A1 (en) 2002-03-06 2004-01-01 Sommers Mark O. System, method and computer program product for on-line travel and expense management
US20040019606A1 (en) 2002-07-26 2004-01-29 Scott Ackerman Travel update messaging system and method
US6701311B2 (en) * 2001-02-07 2004-03-02 International Business Machines Corporation Customer self service system for resource search and selection
US20040064585A1 (en) 2002-09-17 2004-04-01 International Business Machines Corporation Predicting and adjusting users' working hours and electronic calendar events
US20040064445A1 (en) 2002-09-30 2004-04-01 Pfleging Gerald W. Wireless access to a database by a short message system query
US20040064355A1 (en) 2002-10-01 2004-04-01 Dorenbosch Jheroen Pieter Method and apparatus for scheduling a meeting
US6732080B1 (en) * 1999-09-15 2004-05-04 Nokia Corporation System and method of providing personal calendar services
US20040088392A1 (en) 2002-03-18 2004-05-06 The Regents Of The University Of California Population mobility generator and simulator
US20040088107A1 (en) 2002-11-04 2004-05-06 Seligmann Doree Duncan Intelligent trip status notification
US20040093290A1 (en) * 2002-05-09 2004-05-13 International Business Machines Corporation Intelligent free-time search
US6741969B1 (en) 1999-12-15 2004-05-25 Murray Huneke System and method for reducing excess capacity for restaurants and other industries during off-peak or other times
US20040102979A1 (en) 2002-01-23 2004-05-27 Robertson Steven C. System and method for providing electronic passenger and luggage handling services over a distributed network
US20040104977A1 (en) 2001-05-28 2004-06-03 Fuji Xerox Co., Ltd. Inkjet recording head and method for manufacturing the same
US20040128196A1 (en) 2002-09-19 2004-07-01 Masatsugu Shibuno One-to-one business support system and program for implementing the function of the system
US20040133638A1 (en) * 2001-08-28 2004-07-08 Doss J. Smith Calendar-enhanced awareness for instant messaging systems and electronic status boards
US6792340B2 (en) * 2001-05-01 2004-09-14 Ronald Dunsky Apparatus and method for providing live display of aircraft flight information
US20040193432A1 (en) 2003-03-25 2004-09-30 Tariq Khalidi Automated and integrated acquisition system and process
US6801763B2 (en) 1997-10-29 2004-10-05 Metro One Telecommunications, Inc. Technique for effectively communicating travel directions
US6801226B1 (en) * 1999-11-01 2004-10-05 Ita Software, Inc. Graphical user interface for travel planning system
US20040199411A1 (en) 2003-04-04 2004-10-07 Bertram Jeffrey Mark Method and system for rebooking a passenger
US6804658B2 (en) 2001-12-14 2004-10-12 Delta Air Lines, Inc. Method and system for origin-destination passenger demand forecast inference
US20040203851A1 (en) * 2002-04-11 2004-10-14 Anthony Vetro Environment aware services for mobile devices
US6813501B2 (en) * 2000-02-29 2004-11-02 Nokia Mobile Phones, Ltd. Location dependent services
US20040220854A1 (en) * 1999-09-10 2004-11-04 Richard Postrel System and method for generating destination specific coupons for a traveler
US20040220847A1 (en) 2002-10-10 2004-11-04 Shoji Ogushi Method and program for assisting a worker in charge of operations
US20040225540A1 (en) 1997-04-24 2004-11-11 William Waytena Assigning and managing patron reservations for distributed services using wireless personal communication devices
US20040249568A1 (en) 2003-04-11 2004-12-09 Yoshinori Endo Travel time calculating method and traffic information display method for a navigation device
US6836537B1 (en) 1999-09-13 2004-12-28 Microstrategy Incorporated System and method for real-time, personalized, dynamic, interactive voice services for information related to existing travel schedule
US6837427B2 (en) 2001-11-21 2005-01-04 Goliath Solutions, Llc. Advertising compliance monitoring system
US6842737B1 (en) * 2000-07-19 2005-01-11 Ijet Travel Intelligence, Inc. Travel information method and associated system
US20050010472A1 (en) 2003-07-08 2005-01-13 Quatse Jesse T. High-precision customer-based targeting by individual usage statistics
US20050043974A1 (en) 2003-04-16 2005-02-24 Assen Vassilev Bounded flexibility search and interface for travel reservations
US6865539B1 (en) * 2000-05-24 2005-03-08 Pugliese, Iii Anthony V. Electronic system for parking management and personal guidance
US20050071245A1 (en) 2003-09-25 2005-03-31 Norins Arthur L. System and method for transacting for a perishable object having an uncertain availability
US20050091005A1 (en) 2003-10-27 2005-04-28 Jean-Francois Huard Computer performance estimation system configured to take expected events into consideration
US20050125439A1 (en) 2001-04-30 2005-06-09 Illah Nourbakhsh Method and apparatus for multi-contact scheduling
US20050138187A1 (en) 2003-12-19 2005-06-23 International Business Machines Corporation Dynamic late binding of third party on demand services in an on-demand infrastructure
US20050143064A1 (en) 2000-01-31 2005-06-30 Robert Pines Communication assistance system and method
US20050187703A1 (en) 2004-02-24 2005-08-25 Seligmann Doree D. Determining departure times for timetable-based trips
US6944447B2 (en) 2001-04-27 2005-09-13 Accenture Llp Location-based services
US20050209772A1 (en) 2004-03-22 2005-09-22 Aisin Aw Co., Ltd. Navigation systems, methods, and programs
US20050216301A1 (en) 2004-03-28 2005-09-29 Brown Kevin L Itinerary planning tool, system, and method
US20050227712A1 (en) 2004-04-13 2005-10-13 Texas Instruments Incorporated Handset meeting assistant
US20050273373A1 (en) 2004-05-21 2005-12-08 Alan Walker Systems, methods, and computer program products for searching and displaying low cost product availability information for a given departure-return date combination or range of departure-return date combinations
US20060004511A1 (en) 2004-07-02 2006-01-05 Aisin Aw Co., Ltd. Navigation system, traffic prediction method, and traffic prediction program
US20060010206A1 (en) 2003-10-15 2006-01-12 Microsoft Corporation Guiding sensing and preferences for context-sensitive services
US20060009987A1 (en) 2002-10-09 2006-01-12 Fang Wang Distributed scheduling
US20060020565A1 (en) 2002-02-04 2006-01-26 George Rzevski Agent, method and computer system for negotiating in a virtual environment
US20060041477A1 (en) 2004-08-17 2006-02-23 Zhiliang Zheng System and method for providing targeted information to users
US20060080321A1 (en) * 2004-09-22 2006-04-13 Whenu.Com, Inc. System and method for processing requests for contextual information
US7031998B2 (en) 1997-03-13 2006-04-18 A: /Scribes Corporation Systems and methods for automatically managing workflow based on optimization of job step scheduling
US7035811B2 (en) 2001-01-23 2006-04-25 Intimate Brands, Inc. System and method for composite customer segmentation
US20060129438A1 (en) 2004-12-10 2006-06-15 Sabre Inc. Method, system, and computer readable medium for dynamically generating multi-modal trip choices
US7080021B1 (en) 2000-04-17 2006-07-18 American Express Travel Related Services Company, Inc. Method and apparatus for managing transportation from an origin location
US7092892B1 (en) * 2000-03-01 2006-08-15 Site59, Inc. System and method for grouping and selling products or services
US20060206412A1 (en) 2000-01-14 2006-09-14 Van Luchene Andrew S Systems and methods for facilitating a transaction by matching seller information and buyer information
US20060206363A1 (en) 2005-03-13 2006-09-14 Gove Jeremy J Group travel planning, optimization, synchronization and coordination software tool and processes for travel arrangements for transportation and lodging for multiple people from multiple geographic locations, domestic and global, to a single destination or series of destinations
US20060220374A1 (en) 2005-04-04 2006-10-05 Backpacker Magazine Chart including waypoints and corresponding directional symbols
US7124087B1 (en) 2000-11-03 2006-10-17 International Business Machines Corporation System and method for updating user home automation systems
US7124024B1 (en) * 1999-09-16 2006-10-17 Hoppy, Societe A Responsabilite Limitee Portable device supplying tourist information
US20060236257A1 (en) * 2003-08-11 2006-10-19 Core Mobility, Inc. Interactive user interface presentation attributes for location-based content
US20060235754A1 (en) 1996-09-04 2006-10-19 Walker Jay S Purchasing, redemption and settlement systems and methods wherein a buyer takes possession at a retailer of a product purchased using a communication network
US20060241983A1 (en) 2005-04-21 2006-10-26 Valerie Viale Customer centric travel system
US20060247954A1 (en) 2005-04-29 2006-11-02 Us Airways, Inc. Method and system for scheduling travel ltineraries through an online interface
US7136821B1 (en) * 2000-04-18 2006-11-14 Neat Group Corporation Method and apparatus for the composition and sale of travel-oriented packages
US7137099B2 (en) 2003-10-24 2006-11-14 Microsoft Corporation System and method for extending application preferences classes
US7139978B2 (en) 2002-03-01 2006-11-21 Sap Ag Recording user interaction with an application
US7152038B2 (en) * 2000-11-22 2006-12-19 Fujitsu Limited Reservation method offering an alternative event
US7162254B1 (en) 2002-09-09 2007-01-09 Bellsouth Intellectual Property Corp: Methods and systems for delivering travel-related information
US20070011034A1 (en) 2002-05-10 2007-01-11 Travelocity.Com Lp Goal oriented travel planning system
US20070016514A1 (en) 2005-07-15 2007-01-18 Al-Abdulqader Hisham A System, program product, and methods for managing contract procurement
US20070033087A1 (en) 2001-01-12 2007-02-08 Energy Control Technologies Automated service broker
US7194417B1 (en) 2000-09-22 2007-03-20 Amadeus Revenue Integrity, Inc. Automated method and system for recognizing unfulfilled obligations and initiating steps to convert said obligations to a fulfilled status or to a null status for resale
US20070083327A1 (en) 2005-10-07 2007-04-12 Sabre Inc. System, method, and computer program product for comparing the cost of driving an owned or leased vehicle to the cost various transportation options
US20070123280A1 (en) 2005-07-13 2007-05-31 Mcgary Faith System and method for providing mobile device services using SMS communications
US20070143153A1 (en) 2005-12-20 2007-06-21 Unisys Corporation Demand tracking system and method for a transportation carrier
US20070162301A1 (en) 2005-03-22 2007-07-12 Adam Sussman Computer-implemented systems and methods for resource allocation
US20070162328A1 (en) 2004-01-20 2007-07-12 Nooly Technologies, Ltd. Lbs nowcasting sensitive advertising and promotion system and method
US20070208604A1 (en) 2001-04-02 2007-09-06 Siebel Systems, Inc. Method and system for scheduling activities
US7283970B2 (en) 2002-02-06 2007-10-16 International Business Machines Corporation Method and meeting scheduler for automated meeting insertion and rescheduling for busy calendars
US7284062B2 (en) * 2002-12-06 2007-10-16 Microsoft Corporation Increasing the level of automation when provisioning a computer system to access a network
US7289812B1 (en) * 2001-12-20 2007-10-30 Adobe Systems Incorporated Location-based bookmarks
US7296017B2 (en) 2003-03-28 2007-11-13 Microsoft Corporation Validation of XML data files
US7305356B2 (en) * 2001-05-25 2007-12-04 Amadeus Americas, Inc. Travel value index
US7308420B1 (en) 2000-05-25 2007-12-11 Target Brands, Inc. Co-branded internet service provider and retailer internet service site with retailer-offered incentives for member use
US7330112B1 (en) * 2003-09-09 2008-02-12 Emigh Aaron T Location-aware services
US7337125B2 (en) * 2001-01-25 2008-02-26 International Business Machines Corporation System and method for enhancing sales for service providers utilizing an opportunistic approach based on an unexpected change in schedule of services
US20080052159A1 (en) 2006-03-26 2008-02-28 Venkataraman Balakrishnan Service promotion using encodable review codes
US7340403B1 (en) 1999-11-01 2008-03-04 Ita Software, Inc. Method, system, and computer-readable medium for generating a diverse set of travel options
US7353182B1 (en) 2000-06-30 2008-04-01 Accenture Llp System and method for providing a multi-channel customer interaction center
US20080103842A1 (en) 2006-10-25 2008-05-01 Johnson Michael J Travel cost estimating
US7376735B2 (en) 2002-01-31 2008-05-20 Verint Americas Inc. Method, apparatus, and system for capturing data exchanged between a server and a user
US7394900B1 (en) 2002-06-24 2008-07-01 Southwest Airlines Co. Method and apparatus for preventing the interception of data being transmitted to a web site by a monitoring program
US7426537B2 (en) 2002-05-31 2008-09-16 Microsoft Corporation Systems and methods for sharing dynamic content among a plurality of online co-users
US7430724B2 (en) 2003-08-11 2008-09-30 Core Mobility, Inc. Systems and methods for displaying content in a ticker
US20090101710A1 (en) 2006-03-31 2009-04-23 Rearden Commerce, Inc. Method and System for Unified Presentation of Event Booking Systems
US7565331B2 (en) 2006-02-28 2009-07-21 The Boeing Company Method for modeling processes in airlines and other industries, including cost asssesment of service disruptions
US20090210261A1 (en) 2008-02-20 2009-08-20 Rearden Commerce, Inc. System and Method for Multi-Modal Travel Shopping
US20090234564A1 (en) 2004-12-07 2009-09-17 Navitime Japan Co., Ltd. Unoccupied seat route search system, unoccupied seat route search device, and terminal device
US20090248457A1 (en) 2008-03-31 2009-10-01 Rearden Commerce, Inc. System and Method for Providing Travel Schedule of Contacts

Patent Citations (239)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969136A (en) 1986-08-08 1990-11-06 Chamberlin David B Communications network and method with appointment information communication capabilities
US5289531A (en) 1989-08-24 1994-02-22 Levine Alfred B Remote scheduling of appointments with interactivety using a caller's unit
US5459859A (en) 1991-06-18 1995-10-17 Mitsubishi Denki Kabushiki Kaisha Apparatus and system for providing information required for meeting with desired person while travelling
US5513126A (en) * 1993-10-04 1996-04-30 Xerox Corporation Network having selectively accessible recipient prioritized communication channel profiles
US5943652A (en) * 1994-02-25 1999-08-24 3M Innovative Properties Company Resource assignment and scheduling system
US5623404A (en) 1994-03-18 1997-04-22 Minnesota Mining And Manufacturing Company System and method for producing schedules of resource requests having uncertain durations
US5948040A (en) * 1994-06-24 1999-09-07 Delorme Publishing Co. Travel reservation information and planning system
US5802492A (en) 1994-06-24 1998-09-01 Delorme Publishing Company, Inc. Computer aided routing and positioning system
US6023679A (en) * 1994-10-04 2000-02-08 Amadeus Global Travel Distribution Llc Pre- and post-ticketed travel reservation information management system
US6253369B1 (en) 1994-11-30 2001-06-26 International Business Machines Corp. Workflow object compiler with user interrogated information incorporated into skeleton of source code for generating executable workflow objects
US5615121A (en) * 1995-01-31 1997-03-25 U S West Technologies, Inc. System and method for scheduling service providers to perform customer service requests
US5655081A (en) 1995-03-08 1997-08-05 Bmc Software, Inc. System for monitoring and managing computer resources and applications across a distributed computing environment using an intelligent autonomous agent architecture
US20030200146A1 (en) 1995-07-25 2003-10-23 Hillel Levin Interactive marketing network and process using electronic certificates
US5765140A (en) 1995-11-17 1998-06-09 Mci Corporation Dynamic project management system
US5812844A (en) 1995-12-07 1998-09-22 Microsoft Corporation Method and system for scheduling the execution of threads using optional time-specific scheduling constraints
US6584489B1 (en) 1995-12-07 2003-06-24 Microsoft Corporation Method and system for scheduling the use of a computer system resource using a resource planner and a resource provider
US5832451A (en) * 1996-01-23 1998-11-03 Electronic Data Systems Corporation Automated travel service management information system
US20020095454A1 (en) 1996-02-29 2002-07-18 Reed Drummond Shattuck Communications system
US6009408A (en) 1996-04-01 1999-12-28 Electronic Data Systems Corporation Automated processing of travel related expenses
US20020178034A1 (en) * 1996-04-10 2002-11-28 Christopher W. Gardner Airline travel technologies
US5790974A (en) 1996-04-29 1998-08-04 Sun Microsystems, Inc. Portable calendaring device having perceptual agent managing calendar entries
US5875436A (en) 1996-08-27 1999-02-23 Data Link Systems, Inc. Virtual transcription system
US6134534A (en) * 1996-09-04 2000-10-17 Priceline.Com Incorporated Conditional purchase offer management system for cruises
US6553346B1 (en) * 1996-09-04 2003-04-22 Priceline.Com Incorporated Conditional purchase offer (CPO) management system for packages
US20060235754A1 (en) 1996-09-04 2006-10-19 Walker Jay S Purchasing, redemption and settlement systems and methods wherein a buyer takes possession at a retailer of a product purchased using a communication network
US6249252B1 (en) * 1996-09-09 2001-06-19 Tracbeam Llc Wireless location using multiple location estimators
US5966658A (en) * 1996-09-26 1999-10-12 Highwaymaster Communications, Inc. Automated selection of a communication path
US5892909A (en) 1996-09-27 1999-04-06 Diffusion, Inc. Intranet-based system with methods for co-active delivery of information to multiple users
US5953706A (en) * 1996-10-21 1999-09-14 Orissa, Inc. Transportation network system
US6578005B1 (en) 1996-11-22 2003-06-10 British Telecommunications Public Limited Company Method and apparatus for resource allocation when schedule changes are incorporated in real time
US7031998B2 (en) 1997-03-13 2006-04-18 A: /Scribes Corporation Systems and methods for automatically managing workflow based on optimization of job step scheduling
US20040225540A1 (en) 1997-04-24 2004-11-11 William Waytena Assigning and managing patron reservations for distributed services using wireless personal communication devices
US6591263B1 (en) * 1997-04-30 2003-07-08 Lockheed Martin Corporation Multi-modal traveler information system
US6091956A (en) * 1997-06-12 2000-07-18 Hollenberg; Dennis D. Situation information system
US20010014867A1 (en) * 1997-06-19 2001-08-16 Douglas Walter Conmy Electronic calendar with group scheduling
US20020156659A1 (en) 1997-07-08 2002-10-24 Walker Jay S. Method and apparatus for the sale of airline-specified flight tickets
US6292830B1 (en) 1997-08-08 2001-09-18 Iterations Llc System for optimizing interaction among agents acting on multiple levels
US6801763B2 (en) 1997-10-29 2004-10-05 Metro One Telecommunications, Inc. Technique for effectively communicating travel directions
US6104788A (en) 1997-12-04 2000-08-15 Siemens Information And Communication Networks, Inc. Apparatus and method for using a telephone for remote scheduling
US6052563A (en) * 1997-12-10 2000-04-18 Motorola Communication device controlled by appointment information stored therein, and method therefor
US6480830B1 (en) 1998-01-29 2002-11-12 International Business Machines Corporation Active calendar system
US20020133380A1 (en) * 1998-02-19 2002-09-19 Masataka Okayama Portable information terminal surrounding formulation of an optimum plan
US6094681A (en) 1998-03-31 2000-07-25 Siemens Information And Communication Networks, Inc. Apparatus and method for automated event notification
US6370566B2 (en) 1998-04-10 2002-04-09 Microsoft Corporation Generating meeting requests and group scheduling from a mobile device
US20030140172A1 (en) 1998-05-26 2003-07-24 Randy D. Woods Distributed computing environment using real-time scheduling logic and time deterministic architecture
US6397191B1 (en) 1998-06-05 2002-05-28 I2 Technologies Us, Inc. Object-oriented workflow for multi-enterprise collaboration
US6157945A (en) * 1998-07-01 2000-12-05 Ricoh Company, Ltd. Digital communication device and method including a routing function
US6295521B1 (en) * 1998-07-02 2001-09-25 Ita Software, Inc. Travel planning system
US6381578B1 (en) 1998-07-02 2002-04-30 Ita Software, Inc. Factored representation of a set of priceable units
US6392669B1 (en) 1998-08-10 2002-05-21 International Business Machines Corporation Schedule management system and method for displaying, managing, and changing a schedule and recording medium for storing the same
US6580914B1 (en) * 1998-08-17 2003-06-17 At&T Wireless Services, Inc. Method and apparatus for automatically providing location-based information content on a wireless device
US20020156661A1 (en) * 1998-08-27 2002-10-24 Jones Terrell B. Goal oriented travel planning system
US6381640B1 (en) 1998-09-11 2002-04-30 Genesys Telecommunications Laboratories, Inc. Method and apparatus for automated personalization and presentation of workload assignments to agents within a multimedia communication center
US20020105934A1 (en) * 1998-10-02 2002-08-08 Samsung Electronics Co., Ltd. Device for data communications between wireless application protocol terminal and wireless application server, and method thereof
US6334109B1 (en) * 1998-10-30 2001-12-25 International Business Machines Corporation Distributed personalized advertisement system and method
US6574605B1 (en) 1998-11-17 2003-06-03 Citibank, N.A. Method and system for strategic services enterprise workload management
US20010056443A1 (en) * 1998-11-20 2001-12-27 Kuniharu Takayama Apparatus and method for presenting navigation information based on instructions described in a script
US6202062B1 (en) * 1999-02-26 2001-03-13 Ac Properties B.V. System, method and article of manufacture for creating a filtered information summary based on multiple profiles of each single user
US6457062B1 (en) 1999-04-08 2002-09-24 Palm, Inc. System and method for synchronizing multiple calendars over wide area network
US6496568B1 (en) 1999-04-12 2002-12-17 Avaya Technology Corp. Method and apparatus for providing automated notification to a customer of a real-time notification system
US20020057212A1 (en) * 1999-04-20 2002-05-16 Lula Renee Hamilton Multimodal multimedia transportation information system
US6389454B1 (en) 1999-05-13 2002-05-14 Medical Specialty Software Multi-facility appointment scheduling system
US20020026356A1 (en) 1999-05-21 2002-02-28 Bergh Christopher P. Offer delivery system
US6560456B1 (en) 1999-05-24 2003-05-06 Openwave Systems, Inc. System and method for providing subscriber-initiated information over the short message service (SMS) or a microbrowser
US6457132B1 (en) * 1999-06-30 2002-09-24 International Business Machines Corporation Calendar-based power management
US6477503B1 (en) * 1999-07-08 2002-11-05 Robert O. Mankes Active reservation system
US6549939B1 (en) 1999-08-31 2003-04-15 International Business Machines Corporation Proactive calendar notification agent
US20040220854A1 (en) * 1999-09-10 2004-11-04 Richard Postrel System and method for generating destination specific coupons for a traveler
US6836537B1 (en) 1999-09-13 2004-12-28 Microstrategy Incorporated System and method for real-time, personalized, dynamic, interactive voice services for information related to existing travel schedule
US7428302B2 (en) 1999-09-13 2008-09-23 Microstrategy, Incorporated System and method for real-time, personalized, dynamic, interactive voice services for information related to existing travel schedule
US6732080B1 (en) * 1999-09-15 2004-05-04 Nokia Corporation System and method of providing personal calendar services
US7124024B1 (en) * 1999-09-16 2006-10-17 Hoppy, Societe A Responsabilite Limitee Portable device supplying tourist information
US7409643B2 (en) 1999-11-01 2008-08-05 Ita Software, Inc. Graphical user interface for travel planning system
US6801226B1 (en) * 1999-11-01 2004-10-05 Ita Software, Inc. Graphical user interface for travel planning system
US7340403B1 (en) 1999-11-01 2008-03-04 Ita Software, Inc. Method, system, and computer-readable medium for generating a diverse set of travel options
US6650902B1 (en) * 1999-11-15 2003-11-18 Lucent Technologies Inc. Method and apparatus for wireless telecommunications system that provides location-based information delivery to a wireless mobile unit
US20030187705A1 (en) 1999-12-03 2003-10-02 Schiff Martin R. Systems and methods of comparing product information
US20010044748A1 (en) * 1999-12-07 2001-11-22 Maier Robert J. Methods and systems for selecting travel products
US20040215517A1 (en) 1999-12-15 2004-10-28 Monkeyrules.Com Corporation System and method for reducing excess capacity for restaurants and other industries during off-peak or other times
US6741969B1 (en) 1999-12-15 2004-05-25 Murray Huneke System and method for reducing excess capacity for restaurants and other industries during off-peak or other times
US20010021928A1 (en) 2000-01-07 2001-09-13 Ludwig Heiko H. Method for inter-enterprise role-based authorization
US20060206412A1 (en) 2000-01-14 2006-09-14 Van Luchene Andrew S Systems and methods for facilitating a transaction by matching seller information and buyer information
US20050143064A1 (en) 2000-01-31 2005-06-30 Robert Pines Communication assistance system and method
US20030058842A1 (en) 2000-02-24 2003-03-27 Andrew Bud System and method for providing information services to a mobile device user
US6813501B2 (en) * 2000-02-29 2004-11-02 Nokia Mobile Phones, Ltd. Location dependent services
US7092892B1 (en) * 2000-03-01 2006-08-15 Site59, Inc. System and method for grouping and selling products or services
US20010029425A1 (en) 2000-03-17 2001-10-11 David Myr Real time vehicle guidance and traffic forecasting system
US6424909B2 (en) * 2000-03-17 2002-07-23 Alpine Electronics, Inc. Method and system for retrieving information for a navigation system
US20010025314A1 (en) 2000-03-24 2001-09-27 Fujitsu Limited Communication system
US20010051876A1 (en) * 2000-04-03 2001-12-13 Seigel Ronald E. System and method for personalizing, customizing and distributing geographically distinctive products and travel information over the internet
US7080021B1 (en) 2000-04-17 2006-07-18 American Express Travel Related Services Company, Inc. Method and apparatus for managing transportation from an origin location
US7136821B1 (en) * 2000-04-18 2006-11-14 Neat Group Corporation Method and apparatus for the composition and sale of travel-oriented packages
US20020006788A1 (en) * 2000-05-05 2002-01-17 Per Knutsson Method and apparatus for a mobile access system delivering location based information and services
US20020120519A1 (en) * 2000-05-23 2002-08-29 Martin Jeffrey W. Distributed information methods and systems used to collect and correlate user information and preferences with products and services
US6865539B1 (en) * 2000-05-24 2005-03-08 Pugliese, Iii Anthony V. Electronic system for parking management and personal guidance
US7308420B1 (en) 2000-05-25 2007-12-11 Target Brands, Inc. Co-branded internet service provider and retailer internet service site with retailer-offered incentives for member use
US20030076935A1 (en) * 2000-06-02 2003-04-24 Gosney Peter J Face-to-face rendezvous method and system
US20030055689A1 (en) * 2000-06-09 2003-03-20 David Block Automated internet based interactive travel planning and management system
US20020010604A1 (en) * 2000-06-09 2002-01-24 David Block Automated internet based interactive travel planning and reservation system
US20020099613A1 (en) 2000-06-14 2002-07-25 Garret Swart Method for forming and expressing reservables and engagements in a database for a transaction service
US7353182B1 (en) 2000-06-30 2008-04-01 Accenture Llp System and method for providing a multi-channel customer interaction center
US20020194037A1 (en) * 2000-07-19 2002-12-19 Jeff Creed Method and apparatus for arranging flexible and cost-efficient private air travel
US6842737B1 (en) * 2000-07-19 2005-01-11 Ijet Travel Intelligence, Inc. Travel information method and associated system
US6909903B2 (en) * 2000-07-20 2005-06-21 3E Technologies International, Inc. Method and system for location-aware wireless mobile devices including mobile user network message interfaces and protocol
US20020160745A1 (en) * 2000-07-20 2002-10-31 Ray Wang Method and system for location-aware wireless mobile devices including mobile user network message interfaces and protocol
US6317686B1 (en) 2000-07-21 2001-11-13 Bin Ran Method of providing travel time
US20020016723A1 (en) * 2000-07-31 2002-02-07 Kazuki Matsui Information broadcasting method and device
US20020013729A1 (en) * 2000-07-31 2002-01-31 Nec Corporation. Advertisement presentation system
US7280823B2 (en) * 2000-08-15 2007-10-09 Lockheed Martin Corporation Method and apparatus for determining the context of a handheld device
US20020039882A1 (en) * 2000-08-15 2002-04-04 Lockheed Martin Corporation Method and apparatus for determining the context of a handheld device
US20020022491A1 (en) * 2000-08-16 2002-02-21 Mccann Stephen LAN services delivery system
US20020055817A1 (en) * 2000-08-18 2002-05-09 Yue-Hong Chou Real-time smart mobile device for location information processing
US20020072938A1 (en) 2000-08-23 2002-06-13 Black Christopher M. Ground transportation internet reservation system
US20020065688A1 (en) 2000-08-29 2002-05-30 David Charlton Electronic reservation system
US20020032591A1 (en) 2000-09-08 2002-03-14 Agentai, Inc. Service request processing performed by artificial intelligence systems in conjunctiion with human intervention
US7194417B1 (en) 2000-09-22 2007-03-20 Amadeus Revenue Integrity, Inc. Automated method and system for recognizing unfulfilled obligations and initiating steps to convert said obligations to a fulfilled status or to a null status for resale
US20020049644A1 (en) 2000-09-28 2002-04-25 Kargman James B. Method for simplified one-touch ordering of goods and services from a wired or wireless phone or terminal
US6414635B1 (en) * 2000-10-23 2002-07-02 Wayport, Inc. Geographic-based communication service system with more precise determination of a user's known geographic location
US7124087B1 (en) 2000-11-03 2006-10-17 International Business Machines Corporation System and method for updating user home automation systems
US6366856B1 (en) * 2000-11-21 2002-04-02 Qualcomm Incorporated Method and apparatus for orienting a map display in a mobile or portable device
US7152038B2 (en) * 2000-11-22 2006-12-19 Fujitsu Limited Reservation method offering an alternative event
US20030233278A1 (en) 2000-11-27 2003-12-18 Marshall T. Thaddeus Method and system for tracking and providing incentives for tasks and activities and other behavioral influences related to money, individuals, technology and other assets
US6484033B2 (en) 2000-12-04 2002-11-19 Motorola, Inc. Wireless communication system for location based schedule management and method therefor
US20020069093A1 (en) * 2000-12-04 2002-06-06 Stanfield Richard C. Electronic reservation referral system and method
US20020077122A1 (en) 2000-12-14 2002-06-20 Koninklijke Philips Electronics N.V. Method of providing travel information to a mobile communications device
US20020115430A1 (en) 2000-12-21 2002-08-22 Hall William David Motion dispatch system
US20020116266A1 (en) 2001-01-12 2002-08-22 Thaddeus Marshall Method and system for tracking and providing incentives for time and attention of persons and for timing of performance of tasks
US20070033087A1 (en) 2001-01-12 2007-02-08 Energy Control Technologies Automated service broker
US7035811B2 (en) 2001-01-23 2006-04-25 Intimate Brands, Inc. System and method for composite customer segmentation
US7337125B2 (en) * 2001-01-25 2008-02-26 International Business Machines Corporation System and method for enhancing sales for service providers utilizing an opportunistic approach based on an unexpected change in schedule of services
US20020103693A1 (en) * 2001-01-30 2002-08-01 Horst Bayer System and method for aggregating and analyzing feedback
US6643639B2 (en) * 2001-02-07 2003-11-04 International Business Machines Corporation Customer self service subsystem for adaptive indexing of resource solutions and resource lookup
US6701311B2 (en) * 2001-02-07 2004-03-02 International Business Machines Corporation Customer self service system for resource search and selection
US20020152190A1 (en) * 2001-02-07 2002-10-17 International Business Machines Corporation Customer self service subsystem for adaptive indexing of resource solutions and resource lookup
US20020131565A1 (en) * 2001-02-09 2002-09-19 Scheuring Jerome James Calendaring systems and methods
US6529136B2 (en) 2001-02-28 2003-03-04 International Business Machines Corporation Group notification system and method for implementing and indicating the proximity of individuals or groups to other individuals or groups
US20020123280A1 (en) 2001-03-02 2002-09-05 Tissage Et Enduction Serge Ferrari Sa Textile possessing antilaceration properties
US20030036928A1 (en) 2001-03-13 2003-02-20 Galit Kenigsberg Must fly
US20030097485A1 (en) * 2001-03-14 2003-05-22 Horvitz Eric J. Schemas for a notification platform and related information services
US20020143655A1 (en) * 2001-04-02 2002-10-03 Stephen Elston Remote ordering system for mobile commerce
US20070208604A1 (en) 2001-04-02 2007-09-06 Siebel Systems, Inc. Method and system for scheduling activities
US20030023463A1 (en) * 2001-04-16 2003-01-30 Frank Dombroski Method and system for automatically planning, booking, and calendaring travel arrangements
US20020156731A1 (en) * 2001-04-19 2002-10-24 Fujitsu Limited Of Kawasaki, Japan System and method for supporting delivery of services
US6944447B2 (en) 2001-04-27 2005-09-13 Accenture Llp Location-based services
US20050125439A1 (en) 2001-04-30 2005-06-09 Illah Nourbakhsh Method and apparatus for multi-contact scheduling
US6792340B2 (en) * 2001-05-01 2004-09-14 Ronald Dunsky Apparatus and method for providing live display of aircraft flight information
US20030004937A1 (en) * 2001-05-15 2003-01-02 Jukka-Pekka Salmenkaita Method and business process to maintain privacy in distributed recommendation systems
US20020178226A1 (en) 2001-05-24 2002-11-28 Anderson Andrew V. Method and apparatus for message escalation by digital assistants
US7305356B2 (en) * 2001-05-25 2007-12-04 Amadeus Americas, Inc. Travel value index
US20040104977A1 (en) 2001-05-28 2004-06-03 Fuji Xerox Co., Ltd. Inkjet recording head and method for manufacturing the same
US20030195811A1 (en) * 2001-06-07 2003-10-16 Hayes Marc F. Customer messaging service
US20020198991A1 (en) * 2001-06-21 2002-12-26 International Business Machines Corporation Intelligent caching and network management based on location and resource anticipation
US20020198747A1 (en) 2001-06-26 2002-12-26 Boyer Stanley Gene Event driven airport
US20030004762A1 (en) * 2001-06-29 2003-01-02 International Business Machines Corporation Apparatus and method for augmenting a reservation system to provide user defined customized service
US20030023450A1 (en) * 2001-07-24 2003-01-30 Fabio Casati Modeling tool for electronic services and associated methods and business
US20030023499A1 (en) 2001-07-25 2003-01-30 International Business Machines Corporation Apparatus, system and method for automatically making operational purchasing decisions
US20030033164A1 (en) 2001-07-30 2003-02-13 Boi Faltings Systems and methods for graphically displaying travel information
US20030028390A1 (en) * 2001-07-31 2003-02-06 Stern Edith H. System to provide context-based services
US20030040944A1 (en) 2001-08-22 2003-02-27 Hileman Ryan M. On-demand transportation system
US20040133638A1 (en) * 2001-08-28 2004-07-08 Doss J. Smith Calendar-enhanced awareness for instant messaging systems and electronic status boards
US20030050964A1 (en) * 2001-09-07 2003-03-13 Philippe Debaty Method and system for context manager proxy
US20030053611A1 (en) 2001-09-20 2003-03-20 Lee Seung-Ku Method for providing outgoing call reservation service in exchange system
US20030225600A1 (en) 2001-09-24 2003-12-04 Slivka Daria M. Methods, systems, and articles of manufacture for re-accommodating passengers following a travel disruption
US6837427B2 (en) 2001-11-21 2005-01-04 Goliath Solutions, Llc. Advertising compliance monitoring system
US20030212800A1 (en) * 2001-12-03 2003-11-13 Jones Bryce A. Method and system for allowing multiple service providers to serve users via a common access network
US20030149781A1 (en) 2001-12-04 2003-08-07 Peter Yared Distributed network identity
US6804658B2 (en) 2001-12-14 2004-10-12 Delta Air Lines, Inc. Method and system for origin-destination passenger demand forecast inference
US7289812B1 (en) * 2001-12-20 2007-10-30 Adobe Systems Incorporated Location-based bookmarks
US20030120530A1 (en) * 2001-12-21 2003-06-26 Fabio Casati Method and system for performing a context-dependent service
US20030126205A1 (en) 2001-12-27 2003-07-03 Steven Lurie Apparatus and method for scheduling live advice communication with a selected service provider
US20030126095A1 (en) * 2001-12-28 2003-07-03 Docomo Communications Laboratories Usa, Inc. Context-aware market-making service
US20040102979A1 (en) 2002-01-23 2004-05-27 Robertson Steven C. System and method for providing electronic passenger and luggage handling services over a distributed network
US20030177045A1 (en) 2002-01-25 2003-09-18 Matt Fitzgerald System and method for processing trip requests
US7376735B2 (en) 2002-01-31 2008-05-20 Verint Americas Inc. Method, apparatus, and system for capturing data exchanged between a server and a user
US20060020565A1 (en) 2002-02-04 2006-01-26 George Rzevski Agent, method and computer system for negotiating in a virtual environment
US7283970B2 (en) 2002-02-06 2007-10-16 International Business Machines Corporation Method and meeting scheduler for automated meeting insertion and rescheduling for busy calendars
US7139978B2 (en) 2002-03-01 2006-11-21 Sap Ag Recording user interaction with an application
US20040002876A1 (en) 2002-03-06 2004-01-01 Sommers Mark O. System, method and computer program product for on-line travel and expense management
US20040088392A1 (en) 2002-03-18 2004-05-06 The Regents Of The University Of California Population mobility generator and simulator
US20040203851A1 (en) * 2002-04-11 2004-10-14 Anthony Vetro Environment aware services for mobile devices
US20030233365A1 (en) 2002-04-12 2003-12-18 Metainformatics System and method for semantics driven data processing
US20030208754A1 (en) 2002-05-01 2003-11-06 G. Sridhar System and method for selective transmission of multimedia based on subscriber behavioral model
US20040093290A1 (en) * 2002-05-09 2004-05-13 International Business Machines Corporation Intelligent free-time search
US20070011034A1 (en) 2002-05-10 2007-01-11 Travelocity.Com Lp Goal oriented travel planning system
US20030229900A1 (en) 2002-05-10 2003-12-11 Richard Reisman Method and apparatus for browsing using multiple coordinated device sets
US20030220835A1 (en) * 2002-05-23 2003-11-27 Barnes Melvin L. System, method, and computer program product for providing location based services and mobile e-commerce
US7426537B2 (en) 2002-05-31 2008-09-16 Microsoft Corporation Systems and methods for sharing dynamic content among a plurality of online co-users
US7394900B1 (en) 2002-06-24 2008-07-01 Southwest Airlines Co. Method and apparatus for preventing the interception of data being transmitted to a web site by a monitoring program
US20040019606A1 (en) 2002-07-26 2004-01-29 Scott Ackerman Travel update messaging system and method
US7376662B2 (en) 2002-07-26 2008-05-20 Orbitz Llc Travel update messaging system and method
US7162254B1 (en) 2002-09-09 2007-01-09 Bellsouth Intellectual Property Corp: Methods and systems for delivering travel-related information
US20040064585A1 (en) 2002-09-17 2004-04-01 International Business Machines Corporation Predicting and adjusting users' working hours and electronic calendar events
US20040128196A1 (en) 2002-09-19 2004-07-01 Masatsugu Shibuno One-to-one business support system and program for implementing the function of the system
US20040064445A1 (en) 2002-09-30 2004-04-01 Pfleging Gerald W. Wireless access to a database by a short message system query
US20040064355A1 (en) 2002-10-01 2004-04-01 Dorenbosch Jheroen Pieter Method and apparatus for scheduling a meeting
US20060009987A1 (en) 2002-10-09 2006-01-12 Fang Wang Distributed scheduling
US20040220847A1 (en) 2002-10-10 2004-11-04 Shoji Ogushi Method and program for assisting a worker in charge of operations
US20040088107A1 (en) 2002-11-04 2004-05-06 Seligmann Doree Duncan Intelligent trip status notification
US7284062B2 (en) * 2002-12-06 2007-10-16 Microsoft Corporation Increasing the level of automation when provisioning a computer system to access a network
US20040193432A1 (en) 2003-03-25 2004-09-30 Tariq Khalidi Automated and integrated acquisition system and process
US7296017B2 (en) 2003-03-28 2007-11-13 Microsoft Corporation Validation of XML data files
US20040199411A1 (en) 2003-04-04 2004-10-07 Bertram Jeffrey Mark Method and system for rebooking a passenger
US20040249568A1 (en) 2003-04-11 2004-12-09 Yoshinori Endo Travel time calculating method and traffic information display method for a navigation device
US20050043974A1 (en) 2003-04-16 2005-02-24 Assen Vassilev Bounded flexibility search and interface for travel reservations
US20050010472A1 (en) 2003-07-08 2005-01-13 Quatse Jesse T. High-precision customer-based targeting by individual usage statistics
US20060236257A1 (en) * 2003-08-11 2006-10-19 Core Mobility, Inc. Interactive user interface presentation attributes for location-based content
US7430724B2 (en) 2003-08-11 2008-09-30 Core Mobility, Inc. Systems and methods for displaying content in a ticker
US7330112B1 (en) * 2003-09-09 2008-02-12 Emigh Aaron T Location-aware services
US20050071245A1 (en) 2003-09-25 2005-03-31 Norins Arthur L. System and method for transacting for a perishable object having an uncertain availability
US20060010206A1 (en) 2003-10-15 2006-01-12 Microsoft Corporation Guiding sensing and preferences for context-sensitive services
US7137099B2 (en) 2003-10-24 2006-11-14 Microsoft Corporation System and method for extending application preferences classes
US20050091005A1 (en) 2003-10-27 2005-04-28 Jean-Francois Huard Computer performance estimation system configured to take expected events into consideration
US20050138187A1 (en) 2003-12-19 2005-06-23 International Business Machines Corporation Dynamic late binding of third party on demand services in an on-demand infrastructure
US20070162328A1 (en) 2004-01-20 2007-07-12 Nooly Technologies, Ltd. Lbs nowcasting sensitive advertising and promotion system and method
US20050187703A1 (en) 2004-02-24 2005-08-25 Seligmann Doree D. Determining departure times for timetable-based trips
US20050209772A1 (en) 2004-03-22 2005-09-22 Aisin Aw Co., Ltd. Navigation systems, methods, and programs
US20050216301A1 (en) 2004-03-28 2005-09-29 Brown Kevin L Itinerary planning tool, system, and method
US20050227712A1 (en) 2004-04-13 2005-10-13 Texas Instruments Incorporated Handset meeting assistant
US20050273373A1 (en) 2004-05-21 2005-12-08 Alan Walker Systems, methods, and computer program products for searching and displaying low cost product availability information for a given departure-return date combination or range of departure-return date combinations
US20060004511A1 (en) 2004-07-02 2006-01-05 Aisin Aw Co., Ltd. Navigation system, traffic prediction method, and traffic prediction program
US20060041477A1 (en) 2004-08-17 2006-02-23 Zhiliang Zheng System and method for providing targeted information to users
US20060080321A1 (en) * 2004-09-22 2006-04-13 Whenu.Com, Inc. System and method for processing requests for contextual information
US20090234564A1 (en) 2004-12-07 2009-09-17 Navitime Japan Co., Ltd. Unoccupied seat route search system, unoccupied seat route search device, and terminal device
US20060129438A1 (en) 2004-12-10 2006-06-15 Sabre Inc. Method, system, and computer readable medium for dynamically generating multi-modal trip choices
US20060206363A1 (en) 2005-03-13 2006-09-14 Gove Jeremy J Group travel planning, optimization, synchronization and coordination software tool and processes for travel arrangements for transportation and lodging for multiple people from multiple geographic locations, domestic and global, to a single destination or series of destinations
US20070162301A1 (en) 2005-03-22 2007-07-12 Adam Sussman Computer-implemented systems and methods for resource allocation
US20060220374A1 (en) 2005-04-04 2006-10-05 Backpacker Magazine Chart including waypoints and corresponding directional symbols
US20060241983A1 (en) 2005-04-21 2006-10-26 Valerie Viale Customer centric travel system
US20060247954A1 (en) 2005-04-29 2006-11-02 Us Airways, Inc. Method and system for scheduling travel ltineraries through an online interface
US20070123280A1 (en) 2005-07-13 2007-05-31 Mcgary Faith System and method for providing mobile device services using SMS communications
US20070016514A1 (en) 2005-07-15 2007-01-18 Al-Abdulqader Hisham A System, program product, and methods for managing contract procurement
US20070083327A1 (en) 2005-10-07 2007-04-12 Sabre Inc. System, method, and computer program product for comparing the cost of driving an owned or leased vehicle to the cost various transportation options
US20070143153A1 (en) 2005-12-20 2007-06-21 Unisys Corporation Demand tracking system and method for a transportation carrier
US7565331B2 (en) 2006-02-28 2009-07-21 The Boeing Company Method for modeling processes in airlines and other industries, including cost asssesment of service disruptions
US20080052159A1 (en) 2006-03-26 2008-02-28 Venkataraman Balakrishnan Service promotion using encodable review codes
US20090101710A1 (en) 2006-03-31 2009-04-23 Rearden Commerce, Inc. Method and System for Unified Presentation of Event Booking Systems
US20080103842A1 (en) 2006-10-25 2008-05-01 Johnson Michael J Travel cost estimating
US20090210261A1 (en) 2008-02-20 2009-08-20 Rearden Commerce, Inc. System and Method for Multi-Modal Travel Shopping
US20090248457A1 (en) 2008-03-31 2009-10-01 Rearden Commerce, Inc. System and Method for Providing Travel Schedule of Contacts

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Business Editors, "Restaurant Row Selects ServeClick from Connectria to Power its Advanced Online Restaurant E-scheduling," Business Wire, New York, Feb. 1, 2000.
Kanaley, Reid, "More Ways Than One to Access Crowded AOL," Philadelphia Enquirer, Jan. 16, 1997, p. F1.
Orbitz, LLC, search results of online search for flights at www.orbitz.com, Mar. 11, 2009.
Reed, Dan et al., "More people find ways to squeeze fun into work trips; For many business travelers, taking family or friends on a trip at relatively low cost has become a handy job perk," USA Today, McLean VA, May 20, 2003, p. E12.
Sharkey, Joe, "Leisure activities are increasingly being fitted in to help make life on the road less of a grind," The New York Times, New York, N.Y., Apr. 18, 2001, p. C6.
Smith, Calvin et al., "The Talaris Services Business Language: A Case Study on Developing XML Vocabulaires Using the Universal Business Language," School of Information Management & Systems, University of California, Sep. 2002, pp. 1-16.

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140236646A1 (en) * 2004-02-19 2014-08-21 Idss (Internet Destination Sales System) Internet Destination Sales System with ASP-Hosted Member Interface
US8543470B2 (en) 2004-06-15 2013-09-24 Rearden Commerce, Inc. System and method for targeting limited-time offer based on likelihood of acceptance and selecting transmission media based on customer interest
US20100023407A1 (en) * 2004-06-15 2010-01-28 Rearden Commerce, Inc. System and Method for Availability-Based Limited-Time Offerings and Transactions
US9552599B1 (en) 2004-09-10 2017-01-24 Deem, Inc. Platform for multi-service procurement
US10049330B2 (en) 2004-09-10 2018-08-14 Deem, Inc. Platform for multi-service procurement
US10832177B2 (en) 2004-09-10 2020-11-10 Deem, Inc. Platform for multi-service procurement
US10217131B2 (en) 2005-12-28 2019-02-26 Deem, Inc. System for resource service provider
US11443342B2 (en) 2005-12-28 2022-09-13 Deem, Inc. System for resource service provider
US9558505B2 (en) 2006-07-18 2017-01-31 American Express Travel Related Services Company, Inc. System and method for prepaid rewards
US9934537B2 (en) 2006-07-18 2018-04-03 American Express Travel Related Services Company, Inc. System and method for providing offers through a social media channel
US9576294B2 (en) 2006-07-18 2017-02-21 American Express Travel Related Services Company, Inc. System and method for providing coupon-less discounts based on a user broadcasted message
US9665879B2 (en) 2006-07-18 2017-05-30 American Express Travel Related Services Company, Inc. Loyalty incentive program using transaction cards
US8751295B2 (en) 2006-07-18 2014-06-10 America Express Travel Related Services Company, Inc. System and method for providing international coupon-less discounts
US10453088B2 (en) 2006-07-18 2019-10-22 American Express Travel Related Services Company, Inc. Couponless rewards in response to a transaction
US9684909B2 (en) 2006-07-18 2017-06-20 American Express Travel Related Services Company Inc. Systems and methods for providing location based coupon-less offers to registered card members
US9613361B2 (en) 2006-07-18 2017-04-04 American Express Travel Related Services Company, Inc. System and method for E-mail based rewards
US11367098B2 (en) 2006-07-18 2022-06-21 American Express Travel Related Services Company, Inc. Offers selected during authorization
US10430821B2 (en) 2006-07-18 2019-10-01 American Express Travel Related Services Company, Inc. Prepaid rewards credited to a transaction account
US11836757B2 (en) 2006-07-18 2023-12-05 American Express Travel Related Services Company, Inc. Offers selected during authorization
US9665880B2 (en) 2006-07-18 2017-05-30 American Express Travel Related Services Company, Inc. Loyalty incentive program using transaction cards
US9542690B2 (en) 2006-07-18 2017-01-10 American Express Travel Related Services Company, Inc. System and method for providing international coupon-less discounts
US9767467B2 (en) 2006-07-18 2017-09-19 American Express Travel Related Services Company, Inc. System and method for providing coupon-less discounts based on a user broadcasted message
US9569789B2 (en) 2006-07-18 2017-02-14 American Express Travel Related Services Company, Inc. System and method for administering marketing programs
US9412102B2 (en) 2006-07-18 2016-08-09 American Express Travel Related Services Company, Inc. System and method for prepaid rewards
US9430773B2 (en) 2006-07-18 2016-08-30 American Express Travel Related Services Company, Inc. Loyalty incentive program using transaction cards
US10157398B2 (en) 2006-07-18 2018-12-18 American Express Travel Related Services Company, Inc. Location-based discounts in different currencies
US20080201197A1 (en) * 2007-02-16 2008-08-21 Rearden Commerce, Inc. System and Method for Peer Person- And Situation-Based Recommendations
US20090030609A1 (en) * 2007-07-27 2009-01-29 Rearden Commerce, Inc. System and Method for Proactive Agenda Management
US20090030769A1 (en) * 2007-07-27 2009-01-29 Rearden Commerce, Inc. System and Method for Latency Management Assistant
US20110264474A1 (en) * 2008-09-10 2011-10-27 Vegas.Com System and method for reserving and purchasing events
US20100076862A1 (en) * 2008-09-10 2010-03-25 Vegas.Com System and method for reserving and purchasing events
US11720908B2 (en) 2009-04-30 2023-08-08 Deem, Inc. System and method for offering, tracking and promoting loyalty rewards
US10552849B2 (en) 2009-04-30 2020-02-04 Deem, Inc. System and method for offering, tracking and promoting loyalty rewards
US20100312586A1 (en) * 2009-06-03 2010-12-09 Drefs Martin J Generation of Travel-Related Offerings
US20110054994A1 (en) * 2009-08-31 2011-03-03 Anne Kelly Infrastructure for marketing disparate services
US9489680B2 (en) 2011-02-04 2016-11-08 American Express Travel Related Services Company, Inc. Systems and methods for providing location based coupon-less offers to registered card members
US9870540B2 (en) 2011-05-20 2018-01-16 Deem, Inc. Travel services search
US9449288B2 (en) 2011-05-20 2016-09-20 Deem, Inc. Travel services search
US9374434B2 (en) * 2011-07-12 2016-06-21 Genband Us Llc Methods, systems, and computer readable media for deriving user availability from user context and user responses to communications requests
US20130019004A1 (en) * 2011-07-12 2013-01-17 Genband Inc. Methods, systems, and computer readable media for deriving user availability from user context and user responses to communications requests
US10043196B2 (en) 2011-09-26 2018-08-07 American Express Travel Related Services Company, Inc. Expenditures based on ad impressions
US9715696B2 (en) 2011-09-26 2017-07-25 American Express Travel Related Services Company, Inc. Systems and methods for targeting ad impressions
US8849699B2 (en) 2011-09-26 2014-09-30 American Express Travel Related Services Company, Inc. Systems and methods for targeting ad impressions
US9715697B2 (en) 2011-09-26 2017-07-25 American Express Travel Related Services Company, Inc. Systems and methods for targeting ad impressions
US9672526B2 (en) 2012-03-13 2017-06-06 American Express Travel Related Services Company, Inc. Systems and methods for tailoring marketing
US11087336B2 (en) 2012-03-13 2021-08-10 American Express Travel Related Services Company, Inc. Ranking merchants based on a normalized popularity score
US9881309B2 (en) 2012-03-13 2018-01-30 American Express Travel Related Services Company, Inc. Systems and methods for tailoring marketing
US11741483B2 (en) 2012-03-13 2023-08-29 American Express Travel Related Services Company, Inc. Social media distribution of offers based on a consumer relevance value
US9697529B2 (en) 2012-03-13 2017-07-04 American Express Travel Related Services Company, Inc. Systems and methods for tailoring marketing
US11734699B2 (en) 2012-03-13 2023-08-22 American Express Travel Related Services Company, Inc. System and method for a relative consumer cost
US11367086B2 (en) 2012-03-13 2022-06-21 American Express Travel Related Services Company, Inc. System and method for an estimated consumer price
US10181126B2 (en) 2012-03-13 2019-01-15 American Express Travel Related Services Company, Inc. Systems and methods for tailoring marketing
US10909608B2 (en) 2012-03-13 2021-02-02 American Express Travel Related Services Company, Inc Merchant recommendations associated with a persona
US9195988B2 (en) 2012-03-13 2015-11-24 American Express Travel Related Services Company, Inc. Systems and methods for an analysis cycle to determine interest merchants
US9361627B2 (en) 2012-03-13 2016-06-07 American Express Travel Related Services Company, Inc. Systems and methods determining a merchant persona
US10192256B2 (en) 2012-03-13 2019-01-29 American Express Travel Related Services Company, Inc. Determining merchant recommendations
US9665874B2 (en) 2012-03-13 2017-05-30 American Express Travel Related Services Company, Inc. Systems and methods for tailoring marketing
US20140058769A1 (en) * 2012-08-22 2014-02-27 Xinyu Zhang Social network for tour planning
US9514484B2 (en) 2012-09-07 2016-12-06 American Express Travel Related Services Company, Inc. Marketing campaign application for multiple electronic distribution channels
US9514483B2 (en) 2012-09-07 2016-12-06 American Express Travel Related Services Company, Inc. Marketing campaign application for multiple electronic distribution channels
US9715700B2 (en) 2012-09-07 2017-07-25 American Express Travel Related Services Company, Inc. Marketing campaign application for multiple electronic distribution channels
US10664883B2 (en) 2012-09-16 2020-05-26 American Express Travel Related Services Company, Inc. System and method for monitoring activities in a digital channel
US9710822B2 (en) 2012-09-16 2017-07-18 American Express Travel Related Services Company, Inc. System and method for creating spend verified reviews
US10163122B2 (en) 2012-09-16 2018-12-25 American Express Travel Related Services Company, Inc. Purchase instructions complying with reservation instructions
US10846734B2 (en) 2012-09-16 2020-11-24 American Express Travel Related Services Company, Inc. System and method for purchasing in digital channels
US9754277B2 (en) 2012-09-16 2017-09-05 American Express Travel Related Services Company, Inc. System and method for purchasing in a digital channel
US9633362B2 (en) 2012-09-16 2017-04-25 American Express Travel Related Services Company, Inc. System and method for creating reservations
US9754278B2 (en) 2012-09-16 2017-09-05 American Express Travel Related Services Company, Inc. System and method for purchasing in a digital channel
US10685370B2 (en) 2012-09-16 2020-06-16 American Express Travel Related Services Company, Inc. Purchasing a reserved item
US8868444B2 (en) 2012-09-16 2014-10-21 American Express Travel Related Services Company, Inc. System and method for rewarding in channel accomplishments
WO2014071043A1 (en) * 2012-10-31 2014-05-08 DoWhatILikeBest, LLC Favorite and serendipitous event correlation and notification
US11170397B2 (en) 2012-11-27 2021-11-09 American Express Travel Related Services Company, Inc. Dynamic rewards program
US10504132B2 (en) 2012-11-27 2019-12-10 American Express Travel Related Services Company, Inc. Dynamic rewards program
US10438269B2 (en) 2013-03-12 2019-10-08 Mastercard International Incorporated Systems and methods for recommending merchants
US11727462B2 (en) 2013-03-12 2023-08-15 Mastercard International Incorporated System, method, and non-transitory computer-readable storage media for recommending merchants
AU2014238141B2 (en) * 2013-03-15 2016-10-06 Expedia, Inc. Managing item queries
WO2014149513A1 (en) * 2013-03-15 2014-09-25 Expedia, Inc. Managing item queries
WO2014186735A1 (en) * 2013-05-16 2014-11-20 MobileRQ, Inc. Harnessing large data sources to define a mobile user's real-time context then determining and delivering highly relevant mobile messages based on that context
WO2015095828A1 (en) * 2013-12-20 2015-06-25 Urban Engines, Inc. Transportation system reconstruction
US9915542B2 (en) 2013-12-20 2018-03-13 Google Llc Transportation system reconstruction
US20150199441A1 (en) * 2014-01-10 2015-07-16 Dabeeo, Inc. Method and apparatus for providing tour plan service
US10395237B2 (en) 2014-05-22 2019-08-27 American Express Travel Related Services Company, Inc. Systems and methods for dynamic proximity based E-commerce transactions
US9634976B2 (en) 2014-08-29 2017-04-25 Google Inc. Systems and methods for organizing the display of messages
US9530151B2 (en) 2014-11-26 2016-12-27 Mastercard International Incorporated Method and system for recommending a merchant based on transaction data
US9454768B2 (en) 2014-11-26 2016-09-27 Mastercard International Incorporated Method and system for estimating a price of a trip based on transaction data
US9689693B2 (en) * 2015-04-09 2017-06-27 Mapquest, Inc. Systems and methods for learning and displaying customized geographical navigational options
US20160298974A1 (en) * 2015-04-09 2016-10-13 Mapquest, Inc. Systems and methods for learning and displaying customized geographical navigational options
EP3133536A1 (en) 2015-08-20 2017-02-22 Xerox Corporation System and method for multi-factored-based ranking of trips
WO2019032988A1 (en) * 2017-08-11 2019-02-14 Uber Technologies, Inc. Dynamic scheduling system for planned service requests
US10721327B2 (en) 2017-08-11 2020-07-21 Uber Technologies, Inc. Dynamic scheduling system for planned service requests
US10664929B2 (en) 2018-06-19 2020-05-26 International Business Machines Corporation Extracting data for professional event and participant grouping recommendations
CN112889043A (en) * 2018-10-04 2021-06-01 微软技术许可有限责任公司 User-centric browser location
US11099016B2 (en) 2019-03-29 2021-08-24 Naver Corporation System and method for generating pedestrian tours
US11300418B2 (en) 2019-05-20 2022-04-12 International Business Machines Corporation Customized trip grouping based on individualized user preferences
US11822593B1 (en) * 2022-09-29 2023-11-21 Discovery.Com, Llc Systems and methods for establishing an itinerary based on multimedia content of interest

Similar Documents

Publication Publication Date Title
US7925540B1 (en) Method and system for an automated trip planner
US8090707B1 (en) Chance meeting addition to trip planner or meeting planner
US7660743B1 (en) System for optimization of cost management
US8121953B1 (en) Intelligent meeting planner
US8117073B1 (en) Method and system for delegation of travel arrangements by a temporary agent
US7970666B1 (en) Aggregate collection of travel data
US10832177B2 (en) Platform for multi-service procurement
US8484088B1 (en) Customer satisfaction in booking process
US7225442B2 (en) Method and system for dynamic utilization mechanisms for facilities whose reservation status can change dynamically
US20090210262A1 (en) Methods and apparatus for automated travel
US7499864B2 (en) Integrated travel industry system
US8090604B2 (en) System and method for processing trip requests
AU2010298137B2 (en) Collaboration and travel ecosystem
US20100017238A1 (en) Travel management system
US20150112738A1 (en) Reserving venue for calendar event
US20080177611A1 (en) Means and methods to coordinate meetings and generation of related documents
US20020120703A1 (en) Cooperative location based tasks
US20030005055A1 (en) Multi-facility reservation scheduling system
US20070233528A1 (en) System for and method of providing travel-related services
WO2022202062A1 (en) Schedule adjustment device, schedule adjustment method, and program
WO2023074107A1 (en) Schedule adjustment device, schedule adjustment method, and program
US9161994B1 (en) Cost model analysis and breakdown for cost buildup
US9226975B1 (en) Apparatus and method to provide community pricing
US20130210468A1 (en) Text Communications Across Wireless Devices Using Private Exchange
KR100346331B1 (en) method of administering schedule in internet

Legal Events

Date Code Title Description
AS Assignment

Owner name: TALARIS CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ORTTUNG, MARK;MCEVOY, MIKE;GILLIGAN, GEFF;AND OTHERS;REEL/FRAME:015906/0194

Effective date: 20041013

AS Assignment

Owner name: REARDEN COMMERCE INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNORS:ORTTUNG, MARK;MCEVOY, MIKE;GILLIGAN, GEFF;AND OTHERS;REEL/FRAME:017556/0230

Effective date: 20050125

AS Assignment

Owner name: LABMORGAN INVESTMENT CORPORATION, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:REARDEN COMMERCE, INC.;REEL/FRAME:023254/0243

Effective date: 20090917

AS Assignment

Owner name: GOLD HILL CAPITAL 2008, LP, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:REARDEN COMMERCE, INC.;REEL/FRAME:025051/0095

Effective date: 20100909

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: REARDEN COMMERCE, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:LABMORGAN INVESTMENT CORPORATION;REEL/FRAME:028053/0769

Effective date: 20120413

Owner name: REARDEN COMMERCE, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLD HILL CAPITAL 2008, LP;REEL/FRAME:028053/0556

Effective date: 20120412

AS Assignment

Owner name: LABMORGAN INVESTMENT CORPORATION, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:REARDEN COMMERCE, INC.;REEL/FRAME:029259/0491

Effective date: 20120907

AS Assignment

Owner name: REARDEN COMMERCE, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:LABMORGAN INVESTMENT CORPORATION;REEL/FRAME:031249/0616

Effective date: 20130919

AS Assignment

Owner name: REARDEN COMMERCE INC., CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNOR PREVIOUSLY RECORDED ON REEL 017556 FRAME 0230. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:TALARIS CORPORATION;REEL/FRAME:032875/0607

Effective date: 20050125

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
AS Assignment

Owner name: DEEM, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:REARDEN COMMERCE, INC.;REEL/FRAME:035772/0888

Effective date: 20130919

FEPP Fee payment procedure

Free format text: 7.5 YR SURCHARGE - LATE PMT W/IN 6 MO, SMALL ENTITY (ORIGINAL EVENT CODE: M2555); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12

AS Assignment

Owner name: WILMINGTON SAVINGS FUND SOCIETY, FSB, AS COLLATERAL AGENT, DELAWARE

Free format text: SECURITY INTEREST;ASSIGNORS:DEEM, INC.;TRAVELPORT, INC.;TRAVELPORT OPERATIONS, INC.;REEL/FRAME:063204/0254

Effective date: 20230330

Owner name: WILMINGTON SAVINGS FUND SOCIETY, FSB, DELAWARE

Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNORS:TRAVELPORT, LP (COMPOSED OF: TRAVELPORT HOLDINGS, LLC);TRAVELPORT INTERNATIONAL OPERATIONS LIMITED;DEEM, INC.;AND OTHERS;REEL/FRAME:063197/0551

Effective date: 20230330

AS Assignment

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, MINNESOTA

Free format text: SECURITY INTEREST;ASSIGNORS:TRAVELPORT, LP;TRAVELPORT INTERNATIONAL OPERATIONS LIMITED;DEEM, INC.;REEL/FRAME:065762/0267

Effective date: 20231204

AS Assignment

Owner name: TRAVELPORT OPERATIONS, INC., NEW JERSEY

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON SAVINGS FUND SOCIETY, FSB;REEL/FRAME:066157/0732

Effective date: 20231228

Owner name: TRAVELPORT, INC., NEW JERSEY

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON SAVINGS FUND SOCIETY, FSB;REEL/FRAME:066157/0732

Effective date: 20231228

Owner name: DEEM, INC., CALIFORNIA

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON SAVINGS FUND SOCIETY, FSB;REEL/FRAME:066157/0732

Effective date: 20231228

Owner name: TRAVELPORT INTERNATIONAL OPERATIONS LIMITED, UNITED KINGDOM

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON SAVINGS FUND SOCIETY, FSB;REEL/FRAME:066157/0732

Effective date: 20231228

Owner name: TRAVELPORT, LP, DELAWARE

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON SAVINGS FUND SOCIETY, FSB;REEL/FRAME:066157/0732

Effective date: 20231228

AS Assignment

Owner name: DEEM, INC., GEORGIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:066140/0556

Effective date: 20231228

Owner name: TRAVELPORT INTERNATIONAL OPERATIONS LIMITED, UNITED KINGDOM

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:066140/0556

Effective date: 20231228

Owner name: TRAVELPORT, LP, GEORGIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:066140/0556

Effective date: 20231228