US9271176B2 - System and method for backhaul based sounding feedback - Google Patents

System and method for backhaul based sounding feedback Download PDF

Info

Publication number
US9271176B2
US9271176B2 US14/472,759 US201414472759A US9271176B2 US 9271176 B2 US9271176 B2 US 9271176B2 US 201414472759 A US201414472759 A US 201414472759A US 9271176 B2 US9271176 B2 US 9271176B2
Authority
US
United States
Prior art keywords
channel
neighboring
sounding
csi
sta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US14/472,759
Other versions
US20150281993A1 (en
Inventor
Phil F. Chen
Stuart S. Jeffery
Kenneth Kludt
Haim Harel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magnolia Broadband Inc
Original Assignee
Magnolia Broadband Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magnolia Broadband Inc filed Critical Magnolia Broadband Inc
Priority to US14/472,759 priority Critical patent/US9271176B2/en
Assigned to MAGNOLIA BROADBAND INC. reassignment MAGNOLIA BROADBAND INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, PHIL F., HAREL, HAIM, JEFFERY, STUART S., KLUDT, KENNETH
Publication of US20150281993A1 publication Critical patent/US20150281993A1/en
Application granted granted Critical
Publication of US9271176B2 publication Critical patent/US9271176B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing

Definitions

  • the present invention relates generally to the field of wireless communication, and more specifically to high efficiency Wi-Fi systems.
  • Wi-Fi is used to refer to technology that allows communication devices to interact wirelessly based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standards.
  • IEEE Institute of Electrical and Electronics Engineers
  • the wireless communication may use microwave bands, e.g. in the 2.4 GHz to 5 GHz range.
  • AP is an acronym for Access Point and is used herein to define a device that allows wireless devices (known as User Equipment or “UE”) to connect to a wired network using Wi-Fi, or related standards.
  • UE User Equipment
  • the AP usually connects to a router (via a wired network) as a standalone device, but it can also be an integral component of the router itself.
  • UE is an acronym for User Equipment(s) and is an example of a station, e.g. Wi-Fi station (STA) that may attach to an AP.
  • STA Wi-Fi station
  • associated STA refers to a STA that is served by a certain AP, for example with a certain Service Set Identifier (SSID).
  • SSID Service Set Identifier
  • station or STA is a term used for any participant on the network, for example as used in the 802.11 specification. Both UEs and APs are considered in this context to be examples of stations. In the following the abbreviation STA is used for stations whose packets are detected by a Wi-Fi RDN station implementing embodiments of the invention.
  • BSS is acronym for Basic Service Set, which is typically a cluster of Stations associated with an AP dedicated to managing the BSS.
  • a BSS built around an AP is called an infrastructure BSS.
  • the term “backhaul” is used in the following to denote a communication path between two APs or base stations, for example using a different protocol from that used for wireless communication between an AP or base station and supported equipment or STA.
  • the 802.11 specification does not provide for communication between APs.
  • a backhaul link may operate outside a wireless, e.g. Wi-Fi, environment in which APs or base stations and associated UEs or other STAs are operating, or use one or more different channels from those used by APs to communicate with their associated stations.
  • a backhaul link may use any combination of wired and wireless communication including but not limited to a cellular communication network, Ethernet, and the internet.
  • Beacon transmission refers to periodical information transmission which may include system information.
  • HT-LTF is an acronym for high throughput long training field as defined in the 802.11 specification.
  • MPDU is an acronym for media access code (MAC) protocol data unit as defined in the 802.11 specification.
  • MAC media access code
  • NAV is an acronym for network allocation vector as defined in the 802.11 specification.
  • NDP is an acronym for null data packet.
  • PPDU is an acronym for physical layer convergence procedure (PLCP) protocol data unit as defined in the 802.11 specification.
  • PLCP physical layer convergence procedure
  • sounding refers to a channel calibration procedure involving the sending of a packet, called a “sounding packet” from one participant on a network to another, for example as defined in the 802.11 specifications.
  • VHT is an acronym for very high throughput as defined in the 802.11 specification.
  • the specific Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) mechanism used in the 802.11 Media Access Control (MAC) is referred to as the distributed coordination function (DCF).
  • DCF distributed coordination function
  • a station that wishes to transmit first performs a clear channel assessment (CCA) by sensing the medium for a fixed duration, the DCF inter-frame space (DIFS).
  • CCA clear channel assessment
  • DIFS DCF inter-frame space
  • SIFS Short Inter Frame Space, as defined in the 802.11 specifications is the period between reception of the data frame and transmission of the ACK. SIFS is shorter than DIFS.
  • CCA Clear Channel Assessment
  • MIMO is an acronym for multiple input multiple output and as used herein, is defined as the use of multiple antennas at both the transmitter and receiver to improve communication performance.
  • MIMO offers significant increases in data throughput and link range without additional bandwidth or increased transmit power. It achieves this goal by spreading the transmit power over the antennas to achieve spatial multiplexing that improves the spectral efficiency (more bits per second per Hz of bandwidth) or to achieve a diversity gain that improves the link reliability (reduced fading), or increased antenna directivity.
  • Channel estimation is used herein to refer to estimation of channel state information (CSI) which describes properties of a communication link such as signal to noise ratio “SNR” and signal to interference plus noise ratio “SINR”.
  • CSI channel state information
  • SNR signal to noise ratio
  • SINR signal to interference plus noise ratio
  • SINR signal to interference plus noise ratio
  • beamforming sometimes referred to as “spatial filtering” as used herein, is a signal processing technique used in antenna arrays for directional signal transmission or reception. This is achieved by combining elements in the array in such a way that signals at particular angles experience constructive interference while others experience destructive interference. Beamforming can be used at both the transmitting and receiving ends in order to achieve spatial selectivity. The operation of attempting to achieve destructive interference in order to cancel a signal in a particular direction or angle is referred to as “nulling”. Complete cancellation of a signal is not usually achieved in practice and a “null” in a radiation pattern may refer to a minimum in signal strength. The lower the signal strength, the “deeper” the null is said to be.
  • beamformer refers to analog and/or digital circuitry that implements beamforming and may include combiners and phase shifters or delays and in some cases amplifiers and/or attenuators to adjust the weights of signals to or from each antenna in an antenna array.
  • Digital beamformers may be implemented in digital circuitry such as a digital signal processor (DSP), field-programmable gate array (FPGA), microprocessor or the central processing unit “CPU” of a computer to set the weights as may be expressed by phases and/or amplitudes of the above signals.
  • DSP digital signal processor
  • FPGA field-programmable gate array
  • CPU central processing unit
  • Various techniques are used to implement beamforming including: Butler matrices, Blass Matrices and Rotman Lenses. In general, most approaches may attempt to provide simultaneous coverage within a sector using multiple beams.
  • Wi-Fi is a time division duplex system (TDD), where the transmitting and receiving functions use the same channel, implemented with a limited amount of frequency resources that use techniques of collision avoidance (CSMA/CA) to allow multiple stations, user equipment's (UEs) and APs, to share the same channel.
  • TDD time division duplex system
  • CSMA/CA collision avoidance
  • APs on the same radio channel are within CCA range of each other.
  • an AP maybe blocked from transmitting to its client STA (typically a UE) due to activity of a nearby AP as noted in FIG. 1 .
  • MU_MIMO Multi-User MIMO
  • nulling at one AP may be set toward a co-channel AP in order to achieve the combined effect of reducing interference to the co-channel AP and reducing interference from the co-channel AP.
  • the quality of this null e.g. the effectiveness of the interference reduction, can be enhanced through the use of CSI information exchanged between the one AP and the co-channel AP.
  • OTA over-the-air
  • an access point or components within the AP e.g., a processor or baseband processor, or radio circuitries, is configured to exchange messages with at least one associated station (STA) over a wireless, or over-the-air channel.
  • the AP may comprise a plurality of antennas, radio circuitry configured to transmit and receive via said antennas and a baseband processor, and may be equipped with beamforming capability.
  • the baseband processor is configured to establish a backhaul link with at least one neighboring AP which may be operating within a clear channel assessment (CCA) range of said AP.
  • CCA clear channel assessment
  • the AP may then transmit or send a sounding packet to its at least one associated STA over-the-air, or via the wireless channel, and obtain CSI feedback from said at least one neighboring AP via the backhaul link.
  • a method according to embodiments of the invention may be implemented in or by an AP and may include establishing a backhaul link with at least one co-channel neighboring AP, sending a sounding packet to said at least one associated STA over the wireless channel, and obtaining channel state information (CSI) feedback from said at least one co-channel neighboring AP via the backhaul link.
  • CSI channel state information
  • Embodiments of the invention may also be implemented in the neighboring AP. This may include establishing a backhaul link with at least one neighboring AP, detecting a sounding packet sent by the neighboring AP to at least one associated STA over the wireless channel, and sending channel state information (CSI) to said at least one neighboring AP via the backhaul link.
  • CSI channel state information
  • Embodiments of the invention may also comprise an AP that is configured to implement both methods described above, whereby an AP can transmit or send or receive CSI via a backhaul link with another AP.
  • An AP according to embodiments of the invention is sometimes referred to in the following as a “beamforming AP” to distinguish it from a neighboring AP.
  • a beamforming AP may also be referred to as a MIMO AP.
  • the neighboring AP may or may not have beamforming capability.
  • an AP equipped with beamforming capability can both enhance its signal to its client STA while simultaneously nulling its signal toward a neighboring AP which may be interfering. According to embodiments of the invention this can be achieved by providing to the beamforming AP CSI relating to the neighboring AP.
  • CSI can be derived by the neighboring AP either implicitly or explicitly.
  • the use of the term “implicit” or “implicitly” in this context refers to a process used for TDD protocols such as Wi-Fi, where both down and up links share the same spectrum.
  • the uplink channel estimated by an AP is assumed to be identical to the downlink one, based on the reciprocity principle. Therefore, in an example of this process, the channel from an STA towards an AP is considered by the AP to represent the channel from the AP towards the STA.
  • the use of the term “explicit” or “explicitly” in this context refers to a procedure where CSI is fed back.
  • AP transmissions are channel estimated by the STA, and then fed back to the AP, providing the AP with, for example, the magnitude of phase and amplitude differences between the signals as transmitted by the AP vis-à-vis as received by the client/STA.
  • Such information may allow the AP to gauge possible distortions in signals and correct them.
  • CSI is provided that relates to a channel between one AP and another.
  • Wi-Fi Wi-Fi
  • Embodiments of the invention enable explicit CSI measurement between compatible APs so that inter AP interference can be reduced, “compatible” referring to APs according to embodiments of the invention. However high quality of this kind may not always be required and embodiments of the invention may use implicit CSI.
  • APs having the capability to implement embodiments of the invention may register with a controller via the backhaul, for example in order to obtain the address of a neighboring AP.
  • This controller may take the form of a server, for example, and is referred to in the following as a sounding controller.
  • a new procedure is developed that enables an AP to establish a direct peer-to-peer (P2P) backhaul link with a nearby compatible AP which bypasses the sounding controller to reduce CSI feedback delay.
  • P2P peer-to-peer
  • Embodiments of the invention may also comprise a system comprising multiple APs, each configured to implement any of the foregoing methods, as well as a sounding controller for registration of said APs, each AP being configured to register with the sounding controller.
  • Embodiments of the invention comprise a method whereby an AP may obtain feedback, for example explicit feedback, from a co-channel AP as an extension of the standard procedure of obtaining CSI information from a UE or other STA which it is supporting.
  • an AP may transmit or send a sounding packet to its associated STAs, poll feedback from STAs and receive backhaul feedback from one or more neighboring APs.
  • this may be achieved with no additional Wi-Fi overhead in the physical layer, e.g. channel occupancy.
  • an AP may have timely CSI, for example based on feedback from a co-channel AP, which by its nature may be explicit, enabling it to develop a high quality null toward that AP.
  • an AP may dynamically adjust any of the sounding rate, the sounding data quality and the specific STA to which sounding is directed, for example based on changes in environment.
  • the beamforming AP may determine whether the quality of the CSI data that it possess will enable it to reduce the transmission of the beamforming AP toward one or more of the other APs. This reduction in transmission may be achieved with a pattern that has one or more nulls reduce the transmission of the beamforming AP toward one or more other concurrently operating APs. This may enable the beamforming AP not to interfere with the activity of the one or more other concurrently operating APs.
  • the beamforming AP may then be able to deliver an acceptable signal to a UE or other STA which it is supporting. If a beamformer AP can meet this criteria, it may proceed to send data to the UE or other STA.
  • a beamformer AP determines if the CSI data it has at this specific moment is of sufficient quality.
  • the AP's analysis may consider any of (a) how many milliseconds have elapsed since the last CSI update it received, (b) the stability of the CSI data—e.g. how rapidly is it changing and (c) the absolute quality of the CSI data versus what is required for sufficient nulling depth.
  • FIG. 1 shows a typical operational environment with multiple APs in CCA range according to embodiments of the invention
  • FIG. 2 is a block diagram illustrating an AP within CCA range of a neighboring AP, in accordance with some embodiments of the present invention.
  • FIG. 3 illustrates an example of backhaul based sounding feedback system comprising two APs and a sounding controller connected by a IP network for backhaul based sounding feedback, according to embodiments of the invention
  • FIG. 4 shows an example of an 802.11 AC MU-MIMO sounding message flow according to embodiments of the invention
  • FIG. 5 shows a high level message flow of backhaul based sounding feedback among a beamformer AP, a neighboring AP and a sounding controller according to embodiments of the invention
  • FIG. 6 illustrates a process flow of a neighboring AP receiving a sounding message and sending a backhaul based CSI feedback message according to embodiments of the invention.
  • FIG. 7 illustrates a flow chart of beamformer AP determining to ignore the NAV set by another AP and proceed to send data to a UE, or to wait for channel is clear according to embodiments of the invention
  • FIG. 8 illustrates how an AP equipped with beamforming can null its signal toward an interfering AP while transmitting to its client STA (a UE) in a typical operational environment with multiple APs in CCA range, according to embodiments of the invention.
  • FIG. 9 shows the structure of the frame used in a beacon transmission, where backhaul CSI feedback capability is indicated in the optional vendor specific portion of the frame in accordance with some embodiments of the present invention.
  • APs are assumed to operate in 40 MHz band, with 4 antennas and use 400 nanosecond inter-symbol spacing. The ideas described can be adjusted for other bandwidths and other AP antenna configurations.
  • an asterisk e.g. AP*
  • AP*_ 1 refers to an AP that initiates registration with a sounding controller on its backhaul network, sometimes referred to in the following as a beamforming AP.
  • AP*_i where i ⁇ 2 . . . n ⁇ is a designator for the different AP*s that are members of backhaul based sounding feedback links with AP*_ 1 , some of which may be referred to as neighboring APs.
  • APs may use an unmodified 802.11ac Null Packet Protocol procedure to transmit or send sounding, which may be received by all compatible APs as well as STAs within CCA range. An AP may then receive other APs' CSI feedback from one or more backhaul links.
  • AP*_ 1 may build or compile a table or other data structure storing most recent CSI values for each AP*_i that has been sounded.
  • AP*_ 1 may determine whether an antenna pattern can be created by it that will: null concurrent one or more AP*_i so that AP*_ 1 's radiation toward the one or more AP*_i is below a CCA limit; and create acceptable beam toward UE_ 1 . If such a pattern can be created, AP*_ 1 may create the pattern and proceed to send data to the UE.
  • FIG. 1 shows a basic Wi-Fi environment including multiple neighboring co-channel APs, AP*_ 1 , AP*_ 2 and AP_ 3 and respective associated stations (STAs), which in this embodiment are shown as UEs, UE_ 1 , UE_ 2 and UE_ 3 .
  • STAs stations
  • UEs UE_ 1 , UE_ 2 and UE_ 3 .
  • AP*_i where i ⁇ 2 . . . n ⁇ indicates an AP that has the capability to implement embodiments of this invention, which may for example be implemented in the form of a software enhancement.
  • hardware described herein may be configured to carry out embodiments of the present invention by executing software or code.
  • AP*_ 1 is going to transmit or send MU_MIMO data to UEs supported by it, one of which is UE_ 1 , and will sound them prior to sending data. Supposing that AP*_ 2 is considered by AP*_ 1 to be a good candidate to null, determined by relative signal levels, geometry, etc., AP*_ 1 will start the sounding procedure when the NAV for AP*_ 1 is NOT set, meaning the channel is clear and all the APs in CCA range are not active.
  • Each of AP*_ 1 , AP*_ 2 and AP_ 3 may have a radiation pattern shown in FIG. 1 as a circle centered on the respective AP, for example pattern 106 for AP*_ 1 , 107 for AP*_ 2 and 108 for AP_ 3 .
  • FIG. 1 also shows propagation path 103 between AP*_ 1 and UE_ 1 , propagation path 109 between AP*_ 1 and AP*_ 2 , and propagation path 110 between AP_ 3 and AP*_ 1 .
  • FIG. 2 is a block diagram illustrating an AP 210 within CCA range of a neighboring AP 203 , in accordance with some embodiments of the present invention.
  • AP 210 may include for example a plurality of antennas 10 - 1 to 10 -N, radio circuitry in the form of a plurality of radio circuits 20 - 1 to 20 -N configured to transmit and receive signals via respective antennas 10 - 1 to 10 -N in compliance with the IEEE 802.11 standard, and a baseband processor 30 .
  • AP 210 may be configured to transmit and receive signals within a clear channel assessment (CCA) range of neighboring AP 203 which has a plurality of antennas 203 A and may be configured to transmit and receive signals in a co-channel shared with AP 210 in compliance with the IEEE 802.11 standard.
  • CCA clear channel assessment
  • Baseband processor 30 may be configured to monitor signals received by the radio circuits 20 - 1 to 20 -N and generate a set or list of neighboring co-channel access points that each has plurality of antennas and are further located within a clear channel assessment (CCA) range of the access point.
  • Baseband processor 30 may be further configured to instruct radio circuits 20 - 1 to 20 -N to transmit a sounding sequence to the list of neighboring access points, and receive Channel State Information (CSI) therefrom.
  • the sounding sequence may comprise a sequence of control frames sent to beamformees and data frames indicative of the channel from the beamformee.
  • FIG. 3 illustrates an example of a backhaul-based sounding feedback system according to embodiments of the invention.
  • the system as illustrated in FIG. 3 comprises two APs, labelled AP*_ 1 and AP*_ 2 , and a sounding controller 310 connected by an IP network 300 for backhaul based sounding feedback according to embodiments of the invention.
  • AP*s are within CCA range of each other to establish a backhaul CSI feedback link between them on an IP network.
  • a channel sounding packet is sent from AP*_ 1 over-the-air, for example using a wireless channel, in this example via Wi-Fi communication.
  • the packet may be addressed to its associated STAs, e.g., STA_ 1 in FIG.
  • neighboring AP*s may transmit or send their CSI feedback over-the-air, e.g. over a wireless channel, for example as standard procedures defined in 802.11n or 802.11ac.
  • neighboring AP*s send their CSI feedback through a backhaul link comprising IP network 300 .
  • the sounding controller 310 may function in a similar manner to a server.
  • the sounding controller 310 does not need to be a stand-alone item and its functions may be incorporated into another component, such as an existing server in the IP network.
  • the 802.11n channel sounding has two PPDU formats defined: the regular or staggered PPDU, which carries a MAC frame, and the null data packet (NDP), which does not carry a MAC frame.
  • the NDP is used in a sequence from which the addressing and other MAC related information can be obtained from a MAC frame in a preceding PPDU.
  • the normal or staggered PPDU is simply a normal PPDU or a PPDU with additional HT-LTFs that is used to sound the channel. It serves the dual purpose of sounding the channel and carrying a MAC frame.
  • the NDP is only used to sound the channel.
  • the first sequence is that NDP frame may follow another PPDU where the preceding PPDU carries one or more MPDUs which contain the HT Control field with the NDP Announcement bit set to 1.
  • the second possible sequence is when the NDP Announcement PPDU solicits an immediate response then the NDP itself follows the response PPDU from another STA.
  • the 802.11ac sounding sequence is separate from the data sequence. Explicit feedback is the mechanism for obtaining CSI (there is no implicit feedback). Only compressed-V (in the singular value decomposition “SVD” of the channel) beamforming weights are permitted (uncompressed-V and CSI are not supported). There is no support for delayed feedback. Rather, in implementations according to 802.11ac, feedback is returned during the SIFS after receiving the VHT NDP.
  • the VHT sounding sequence begins with a VHT NDP Announcement frame sent by the beamformer and addressed to the beamformees. This is followed by a VHT NDP frame for channel sounding. The first beamformee responds SIFS after the VHT NDP with a VHT Compressed Beamforming frame. The remaining STAs are polled in turn with a Beamforming Report Poll frame to which they respond with their VHT Compressed Beamforming frame.
  • FIG. 4 shows by way of example a standard 802.11ac MU-MIMO sounding message flow: an AP transmits or sends an NDP_announcement, followed by an NDP.
  • the STA that was addressed in the receiver field of the NDP_announcement is expected to respond with compressed CSI information. After that, the AP polls the “other” STAs.
  • the “other” STAs know they might be polled as they are part of the association identifier (ID) “AID” list which is part of the NDP_announcement message.
  • ID association identifier
  • AID association identifier
  • FIG. 5 shows a high level message flow of backhaul based sounding feedback among a beamformer AP, AP*_ 1 , a neighboring AP, AP*_ 2 and a sounding controller such as sounding controller 310 of FIG. 3 according to embodiments of the invention.
  • neighboring AP*_ 2 registers it backhaul IP address, Wi-Fi SSID and Wi-Fi MAC address with a sounding controller on its backhaul network, e.g. IP network 300 , at power-up in flow 501 .
  • AP_* 2 receives a register confirmation on the backhaul network from the sounding controller 310 .
  • the neighboring AP*_ 2 broadcasts its backhaul CSI feedback capability in beacon transmissions over the air to other APs including AP*_ 1 , as indicated by flow 505 .
  • AP*_ 1 which is a beamformer AP receives a beacon transmission 505 from the neighboring AP*_ 2 and recognizes neighboring AP*_ 2 's backhaul CSI feedback capability.
  • beamformer AP*_ 1 sends or transmits a query to the sounding controller 310 in flow 507 about neighboring AP*_ 2 's backhaul IP address. This may be done using the decoded MAC transmitter address in received beacon transmission 505 .
  • the sounding controller 310 responds with the backhaul address in flow 509 .
  • Beamformer AP*_ 1 then transmits or sends a connection request to AP*_ 2 in flow 511 and receives an accepted response in flow 513 to/from the neighboring AP*_ 2 to establish a direct backhaul CSI feedback link, a peer-to-peer (P2P) link which bypasses the sounding controller 310 to reduce CSI feedback delay.
  • P2P peer-to-peer
  • a null data packet (NDP) or a data packet with extension HT-LTFs, from the beamformer AP*_ 1 in flow 515 , in response the neighboring AP*_ 2 transmits or sends a CSI feedback in flow 517 directly to beamformer AP*_ 1 through the backhaul link.
  • NDP null data packet
  • the CSI feedback is transmitted or sent to AP*_ 1 by AP*_ 2 regardless of addressed devices for the sounding packet or other packet sent in flow 515 .
  • Such packets are usually addressed to STAs served by the sending AP. However they may be detected and decoded by any AP within CCA range of the sending AP.
  • AP*_ 1 may update a CSI table with most recent CSI for AP*_ 2 .
  • the same process may apply to any other AP*_i that sends feedback to AP*_ 1 .
  • Operations 515 and 517 may be repeated once the peer-to-peer link is established. In other words there is no need for operations 501 to 513 to be repeated before AP*_ 1 sends further sounding packets to its associated stations and AP*_ 2 .
  • beamformer AP*_ 1 After receiving CSI feedback at the end of the process flow shown in FIG. 5 , beamformer AP*_ 1 applies the CSI feedback to create a radiation pattern, also known as a spatial signature, having a null in transmission or reception toward the neighboring AP*_ 2 . This may reduce interference between the two APs, AP*_ 1 and AP*_ 2 , for example while beamformer AP*_ 1 is transmitting or sending a packet to its associated STA.
  • a radiation pattern also known as a spatial signature
  • CSI feedback uses 8 bits for each real and 8 bits for each imaginary component of the channel complex element between a transmit antenna and a receive antenna per subcarrier which would have less quantization distortion than compressed-V beamforming frame used in 802.11ac. Grouping of two or four subcarriers can be used to reduce CSI feedback overhead.
  • FIG. 6 shows the process flow 600 in a neighboring AP, labelled AP*_i according to embodiments of the invention.
  • AP*_i registers its backhaul IP address, Wi-Fi SSID and Wi-Fi MAC address with a sounding controller, e.g. sounding controller 310 , on its backhaul network, e.g. IP network 300 at power-up and receives the registration confirmation from the sounding controller in operation 602 .
  • AP*_i listens for a feedback link connection request, for example from AP*_ 1 in operation 603 and accepts the backhaul feedback connection request to establish a direct peer-to-peer connection for sounding feedback in operation 604 .
  • the real and imaginary components I and Q of the channel information are uncompressed and prepared for transmission.
  • AP*_i transmits or sends the CSI data in operation 606 via the established backhaul feedback link. Then AP*_i goes back to operation 605 where it continues to receive next sounding packet from AP*_ 1 .
  • FIG. 7 shows the process flow in a beamformer AP, labelled AP*_ 1 , according to embodiments of the invention, for transmitting or sending data to an associated STA, labelled UE_ 1 .
  • AP*_ 1 When AP*_ 1 has data to send to UE_ 1 , it checks to see if NAV is set at operation 701 . If not, e.g. the channel is not clear, AP*_ 1 proceeds to send data at 702 . However if NAV is set, then AP*_ 1 determines if the NAV was set by one of its neighboring APs, AP*_i, that has backhaul CSI feedback capability.
  • AP*_ 1 checks if the CSI data from the neighboring AP, AP*_i, is current or not at operation 703 . Using this current CSI data, AP*_ 1 determines whether it can reduce its radiation pattern, e.g. generate a null, toward AP*_i sufficient to protect it from interference from AP*_i, for example by checking whether it will be protected by the CCA set threshold e.g. ⁇ 82 dB, and also support UE_ 1 at operation 704 . If this condition can be met, AP*_ 1 may ignore the NAV being set and proceed to send data to UE_ 1 at operation 705 . If this condition is not met, then it wait until NAV clears at operation 706 . There might be two active neighboring AP*s and it might be possible for AP*_ 1 to create multiple nulls.
  • AP*_ 1 receives CSI information from each of the associated UEs that it polls over the Wi-Fi air interface, for example as the standard MU_MIMO sounding procedure.
  • AP*_ 1 receives CSI information from AP*_ 2 via an established backhaul link as shown in FIG. 3 and AP*_ 1 may then generate a pattern as shown in FIG. 8 .
  • FIG. 8 shows how an AP, AP*_ 1 , equipped with beamforming capability can both enhance its signal to a client STA, UE_ 1 , while simultaneously nulling its signal toward an interfering AP, AP*_ 2 .
  • the same reference numerals are used to designate like items in FIG. 1 .
  • the propagation path between AP*_ 1 and AP*_ 2 is modified and referenced 209 , and the overall radiation pattern is modified and referenced 206 .
  • AP*_ 1 performs the enhancement and nulling using CSI on the path 209 ( 109 ) between APs and on the path 103 between AP*_ 1 and UE_ 1 .
  • the baseband processor in an AP may be configured to apply weights to signals received by or transmitted from AP antennas such that spatial signatures, or radiation patterns, generated in downlink or uplink or both reduce interferences between said Wi-Fi AP and at least one of the N neighboring APs. The application of these weights may be based for example on received CSI feedback from sounding.
  • the AP may transmit or send a data packet to a station (STA), or a group of stations.
  • STA station
  • FIG. 8 illustrates schematically that the modification of the radiation pattern results in a reduction of unwanted or unintentional radiation between the two APs, as indicated by path 209 .
  • the radiation between AP*_ 1 and UE_ 1 may be enhanced as indicated by the extension of the radiation pattern 206 around UE_ 1 .
  • CSI can be developed either implicitly or explicitly.
  • explicit feedback is more accurate, and therefore more useful that implicit feedback for generating a high quality null toward a neighboring AP.
  • AP*_ 1 is able to recognize nearby APs that are AP* compatible and able to support communication between them.
  • AP* capability can be added in as an information element in the beacon transmission.
  • FIG. 9 is a diagram illustrating the structure of the 802.11 Beacon Frame 900 in accordance with embodiments of the present invention.
  • This frame is transmitted by all 801.11 APs at a periodic rate, typically 10 times per second.
  • This beacon includes mandatory information such as the SSID of the AP but can optionally include other information, e.g. vendor specific data.
  • the vendor specific data may start with a device/vendor ID followed by a flag to indicate backhaul CSI feedback capability. Where this becomes standardized, a specific Information Element ID could be assigned to indicate this capability rather than embedding this information in a vendor specific data element.
  • an AP may obtain explicate feedback from a co-channel AP as an extension of the standard procedure of obtaining CSI information from its supported UE. In this manner the AP will have timely CSI information based on feedback from the co-channel AP, enabling it to develop a high quality null toward that AP.
  • Embodiments of the invention do not require a modification to the standard sounding approach used by AP*_ 1 when it sends the NDP_announcement message. Consequently, the various STAs will see the message flows as standard.
  • AP*_ 1 receives CSI information from co-channel neighboring AP, AP*_i, via an established backhaul link between them and from each of its associated UEs over the Wi-Fi air interface that it polls as the standard MU_MIMO sounding procedure, and then AP*_ 1 generates a pattern as shown in FIG. 8 .
  • embodiments of this invention can be implemented in hardware, combination of hardware and software or software only.
  • a unique aspect of some embodiments is the possibility for implementation completely in software, for example by augmenting the notational algorithms of the 802.11xx protocol.
  • embodiments of the invention may take the form of one or more computer readable media, e.g. non-transitory computer readable media, which when implemented on one or more processors in an AP system to perform any of the methods described above.
  • the methods described herein are applicable to all versions of the 802.11 protocol, specifically 802.11a, b, g, n and ac.
  • aspects of the present invention may be embodied as a system, method or an apparatus. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.”
  • the invention provides a computer readable medium comprising instructions which when implemented on one or more processors in a computing system causes the system to carry out any of the methods described above.
  • the computer readable medium may be in non-transitory form.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s).
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
  • Methods of the present invention may be implemented by performing or completing manually, automatically, or a combination thereof, selected steps or tasks.
  • the term “method” may refer to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the art to which the invention belongs.

Abstract

A system and method for backhaul based explicit sounding feedback of 802.11 AP to AP channel state information (CSI) so that inter AP interference can be reduced and multiple APs transmissions that can occur simultaneously on the same radio channel. A modification may be made to APs such that they can accurately measure the CSI between them that in turn enables their respective beamformer to create pattern nulls toward each other while simultaneously developing pattern enhancements toward their intended station. An AP may send a sounding packet to its associated STAs, poll explicit feedbacks from STAs and receive backhaul CSI feedbacks from neighboring APs. There is no additional Wi-Fi overhead in physical layer. Backhaul feedback link is established through direct peer-to-peer (P2P) link which bypassed the sounding controller to reduce CSI feedback delay.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of prior U.S. Provisional Application Ser. No. 61/971,685 filed Mar. 28, 2014, which is incorporated herein by reference in its entirety.
FIELD OF THE INVENTION
The present invention relates generally to the field of wireless communication, and more specifically to high efficiency Wi-Fi systems.
BACKGROUND
Prior to setting forth a short discussion of the related art, it may be helpful to set forth definitions of certain terms that will be used hereinafter. Some of these terms are defined in the Institute of Electrical and Electronics Engineers (IEEE) 802.11 specification but it should be appreciated that the invention is not limited to systems and methods complying with the IEEE 802.11 specification.
The term “Wi-Fi” is used to refer to technology that allows communication devices to interact wirelessly based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standards. The wireless communication may use microwave bands, e.g. in the 2.4 GHz to 5 GHz range.
The term “AP” is an acronym for Access Point and is used herein to define a device that allows wireless devices (known as User Equipment or “UE”) to connect to a wired network using Wi-Fi, or related standards. The AP usually connects to a router (via a wired network) as a standalone device, but it can also be an integral component of the router itself.
The term “UE” is an acronym for User Equipment(s) and is an example of a station, e.g. Wi-Fi station (STA) that may attach to an AP.
The term “associated STA” as used herein refers to a STA that is served by a certain AP, for example with a certain Service Set Identifier (SSID).
The term “station” or STA is a term used for any participant on the network, for example as used in the 802.11 specification. Both UEs and APs are considered in this context to be examples of stations. In the following the abbreviation STA is used for stations whose packets are detected by a Wi-Fi RDN station implementing embodiments of the invention.
BSS is acronym for Basic Service Set, which is typically a cluster of Stations associated with an AP dedicated to managing the BSS. A BSS built around an AP is called an infrastructure BSS. The term “backhaul” is used in the following to denote a communication path between two APs or base stations, for example using a different protocol from that used for wireless communication between an AP or base station and supported equipment or STA. The 802.11 specification does not provide for communication between APs. A backhaul link may operate outside a wireless, e.g. Wi-Fi, environment in which APs or base stations and associated UEs or other STAs are operating, or use one or more different channels from those used by APs to communicate with their associated stations. A backhaul link may use any combination of wired and wireless communication including but not limited to a cellular communication network, Ethernet, and the internet.
“Beacon transmission” refers to periodical information transmission which may include system information.
HT-LTF is an acronym for high throughput long training field as defined in the 802.11 specification.
MPDU is an acronym for media access code (MAC) protocol data unit as defined in the 802.11 specification.
NAV is an acronym for network allocation vector as defined in the 802.11 specification.
NDP is an acronym for null data packet.
PPDU is an acronym for physical layer convergence procedure (PLCP) protocol data unit as defined in the 802.11 specification.
The term “sounding” refers to a channel calibration procedure involving the sending of a packet, called a “sounding packet” from one participant on a network to another, for example as defined in the 802.11 specifications.
VHT is an acronym for very high throughput as defined in the 802.11 specification.
The specific Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) mechanism used in the 802.11 Media Access Control (MAC) is referred to as the distributed coordination function (DCF). A station that wishes to transmit first performs a clear channel assessment (CCA) by sensing the medium for a fixed duration, the DCF inter-frame space (DIFS).
SIFS, Short Inter Frame Space, as defined in the 802.11 specifications is the period between reception of the data frame and transmission of the ACK. SIFS is shorter than DIFS.
The term Clear Channel Assessment (CCA) as used herein refers to a CCA function, e.g. as defined in the 802.11 specification.
The term “MIMO” is an acronym for multiple input multiple output and as used herein, is defined as the use of multiple antennas at both the transmitter and receiver to improve communication performance. MIMO offers significant increases in data throughput and link range without additional bandwidth or increased transmit power. It achieves this goal by spreading the transmit power over the antennas to achieve spatial multiplexing that improves the spectral efficiency (more bits per second per Hz of bandwidth) or to achieve a diversity gain that improves the link reliability (reduced fading), or increased antenna directivity.
“Channel estimation” is used herein to refer to estimation of channel state information (CSI) which describes properties of a communication link such as signal to noise ratio “SNR” and signal to interference plus noise ratio “SINR”. Channel estimation may be performed by user equipment or APs as well as other components operating in a communications system.
The term “beamforming” sometimes referred to as “spatial filtering” as used herein, is a signal processing technique used in antenna arrays for directional signal transmission or reception. This is achieved by combining elements in the array in such a way that signals at particular angles experience constructive interference while others experience destructive interference. Beamforming can be used at both the transmitting and receiving ends in order to achieve spatial selectivity. The operation of attempting to achieve destructive interference in order to cancel a signal in a particular direction or angle is referred to as “nulling”. Complete cancellation of a signal is not usually achieved in practice and a “null” in a radiation pattern may refer to a minimum in signal strength. The lower the signal strength, the “deeper” the null is said to be.
The term “beamformer” as used herein refers to analog and/or digital circuitry that implements beamforming and may include combiners and phase shifters or delays and in some cases amplifiers and/or attenuators to adjust the weights of signals to or from each antenna in an antenna array. Digital beamformers may be implemented in digital circuitry such as a digital signal processor (DSP), field-programmable gate array (FPGA), microprocessor or the central processing unit “CPU” of a computer to set the weights as may be expressed by phases and/or amplitudes of the above signals. Various techniques are used to implement beamforming including: Butler matrices, Blass Matrices and Rotman Lenses. In general, most approaches may attempt to provide simultaneous coverage within a sector using multiple beams.
SUMMARY
Wi-Fi is a time division duplex system (TDD), where the transmitting and receiving functions use the same channel, implemented with a limited amount of frequency resources that use techniques of collision avoidance (CSMA/CA) to allow multiple stations, user equipment's (UEs) and APs, to share the same channel.
In many deployments APs on the same radio channel are within CCA range of each other. Thus an AP maybe blocked from transmitting to its client STA (typically a UE) due to activity of a nearby AP as noted in FIG. 1.
Multi-User MIMO (MU_MIMO) capable APs can develop complex antenna patterns that support simultaneous enhancing and nulling in specific directions. According to embodiments of this invention, nulling at one AP may be set toward a co-channel AP in order to achieve the combined effect of reducing interference to the co-channel AP and reducing interference from the co-channel AP. The quality of this null, e.g. the effectiveness of the interference reduction, can be enhanced through the use of CSI information exchanged between the one AP and the co-channel AP. However it is not provided as part of the over-the-air (OTA) standard for APs to communicate with each other.
According to embodiments of the invention, an access point or components within the AP, e.g., a processor or baseband processor, or radio circuitries, is configured to exchange messages with at least one associated station (STA) over a wireless, or over-the-air channel. The AP may comprise a plurality of antennas, radio circuitry configured to transmit and receive via said antennas and a baseband processor, and may be equipped with beamforming capability. According to embodiments of the invention, the baseband processor is configured to establish a backhaul link with at least one neighboring AP which may be operating within a clear channel assessment (CCA) range of said AP. The AP may then transmit or send a sounding packet to its at least one associated STA over-the-air, or via the wireless channel, and obtain CSI feedback from said at least one neighboring AP via the backhaul link.
A method according to embodiments of the invention may be implemented in or by an AP and may include establishing a backhaul link with at least one co-channel neighboring AP, sending a sounding packet to said at least one associated STA over the wireless channel, and obtaining channel state information (CSI) feedback from said at least one co-channel neighboring AP via the backhaul link.
Embodiments of the invention may also be implemented in the neighboring AP. This may include establishing a backhaul link with at least one neighboring AP, detecting a sounding packet sent by the neighboring AP to at least one associated STA over the wireless channel, and sending channel state information (CSI) to said at least one neighboring AP via the backhaul link.
Embodiments of the invention may also comprise an AP that is configured to implement both methods described above, whereby an AP can transmit or send or receive CSI via a backhaul link with another AP.
An AP according to embodiments of the invention is sometimes referred to in the following as a “beamforming AP” to distinguish it from a neighboring AP. A beamforming AP may also be referred to as a MIMO AP. The neighboring AP may or may not have beamforming capability.
According to embodiments of the invention, an AP equipped with beamforming capability can both enhance its signal to its client STA while simultaneously nulling its signal toward a neighboring AP which may be interfering. According to embodiments of the invention this can be achieved by providing to the beamforming AP CSI relating to the neighboring AP.
CSI can be derived by the neighboring AP either implicitly or explicitly. The use of the term “implicit” or “implicitly” in this context refers to a process used for TDD protocols such as Wi-Fi, where both down and up links share the same spectrum. In the aforementioned process, the uplink channel estimated by an AP is assumed to be identical to the downlink one, based on the reciprocity principle. Therefore, in an example of this process, the channel from an STA towards an AP is considered by the AP to represent the channel from the AP towards the STA. Conversely, the use of the term “explicit” or “explicitly” in this context refers to a procedure where CSI is fed back. In an example of an explicit process between AP and STA, AP transmissions are channel estimated by the STA, and then fed back to the AP, providing the AP with, for example, the magnitude of phase and amplitude differences between the signals as transmitted by the AP vis-à-vis as received by the client/STA. Such information may allow the AP to gauge possible distortions in signals and correct them.
According to embodiments of the invention, CSI is provided that relates to a channel between one AP and another. There is no provision in the Wi-Fi standards for APs to communicate directly with each other. Therefore although one AP may receive, or detect, transmissions from another AP that are not directed to it, no mechanism is provided for it to respond using Wi-Fi protocol.
Explicit feedback is more accurate, and therefore more useful for generating a high quality null toward a STA or an AP. Embodiments of the invention enable explicit CSI measurement between compatible APs so that inter AP interference can be reduced, “compatible” referring to APs according to embodiments of the invention. However high quality of this kind may not always be required and embodiments of the invention may use implicit CSI.
APs having the capability to implement embodiments of the invention may register with a controller via the backhaul, for example in order to obtain the address of a neighboring AP. This controller may take the form of a server, for example, and is referred to in the following as a sounding controller. According to other embodiments of the invention a new procedure is developed that enables an AP to establish a direct peer-to-peer (P2P) backhaul link with a nearby compatible AP which bypasses the sounding controller to reduce CSI feedback delay.
Embodiments of the invention may also comprise a system comprising multiple APs, each configured to implement any of the foregoing methods, as well as a sounding controller for registration of said APs, each AP being configured to register with the sounding controller.
Embodiments of the invention comprise a method whereby an AP may obtain feedback, for example explicit feedback, from a co-channel AP as an extension of the standard procedure of obtaining CSI information from a UE or other STA which it is supporting. According to embodiments of the invention, an AP may transmit or send a sounding packet to its associated STAs, poll feedback from STAs and receive backhaul feedback from one or more neighboring APs. According to embodiments of the invention this may be achieved with no additional Wi-Fi overhead in the physical layer, e.g. channel occupancy. In this manner an AP may have timely CSI, for example based on feedback from a co-channel AP, which by its nature may be explicit, enabling it to develop a high quality null toward that AP.
According to other embodiments of the invention an AP may dynamically adjust any of the sounding rate, the sounding data quality and the specific STA to which sounding is directed, for example based on changes in environment.
According to other embodiments of the invention, when a beamforming AP has data to send to a supported UE or other STA and finds that its own channel is not clear, for example due to the CCA having been set by one or more other APs, then the beamforming AP may determine whether the quality of the CSI data that it possess will enable it to reduce the transmission of the beamforming AP toward one or more of the other APs. This reduction in transmission may be achieved with a pattern that has one or more nulls reduce the transmission of the beamforming AP toward one or more other concurrently operating APs. This may enable the beamforming AP not to interfere with the activity of the one or more other concurrently operating APs. The beamforming AP may then be able to deliver an acceptable signal to a UE or other STA which it is supporting. If a beamformer AP can meet this criteria, it may proceed to send data to the UE or other STA.
As stated above, according to embodiments of the invention, a beamformer AP determines if the CSI data it has at this specific moment is of sufficient quality. The AP's analysis may consider any of (a) how many milliseconds have elapsed since the last CSI update it received, (b) the stability of the CSI data—e.g. how rapidly is it changing and (c) the absolute quality of the CSI data versus what is required for sufficient nulling depth.
BRIEF DESCRIPTION OF THE DRAWINGS
For a better understanding of the invention, and in order to show how it may be implemented, references are made, purely by way of example, to the accompanying drawings in which like numerals designate corresponding elements or sections.
FIG. 1 shows a typical operational environment with multiple APs in CCA range according to embodiments of the invention;
FIG. 2 is a block diagram illustrating an AP within CCA range of a neighboring AP, in accordance with some embodiments of the present invention.
FIG. 3 illustrates an example of backhaul based sounding feedback system comprising two APs and a sounding controller connected by a IP network for backhaul based sounding feedback, according to embodiments of the invention;
FIG. 4 shows an example of an 802.11 AC MU-MIMO sounding message flow according to embodiments of the invention;
FIG. 5 shows a high level message flow of backhaul based sounding feedback among a beamformer AP, a neighboring AP and a sounding controller according to embodiments of the invention;
FIG. 6 illustrates a process flow of a neighboring AP receiving a sounding message and sending a backhaul based CSI feedback message according to embodiments of the invention; and
FIG. 7 illustrates a flow chart of beamformer AP determining to ignore the NAV set by another AP and proceed to send data to a UE, or to wait for channel is clear according to embodiments of the invention;
FIG. 8 illustrates how an AP equipped with beamforming can null its signal toward an interfering AP while transmitting to its client STA (a UE) in a typical operational environment with multiple APs in CCA range, according to embodiments of the invention; and
FIG. 9 shows the structure of the frame used in a beacon transmission, where backhaul CSI feedback capability is indicated in the optional vendor specific portion of the frame in accordance with some embodiments of the present invention.
The drawings together with the following detailed description are designed make the embodiments of the invention apparent to those skilled in the art.
DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
It is stressed that the particulars shown are for the purpose of example and solely for discussing the preferred embodiments of the present invention, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention. The description taken with the drawings makes apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
The invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following descriptions or illustrated in the drawings. The invention is applicable to other embodiments and may be practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
In description that follows, APs are assumed to operate in 40 MHz band, with 4 antennas and use 400 nanosecond inter-symbol spacing. The ideas described can be adjusted for other bandwidths and other AP antenna configurations. In the following, an asterisk, e.g. AP*, indicates that an AP is compatible with backhaul based CSI feedback according to embodiments of the invention. This may mean for example that an AP is equipped with software, for example installed in the baseband processor, so that it can participate in backhaul based CSI feedback, either as a sounder or as a responder. AP*_1 refers to an AP that initiates registration with a sounding controller on its backhaul network, sometimes referred to in the following as a beamforming AP. AP*_i, where i {2 . . . n} is a designator for the different AP*s that are members of backhaul based sounding feedback links with AP*_1, some of which may be referred to as neighboring APs.
APs according to embodiments of the invention may use an unmodified 802.11ac Null Packet Protocol procedure to transmit or send sounding, which may be received by all compatible APs as well as STAs within CCA range. An AP may then receive other APs' CSI feedback from one or more backhaul links. AP*_1 may build or compile a table or other data structure storing most recent CSI values for each AP*_i that has been sounded. When AP*_1 has data to send to a UE and finds one or more AP*_i has triggered CCA, AP*_1 may determine whether an antenna pattern can be created by it that will: null concurrent one or more AP*_i so that AP*_1's radiation toward the one or more AP*_i is below a CCA limit; and create acceptable beam toward UE_1. If such a pattern can be created, AP*_1 may create the pattern and proceed to send data to the UE.
FIG. 1 shows a basic Wi-Fi environment including multiple neighboring co-channel APs, AP*_1, AP*_2 and AP_3 and respective associated stations (STAs), which in this embodiment are shown as UEs, UE_1, UE_2 and UE_3. AP*_i where i {2 . . . n} indicates an AP that has the capability to implement embodiments of this invention, which may for example be implemented in the form of a software enhancement. For example, hardware described herein may be configured to carry out embodiments of the present invention by executing software or code. AP*_1 is going to transmit or send MU_MIMO data to UEs supported by it, one of which is UE_1, and will sound them prior to sending data. Supposing that AP*_2 is considered by AP*_1 to be a good candidate to null, determined by relative signal levels, geometry, etc., AP*_1 will start the sounding procedure when the NAV for AP*_1 is NOT set, meaning the channel is clear and all the APs in CCA range are not active.
Each of AP*_1, AP*_2 and AP_3 may have a radiation pattern shown in FIG. 1 as a circle centered on the respective AP, for example pattern 106 for AP*_1, 107 for AP*_2 and 108 for AP_3. FIG. 1 also shows propagation path 103 between AP*_1 and UE_1, propagation path 109 between AP*_1 and AP*_2, and propagation path 110 between AP_3 and AP*_1.
FIG. 2 is a block diagram illustrating an AP 210 within CCA range of a neighboring AP 203, in accordance with some embodiments of the present invention. AP 210 may include for example a plurality of antennas 10-1 to 10-N, radio circuitry in the form of a plurality of radio circuits 20-1 to 20-N configured to transmit and receive signals via respective antennas 10-1 to 10-N in compliance with the IEEE 802.11 standard, and a baseband processor 30. AP 210 may be configured to transmit and receive signals within a clear channel assessment (CCA) range of neighboring AP 203 which has a plurality of antennas 203A and may be configured to transmit and receive signals in a co-channel shared with AP 210 in compliance with the IEEE 802.11 standard.
Baseband processor 30 may be configured to monitor signals received by the radio circuits 20-1 to 20-N and generate a set or list of neighboring co-channel access points that each has plurality of antennas and are further located within a clear channel assessment (CCA) range of the access point. Baseband processor 30 may be further configured to instruct radio circuits 20-1 to 20-N to transmit a sounding sequence to the list of neighboring access points, and receive Channel State Information (CSI) therefrom. The sounding sequence may comprise a sequence of control frames sent to beamformees and data frames indicative of the channel from the beamformee.
FIG. 3 illustrates an example of a backhaul-based sounding feedback system according to embodiments of the invention. The system as illustrated in FIG. 3 comprises two APs, labelled AP*_1 and AP*_2, and a sounding controller 310 connected by an IP network 300 for backhaul based sounding feedback according to embodiments of the invention. In the illustrated system it is assumed that AP*s are within CCA range of each other to establish a backhaul CSI feedback link between them on an IP network. A channel sounding packet is sent from AP*_1 over-the-air, for example using a wireless channel, in this example via Wi-Fi communication. The packet may be addressed to its associated STAs, e.g., STA_1 in FIG. 3, and may also be received by neighboring AP*s, e.g. AP*_2. STAs may transmit or send their CSI feedback over-the-air, e.g. over a wireless channel, for example as standard procedures defined in 802.11n or 802.11ac. According to embodiments of the invention, at the same time, neighboring AP*s send their CSI feedback through a backhaul link comprising IP network 300. There is no need for any change to Wi-Fi air interface protocol for backhaul based sounding feedback and no additional overhead requirement in Wi-Fi physical layer according to embodiments of the invention.
As will become clear in the following, the sounding controller 310 may function in a similar manner to a server. The sounding controller 310 does not need to be a stand-alone item and its functions may be incorporated into another component, such as an existing server in the IP network.
802.11n channel sounding has two PPDU formats defined: the regular or staggered PPDU, which carries a MAC frame, and the null data packet (NDP), which does not carry a MAC frame. According to embodiments of the invention, the NDP is used in a sequence from which the addressing and other MAC related information can be obtained from a MAC frame in a preceding PPDU. The normal or staggered PPDU is simply a normal PPDU or a PPDU with additional HT-LTFs that is used to sound the channel. It serves the dual purpose of sounding the channel and carrying a MAC frame. The NDP is only used to sound the channel.
Two sequences of NDP as sounding PPDU are possible for 802.11n channel sounding: The first sequence is that NDP frame may follow another PPDU where the preceding PPDU carries one or more MPDUs which contain the HT Control field with the NDP Announcement bit set to 1. The second possible sequence is when the NDP Announcement PPDU solicits an immediate response then the NDP itself follows the response PPDU from another STA.
Unlike 802.11n, the 802.11ac sounding sequence is separate from the data sequence. Explicit feedback is the mechanism for obtaining CSI (there is no implicit feedback). Only compressed-V (in the singular value decomposition “SVD” of the channel) beamforming weights are permitted (uncompressed-V and CSI are not supported). There is no support for delayed feedback. Rather, in implementations according to 802.11ac, feedback is returned during the SIFS after receiving the VHT NDP. The VHT sounding sequence begins with a VHT NDP Announcement frame sent by the beamformer and addressed to the beamformees. This is followed by a VHT NDP frame for channel sounding. The first beamformee responds SIFS after the VHT NDP with a VHT Compressed Beamforming frame. The remaining STAs are polled in turn with a Beamforming Report Poll frame to which they respond with their VHT Compressed Beamforming frame.
FIG. 4 shows by way of example a standard 802.11ac MU-MIMO sounding message flow: an AP transmits or sends an NDP_announcement, followed by an NDP. The STA that was addressed in the receiver field of the NDP_announcement is expected to respond with compressed CSI information. After that, the AP polls the “other” STAs. The “other” STAs know they might be polled as they are part of the association identifier (ID) “AID” list which is part of the NDP_announcement message. This same message flow may be used without modification in embodiments of the invention. The same applies to standard 802.11n channel sounding message flows.
FIG. 5 shows a high level message flow of backhaul based sounding feedback among a beamformer AP, AP*_1, a neighboring AP, AP*_2 and a sounding controller such as sounding controller 310 of FIG. 3 according to embodiments of the invention. Initially, neighboring AP*_2 registers it backhaul IP address, Wi-Fi SSID and Wi-Fi MAC address with a sounding controller on its backhaul network, e.g. IP network 300, at power-up in flow 501. In flow 503, AP_*2 receives a register confirmation on the backhaul network from the sounding controller 310. After registration is confirmed in flow 503, the neighboring AP*_2 broadcasts its backhaul CSI feedback capability in beacon transmissions over the air to other APs including AP*_1, as indicated by flow 505. AP*_1, which is a beamformer AP receives a beacon transmission 505 from the neighboring AP*_2 and recognizes neighboring AP*_2's backhaul CSI feedback capability. Next, beamformer AP*_1 sends or transmits a query to the sounding controller 310 in flow 507 about neighboring AP*_2's backhaul IP address. This may be done using the decoded MAC transmitter address in received beacon transmission 505. The sounding controller 310 responds with the backhaul address in flow 509. Beamformer AP*_1 then transmits or sends a connection request to AP*_2 in flow 511 and receives an accepted response in flow 513 to/from the neighboring AP*_2 to establish a direct backhaul CSI feedback link, a peer-to-peer (P2P) link which bypasses the sounding controller 310 to reduce CSI feedback delay.
After the neighboring AP*_2 receives a sounding packet, a null data packet (NDP) or a data packet with extension HT-LTFs, from the beamformer AP*_1 in flow 515, in response the neighboring AP*_2 transmits or sends a CSI feedback in flow 517 directly to beamformer AP*_1 through the backhaul link. It should be noted that according to embodiments of the invention, the CSI feedback is transmitted or sent to AP*_1 by AP*_2 regardless of addressed devices for the sounding packet or other packet sent in flow 515. Such packets are usually addressed to STAs served by the sending AP. However they may be detected and decoded by any AP within CCA range of the sending AP. After receiving CSI feedback in flow 517, according to embodiments of the invention AP*_1 may update a CSI table with most recent CSI for AP*_2. The same process may apply to any other AP*_i that sends feedback to AP*_1. Operations 515 and 517 may be repeated once the peer-to-peer link is established. In other words there is no need for operations 501 to 513 to be repeated before AP*_1 sends further sounding packets to its associated stations and AP*_2.
After receiving CSI feedback at the end of the process flow shown in FIG. 5, beamformer AP*_1 applies the CSI feedback to create a radiation pattern, also known as a spatial signature, having a null in transmission or reception toward the neighboring AP*_2. This may reduce interference between the two APs, AP*_1 and AP*_2, for example while beamformer AP*_1 is transmitting or sending a packet to its associated STA. The creation of the radiation pattern is explained with reference to FIG. 8 below.
For the least quantization distortion, CSI feedback uses 8 bits for each real and 8 bits for each imaginary component of the channel complex element between a transmit antenna and a receive antenna per subcarrier which would have less quantization distortion than compressed-V beamforming frame used in 802.11ac. Grouping of two or four subcarriers can be used to reduce CSI feedback overhead.
FIG. 6 shows the process flow 600 in a neighboring AP, labelled AP*_i according to embodiments of the invention. In operation 601, AP*_i registers its backhaul IP address, Wi-Fi SSID and Wi-Fi MAC address with a sounding controller, e.g. sounding controller 310, on its backhaul network, e.g. IP network 300 at power-up and receives the registration confirmation from the sounding controller in operation 602. Then AP*_i listens for a feedback link connection request, for example from AP*_1 in operation 603 and accepts the backhaul feedback connection request to establish a direct peer-to-peer connection for sounding feedback in operation 604. According to embodiments of the invention, the real and imaginary components I and Q of the channel information are uncompressed and prepared for transmission. When a sounding packet from AP*_1 is received by AP*_i at operation 605, AP*_i transmits or sends the CSI data in operation 606 via the established backhaul feedback link. Then AP*_i goes back to operation 605 where it continues to receive next sounding packet from AP*_1.
FIG. 7 shows the process flow in a beamformer AP, labelled AP*_1, according to embodiments of the invention, for transmitting or sending data to an associated STA, labelled UE_1. When AP*_1 has data to send to UE_1, it checks to see if NAV is set at operation 701. If not, e.g. the channel is not clear, AP*_1 proceeds to send data at 702. However if NAV is set, then AP*_1 determines if the NAV was set by one of its neighboring APs, AP*_i, that has backhaul CSI feedback capability. AP*_1 checks if the CSI data from the neighboring AP, AP*_i, is current or not at operation 703. Using this current CSI data, AP*_1 determines whether it can reduce its radiation pattern, e.g. generate a null, toward AP*_i sufficient to protect it from interference from AP*_i, for example by checking whether it will be protected by the CCA set threshold e.g. −82 dB, and also support UE_1 at operation 704. If this condition can be met, AP*_1 may ignore the NAV being set and proceed to send data to UE_1 at operation 705. If this condition is not met, then it wait until NAV clears at operation 706. There might be two active neighboring AP*s and it might be possible for AP*_1 to create multiple nulls.
Some embodiments of the invention do not require a modification to the NDP_announcement and NDP messages. Consequently, the various STAs will see the message flows as standard. AP*_1 receives CSI information from each of the associated UEs that it polls over the Wi-Fi air interface, for example as the standard MU_MIMO sounding procedure. In addition, according to embodiments of the invention, AP*_1 receives CSI information from AP*_2 via an established backhaul link as shown in FIG. 3 and AP*_1 may then generate a pattern as shown in FIG. 8.
FIG. 8 shows how an AP, AP*_1, equipped with beamforming capability can both enhance its signal to a client STA, UE_1, while simultaneously nulling its signal toward an interfering AP, AP*_2. In FIG. 8, the same reference numerals are used to designate like items in FIG. 1. In FIG. 8, the propagation path between AP*_1 and AP*_2 is modified and referenced 209, and the overall radiation pattern is modified and referenced 206.
AP*_1 performs the enhancement and nulling using CSI on the path 209 (109) between APs and on the path 103 between AP*_1 and UE_1. The baseband processor in an AP according to embodiments of the invention may be configured to apply weights to signals received by or transmitted from AP antennas such that spatial signatures, or radiation patterns, generated in downlink or uplink or both reduce interferences between said Wi-Fi AP and at least one of the N neighboring APs. The application of these weights may be based for example on received CSI feedback from sounding. At the same time the AP may transmit or send a data packet to a station (STA), or a group of stations.
FIG. 8 illustrates schematically that the modification of the radiation pattern results in a reduction of unwanted or unintentional radiation between the two APs, as indicated by path 209. At the same time the radiation between AP*_1 and UE_1 may be enhanced as indicated by the extension of the radiation pattern 206 around UE_1.
CSI can be developed either implicitly or explicitly. The use of explicit feedback is more accurate, and therefore more useful that implicit feedback for generating a high quality null toward a neighboring AP.
According to embodiments of the invention, AP*_1 is able to recognize nearby APs that are AP* compatible and able to support communication between them. AP* capability can be added in as an information element in the beacon transmission.
FIG. 9 is a diagram illustrating the structure of the 802.11 Beacon Frame 900 in accordance with embodiments of the present invention. This frame is transmitted by all 801.11 APs at a periodic rate, typically 10 times per second. This beacon includes mandatory information such as the SSID of the AP but can optionally include other information, e.g. vendor specific data. According to embodiments of the invention, the vendor specific data may start with a device/vendor ID followed by a flag to indicate backhaul CSI feedback capability. Where this becomes standardized, a specific Information Element ID could be assigned to indicate this capability rather than embedding this information in a vendor specific data element.
According to embodiments of the invention, an AP may obtain explicate feedback from a co-channel AP as an extension of the standard procedure of obtaining CSI information from its supported UE. In this manner the AP will have timely CSI information based on feedback from the co-channel AP, enabling it to develop a high quality null toward that AP. Embodiments of the invention do not require a modification to the standard sounding approach used by AP*_1 when it sends the NDP_announcement message. Consequently, the various STAs will see the message flows as standard. AP*_1 receives CSI information from co-channel neighboring AP, AP*_i, via an established backhaul link between them and from each of its associated UEs over the Wi-Fi air interface that it polls as the standard MU_MIMO sounding procedure, and then AP*_1 generates a pattern as shown in FIG. 8.
The methods described for embodiments of this invention can be implemented in hardware, combination of hardware and software or software only. A unique aspect of some embodiments is the possibility for implementation completely in software, for example by augmenting the notational algorithms of the 802.11xx protocol. Thus embodiments of the invention may take the form of one or more computer readable media, e.g. non-transitory computer readable media, which when implemented on one or more processors in an AP system to perform any of the methods described above.
The methods described herein are applicable to all versions of the 802.11 protocol, specifically 802.11a, b, g, n and ac.
As will be appreciated by someone skilled in the art, aspects of the present invention may be embodied as a system, method or an apparatus. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” In one aspect the invention provides a computer readable medium comprising instructions which when implemented on one or more processors in a computing system causes the system to carry out any of the methods described above. The computer readable medium may be in non-transitory form.
The aforementioned block diagrams illustrate the architecture, functionality, and operation of possible implementations of systems and methods according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
In the above description, an embodiment is an example or implementation of the inventions. The various appearances of “one embodiment,” “an embodiment” or “some embodiments” do not necessarily all refer to the same embodiments.
Although various features of the invention may be described in the context of a single embodiment, the features may also be provided separately or in any suitable combination. Conversely, although the invention may be described herein in the context of separate embodiments for clarity, the invention may also be implemented in a single embodiment.
Reference in the specification to “some embodiments”, “an embodiment”, “one embodiment” or “other embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least some embodiments, but not necessarily all embodiments, of the inventions.
It is to be understood that the phraseology and terminology employed herein is not to be construed as limiting and are for descriptive purpose only.
The principles and uses of the teachings of the present invention may be better understood with reference to the accompanying description, figures and examples. It is to be understood that the details set forth herein do not construe a limitation to an application of the invention. Furthermore, it is to be understood that the invention can be carried out or practiced in various ways and that the invention can be implemented in embodiments other than the ones outlined in the description above.
It is to be understood that the terms “including”, “comprising”, “consisting” and grammatical variants thereof do not preclude the addition of one or more components, features, steps, or integers or groups thereof and that the terms are to be construed as specifying components, features, steps or integers. If the specification or claims refer to “an additional” element, that does not preclude there being more than one of the additional element. It is to be understood that where the claims or specification refer to “a” or “an” element, such reference is not be construed that there is only one of that element.
It is to be understood that where the specification states that a component, feature, structure, or characteristic “may”, “might”, “can” or “could” be included, that particular component, feature, structure, or characteristic is not required to be included.
Where applicable, although state diagrams, flow diagrams or both may be used to describe embodiments, the invention is not limited to those diagrams or to the corresponding descriptions. For example, flow need not move through each illustrated box or state, or in exactly the same order as illustrated and described.
Methods of the present invention may be implemented by performing or completing manually, automatically, or a combination thereof, selected steps or tasks. The term “method” may refer to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the art to which the invention belongs.
The descriptions, examples, methods and materials presented in the claims and the specification are not to be construed as limiting but rather as illustrative only. Meanings of technical and scientific terms used herein are to be commonly understood as by one of ordinary skill in the art to which the invention belongs, unless otherwise defined.
The present invention may be implemented in the testing or practice with methods and materials equivalent or similar to those described herein. While the invention has been described with respect to a limited number of embodiments, these should not be construed as limitations on the scope of the invention, but rather as exemplifications of some of the preferred embodiments. Other possible variations, modifications, and applications are also within the scope of the invention. Accordingly, the scope of the invention should not be limited by what has thus far been described, but by the appended claims and their legal equivalents.

Claims (11)

What is claimed is:
1. A method implemented in an access point (AP) configured to exchange messages with at least one associated station (STA) via a wireless channel, the AP comprising: a plurality of antennas, radio circuitry configured to transmit and receive via said antennas, and a baseband processor, the method comprising:
establishing a backhaul link with at least one co-channel neighboring AP,
sending a sounding packet to said at least one associated STA over the wireless channel,
obtaining channel state information (CSI) feedback from said at least one co-channel neighboring AP via the backhaul link,
determining that the radiation pattern of the AP towards said at least one co-channel neighboring AP can be reduced sufficient to protect the AP from interference from the at least one co-channel neighboring AP,
generating a radiation pattern that is reduced towards said at least one co-channel AP, and
exchanging messages with at least one associated station (STA) via a wireless channel at the same time as generating said reduced radiation pattern,
wherein prior to said determining, generating and exchanging, determining that a network allocation vector (NAV) for the channel is set by one said co-channel neighboring AP, and
wherein said determining uses the CSI, obtained via a backhaul link, for a co-channel neighboring AP that has set the NAV.
2. The method according to claim 1 wherein the at least one co-channel neighboring AP is operating within a clear channel assessment (CCA) range of said AP.
3. The method according to claim 1 wherein establishing said backhaul link comprises:
transmitting a query for an address of said at least one co-channel neighboring AP; and
receiving a response comprising an address for each said at least one co-channel AP.
4. The method according to claim 3 comprising:
sending said query to a controller,
receiving said response from said controller, and
establishing said backhaul link with said at least one co-channel neighboring AP as a peer-to-peer (P2P) link which bypasses said controller.
5. The method according to claim 1 in which said obtaining comprises obtaining CSI for multiple co-channel neighboring APs and the method further comprises comprising compiling a table of most recently obtained CSI for said multiple co-channel neighboring APs.
6. The method according to claim 1 further comprising detecting a sounding packet sent by a co-channel neighboring AP via a wireless channel to at least one STA associated with the neighboring AP, and in response to said detecting sending CSI to said at least one neighboring AP via a backhaul link.
7. The AP according to claim 1, the baseband processor is configured to query the sounding controller about the neighboring AP's backhaul IP address by decoded MAC transmitter address in received beacon.
8. An access point (AP) configured to exchange messages with at least one associated station (STA) via a wireless channel, the AP comprising:
a plurality of antennas,
radio circuitry configured to transmit and receive via said antennas, and
a baseband processor, wherein the baseband processor is configured to cause the AP to:
establish a backhaul link with at least one co-channel neighboring AP,
send a sounding packet to said at least one associated STA over the wireless channel, wherein the sounding packet is sent according to the multi-user multiple input multiple output (MU-MIMO) sounding protocol,
obtain channel state information (CS I) feedback from said at least one neighboring AP via the backhaul link and from its associated STAs over-the-air according to the MU-MIMO sounding protocol, and
determine one or more weights for signals transmitted to or received from said antennas to generate a radiation pattern to reduce interference between said AP and at least one co-channel neighboring AP based on said CSI feedback.
9. The AP according to claim 8 wherein the radio circuitry is configured to operate in compliance with the IEEE 802.11 standard.
10. An access point (AP) configured to exchange messages with at least one associated station (STA) via a wireless channel, the AP comprising:
a plurality of antennas,
radio circuitry configured to transmit and receive via said antennas, and
a baseband processor, wherein the baseband processor is configured to:
establish a backhaul link with at least one neighboring AP,
detect a sounding packet sent by the neighboring AP to at least one associated STA over the wireless channel,
send channel state information (CSI) to said at least one neighboring AP via the backhaul link,
indicate that it is capable of responding to sounding packets by transmitting identification of this capability, wherein the identification of this capability is transmitted in a beacon management frame of the AP, and
operate in compliance with the IEEE 802.11 standard and to register its backhaul IP address, Wi-Fi SSID, and Wi-Fi MAC address to a sounding controller via a backhaul link at power-up.
11. A communication system comprising a plurality of access points (APs) each configured to:
exchange messages with at least one associated station (STA) via a wireless channel,
establish a backhaul link with at least one co-channel neighboring AP,
send a sounding packet to said at least one associated STA over the wireless channel,
obtain channel state information (CSI) feedback from said at least one neighboring AP via the backhaul link, the system further comprising a sounding controller for registration of said APs, each AP being configured to register with said sounding controller,
determine that the radiation pattern of the AP towards said at least one co-channel neighboring AP can be reduced sufficient to protect the AP from interference from the at least one co-channel neighboring AP,
generate a radiation pattern that is reduced towards said at least one co-channel AP, and
exchange messages with at least one associated station (STA) via a wireless channel at the same time as generating said reduced radiation pattern,
wherein prior to said determining, generating and exchanging, determining that a network k allocation vector (NAV) for the channel is set by one said co-channel neighboring AP, and
wherein said determining uses the CSI, obtained via a backhaul link, for a co-channel neighboring AP that has set the NAV.
US14/472,759 2014-03-28 2014-08-29 System and method for backhaul based sounding feedback Expired - Fee Related US9271176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/472,759 US9271176B2 (en) 2014-03-28 2014-08-29 System and method for backhaul based sounding feedback

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461971685P 2014-03-28 2014-03-28
US14/472,759 US9271176B2 (en) 2014-03-28 2014-08-29 System and method for backhaul based sounding feedback

Publications (2)

Publication Number Publication Date
US20150281993A1 US20150281993A1 (en) 2015-10-01
US9271176B2 true US9271176B2 (en) 2016-02-23

Family

ID=54192351

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/472,759 Expired - Fee Related US9271176B2 (en) 2014-03-28 2014-08-29 System and method for backhaul based sounding feedback

Country Status (1)

Country Link
US (1) US9271176B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180309487A1 (en) * 2015-12-31 2018-10-25 Huawei Technologies Co., Ltd. Beamforming method, receiver, transmitter, and system
US10361765B2 (en) * 2013-05-31 2019-07-23 Samsung Electronics Co., Ltd. Apparatus and method for controlling array antenna device in communication system

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3141065B1 (en) * 2014-05-09 2020-01-22 Interdigital Patent Holdings, Inc. Method and system for sounding and channel selection
US9510369B2 (en) * 2014-07-22 2016-11-29 Nokia Technologies Oy Sensing and/or transmission coverage adaptation using interference information
US9647745B2 (en) 2014-10-14 2017-05-09 Regents Of The University Of Minnesota Channel tracking and transmit beamforming with frugal feedback
US10454650B2 (en) * 2015-04-01 2019-10-22 Lg Electronics Inc. Method and apparatus for transmitting data in wireless communication system
US10159047B2 (en) * 2015-05-18 2018-12-18 Qualcomm Incorporated Techniques for managing SIFS-bursting in WLAN system
US10200964B2 (en) * 2015-11-02 2019-02-05 Intel IP Corporation Apparatus, system and method of fine timing measurement (FTM)
US20170295595A1 (en) * 2016-04-08 2017-10-12 Intel IP Corporation Directional enhanced distributed channel access with interference avoidance
CN110199486B (en) * 2016-10-24 2022-11-11 英特尔公司 Multi-antenna range estimation for wireless networking
US11166311B2 (en) * 2017-03-02 2021-11-02 Cable Television Laboratories, Inc. Systems and methods utilizing channel spatial properties with CSMA
US10820333B2 (en) 2017-03-11 2020-10-27 Qualcomm Incorporated Distributed MIMO communication scheduling in an access point cluster
US10805940B2 (en) 2017-03-11 2020-10-13 Qualcomm Incorporated Triggering distributed MIMO communication in a wireless node cluster
US10820332B2 (en) 2017-03-11 2020-10-27 Qualcomm Incorporated Sounding scheduling for distributed MIMO communication in an access point cluster
US10750395B2 (en) * 2017-03-11 2020-08-18 Qualcomm Incorporated Identifying nulling wireless nodes for distributed MIMO communication in a wireless node cluster
US11096132B2 (en) * 2018-07-26 2021-08-17 Mediatek Singapore Pte. Ltd. Joint sounding for multi-user communication in multi-AP WLAN
CN113711650A (en) * 2019-03-08 2021-11-26 交互数字专利控股公司 System and method for multi-AP transmission with uniform coverage
KR20210158570A (en) 2020-06-24 2021-12-31 삼성전자주식회사 Electronic device alleviating signal interference with neighboring bss and method for controlling thereof

Citations (321)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044359A (en) 1962-01-09 1977-08-23 General Electric Company Multiple intermediate frequency side-lobe canceller
US4079318A (en) 1975-06-23 1978-03-14 Nippon Electric Company, Ltd. Space diversity receiving system with phase-controlled signal combining at intermediate frequency stage
US4359738A (en) 1974-11-25 1982-11-16 The United States Of America As Represented By The Secretary Of The Navy Clutter and multipath suppressing sidelobe canceller antenna system
US4540985A (en) 1978-05-23 1985-09-10 Westinghouse Electric Corp. Angle width discriminator/altitude line detector radar
US4628320A (en) 1964-04-29 1986-12-09 General Electric Company Cancellation of scatter jamming
US5162805A (en) 1975-02-19 1992-11-10 The United States Of America As Represented By The Secretary Of The Navy Frequency diversity sidelobe canceller
US5363104A (en) 1974-02-28 1994-11-08 Lockheed Sanders, Inc. Jamming signal cancellation system
US5444762A (en) 1993-03-08 1995-08-22 Aircell, Inc. Method and apparatus for reducing interference among cellular telephone signals
US5732075A (en) 1995-02-24 1998-03-24 Alcatel N.V. Assignment of a carrier frequency in an SDMA radio system
US5915215A (en) 1990-05-02 1999-06-22 Harris Canda, Inc. Private cellular telephone system
US5936577A (en) 1996-10-18 1999-08-10 Kabushiki Kaisha Toshiba Adaptive antenna
US5940033A (en) 1998-01-20 1999-08-17 The United States Of America As Represented By The Secretary Of The Army Apparatus, methods and computer program for evaluating multiple null forming antenna processors and jammers
US6018317A (en) 1995-06-02 2000-01-25 Trw Inc. Cochannel signal processing system
US6026081A (en) 1996-07-05 2000-02-15 Nec Corporation Method of controlling power on forward link in a cellular
US6046655A (en) 1997-11-10 2000-04-04 Datron/Transco Inc. Antenna feed system
US6094165A (en) 1997-07-31 2000-07-25 Nortel Networks Corporation Combined multi-beam and sector coverage antenna array
US6101399A (en) 1995-02-22 2000-08-08 The Board Of Trustees Of The Leland Stanford Jr. University Adaptive beam forming for transmitter operation in a wireless communication system
US6163695A (en) 1997-04-16 2000-12-19 Nec Corporation Mobile communication system and mobile communication method thereof
US6167286A (en) 1997-06-05 2000-12-26 Nortel Networks Corporation Multi-beam antenna system for cellular radio base stations
US6215812B1 (en) 1999-01-28 2001-04-10 Bae Systems Canada Inc. Interference canceller for the protection of direct-sequence spread-spectrum communications from high-power narrowband interference
US6226507B1 (en) 1998-02-03 2001-05-01 Ericsson Inc. Apparatus and method for selecting between a plurality of antennas utilized by a microcellular communications terminal for reception of a signal
US6230123B1 (en) 1997-12-05 2001-05-08 Telefonaktiebolaget Lm Ericsson Publ Noise reduction method and apparatus
US6259683B1 (en) 1996-11-28 2001-07-10 Oki Electric Industry Co., Ltd. Mobile communication system for accomplishing handover with phase difference of frame sync signals corrected
US6297772B1 (en) 1974-09-23 2001-10-02 The United States Of America As Represented By The Secretary Of The Navy Predicting coherent sidelobe canceller
US20010029326A1 (en) 1991-03-07 2001-10-11 Diab Mohamed Kheir Signal processing apparatus and method
US20010038665A1 (en) 2000-03-03 2001-11-08 Jens Baltersee Method and rake receiver for phasor estimation in communication systems
US6321077B1 (en) 1998-04-24 2001-11-20 Harada Industry Co., Ltd. Reception control system for automobile
US6335953B1 (en) 1992-05-08 2002-01-01 Axonn, L.L.C. Enhanced frequency agile radio
US20020024975A1 (en) 2000-03-14 2002-02-28 Hillel Hendler Communication receiver with signal processing for beam forming and antenna diversity
EP1189303A2 (en) 2000-09-14 2002-03-20 NTT DoCoMo, Inc. Beam forming method and apparatus in a wireless communication system
US6370378B1 (en) 1998-06-29 2002-04-09 Nec Corporation Cellular communicating network and method for locating mobile stations using hierarchically arranged databases
US6377783B1 (en) 1998-12-24 2002-04-23 At&T Wireless Services, Inc. Method for combining communication beams in a wireless communication system
US20020051430A1 (en) 2000-10-31 2002-05-02 Hideo Kasami Wireless communication system, weight control apparatus, and weight vector generation method
US6393282B1 (en) 1999-01-14 2002-05-21 Kabushiki Kaisha Toshiba Mobile radio communication terminal device with base station searching function
US20020065107A1 (en) 2000-10-16 2002-05-30 Wireless Online, Inc. Method and system for calibrating antenna towers to reduce cell interference
US20020085643A1 (en) 2000-12-28 2002-07-04 Dean Kitchener MIMO wireless communication system
US20020107013A1 (en) 2001-02-06 2002-08-08 Shane Fitzgerald Method and apparatus for intelligent dynamic frequency reuse
US20020115474A1 (en) 2001-02-14 2002-08-22 Ntt Docomo, Inc. Communication control method and apparatus in mobile communication system
US20020181426A1 (en) 2001-03-02 2002-12-05 Sherman Matthew J. Interference suppression methods for 802.11
US20020181437A1 (en) 2001-04-26 2002-12-05 Ntt Docomo, Inc Data link transmission control methods, mobile communication systems, data link transmission control apparatus, base stations, mobile stations, mobile station control programs, and computer-readable recording media
US20030045241A1 (en) 2001-09-06 2003-03-06 Anthony Noerpel Mobility management-radio resource layer interface system and method for handling dark beam scenarios
US20030087645A1 (en) 2001-11-08 2003-05-08 Kim Byoung-Jo J. Frequency assignment for multi-cell IEEE 802.11 wireless networks
WO2003047033A1 (en) 2001-11-21 2003-06-05 Lockheed Martin Corporation Scaleable antenna array architecture using standard radiating subarrays and amplifying/beamforming assemblies
US20030114162A1 (en) 2001-05-31 2003-06-19 Chheda Ashvin H. Method and apparatus for orthogonal code management in CDMA systems using smart antenna technology
US6584115B1 (en) 1998-06-25 2003-06-24 Nec Corporation Multiuser interference canceler for DS-CDMA system
US20030153322A1 (en) 2002-02-08 2003-08-14 Burke Joseph P. Transmit pre-correction in a wireless communication system
US20030153360A1 (en) 2002-02-08 2003-08-14 Burke Joseph P. Method and apparatus for transmit pre-correction in wireless communications
WO2003073645A1 (en) 2002-02-26 2003-09-04 Nortel Networks Limited Radio communications device with adaptive antenna array for mimo systems
US20030186653A1 (en) 1998-05-14 2003-10-02 Behzad Mohebbi Reducing interference in cellular mobile communication networks
US20030203717A1 (en) 1998-04-27 2003-10-30 Chuprun Jeffery Scott Satellite based data transfer and delivery system
US20030203743A1 (en) 2002-04-22 2003-10-30 Cognio, Inc. Multiple-Input Multiple-Output Radio Transceiver
US20040023693A1 (en) 2002-08-01 2004-02-05 Ntt Docomo, Inc. Base station connection method, radio network controller, and mobile station
US6697622B1 (en) 1999-09-06 2004-02-24 Nit Docomo, Inc. Control method of searching neighboring cells, mobile station, and mobile communication system
US6697633B1 (en) 1995-06-02 2004-02-24 Northrop Grummar Corporation Method permitting increased frequency re-use in a communication network, by recovery of transmitted information from multiple cochannel signals
US20040056795A1 (en) 2001-11-20 2004-03-25 Telefonaktiebolaget Lm Ericsson Downlink load sharing by beam selection
US20040063455A1 (en) 2002-08-07 2004-04-01 Extricom Ltd. Wireless LAN with central management of access points
US20040081144A1 (en) 2002-09-17 2004-04-29 Richard Martin System and method for access point (AP) aggregation and resiliency in a hybrid wired/wireless local area network
US20040121810A1 (en) 2002-12-23 2004-06-24 Bo Goransson Using beamforming and closed loop transmit diversity in a multi-beam antenna system
US20040125900A1 (en) 2002-12-31 2004-07-01 Jung-Tao Liu Method of determining the capacity of each transmitter antenna in a multiple input/multiple out/put (MIMO) wireless system
US20040125899A1 (en) 2002-12-30 2004-07-01 Yingxue Li Method and system for adaptively combining signals
US20040142696A1 (en) 2002-12-10 2004-07-22 Data Flow Systems, Inc. Radio communication system employing spectral reuse transceivers
US20040147266A1 (en) 2003-01-20 2004-07-29 Samsung Electronics Co., Ltd. System and method for supporting multimedia broadcast/multicast service in a non-tracking area
US20040156399A1 (en) 2002-08-07 2004-08-12 Extricom Ltd. Wireless LAN control over a wired network
US20040166902A1 (en) 2003-01-21 2004-08-26 Dan Castellano Method and system for reducing cell interference using advanced antenna radiation pattern control
US20040198292A1 (en) 2002-06-27 2004-10-07 Smith Martin S. Wireless transmitter, transceiver and method
US20040228388A1 (en) 2003-04-25 2004-11-18 Matti Salmenkaita Data transmission method, system and network element
US20040235527A1 (en) 1999-10-19 2004-11-25 Kathrein-Werke Kg High speed fixed wireless voice/data systems and methods
US6834073B1 (en) 2000-05-26 2004-12-21 Freescale Semiconductor, Inc. System and method for baseband removal of narrowband interference in ultra wideband signals
US20040264504A1 (en) 2003-06-24 2004-12-30 Samsung Electronics Co., Ltd. Apparatus and method for enhancing transfer rate using a direct link protocol (DLP) and multiple channels in a wireless local area network (LAN) using a distributed coordination function (DCF)
US6842460B1 (en) 2001-06-27 2005-01-11 Nokia Corporation Ad hoc network discovery menu
US20050068918A1 (en) 2003-09-25 2005-03-31 Ashok Mantravadi Hierarchical coding with multiple antennas in a wireless communication system
US20050068230A1 (en) 2003-09-29 2005-03-31 Munoz Michael S. Reducing co-channel interference in satellite communications systems by antenna re-pointing
US20050075140A1 (en) 2003-10-02 2005-04-07 Toshiba America Research Inc. Harmonized Adaptive Arrays
US20050129155A1 (en) 2003-12-12 2005-06-16 Pioneer Corporation Receiver, receiving method, reception controlling program, and recording medium
US6914890B1 (en) 1999-08-05 2005-07-05 Nokia Corporation Apparatus, and associated method, for sequencing transmission of data
US20050147023A1 (en) 2003-12-30 2005-07-07 Intel Corporation Method and apparatus for implementing downlink SDMA in a wireless network
US20050163097A1 (en) 2004-01-28 2005-07-28 Samsung Electronics Co., Ltd Method of efficiently transmitting data during a handover in a wideband radio access network
US6927646B2 (en) 2002-07-12 2005-08-09 Filtronic Lk Oy Bypass arrangement for low-noise amplifier
US20050245224A1 (en) 2004-02-04 2005-11-03 Fujitsu Ten Limited Receiver
US20050250544A1 (en) 2004-05-07 2005-11-10 Stephen Grant Base station, mobile terminal device and method for implementing a selective-per-antenna-rate-control (S-PARC) technique in a wireless communications network
US20050254513A1 (en) 2004-05-14 2005-11-17 Interdigital Technology Corporation Method of selectively adjusting the configuration of an access point antenna to enhance mobile station coverage
US20050265436A1 (en) 2004-06-01 2005-12-01 Samsung Electronics Co., Ltd. Method and apparatus for channel state feedback using arithmetic coding
US6975582B1 (en) 1995-07-12 2005-12-13 Ericsson Inc. Dual mode satellite/cellular terminal
US20050287962A1 (en) 2004-06-25 2005-12-29 Mehta Neelesh B RF-based antenna selection in MIMO systems
US20050286440A1 (en) 2004-06-24 2005-12-29 Meshnetworks, Inc. System and method for adaptive rate selection for wireless networks
US20060041676A1 (en) 2001-01-16 2006-02-23 Sherman Matthew J Interference suppression methods for 802.11
US20060094372A1 (en) 2004-10-29 2006-05-04 Samsung Electronics Co., Ltd. Method for uplink scheduling in communication system using frequency hopping-orthogonal frequency division multiple access scheme
US20060092889A1 (en) 2004-08-25 2006-05-04 Daniel Lyons High density WLAN system
US20060098605A1 (en) 2003-04-07 2006-05-11 Shaolin Li Method of secure communications in a wireless distribution system
US20060111149A1 (en) 2001-11-29 2006-05-25 Interdigital Technology Corporation System and method utilizing dynamic beam forming for wireless communication signals
US20060135097A1 (en) 2003-12-10 2006-06-22 Wang James J Wireless communication system using a plurality of antenna elements with adaptive weighting and combining techniques
US7068628B2 (en) 2000-05-22 2006-06-27 At&T Corp. MIMO OFDM system
US20060183503A1 (en) 2002-09-09 2006-08-17 Interdigital Technology Corporation Reducing the effect of signal interference in null areas caused by overlapping antenna patterns
US20060203850A1 (en) 2005-03-14 2006-09-14 Johnson Walter L Method and apparatus for distributing timing information in an asynchronous wireless communication system
US20060227854A1 (en) 2005-04-07 2006-10-12 Mccloud Michael L Soft weighted interference cancellation for CDMA systems
US20060264184A1 (en) 2005-02-17 2006-11-23 Interdigital Technology Corporation Method and apparatus for selecting a beam combination of multiple-input multiple-output antennas
US20060270343A1 (en) 2005-04-07 2006-11-30 Interdigital Technology Corporation Method and apparatus for antenna mapping selection in MIMO-OFDM wireless networks
US20060271969A1 (en) 2005-05-18 2006-11-30 Masaaki Takizawa Wireless communication system, wireless relay unit and wireless terminal constituting the wireless communication system, and wireless communication method
US20060285507A1 (en) 2005-06-17 2006-12-21 Kinder Richard D Using mini-beacons in a wireless network
US7177663B2 (en) 2003-05-27 2007-02-13 Interdigital Technology Corporation Multi-mode radio with interference cancellation circuit
US20070041398A1 (en) 2000-11-03 2007-02-22 At&T Corp. Tiered contention multiple access (TCMA): a method for priority-based shared channel access
US7190964B2 (en) 2001-08-20 2007-03-13 Telefonaktiebolaget Lm Ericsson (Publ) Reverse link power control in 1xEV-DV systems
US20070058581A1 (en) 2001-07-05 2007-03-15 Mathilde Benveniste Hybrid coordination function (hcf) access through tiered contention and overlapped wireless cell mitigation
US20070076675A1 (en) 2005-10-04 2007-04-05 Via Technologies Inc. Hyper throughput method for wirless local area network
US20070093261A1 (en) 2005-10-24 2007-04-26 Jilei Hou Iterative interference cancellation system and method
US20070097918A1 (en) 2005-10-27 2007-05-03 Motorola, Inc. Mobility enhancement for real time service over high speed downlink packet access (hsdpa)
US20070115882A1 (en) 2005-11-08 2007-05-24 Conexant Systems, Inc Symmetric transmit opportunity (TXOP) truncation
US20070152903A1 (en) 2005-12-30 2007-07-05 Micro Mobio Printed circuit board based smart antenna
US7257425B2 (en) 2003-12-02 2007-08-14 Motia System and method for providing a smart antenna
US20070217352A1 (en) 2006-01-05 2007-09-20 Samsung Electronics Co., Ltd. Method and apparatus for transmitting control frame to hidden node in wireless LAN
US20070223380A1 (en) 2006-03-22 2007-09-27 Gilbert Jeffrey M Mechanism for streaming media data over wideband wireless networks
US20070223525A1 (en) 2006-03-21 2007-09-27 Texas Instruments Incorporated Transmission of packets in a csma wireless network
US20070249386A1 (en) 2006-03-22 2007-10-25 Broadcom Corporation, A California Corporation Client device characterization of other client device transmissions and reporting of signal qualities to access point(s)
US7299072B2 (en) 2003-02-28 2007-11-20 Fujitsu Limited Apparatus for time division multi-sector wireless LAN
US20080043867A1 (en) 2006-08-18 2008-02-21 Qualcomm Incorporated Feedback of precoding control indication (pci) and channel quality indication (cqi) in a wireless communication system
US20080051037A1 (en) 2005-12-29 2008-02-28 Molnar Karl J BASE STATION AND METHOD FOR SELECTING BEST TRANSMIT ANTENNA(s) FOR SIGNALING CONTROL CHANNEL INFORMATION
US20080081671A1 (en) 2006-10-03 2008-04-03 Motorola, Inc. Mobile assisted downlink beamforming with antenna weight feedback
US20080095163A1 (en) 2006-10-23 2008-04-24 Wai Chen Method and communication device for routing unicast and multicast messages in an ad-hoc wireless network
US20080108352A1 (en) 2006-10-27 2008-05-08 Michael Montemurro Link quality measurements based on data rate and received power level
US20080125120A1 (en) 2002-10-18 2008-05-29 Gallagher Michael D Registration Messaging in an Unlicensed Mobile Access Telecommunications System
US20080144737A1 (en) 2006-12-19 2008-06-19 Qualcomm Incorporated Beamspace-time coding based on channel quality feedback
US7391757B2 (en) 2002-10-30 2008-06-24 Hewlett-Packard Development Company, L.P. Wireless LAN
US7392015B1 (en) 2003-02-14 2008-06-24 Calamp Corp. Calibration methods and structures in wireless communications systems
US20080165732A1 (en) 2001-11-08 2008-07-10 Kim Byoung-Jo J Frequency assignment for multi-cell IEEE 802.11 wireless networks
US20080238808A1 (en) 2007-02-15 2008-10-02 Mitsubishi Electric Corporation Diversity receiver
US20080240314A1 (en) 2007-03-27 2008-10-02 Qualcomm Incorporated Channel estimation with effective co-channel interference suppression
US20080247370A1 (en) 2005-09-30 2008-10-09 Daqing Gu Training Signals for Selecting Antennas and Beams in Mimo Wireless Lans
US20080267142A1 (en) 2004-06-18 2008-10-30 Stellaris Ltd. Distributed Antenna Wlan Access-Point System and Method
US20080280571A1 (en) 2007-05-11 2008-11-13 Broadcom Corporation, A California Corporation RF transceiver with adjustable antenna assembly
US20080285637A1 (en) 2005-11-29 2008-11-20 Interuniversitair Microelektronica Centrum Vzw (Imec) Device and method for calibrating mimo systems
US20090003299A1 (en) 2004-01-08 2009-01-01 Interdigital Technology Corporation Method for clear channel assessment optimization in a wireless local area network
US7474676B2 (en) 2004-09-10 2009-01-06 Mitsubishi Electric Research Laboratories, Inc. Frame aggregation in wireless communications networks
US20090028225A1 (en) 2007-07-17 2009-01-29 Viasat, Inc. Modular Satellite Transceiver
US20090046638A1 (en) 2003-10-01 2009-02-19 Rappaport Theodore S Wireless network system and method
US7499109B2 (en) 2003-07-30 2009-03-03 Samsung Electronics Co., Ltd. Method and apparatus for receiving digital television signals using space diversity and beam-forming
US20090058724A1 (en) 2007-09-05 2009-03-05 Samsung Electronics Co., Ltd. Method and system for analog beamforming in wireless communication systems
US7512083B2 (en) 2003-04-07 2009-03-31 Shaolin Li Single chip multi-antenna wireless data processor
US20090121935A1 (en) 2007-11-12 2009-05-14 Samsung Electronics Co., Ltd. System and method of weighted averaging in the estimation of antenna beamforming coefficients
US20090137206A1 (en) 2007-11-23 2009-05-28 Texas Instruments Incorporated Apparatus for and method of bluetooth and wireless local area network coexistence using a single antenna in a collocated device
US20090154419A1 (en) 2007-12-17 2009-06-18 Shousei Yoshida Scheduling method for multi-user mimo
US20090190541A1 (en) 2008-01-28 2009-07-30 Saied Abedi Communication systems
JP2009182441A (en) 2008-01-29 2009-08-13 Mitsubishi Electric Corp Communication device and calibration method
US20090225697A1 (en) 2008-03-10 2009-09-10 Trainin Solomon Device, system, and method of wireless beamforming calibration
US20090227255A1 (en) 2008-03-10 2009-09-10 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced cell scanning
US20090239486A1 (en) 2002-03-01 2009-09-24 Ipr Licensing, Inc. Apparatus for antenna diversity using joint maximal ratio combining
US7606528B2 (en) 2006-11-10 2009-10-20 Northrop Grumman Corporation Distributed conformal adaptive antenna array for SATCOM using decision direction
US20090268616A1 (en) 2005-11-21 2009-10-29 Takahiro Hosomi Mobile station, downstream transmission rate control method, and downstream transmission rate control program
US20090285331A1 (en) 2002-03-21 2009-11-19 Ipr Licensing, Inc. Control of power amplifiers in devices using transmit beamforming
JP2009278444A (en) 2008-05-15 2009-11-26 Mitsubishi Electric Corp Distortion compensation device
US7634015B2 (en) 2006-02-10 2009-12-15 Intel Corporation Mobile station and method for channel sounding using a single radio frequency transmitter chain in a multiple-input multiple-output (MIMO) system
US20090323608A1 (en) 2008-06-30 2009-12-31 Kabushiki Kaisha Toshiba Apparatus and method for wireless communication
US20090322610A1 (en) 2006-11-10 2009-12-31 Philip Edward Hants Phased array antenna system with electrical tilt control
US20090322613A1 (en) 2008-06-30 2009-12-31 Interdigital Patent Holdings, Inc. Method and apparatus to support single user (su) and multiuser (mu) beamforming with antenna array groups
US20100002656A1 (en) 2008-07-03 2010-01-07 Qualcomm Incorporated Opportunistic relay scheduling in wireless communications
US7646744B2 (en) 2003-04-07 2010-01-12 Shaolin Li Method of operating multi-antenna wireless data processing system
US20100037111A1 (en) 2008-08-06 2010-02-11 Sun Microsystems, Inc. Method and apparatus for testing delay faults
US20100040369A1 (en) 2008-08-13 2010-02-18 Jun Zhao Time synchronization method and device in passive optical network and passive optical network
US20100111039A1 (en) 2008-11-03 2010-05-06 Samsung Electronics Co., Ltd. Method and apparatus for controlling discontinuous reception in mobile communication system
US20100117890A1 (en) 2008-11-10 2010-05-13 Motorola, Inc. Antenna reciprocity calibration
US7719993B2 (en) 2004-12-30 2010-05-18 Intel Corporation Downlink transmit beamforming
US20100135420A1 (en) 2007-06-29 2010-06-03 China Mobile Communications Corporation Antenna multiplexing system and method of smart antenna and multiple-input multiple-output antenna
US20100150013A1 (en) 2007-05-29 2010-06-17 Mitsubishi Electric Corporation Calibration method, communication system, frequency control method, and communication device
US7742000B2 (en) 2005-05-31 2010-06-22 Tialinx, Inc. Control of an integrated beamforming array using near-field-coupled or far-field-coupled commands
US20100172429A1 (en) 2007-05-29 2010-07-08 Hiroyuki Nagahama Digital broadcasting receiving apparatus
US7769107B2 (en) 2004-06-10 2010-08-03 Intel Corporation Semi-blind analog beamforming for multiple-antenna systems
WO2010085854A1 (en) 2009-02-02 2010-08-05 Commonwealth Scientific And Industrial Research Organisation Hybrid adaptive antenna array
US20100195601A1 (en) 2009-01-29 2010-08-05 Stichting Imec Nederland Access method and data frame structure for use in body area networks
US20100195560A1 (en) 2009-01-30 2010-08-05 Oki Electric Industry Co., Ltd. Packet relay system and wireless node
US20100208712A1 (en) 2009-02-17 2010-08-19 Wavion Ltd. Enhancing WLAN performance in the presence of interference
US20100222011A1 (en) 2005-04-04 2010-09-02 Broadcom Corporation Gain control in a multiple rf transceiver integrated circuit
US20100232355A1 (en) 2009-03-13 2010-09-16 Harris Corporation Asymmetric broadband data network
US20100234071A1 (en) 2009-03-12 2010-09-16 Comsys Communication & Signal Processing Ltd. Vehicle integrated communications system
US20100271992A1 (en) 2009-04-23 2010-10-28 Qualcomm Incorporated Wireless channel calibration
US20100278063A1 (en) 2009-04-29 2010-11-04 Samsung Electronics Co. Ltd. Method for controlling interference
US20100283692A1 (en) 2006-04-27 2010-11-11 Rayspan Corporation Antennas, devices and systems based on metamaterial structures
US20100285752A1 (en) 2009-05-11 2010-11-11 Nec Laboratories America, Inc. Beamforming methods and systems employing measured power at a receiver to perform channel estimation
US20100291931A1 (en) 2007-10-31 2010-11-18 Mitsubishi Electric Corporation Mobile communication system, base station, mobile station, and base station installation method
US20100303170A1 (en) 2007-05-10 2010-12-02 Xiaolong Zhu Method and apparatus for pre-processing data to be transmitted in multiple-input communication system
US20100316043A1 (en) 2007-02-06 2010-12-16 Panasonic Corporation Radio communication method and radio communication device
US20110019639A1 (en) 2009-05-22 2011-01-27 Jeyhan Karaoguz Enterprise Level Management in a Multi-Femtocell Network
US20110032849A1 (en) 2009-08-07 2011-02-10 Fimax Technology Limited Systems and methods for mitigating interference between access points
US20110032972A1 (en) 2009-08-07 2011-02-10 Motia, Inc. Economical, RF transparent, selective code phased array antenna processor
US7898478B2 (en) 2007-02-28 2011-03-01 Samsung Electronics Co., Ltd. Method and system for analog beamforming in wireless communication systems
US7904086B2 (en) 2006-10-02 2011-03-08 Board Of Regents, The University Of Texas System Method and computer program for handoff of mobile devices between wireless systems
US20110085465A1 (en) 2008-06-09 2011-04-14 Telefonaktiebolaget L M Ericsson (Publ) Method and system and device for if/irat measurement allocation
US20110085532A1 (en) 2002-08-26 2011-04-14 Scherzer Shimon B Space-time-power scheduling for wireless networks
US7933255B2 (en) 2003-04-07 2011-04-26 Bellow Bellows Llc Multi-antenna wireless data processing system
US20110105036A1 (en) 2009-11-04 2011-05-05 Motorola, Inc. Method and apparatus for sensing presence of an incumbent signal on a secondary radio channel
WO2011060058A1 (en) 2009-11-10 2011-05-19 Montana State University Compact smart antenna for mobile wireless communications
US20110116489A1 (en) 2009-11-13 2011-05-19 Interdigital Patent Holdings, Inc. Method and apparatus for providing vht frequency reuse for wlans
US20110134816A1 (en) 2009-12-09 2011-06-09 Yong Liu Wireless Communication Signaling for Aggregate Data Units
US20110151826A1 (en) 2009-12-18 2011-06-23 Motorola, Inc. Method for bearer establishment in a radio access network
US20110150066A1 (en) 2008-08-11 2011-06-23 Iwatsu Electric Co., Ltd. Multi-antenna wireless communication method, multi-antenna wireless communication system, and multi-antenna wireless communication device
US20110150050A1 (en) 2009-12-23 2011-06-23 Hafedh Trigui Digital integrated antenna array for enhancing coverage and capacity of a wireless network
US20110163913A1 (en) 2009-05-01 2011-07-07 Dalaware Corporation Practical Method for Upgrading Existing GNSS User Equipment with Tightly Integrated Nav-Com Capability
US7986718B2 (en) 2006-09-15 2011-07-26 Itron, Inc. Discovery phase in a frequency hopping network
US20110205998A1 (en) 2010-02-23 2011-08-25 Cisco Technology, Inc. Scheduling of Isochronous Traffic in Time and Frequency To Reduce Contention
US20110205883A1 (en) 2006-11-08 2011-08-25 Sony Corporation Wireless communication system, and apparatus and method for wireless communication
US20110228742A1 (en) 2008-06-13 2011-09-22 Zhi-Chun Honkasalo Sub Channel Generation for a Wireless Mesh Network
US20110250884A1 (en) 2008-09-22 2011-10-13 Mitsubishi Electric Corporation Method and a device for enabling a mobile terminal to access to a wireless cellular telecommunication network
US20110249576A1 (en) 2009-12-21 2011-10-13 Qualcomm Incorporated Antenna selection based on performance metrics in a wireless device
US20110273977A1 (en) 2010-05-04 2011-11-10 Nir Shapira System and method for channel state related feedback in multi-user multiple-input-multiple-output systems
US20110281541A1 (en) 2010-05-12 2011-11-17 Renesas Electronics Corp. Reconfigurable Receiver Architectures
US20110299437A1 (en) 2010-06-03 2011-12-08 Broadcom Corporation Front end module with compensating duplexer
US8078109B1 (en) 2007-04-13 2011-12-13 Wireless Stategies, Inc. Concurrently coordinated microwave paths in coordinated frequency bands
US20110310853A1 (en) 2010-06-18 2011-12-22 Sharp Laboratories Of America, Inc. Selecting a codeword and determining a symbol length for uplink control information
US20110310827A1 (en) 2010-06-16 2011-12-22 Sudhir Srinivasa Alternate feedback types for downlink multiple user mimo configurations
US20120014377A1 (en) 2010-03-02 2012-01-19 Thomas Kirkegaard Joergensen Distributed packet-based timestamp engine
US20120015603A1 (en) 2010-07-14 2012-01-19 Qualcomm Incorporated Method in a wireless repeater employing an antenna array including vertical and horizontal feeds for interference reduction
US8103284B2 (en) 2006-03-24 2012-01-24 Alcatel Lucent Method for reporting uplink load measurements
US20120020396A1 (en) 2007-08-09 2012-01-26 Nokia Corporation Calibration of smart antenna systems
US20120028638A1 (en) 2010-07-29 2012-02-02 Infineon Technologies Ag Radio communication devices, information providers, methods for controlling a radio communication device and methods for controlling an information provider
US20120028671A1 (en) 2010-07-28 2012-02-02 Huaning Niu Power loading in mu-mimo
US20120028655A1 (en) 2010-07-29 2012-02-02 Intel Mobile Communications Technology GmbH Radio communication devices, information providers, methods for controlling a radio communication device and methods for controlling an information provider
US20120034952A1 (en) 2005-11-14 2012-02-09 Neocific, Inc. Multiple-antenna system for cellular communication and broadcasting
US8115679B2 (en) 2008-02-07 2012-02-14 Saab Ab Side lobe suppression
US20120045003A1 (en) 2010-08-23 2012-02-23 Qinghua Li Communication station and method for efficiently providing channel feedback for mimo communications
US20120051287A1 (en) 2010-08-31 2012-03-01 Qualcomm Incorporated Implicit and explicit channel sounding for beamforming
US20120064838A1 (en) 2009-05-20 2012-03-15 Telefonaktiebolaget L M Ericsson (Publ) Automatic Detection of Erroneous Connections Between Antenna Ports and Radio Frequency Paths
US20120069828A1 (en) 2010-09-21 2012-03-22 Kabushiki Kaisha Toshiba Wireless communication device and communication method thereof
US20120076028A1 (en) 2010-09-29 2012-03-29 Hyunsoo Ko Method and apparatus for performing effective feedback in wireless communication system supporting multiple antennas
US20120076229A1 (en) 2010-09-23 2012-03-29 Samsung Electronics Co., Ltd. Method and system of mimo and beamforming transmitter and receiver architecture
US8155613B2 (en) 2004-10-06 2012-04-10 Broadcom Corporation MIMO Phone
US20120088512A1 (en) 2008-01-25 2012-04-12 Shohei Yamada Mobile station apparatus, program for controlling thereof and data transmitting method
US20120092217A1 (en) 2009-06-08 2012-04-19 Kenichi Hosoya Control method of wireless communication system, wireless communication system, wireless communication apparatus, and adjustment method of array weight vector
US20120100802A1 (en) 2009-04-10 2012-04-26 Mohebbi Behzad B Short-Range Cellular Booster
US20120115523A1 (en) 2010-11-04 2012-05-10 Extricom Ltd. Mimo search over multiple access points
US8194602B2 (en) 2008-03-19 2012-06-05 Futurewei Technologies, Inc. System and method for downlink control signal structure for multi-user MIMO
US20120155397A1 (en) 2010-12-17 2012-06-21 Cisco Technology Inc. Collision Avoidance for Wireless Networks
US20120155349A1 (en) 2010-11-16 2012-06-21 Zeljko Bajic Rfid applications
US20120163257A1 (en) 2010-12-23 2012-06-28 Electronics And Telecommunications Research Institute Method and apparatus for transmitting/receiving in mobile wireless network
US20120163302A1 (en) 2003-04-28 2012-06-28 Sony Corporation Communication system, a communication method, and a communication apparatus
US20120170672A1 (en) 2003-09-03 2012-07-05 Lakshmipathi Sondur Multicarrier transceiver and method for precoding spatially multiplexed ofdm signals in a wireless access network
US20120170453A1 (en) 2010-12-30 2012-07-05 Kundan Tiwari Apparatuses and methods for access point name (apn) based congestion control during a packet data protocol (pdp) context activation procedure
US20120201153A1 (en) 2011-02-03 2012-08-09 Dinesh Bharadia Adaptive techniques for full duplex communications
US20120207256A1 (en) 2009-02-11 2012-08-16 Emad Farag Interference cancellation with a time-sliced architecture
US20120213065A1 (en) 2003-12-26 2012-08-23 Electronics And Telecommunications Research Institute Media access control apparatus and method for guaranteeing quality of service in wireless lan
US20120212372A1 (en) 2009-10-28 2012-08-23 Telefonaktiebolaget L M Ericsson (Publ) Method of designing weight vectors for a dual beam antenna with orthogonal polarizations
US20120218962A1 (en) 2009-10-05 2012-08-30 Ntt Docomo, Inc. Radio base station apparatus, mobile terminal apparatus and radio communication method
US20120220331A1 (en) 2009-11-04 2012-08-30 Qinglin Luo Method and device for calibrating antenna in a comp-based tdd radio communication system
US20120230380A1 (en) 2011-03-11 2012-09-13 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E. V. Method for determining beamforming parameters in a wireless communication system and to a wireless communication system
US8275377B2 (en) 2006-04-20 2012-09-25 Qualcomm Incorporated Wireless handoffs between multiple networks
US8280443B2 (en) 2004-07-30 2012-10-02 Hong Kong Applied Science And Technology Research Institute Co., Ltd. WLAN access point with extended coverage area
US20120251031A1 (en) 2008-11-05 2012-10-04 John Suarez Optical Counter-Phase System And Method Of RF Interference Cancellation
US8294625B2 (en) 2010-02-04 2012-10-23 GM Global Technology Operations LLC Antenna diversity system
US20120270544A1 (en) 2004-11-03 2012-10-25 At&T Mobility Ii Llc System and method for constructing a carrier to interference matrix based on subscriber calls
US20120270531A1 (en) 1995-11-14 2012-10-25 Harris Corporation Wireless ground link-based aircraft data communication system with roaming feature
EP2234355B1 (en) 2009-03-25 2012-10-31 IHP GmbH-Innovations for High Performance Microelectronics / Leibniz-Institut für innovative Mikroelektronik MIMO Transmission in IEEE802.11 WLAN Systems
US8306012B2 (en) 2007-11-07 2012-11-06 Telefonaktiebolaget L M Ericsson (Publ) Channel estimation for synchronized cells in a cellular communication system
US20120281598A1 (en) 2001-01-19 2012-11-08 Struhsaker Paul F Wireless access system using multiple modulation formats in TDD frames and method of operation
US8315671B2 (en) 2006-03-06 2012-11-20 Hitachi, Ltd. Radio communication method and radio base transmission station
US20120314570A1 (en) 2004-04-02 2012-12-13 Antonio Forenza System and methods to compensate for doppler effects in distributed-input distributed-output wireless systems
US20120321015A1 (en) 2004-02-13 2012-12-20 Broadcom Corporation Preamble formats for mimo wireless communications
US20120327870A1 (en) 2011-06-24 2012-12-27 Interdigital Patent Holdings, Inc. Method and apparatus for supporting wideband and multiple bandwidth transmission protocols
US20130010623A1 (en) 2006-09-26 2013-01-10 Panasonic Corporation Communication scheme for channel quality information
US20130017794A1 (en) 2011-07-15 2013-01-17 Cisco Technology, Inc. Mitigating Effects of Identified Interference with Adaptive CCA Threshold
US20130023225A1 (en) 2011-07-21 2013-01-24 Weber Technologies, Inc. Selective-sampling receiver
US8369436B2 (en) 2006-03-30 2013-02-05 Sony Deutschland Gmbh Multiple-input multiple-output spatial multiplexing system with dynamic antenna beam combination selection capability
US20130044877A1 (en) 2011-08-15 2013-02-21 Yong Liu Long range wlan data unit format
US20130051283A1 (en) 2011-08-30 2013-02-28 Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense Full-Duplex Wireless Voice Broadcasting Apparatus with Channel-Changing and Interference-Resistance
US20130058239A1 (en) 2010-10-21 2013-03-07 James June-Ming Wang Integrity and Quality Monitoring and Signaling for Sounding and Reduced Feedback
US20130070741A1 (en) 2011-09-19 2013-03-21 Li Erran Li Method and apparatus for scheduling transmissions for antenna arrays
US20130079048A1 (en) 2011-09-26 2013-03-28 Research In Motion Limited Method and System for Small Cell Discovery in Heterogeneous Cellular Networks
US20130094621A1 (en) 2009-11-09 2013-04-18 Broadcom Corporation Method and System for Channel Estimation Processing for Interference Suppression
US20130094437A1 (en) 2011-10-18 2013-04-18 Collabera Solutions Private Limited Frame Acknowledgment In A Communication Network
US20130095780A1 (en) 2011-10-13 2013-04-18 Em Microelectronic-Marin Sa Transponder with receiving means having a low electrical consumption in a listening mode
US20130101073A1 (en) 2011-10-21 2013-04-25 The Johns Hopkins University Adaptive Interference Canceller in a Digital Phase Array
US20130150012A1 (en) 2011-12-08 2013-06-13 Apple Inc. Mechanisms to improve mobile device roaming in wireless networks
US20130156016A1 (en) 2011-12-15 2013-06-20 Texas Instruments Incorporated Wireless network systems
US20130156120A1 (en) 2011-12-19 2013-06-20 Samsung Electronics Co., Ltd Apparatus and method for reference symbol transmission in an ofdm system
US20130170388A1 (en) 2010-09-15 2013-07-04 Mitsubishi Electric Corporation Communication apparatus and delay detecting method
US20130172029A1 (en) 2001-01-19 2013-07-04 The Directv Group, Inc. Communication system for mobile users using adaptive antenna with auxiliary elements
US20130190006A1 (en) 2011-02-15 2013-07-25 Telefonaktiebolaget L M Ericsson (Publ) Methods and Systems for Enabling User Activity-Aware Positioning
US8509190B2 (en) 2008-02-06 2013-08-13 Broadcom Corporation Handheld computing unit with power management
US20130208619A1 (en) 2010-11-16 2013-08-15 Nippon Telegraph And Telephone Corporation Wireless communication system and wireless communication method
US20130208587A1 (en) 2012-01-26 2013-08-15 Interdigital Patent Holdings, Inc. Dynamic parameter adjustment for lte coexistence
US8520657B2 (en) 2007-01-31 2013-08-27 Broadcom Corporation RF bus controller
US20130223400A1 (en) 2010-11-12 2013-08-29 Lg Electronics Inc. Method and device for transmitting and receiving downlink control channel for controlling inter-cell interference in wireless communication system
US8526886B2 (en) 2008-06-19 2013-09-03 Fujitsu Limited Wireless communication device and method for controlling beam to be transmitted
US20130229996A1 (en) 2012-03-01 2013-09-05 Interdigital Patent Holdings, Inc. Multi-user parallel channel access in wlan systems
US20130229999A1 (en) 2002-11-04 2013-09-05 Xr Communications, Llc D/B/A Vivato Technologies Directed Wireless Communication
US20130235720A1 (en) 2012-03-06 2013-09-12 Interdigital Patent Holdings, Inc. Supporting a large number of devices in wireless communications
US20130242965A1 (en) 2012-03-16 2013-09-19 Qualcomm Incorporated System and Method of Offloading Traffic to a Wireless Local Area Network
US20130242853A1 (en) 2010-11-08 2013-09-19 Lg Electronics Inc. Method and device for transmitting and receiving data in wireless communication system
US20130242899A1 (en) 2012-03-13 2013-09-19 Airspan Networks Inc. Cooperative Components in a Wireless Feeder Network
US20130242976A1 (en) 2009-11-30 2013-09-19 International Business Machines Corporation Packet communication system, communication method adn program
US20130252621A1 (en) 2012-03-21 2013-09-26 Telefonaktiebolaget L M Ericsson (Publ) Dynamic resource selection to reduce interference that results from direct device to device communications
US20130272437A1 (en) 2012-04-13 2013-10-17 Xr Communications, Llc Directed mimo communications
US20130301551A1 (en) 2012-05-09 2013-11-14 Interdigital Patent Holdings, Inc. Multi-user multiple input multiple output communications in wireless local area networks and wireless transmit and receive units
US8599955B1 (en) 2012-05-29 2013-12-03 Magnolia Broadband Inc. System and method for distinguishing between antennas in hybrid MIMO RDN systems
US20130322509A1 (en) 2012-05-29 2013-12-05 Magnolia Broadband Inc. Implementing blind tuning in hybrid mimo rf beamforming systems
US20130331136A1 (en) 2012-06-07 2013-12-12 Kai Yang Method And Apparatus For Coordinated Beamforming
US8611288B1 (en) 2009-03-05 2013-12-17 Marvell International Ltd Systems and methods for link adaptation in wireless communication systems
US20130343369A1 (en) 2006-04-27 2013-12-26 Sony Corporation Wireless communication system, wireless communication apparatus, and wireless communication method
WO2013192112A1 (en) 2012-06-20 2013-12-27 Qualcomm Incorporated METHODS FOR SIGNALING A MAXIMUM NUMBER OF MSDUs IN A TRANSMISSION
US20140010089A1 (en) 2012-07-06 2014-01-09 Futurewei Technologies, Inc. System and Method for Active Scanning in Multi-channel Wi-Fi System
US20140010211A1 (en) 2012-07-09 2014-01-09 Qualcomm Incorporated Methods and apparatus for requested reverse direction protocol
US8649458B2 (en) 2012-05-29 2014-02-11 Magnolia Broadband Inc. Using antenna pooling to enhance a MIMO receiver augmented by RF beamforming
US20140071873A1 (en) 2012-09-13 2014-03-13 Interdigital Patent Holdings, Inc. Method, wireless transmit/receive unit (wtru) and base station for transferring small packets
US20140086081A1 (en) 2012-09-24 2014-03-27 Interdigital Patent Holdings, Inc. Channel quality measurement and transmit power allocation in a dynamic spectrum management system
US20140086077A1 (en) 2012-09-26 2014-03-27 Futurewei Technologies, Inc. Method and Apparatus for Combined Adaptive Beamforming and MIMO in Indoor Wireless LAN
US20140098681A1 (en) 2012-10-05 2014-04-10 Cisco Technology, Inc. High Density Deployment Using Transmit or Transmit-Receive Interference Suppression with Selective Channel Dimension Reduction/Attenuation and Other Parameters
US20140119288A1 (en) 2012-10-31 2014-05-01 Samsung Electronics Co., Ltd. Method and system for uplink multi-user multiple-input-multiple-output communication in wireless networks
US8744511B2 (en) 2009-09-04 2014-06-03 Qualcomm Incorporated Output power control for advanced WLAN and bluetooth-amp systems
US20140154992A1 (en) 2012-12-03 2014-06-05 Cisco Technology, Inc. Explicit and Implicit Hybrid Beamforming Channel Sounding
US8767862B2 (en) 2012-05-29 2014-07-01 Magnolia Broadband Inc. Beamformer phase optimization for a multi-layer MIMO system augmented by radio distribution network
US20140185535A1 (en) 2012-04-24 2014-07-03 Minyoung Park Methods and Arrangements for Adaptive Delay Control
US20140185501A1 (en) 2012-12-29 2014-07-03 Minyoung Park Methods and arrangements to coordinate communications in a wireless network
US20140192820A1 (en) 2013-01-08 2014-07-10 Shahrnaz Azizi Methods and arrangements to mitigate collisions in wireless networks
US8780743B2 (en) 2009-11-20 2014-07-15 Deutsche Telekom Ag Method and system for improving quality of service in distributed wireless networks
US20140204821A1 (en) 2011-11-23 2014-07-24 Lg Electronic Inc. Method for transceiving data on basis of service period scheduling in wireless lan system and apparatus for supporting same
US8797969B1 (en) 2013-02-08 2014-08-05 Magnolia Broadband Inc. Implementing multi user multiple input multiple output (MU MIMO) base station using single-user (SU) MIMO co-located base stations
US20140241182A1 (en) 2013-02-27 2014-08-28 Research In Motion Limited Access Point And Channel Selection In A Wireless Network For Reduced RF Interference
US20140307653A1 (en) 2013-04-15 2014-10-16 Broadcom Corporation Multiple narrow bandwidth channel access and MAC operation within wireless communications
US8891598B1 (en) 2013-11-19 2014-11-18 Magnolia Broadband Inc. Transmitter and receiver calibration for obtaining the channel reciprocity for time division duplex MIMO systems
US20150016438A1 (en) * 2013-07-10 2015-01-15 Magnolia Broadband Inc. System and method for simultaneous co-channel access of neighboring access points
US8942134B1 (en) 2013-11-20 2015-01-27 Magnolia Broadband Inc. System and method for selective registration in a multi-beam system
US20150030094A1 (en) 2013-07-26 2015-01-29 Marvell World Trade Ltd. Interference Avoidance for Beamforming Transmissions in Wireless Communication Devices and Systems
US8983548B2 (en) 2013-02-13 2015-03-17 Magnolia Broadband Inc. Multi-beam co-channel Wi-Fi access point
US20150085777A1 (en) * 2012-04-15 2015-03-26 Lg Electronics Inc. Method and apparatus for transmitting and receiving feedback trigger frames in wireless lan systems
US20150139212A1 (en) * 2013-10-17 2015-05-21 Mediatek Singapore Pte. Ltd. Snooping Sensor STA or Neighbor AP Ranging and Positioning in Wireless Local Area Networks

Patent Citations (336)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044359A (en) 1962-01-09 1977-08-23 General Electric Company Multiple intermediate frequency side-lobe canceller
US4628320A (en) 1964-04-29 1986-12-09 General Electric Company Cancellation of scatter jamming
US5363104A (en) 1974-02-28 1994-11-08 Lockheed Sanders, Inc. Jamming signal cancellation system
US6297772B1 (en) 1974-09-23 2001-10-02 The United States Of America As Represented By The Secretary Of The Navy Predicting coherent sidelobe canceller
US4359738A (en) 1974-11-25 1982-11-16 The United States Of America As Represented By The Secretary Of The Navy Clutter and multipath suppressing sidelobe canceller antenna system
US5162805A (en) 1975-02-19 1992-11-10 The United States Of America As Represented By The Secretary Of The Navy Frequency diversity sidelobe canceller
US4079318A (en) 1975-06-23 1978-03-14 Nippon Electric Company, Ltd. Space diversity receiving system with phase-controlled signal combining at intermediate frequency stage
US4540985A (en) 1978-05-23 1985-09-10 Westinghouse Electric Corp. Angle width discriminator/altitude line detector radar
US5915215A (en) 1990-05-02 1999-06-22 Harris Canda, Inc. Private cellular telephone system
US20010029326A1 (en) 1991-03-07 2001-10-11 Diab Mohamed Kheir Signal processing apparatus and method
US6335953B1 (en) 1992-05-08 2002-01-01 Axonn, L.L.C. Enhanced frequency agile radio
US5444762A (en) 1993-03-08 1995-08-22 Aircell, Inc. Method and apparatus for reducing interference among cellular telephone signals
US6101399A (en) 1995-02-22 2000-08-08 The Board Of Trustees Of The Leland Stanford Jr. University Adaptive beam forming for transmitter operation in a wireless communication system
US5732075A (en) 1995-02-24 1998-03-24 Alcatel N.V. Assignment of a carrier frequency in an SDMA radio system
US6018317A (en) 1995-06-02 2000-01-25 Trw Inc. Cochannel signal processing system
US6697633B1 (en) 1995-06-02 2004-02-24 Northrop Grummar Corporation Method permitting increased frequency re-use in a communication network, by recovery of transmitted information from multiple cochannel signals
US6975582B1 (en) 1995-07-12 2005-12-13 Ericsson Inc. Dual mode satellite/cellular terminal
US20120270531A1 (en) 1995-11-14 2012-10-25 Harris Corporation Wireless ground link-based aircraft data communication system with roaming feature
US6026081A (en) 1996-07-05 2000-02-15 Nec Corporation Method of controlling power on forward link in a cellular
US5936577A (en) 1996-10-18 1999-08-10 Kabushiki Kaisha Toshiba Adaptive antenna
US6259683B1 (en) 1996-11-28 2001-07-10 Oki Electric Industry Co., Ltd. Mobile communication system for accomplishing handover with phase difference of frame sync signals corrected
US6163695A (en) 1997-04-16 2000-12-19 Nec Corporation Mobile communication system and mobile communication method thereof
US6167286A (en) 1997-06-05 2000-12-26 Nortel Networks Corporation Multi-beam antenna system for cellular radio base stations
US6094165A (en) 1997-07-31 2000-07-25 Nortel Networks Corporation Combined multi-beam and sector coverage antenna array
US6046655A (en) 1997-11-10 2000-04-04 Datron/Transco Inc. Antenna feed system
US6230123B1 (en) 1997-12-05 2001-05-08 Telefonaktiebolaget Lm Ericsson Publ Noise reduction method and apparatus
US5940033A (en) 1998-01-20 1999-08-17 The United States Of America As Represented By The Secretary Of The Army Apparatus, methods and computer program for evaluating multiple null forming antenna processors and jammers
US6226507B1 (en) 1998-02-03 2001-05-01 Ericsson Inc. Apparatus and method for selecting between a plurality of antennas utilized by a microcellular communications terminal for reception of a signal
US6321077B1 (en) 1998-04-24 2001-11-20 Harada Industry Co., Ltd. Reception control system for automobile
US20030203717A1 (en) 1998-04-27 2003-10-30 Chuprun Jeffery Scott Satellite based data transfer and delivery system
US20030186653A1 (en) 1998-05-14 2003-10-02 Behzad Mohebbi Reducing interference in cellular mobile communication networks
US6584115B1 (en) 1998-06-25 2003-06-24 Nec Corporation Multiuser interference canceler for DS-CDMA system
US6370378B1 (en) 1998-06-29 2002-04-09 Nec Corporation Cellular communicating network and method for locating mobile stations using hierarchically arranged databases
US6377783B1 (en) 1998-12-24 2002-04-23 At&T Wireless Services, Inc. Method for combining communication beams in a wireless communication system
US6987958B1 (en) 1998-12-24 2006-01-17 Cingular Wirless Ii, Inc. Method for combining communication beams in a wireless communication system
US6393282B1 (en) 1999-01-14 2002-05-21 Kabushiki Kaisha Toshiba Mobile radio communication terminal device with base station searching function
US6215812B1 (en) 1999-01-28 2001-04-10 Bae Systems Canada Inc. Interference canceller for the protection of direct-sequence spread-spectrum communications from high-power narrowband interference
US6914890B1 (en) 1999-08-05 2005-07-05 Nokia Corporation Apparatus, and associated method, for sequencing transmission of data
US6697622B1 (en) 1999-09-06 2004-02-24 Nit Docomo, Inc. Control method of searching neighboring cells, mobile station, and mobile communication system
US20040235527A1 (en) 1999-10-19 2004-11-25 Kathrein-Werke Kg High speed fixed wireless voice/data systems and methods
US20010038665A1 (en) 2000-03-03 2001-11-08 Jens Baltersee Method and rake receiver for phasor estimation in communication systems
US20020024975A1 (en) 2000-03-14 2002-02-28 Hillel Hendler Communication receiver with signal processing for beam forming and antenna diversity
US7068628B2 (en) 2000-05-22 2006-06-27 At&T Corp. MIMO OFDM system
US6834073B1 (en) 2000-05-26 2004-12-21 Freescale Semiconductor, Inc. System and method for baseband removal of narrowband interference in ultra wideband signals
EP1189303A2 (en) 2000-09-14 2002-03-20 NTT DoCoMo, Inc. Beam forming method and apparatus in a wireless communication system
US20020065107A1 (en) 2000-10-16 2002-05-30 Wireless Online, Inc. Method and system for calibrating antenna towers to reduce cell interference
US20020051430A1 (en) 2000-10-31 2002-05-02 Hideo Kasami Wireless communication system, weight control apparatus, and weight vector generation method
US20070041398A1 (en) 2000-11-03 2007-02-22 At&T Corp. Tiered contention multiple access (TCMA): a method for priority-based shared channel access
US20020085643A1 (en) 2000-12-28 2002-07-04 Dean Kitchener MIMO wireless communication system
US20090187661A1 (en) 2001-01-16 2009-07-23 Sherman Matthew J Interference suppression methods for 802.11
US20060041676A1 (en) 2001-01-16 2006-02-23 Sherman Matthew J Interference suppression methods for 802.11
US20120281598A1 (en) 2001-01-19 2012-11-08 Struhsaker Paul F Wireless access system using multiple modulation formats in TDD frames and method of operation
US20130172029A1 (en) 2001-01-19 2013-07-04 The Directv Group, Inc. Communication system for mobile users using adaptive antenna with auxiliary elements
US20020107013A1 (en) 2001-02-06 2002-08-08 Shane Fitzgerald Method and apparatus for intelligent dynamic frequency reuse
US20020115474A1 (en) 2001-02-14 2002-08-22 Ntt Docomo, Inc. Communication control method and apparatus in mobile communication system
US20020181426A1 (en) 2001-03-02 2002-12-05 Sherman Matthew J. Interference suppression methods for 802.11
US20070115914A1 (en) 2001-04-26 2007-05-24 Ntt Docomo, Inc Data link transmission control methods, mobile communication systems, and base stations
US20020181437A1 (en) 2001-04-26 2002-12-05 Ntt Docomo, Inc Data link transmission control methods, mobile communication systems, data link transmission control apparatus, base stations, mobile stations, mobile station control programs, and computer-readable recording media
US20030114162A1 (en) 2001-05-31 2003-06-19 Chheda Ashvin H. Method and apparatus for orthogonal code management in CDMA systems using smart antenna technology
US6842460B1 (en) 2001-06-27 2005-01-11 Nokia Corporation Ad hoc network discovery menu
US20070058581A1 (en) 2001-07-05 2007-03-15 Mathilde Benveniste Hybrid coordination function (hcf) access through tiered contention and overlapped wireless cell mitigation
US7190964B2 (en) 2001-08-20 2007-03-13 Telefonaktiebolaget Lm Ericsson (Publ) Reverse link power control in 1xEV-DV systems
US20030045241A1 (en) 2001-09-06 2003-03-06 Anthony Noerpel Mobility management-radio resource layer interface system and method for handling dark beam scenarios
US20030087645A1 (en) 2001-11-08 2003-05-08 Kim Byoung-Jo J. Frequency assignment for multi-cell IEEE 802.11 wireless networks
US20080165732A1 (en) 2001-11-08 2008-07-10 Kim Byoung-Jo J Frequency assignment for multi-cell IEEE 802.11 wireless networks
US20040056795A1 (en) 2001-11-20 2004-03-25 Telefonaktiebolaget Lm Ericsson Downlink load sharing by beam selection
WO2003047033A1 (en) 2001-11-21 2003-06-05 Lockheed Martin Corporation Scaleable antenna array architecture using standard radiating subarrays and amplifying/beamforming assemblies
US20060111149A1 (en) 2001-11-29 2006-05-25 Interdigital Technology Corporation System and method utilizing dynamic beam forming for wireless communication signals
US20030153360A1 (en) 2002-02-08 2003-08-14 Burke Joseph P. Method and apparatus for transmit pre-correction in wireless communications
US20030153322A1 (en) 2002-02-08 2003-08-14 Burke Joseph P. Transmit pre-correction in a wireless communication system
WO2003073645A1 (en) 2002-02-26 2003-09-04 Nortel Networks Limited Radio communications device with adaptive antenna array for mimo systems
US20090239486A1 (en) 2002-03-01 2009-09-24 Ipr Licensing, Inc. Apparatus for antenna diversity using joint maximal ratio combining
US20090285331A1 (en) 2002-03-21 2009-11-19 Ipr Licensing, Inc. Control of power amplifiers in devices using transmit beamforming
US20030203743A1 (en) 2002-04-22 2003-10-30 Cognio, Inc. Multiple-Input Multiple-Output Radio Transceiver
US20040198292A1 (en) 2002-06-27 2004-10-07 Smith Martin S. Wireless transmitter, transceiver and method
US6927646B2 (en) 2002-07-12 2005-08-09 Filtronic Lk Oy Bypass arrangement for low-noise amplifier
US20040023693A1 (en) 2002-08-01 2004-02-05 Ntt Docomo, Inc. Base station connection method, radio network controller, and mobile station
US20040156399A1 (en) 2002-08-07 2004-08-12 Extricom Ltd. Wireless LAN control over a wired network
US20040063455A1 (en) 2002-08-07 2004-04-01 Extricom Ltd. Wireless LAN with central management of access points
US20110085532A1 (en) 2002-08-26 2011-04-14 Scherzer Shimon B Space-time-power scheduling for wireless networks
US20060183503A1 (en) 2002-09-09 2006-08-17 Interdigital Technology Corporation Reducing the effect of signal interference in null areas caused by overlapping antenna patterns
US20040081144A1 (en) 2002-09-17 2004-04-29 Richard Martin System and method for access point (AP) aggregation and resiliency in a hybrid wired/wireless local area network
US20080125120A1 (en) 2002-10-18 2008-05-29 Gallagher Michael D Registration Messaging in an Unlicensed Mobile Access Telecommunications System
US7391757B2 (en) 2002-10-30 2008-06-24 Hewlett-Packard Development Company, L.P. Wireless LAN
US20130229999A1 (en) 2002-11-04 2013-09-05 Xr Communications, Llc D/B/A Vivato Technologies Directed Wireless Communication
US20040142696A1 (en) 2002-12-10 2004-07-22 Data Flow Systems, Inc. Radio communication system employing spectral reuse transceivers
US20040121810A1 (en) 2002-12-23 2004-06-24 Bo Goransson Using beamforming and closed loop transmit diversity in a multi-beam antenna system
US20040125899A1 (en) 2002-12-30 2004-07-01 Yingxue Li Method and system for adaptively combining signals
US20040125900A1 (en) 2002-12-31 2004-07-01 Jung-Tao Liu Method of determining the capacity of each transmitter antenna in a multiple input/multiple out/put (MIMO) wireless system
US20040147266A1 (en) 2003-01-20 2004-07-29 Samsung Electronics Co., Ltd. System and method for supporting multimedia broadcast/multicast service in a non-tracking area
US20040166902A1 (en) 2003-01-21 2004-08-26 Dan Castellano Method and system for reducing cell interference using advanced antenna radiation pattern control
US7392015B1 (en) 2003-02-14 2008-06-24 Calamp Corp. Calibration methods and structures in wireless communications systems
US7299072B2 (en) 2003-02-28 2007-11-20 Fujitsu Limited Apparatus for time division multi-sector wireless LAN
US20060098605A1 (en) 2003-04-07 2006-05-11 Shaolin Li Method of secure communications in a wireless distribution system
US7646744B2 (en) 2003-04-07 2010-01-12 Shaolin Li Method of operating multi-antenna wireless data processing system
US7933255B2 (en) 2003-04-07 2011-04-26 Bellow Bellows Llc Multi-antenna wireless data processing system
US7512083B2 (en) 2003-04-07 2009-03-31 Shaolin Li Single chip multi-antenna wireless data processor
US20040228388A1 (en) 2003-04-25 2004-11-18 Matti Salmenkaita Data transmission method, system and network element
US20120163302A1 (en) 2003-04-28 2012-06-28 Sony Corporation Communication system, a communication method, and a communication apparatus
US7177663B2 (en) 2003-05-27 2007-02-13 Interdigital Technology Corporation Multi-mode radio with interference cancellation circuit
US20040264504A1 (en) 2003-06-24 2004-12-30 Samsung Electronics Co., Ltd. Apparatus and method for enhancing transfer rate using a direct link protocol (DLP) and multiple channels in a wireless local area network (LAN) using a distributed coordination function (DCF)
US7499109B2 (en) 2003-07-30 2009-03-03 Samsung Electronics Co., Ltd. Method and apparatus for receiving digital television signals using space diversity and beam-forming
US20120170672A1 (en) 2003-09-03 2012-07-05 Lakshmipathi Sondur Multicarrier transceiver and method for precoding spatially multiplexed ofdm signals in a wireless access network
US20050068918A1 (en) 2003-09-25 2005-03-31 Ashok Mantravadi Hierarchical coding with multiple antennas in a wireless communication system
US20050068230A1 (en) 2003-09-29 2005-03-31 Munoz Michael S. Reducing co-channel interference in satellite communications systems by antenna re-pointing
US20090046638A1 (en) 2003-10-01 2009-02-19 Rappaport Theodore S Wireless network system and method
US20050075140A1 (en) 2003-10-02 2005-04-07 Toshiba America Research Inc. Harmonized Adaptive Arrays
US7257425B2 (en) 2003-12-02 2007-08-14 Motia System and method for providing a smart antenna
US20060135097A1 (en) 2003-12-10 2006-06-22 Wang James J Wireless communication system using a plurality of antenna elements with adaptive weighting and combining techniques
US20050129155A1 (en) 2003-12-12 2005-06-16 Pioneer Corporation Receiver, receiving method, reception controlling program, and recording medium
US20120213065A1 (en) 2003-12-26 2012-08-23 Electronics And Telecommunications Research Institute Media access control apparatus and method for guaranteeing quality of service in wireless lan
US20050147023A1 (en) 2003-12-30 2005-07-07 Intel Corporation Method and apparatus for implementing downlink SDMA in a wireless network
US20090003299A1 (en) 2004-01-08 2009-01-01 Interdigital Technology Corporation Method for clear channel assessment optimization in a wireless local area network
US20100067473A1 (en) 2004-01-08 2010-03-18 Interdigital Technology Corporation Method and apparatus for clear channel assessment optimization in wireless communication
US20050163097A1 (en) 2004-01-28 2005-07-28 Samsung Electronics Co., Ltd Method of efficiently transmitting data during a handover in a wideband radio access network
US20050245224A1 (en) 2004-02-04 2005-11-03 Fujitsu Ten Limited Receiver
US20120321015A1 (en) 2004-02-13 2012-12-20 Broadcom Corporation Preamble formats for mimo wireless communications
US20120314570A1 (en) 2004-04-02 2012-12-13 Antonio Forenza System and methods to compensate for doppler effects in distributed-input distributed-output wireless systems
US20050250544A1 (en) 2004-05-07 2005-11-10 Stephen Grant Base station, mobile terminal device and method for implementing a selective-per-antenna-rate-control (S-PARC) technique in a wireless communications network
US20050254513A1 (en) 2004-05-14 2005-11-17 Interdigital Technology Corporation Method of selectively adjusting the configuration of an access point antenna to enhance mobile station coverage
US20050265436A1 (en) 2004-06-01 2005-12-01 Samsung Electronics Co., Ltd. Method and apparatus for channel state feedback using arithmetic coding
US7769107B2 (en) 2004-06-10 2010-08-03 Intel Corporation Semi-blind analog beamforming for multiple-antenna systems
US20080267142A1 (en) 2004-06-18 2008-10-30 Stellaris Ltd. Distributed Antenna Wlan Access-Point System and Method
US20050286440A1 (en) 2004-06-24 2005-12-29 Meshnetworks, Inc. System and method for adaptive rate selection for wireless networks
US20050287962A1 (en) 2004-06-25 2005-12-29 Mehta Neelesh B RF-based antenna selection in MIMO systems
US8280443B2 (en) 2004-07-30 2012-10-02 Hong Kong Applied Science And Technology Research Institute Co., Ltd. WLAN access point with extended coverage area
US20060092889A1 (en) 2004-08-25 2006-05-04 Daniel Lyons High density WLAN system
US7474676B2 (en) 2004-09-10 2009-01-06 Mitsubishi Electric Research Laboratories, Inc. Frame aggregation in wireless communications networks
US8155613B2 (en) 2004-10-06 2012-04-10 Broadcom Corporation MIMO Phone
US20060094372A1 (en) 2004-10-29 2006-05-04 Samsung Electronics Co., Ltd. Method for uplink scheduling in communication system using frequency hopping-orthogonal frequency division multiple access scheme
US20120270544A1 (en) 2004-11-03 2012-10-25 At&T Mobility Ii Llc System and method for constructing a carrier to interference matrix based on subscriber calls
US7719993B2 (en) 2004-12-30 2010-05-18 Intel Corporation Downlink transmit beamforming
US20060264184A1 (en) 2005-02-17 2006-11-23 Interdigital Technology Corporation Method and apparatus for selecting a beam combination of multiple-input multiple-output antennas
US20060203850A1 (en) 2005-03-14 2006-09-14 Johnson Walter L Method and apparatus for distributing timing information in an asynchronous wireless communication system
US20100222011A1 (en) 2005-04-04 2010-09-02 Broadcom Corporation Gain control in a multiple rf transceiver integrated circuit
US20060227854A1 (en) 2005-04-07 2006-10-12 Mccloud Michael L Soft weighted interference cancellation for CDMA systems
EP1867177B1 (en) 2005-04-07 2010-05-05 Interdigital Technology Corporation Method and apparatus for antenna mapping selection in mimo-ofdm wireless networks
US20060270343A1 (en) 2005-04-07 2006-11-30 Interdigital Technology Corporation Method and apparatus for antenna mapping selection in MIMO-OFDM wireless networks
US20060271969A1 (en) 2005-05-18 2006-11-30 Masaaki Takizawa Wireless communication system, wireless relay unit and wireless terminal constituting the wireless communication system, and wireless communication method
US7742000B2 (en) 2005-05-31 2010-06-22 Tialinx, Inc. Control of an integrated beamforming array using near-field-coupled or far-field-coupled commands
US20060285507A1 (en) 2005-06-17 2006-12-21 Kinder Richard D Using mini-beacons in a wireless network
US20080247370A1 (en) 2005-09-30 2008-10-09 Daqing Gu Training Signals for Selecting Antennas and Beams in Mimo Wireless Lans
US20070076675A1 (en) 2005-10-04 2007-04-05 Via Technologies Inc. Hyper throughput method for wirless local area network
US20070093261A1 (en) 2005-10-24 2007-04-26 Jilei Hou Iterative interference cancellation system and method
US20070097918A1 (en) 2005-10-27 2007-05-03 Motorola, Inc. Mobility enhancement for real time service over high speed downlink packet access (hsdpa)
US20140029433A1 (en) 2005-11-08 2014-01-30 Intellectual Ventures I Llc Symmetric transmit opportunity (txop) truncation
US20120027000A1 (en) 2005-11-08 2012-02-02 Menzo Wentink Symmetric transmit opportunitty (txop) truncation
US20070115882A1 (en) 2005-11-08 2007-05-24 Conexant Systems, Inc Symmetric transmit opportunity (TXOP) truncation
US20120034952A1 (en) 2005-11-14 2012-02-09 Neocific, Inc. Multiple-antenna system for cellular communication and broadcasting
US20090268616A1 (en) 2005-11-21 2009-10-29 Takahiro Hosomi Mobile station, downstream transmission rate control method, and downstream transmission rate control program
US20080285637A1 (en) 2005-11-29 2008-11-20 Interuniversitair Microelektronica Centrum Vzw (Imec) Device and method for calibrating mimo systems
US20080051037A1 (en) 2005-12-29 2008-02-28 Molnar Karl J BASE STATION AND METHOD FOR SELECTING BEST TRANSMIT ANTENNA(s) FOR SIGNALING CONTROL CHANNEL INFORMATION
US20070152903A1 (en) 2005-12-30 2007-07-05 Micro Mobio Printed circuit board based smart antenna
US20070217352A1 (en) 2006-01-05 2007-09-20 Samsung Electronics Co., Ltd. Method and apparatus for transmitting control frame to hidden node in wireless LAN
US7634015B2 (en) 2006-02-10 2009-12-15 Intel Corporation Mobile station and method for channel sounding using a single radio frequency transmitter chain in a multiple-input multiple-output (MIMO) system
US8315671B2 (en) 2006-03-06 2012-11-20 Hitachi, Ltd. Radio communication method and radio base transmission station
US20070223525A1 (en) 2006-03-21 2007-09-27 Texas Instruments Incorporated Transmission of packets in a csma wireless network
US20070249386A1 (en) 2006-03-22 2007-10-25 Broadcom Corporation, A California Corporation Client device characterization of other client device transmissions and reporting of signal qualities to access point(s)
US20070223380A1 (en) 2006-03-22 2007-09-27 Gilbert Jeffrey M Mechanism for streaming media data over wideband wireless networks
US8103284B2 (en) 2006-03-24 2012-01-24 Alcatel Lucent Method for reporting uplink load measurements
US8369436B2 (en) 2006-03-30 2013-02-05 Sony Deutschland Gmbh Multiple-input multiple-output spatial multiplexing system with dynamic antenna beam combination selection capability
US8275377B2 (en) 2006-04-20 2012-09-25 Qualcomm Incorporated Wireless handoffs between multiple networks
US20130343369A1 (en) 2006-04-27 2013-12-26 Sony Corporation Wireless communication system, wireless communication apparatus, and wireless communication method
US20100283692A1 (en) 2006-04-27 2010-11-11 Rayspan Corporation Antennas, devices and systems based on metamaterial structures
US20080043867A1 (en) 2006-08-18 2008-02-21 Qualcomm Incorporated Feedback of precoding control indication (pci) and channel quality indication (cqi) in a wireless communication system
US7986718B2 (en) 2006-09-15 2011-07-26 Itron, Inc. Discovery phase in a frequency hopping network
US20130010623A1 (en) 2006-09-26 2013-01-10 Panasonic Corporation Communication scheme for channel quality information
US7904086B2 (en) 2006-10-02 2011-03-08 Board Of Regents, The University Of Texas System Method and computer program for handoff of mobile devices between wireless systems
US20080081671A1 (en) 2006-10-03 2008-04-03 Motorola, Inc. Mobile assisted downlink beamforming with antenna weight feedback
US20080095163A1 (en) 2006-10-23 2008-04-24 Wai Chen Method and communication device for routing unicast and multicast messages in an ad-hoc wireless network
US20080108352A1 (en) 2006-10-27 2008-05-08 Michael Montemurro Link quality measurements based on data rate and received power level
US20110205883A1 (en) 2006-11-08 2011-08-25 Sony Corporation Wireless communication system, and apparatus and method for wireless communication
US7606528B2 (en) 2006-11-10 2009-10-20 Northrop Grumman Corporation Distributed conformal adaptive antenna array for SATCOM using decision direction
US20090322610A1 (en) 2006-11-10 2009-12-31 Philip Edward Hants Phased array antenna system with electrical tilt control
US20080144737A1 (en) 2006-12-19 2008-06-19 Qualcomm Incorporated Beamspace-time coding based on channel quality feedback
US8520657B2 (en) 2007-01-31 2013-08-27 Broadcom Corporation RF bus controller
US20100316043A1 (en) 2007-02-06 2010-12-16 Panasonic Corporation Radio communication method and radio communication device
US20080238808A1 (en) 2007-02-15 2008-10-02 Mitsubishi Electric Corporation Diversity receiver
US7970366B2 (en) 2007-02-15 2011-06-28 Mitsubishi Electric Corporation Diversity receiver
US7898478B2 (en) 2007-02-28 2011-03-01 Samsung Electronics Co., Ltd. Method and system for analog beamforming in wireless communication systems
US20080240314A1 (en) 2007-03-27 2008-10-02 Qualcomm Incorporated Channel estimation with effective co-channel interference suppression
US8078109B1 (en) 2007-04-13 2011-12-13 Wireless Stategies, Inc. Concurrently coordinated microwave paths in coordinated frequency bands
US20100303170A1 (en) 2007-05-10 2010-12-02 Xiaolong Zhu Method and apparatus for pre-processing data to be transmitted in multiple-input communication system
US20080280571A1 (en) 2007-05-11 2008-11-13 Broadcom Corporation, A California Corporation RF transceiver with adjustable antenna assembly
US20100172429A1 (en) 2007-05-29 2010-07-08 Hiroyuki Nagahama Digital broadcasting receiving apparatus
US20100150013A1 (en) 2007-05-29 2010-06-17 Mitsubishi Electric Corporation Calibration method, communication system, frequency control method, and communication device
US20100135420A1 (en) 2007-06-29 2010-06-03 China Mobile Communications Corporation Antenna multiplexing system and method of smart antenna and multiple-input multiple-output antenna
US20090028225A1 (en) 2007-07-17 2009-01-29 Viasat, Inc. Modular Satellite Transceiver
US20120020396A1 (en) 2007-08-09 2012-01-26 Nokia Corporation Calibration of smart antenna systems
US20090058724A1 (en) 2007-09-05 2009-03-05 Samsung Electronics Co., Ltd. Method and system for analog beamforming in wireless communication systems
US20100291931A1 (en) 2007-10-31 2010-11-18 Mitsubishi Electric Corporation Mobile communication system, base station, mobile station, and base station installation method
US8306012B2 (en) 2007-11-07 2012-11-06 Telefonaktiebolaget L M Ericsson (Publ) Channel estimation for synchronized cells in a cellular communication system
US20090121935A1 (en) 2007-11-12 2009-05-14 Samsung Electronics Co., Ltd. System and method of weighted averaging in the estimation of antenna beamforming coefficients
US20090137206A1 (en) 2007-11-23 2009-05-28 Texas Instruments Incorporated Apparatus for and method of bluetooth and wireless local area network coexistence using a single antenna in a collocated device
US20090154419A1 (en) 2007-12-17 2009-06-18 Shousei Yoshida Scheduling method for multi-user mimo
US20120088512A1 (en) 2008-01-25 2012-04-12 Shohei Yamada Mobile station apparatus, program for controlling thereof and data transmitting method
US20090190541A1 (en) 2008-01-28 2009-07-30 Saied Abedi Communication systems
JP2009182441A (en) 2008-01-29 2009-08-13 Mitsubishi Electric Corp Communication device and calibration method
US8509190B2 (en) 2008-02-06 2013-08-13 Broadcom Corporation Handheld computing unit with power management
US8115679B2 (en) 2008-02-07 2012-02-14 Saab Ab Side lobe suppression
US20090227255A1 (en) 2008-03-10 2009-09-10 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced cell scanning
US20090225697A1 (en) 2008-03-10 2009-09-10 Trainin Solomon Device, system, and method of wireless beamforming calibration
US8194602B2 (en) 2008-03-19 2012-06-05 Futurewei Technologies, Inc. System and method for downlink control signal structure for multi-user MIMO
JP2009278444A (en) 2008-05-15 2009-11-26 Mitsubishi Electric Corp Distortion compensation device
US20110085465A1 (en) 2008-06-09 2011-04-14 Telefonaktiebolaget L M Ericsson (Publ) Method and system and device for if/irat measurement allocation
US20110228742A1 (en) 2008-06-13 2011-09-22 Zhi-Chun Honkasalo Sub Channel Generation for a Wireless Mesh Network
US8526886B2 (en) 2008-06-19 2013-09-03 Fujitsu Limited Wireless communication device and method for controlling beam to be transmitted
US20090323608A1 (en) 2008-06-30 2009-12-31 Kabushiki Kaisha Toshiba Apparatus and method for wireless communication
US20090322613A1 (en) 2008-06-30 2009-12-31 Interdigital Patent Holdings, Inc. Method and apparatus to support single user (su) and multiuser (mu) beamforming with antenna array groups
US20100002656A1 (en) 2008-07-03 2010-01-07 Qualcomm Incorporated Opportunistic relay scheduling in wireless communications
US20100037111A1 (en) 2008-08-06 2010-02-11 Sun Microsystems, Inc. Method and apparatus for testing delay faults
US20110150066A1 (en) 2008-08-11 2011-06-23 Iwatsu Electric Co., Ltd. Multi-antenna wireless communication method, multi-antenna wireless communication system, and multi-antenna wireless communication device
US20100040369A1 (en) 2008-08-13 2010-02-18 Jun Zhao Time synchronization method and device in passive optical network and passive optical network
US20110250884A1 (en) 2008-09-22 2011-10-13 Mitsubishi Electric Corporation Method and a device for enabling a mobile terminal to access to a wireless cellular telecommunication network
US20100111039A1 (en) 2008-11-03 2010-05-06 Samsung Electronics Co., Ltd. Method and apparatus for controlling discontinuous reception in mobile communication system
US20120251031A1 (en) 2008-11-05 2012-10-04 John Suarez Optical Counter-Phase System And Method Of RF Interference Cancellation
US20100117890A1 (en) 2008-11-10 2010-05-13 Motorola, Inc. Antenna reciprocity calibration
US20100195601A1 (en) 2009-01-29 2010-08-05 Stichting Imec Nederland Access method and data frame structure for use in body area networks
US20100195560A1 (en) 2009-01-30 2010-08-05 Oki Electric Industry Co., Ltd. Packet relay system and wireless node
US20120033761A1 (en) 2009-02-02 2012-02-09 Commonwealth Scientific And Industrial Research Organisation Hybrid Adaptive Antenna Array
WO2010085854A1 (en) 2009-02-02 2010-08-05 Commonwealth Scientific And Industrial Research Organisation Hybrid adaptive antenna array
US20120207256A1 (en) 2009-02-11 2012-08-16 Emad Farag Interference cancellation with a time-sliced architecture
US8599979B2 (en) 2009-02-11 2013-12-03 Alcatel Lucent Interference cancellation with a time-sliced architecture
US20100208712A1 (en) 2009-02-17 2010-08-19 Wavion Ltd. Enhancing WLAN performance in the presence of interference
US8611288B1 (en) 2009-03-05 2013-12-17 Marvell International Ltd Systems and methods for link adaptation in wireless communication systems
US20100234071A1 (en) 2009-03-12 2010-09-16 Comsys Communication & Signal Processing Ltd. Vehicle integrated communications system
US20100232355A1 (en) 2009-03-13 2010-09-16 Harris Corporation Asymmetric broadband data network
EP2234355B1 (en) 2009-03-25 2012-10-31 IHP GmbH-Innovations for High Performance Microelectronics / Leibniz-Institut für innovative Mikroelektronik MIMO Transmission in IEEE802.11 WLAN Systems
US20120100802A1 (en) 2009-04-10 2012-04-26 Mohebbi Behzad B Short-Range Cellular Booster
US20100271992A1 (en) 2009-04-23 2010-10-28 Qualcomm Incorporated Wireless channel calibration
US20100278063A1 (en) 2009-04-29 2010-11-04 Samsung Electronics Co. Ltd. Method for controlling interference
US20110163913A1 (en) 2009-05-01 2011-07-07 Dalaware Corporation Practical Method for Upgrading Existing GNSS User Equipment with Tightly Integrated Nav-Com Capability
US20100285752A1 (en) 2009-05-11 2010-11-11 Nec Laboratories America, Inc. Beamforming methods and systems employing measured power at a receiver to perform channel estimation
US20120064838A1 (en) 2009-05-20 2012-03-15 Telefonaktiebolaget L M Ericsson (Publ) Automatic Detection of Erroneous Connections Between Antenna Ports and Radio Frequency Paths
US20110019639A1 (en) 2009-05-22 2011-01-27 Jeyhan Karaoguz Enterprise Level Management in a Multi-Femtocell Network
US20120092217A1 (en) 2009-06-08 2012-04-19 Kenichi Hosoya Control method of wireless communication system, wireless communication system, wireless communication apparatus, and adjustment method of array weight vector
US20110032972A1 (en) 2009-08-07 2011-02-10 Motia, Inc. Economical, RF transparent, selective code phased array antenna processor
US20110032849A1 (en) 2009-08-07 2011-02-10 Fimax Technology Limited Systems and methods for mitigating interference between access points
US8744511B2 (en) 2009-09-04 2014-06-03 Qualcomm Incorporated Output power control for advanced WLAN and bluetooth-amp systems
US20120218962A1 (en) 2009-10-05 2012-08-30 Ntt Docomo, Inc. Radio base station apparatus, mobile terminal apparatus and radio communication method
US20120212372A1 (en) 2009-10-28 2012-08-23 Telefonaktiebolaget L M Ericsson (Publ) Method of designing weight vectors for a dual beam antenna with orthogonal polarizations
EP2498462A1 (en) 2009-11-04 2012-09-12 Alcatel Lucent Method and apparatus for antenna calibration in tdd wireless communication system based on coordinated multi-point (comp)
US20110105036A1 (en) 2009-11-04 2011-05-05 Motorola, Inc. Method and apparatus for sensing presence of an incumbent signal on a secondary radio channel
US20120220331A1 (en) 2009-11-04 2012-08-30 Qinglin Luo Method and device for calibrating antenna in a comp-based tdd radio communication system
US20130094621A1 (en) 2009-11-09 2013-04-18 Broadcom Corporation Method and System for Channel Estimation Processing for Interference Suppression
WO2011060058A1 (en) 2009-11-10 2011-05-19 Montana State University Compact smart antenna for mobile wireless communications
US20110116489A1 (en) 2009-11-13 2011-05-19 Interdigital Patent Holdings, Inc. Method and apparatus for providing vht frequency reuse for wlans
US8780743B2 (en) 2009-11-20 2014-07-15 Deutsche Telekom Ag Method and system for improving quality of service in distributed wireless networks
US20130242976A1 (en) 2009-11-30 2013-09-19 International Business Machines Corporation Packet communication system, communication method adn program
US20110134816A1 (en) 2009-12-09 2011-06-09 Yong Liu Wireless Communication Signaling for Aggregate Data Units
US20110151826A1 (en) 2009-12-18 2011-06-23 Motorola, Inc. Method for bearer establishment in a radio access network
US20110249576A1 (en) 2009-12-21 2011-10-13 Qualcomm Incorporated Antenna selection based on performance metrics in a wireless device
US20110150050A1 (en) 2009-12-23 2011-06-23 Hafedh Trigui Digital integrated antenna array for enhancing coverage and capacity of a wireless network
US8294625B2 (en) 2010-02-04 2012-10-23 GM Global Technology Operations LLC Antenna diversity system
US20110205998A1 (en) 2010-02-23 2011-08-25 Cisco Technology, Inc. Scheduling of Isochronous Traffic in Time and Frequency To Reduce Contention
US20120014377A1 (en) 2010-03-02 2012-01-19 Thomas Kirkegaard Joergensen Distributed packet-based timestamp engine
US20110273977A1 (en) 2010-05-04 2011-11-10 Nir Shapira System and method for channel state related feedback in multi-user multiple-input-multiple-output systems
US20110281541A1 (en) 2010-05-12 2011-11-17 Renesas Electronics Corp. Reconfigurable Receiver Architectures
US20110299437A1 (en) 2010-06-03 2011-12-08 Broadcom Corporation Front end module with compensating duplexer
US20110310827A1 (en) 2010-06-16 2011-12-22 Sudhir Srinivasa Alternate feedback types for downlink multiple user mimo configurations
US20110310853A1 (en) 2010-06-18 2011-12-22 Sharp Laboratories Of America, Inc. Selecting a codeword and determining a symbol length for uplink control information
US20120015603A1 (en) 2010-07-14 2012-01-19 Qualcomm Incorporated Method in a wireless repeater employing an antenna array including vertical and horizontal feeds for interference reduction
US20120028671A1 (en) 2010-07-28 2012-02-02 Huaning Niu Power loading in mu-mimo
US20120028655A1 (en) 2010-07-29 2012-02-02 Intel Mobile Communications Technology GmbH Radio communication devices, information providers, methods for controlling a radio communication device and methods for controlling an information provider
US20120028638A1 (en) 2010-07-29 2012-02-02 Infineon Technologies Ag Radio communication devices, information providers, methods for controlling a radio communication device and methods for controlling an information provider
US20120045003A1 (en) 2010-08-23 2012-02-23 Qinghua Li Communication station and method for efficiently providing channel feedback for mimo communications
US20120051287A1 (en) 2010-08-31 2012-03-01 Qualcomm Incorporated Implicit and explicit channel sounding for beamforming
US20130170388A1 (en) 2010-09-15 2013-07-04 Mitsubishi Electric Corporation Communication apparatus and delay detecting method
US20120069828A1 (en) 2010-09-21 2012-03-22 Kabushiki Kaisha Toshiba Wireless communication device and communication method thereof
US20120076229A1 (en) 2010-09-23 2012-03-29 Samsung Electronics Co., Ltd. Method and system of mimo and beamforming transmitter and receiver architecture
US20120076028A1 (en) 2010-09-29 2012-03-29 Hyunsoo Ko Method and apparatus for performing effective feedback in wireless communication system supporting multiple antennas
US20130058239A1 (en) 2010-10-21 2013-03-07 James June-Ming Wang Integrity and Quality Monitoring and Signaling for Sounding and Reduced Feedback
US20120115523A1 (en) 2010-11-04 2012-05-10 Extricom Ltd. Mimo search over multiple access points
US8588844B2 (en) 2010-11-04 2013-11-19 Extricom Ltd. MIMO search over multiple access points
US20130242853A1 (en) 2010-11-08 2013-09-19 Lg Electronics Inc. Method and device for transmitting and receiving data in wireless communication system
US20130223400A1 (en) 2010-11-12 2013-08-29 Lg Electronics Inc. Method and device for transmitting and receiving downlink control channel for controlling inter-cell interference in wireless communication system
US20130208619A1 (en) 2010-11-16 2013-08-15 Nippon Telegraph And Telephone Corporation Wireless communication system and wireless communication method
US20120155349A1 (en) 2010-11-16 2012-06-21 Zeljko Bajic Rfid applications
US20120155397A1 (en) 2010-12-17 2012-06-21 Cisco Technology Inc. Collision Avoidance for Wireless Networks
US20120163257A1 (en) 2010-12-23 2012-06-28 Electronics And Telecommunications Research Institute Method and apparatus for transmitting/receiving in mobile wireless network
US20120170453A1 (en) 2010-12-30 2012-07-05 Kundan Tiwari Apparatuses and methods for access point name (apn) based congestion control during a packet data protocol (pdp) context activation procedure
US20120201153A1 (en) 2011-02-03 2012-08-09 Dinesh Bharadia Adaptive techniques for full duplex communications
US20120201173A1 (en) 2011-02-03 2012-08-09 Mayank Jain Single channel full duplex wireless communications
US20130190006A1 (en) 2011-02-15 2013-07-25 Telefonaktiebolaget L M Ericsson (Publ) Methods and Systems for Enabling User Activity-Aware Positioning
US20120230380A1 (en) 2011-03-11 2012-09-13 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E. V. Method for determining beamforming parameters in a wireless communication system and to a wireless communication system
US20120327870A1 (en) 2011-06-24 2012-12-27 Interdigital Patent Holdings, Inc. Method and apparatus for supporting wideband and multiple bandwidth transmission protocols
US8666319B2 (en) 2011-07-15 2014-03-04 Cisco Technology, Inc. Mitigating effects of identified interference with adaptive CCA threshold
US20130017794A1 (en) 2011-07-15 2013-01-17 Cisco Technology, Inc. Mitigating Effects of Identified Interference with Adaptive CCA Threshold
US20130023225A1 (en) 2011-07-21 2013-01-24 Weber Technologies, Inc. Selective-sampling receiver
US20130044877A1 (en) 2011-08-15 2013-02-21 Yong Liu Long range wlan data unit format
US20130051283A1 (en) 2011-08-30 2013-02-28 Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense Full-Duplex Wireless Voice Broadcasting Apparatus with Channel-Changing and Interference-Resistance
US20130070741A1 (en) 2011-09-19 2013-03-21 Li Erran Li Method and apparatus for scheduling transmissions for antenna arrays
US20130079048A1 (en) 2011-09-26 2013-03-28 Research In Motion Limited Method and System for Small Cell Discovery in Heterogeneous Cellular Networks
US20130095780A1 (en) 2011-10-13 2013-04-18 Em Microelectronic-Marin Sa Transponder with receiving means having a low electrical consumption in a listening mode
US20130094437A1 (en) 2011-10-18 2013-04-18 Collabera Solutions Private Limited Frame Acknowledgment In A Communication Network
US20130101073A1 (en) 2011-10-21 2013-04-25 The Johns Hopkins University Adaptive Interference Canceller in a Digital Phase Array
US20140204821A1 (en) 2011-11-23 2014-07-24 Lg Electronic Inc. Method for transceiving data on basis of service period scheduling in wireless lan system and apparatus for supporting same
US20130150012A1 (en) 2011-12-08 2013-06-13 Apple Inc. Mechanisms to improve mobile device roaming in wireless networks
US20130156016A1 (en) 2011-12-15 2013-06-20 Texas Instruments Incorporated Wireless network systems
US20130156120A1 (en) 2011-12-19 2013-06-20 Samsung Electronics Co., Ltd Apparatus and method for reference symbol transmission in an ofdm system
US20130208587A1 (en) 2012-01-26 2013-08-15 Interdigital Patent Holdings, Inc. Dynamic parameter adjustment for lte coexistence
US20130229996A1 (en) 2012-03-01 2013-09-05 Interdigital Patent Holdings, Inc. Multi-user parallel channel access in wlan systems
US20130235720A1 (en) 2012-03-06 2013-09-12 Interdigital Patent Holdings, Inc. Supporting a large number of devices in wireless communications
US20130242899A1 (en) 2012-03-13 2013-09-19 Airspan Networks Inc. Cooperative Components in a Wireless Feeder Network
US20130242965A1 (en) 2012-03-16 2013-09-19 Qualcomm Incorporated System and Method of Offloading Traffic to a Wireless Local Area Network
US20130252621A1 (en) 2012-03-21 2013-09-26 Telefonaktiebolaget L M Ericsson (Publ) Dynamic resource selection to reduce interference that results from direct device to device communications
US20130272437A1 (en) 2012-04-13 2013-10-17 Xr Communications, Llc Directed mimo communications
US20150085777A1 (en) * 2012-04-15 2015-03-26 Lg Electronics Inc. Method and apparatus for transmitting and receiving feedback trigger frames in wireless lan systems
US20140185535A1 (en) 2012-04-24 2014-07-03 Minyoung Park Methods and Arrangements for Adaptive Delay Control
US20130301551A1 (en) 2012-05-09 2013-11-14 Interdigital Patent Holdings, Inc. Multi-user multiple input multiple output communications in wireless local area networks and wireless transmit and receive units
US20130322509A1 (en) 2012-05-29 2013-12-05 Magnolia Broadband Inc. Implementing blind tuning in hybrid mimo rf beamforming systems
US8599955B1 (en) 2012-05-29 2013-12-03 Magnolia Broadband Inc. System and method for distinguishing between antennas in hybrid MIMO RDN systems
US8644413B2 (en) 2012-05-29 2014-02-04 Magnolia Broadband Inc. Implementing blind tuning in hybrid MIMO RF beamforming systems
US8649458B2 (en) 2012-05-29 2014-02-11 Magnolia Broadband Inc. Using antenna pooling to enhance a MIMO receiver augmented by RF beamforming
US8767862B2 (en) 2012-05-29 2014-07-01 Magnolia Broadband Inc. Beamformer phase optimization for a multi-layer MIMO system augmented by radio distribution network
US20130331136A1 (en) 2012-06-07 2013-12-12 Kai Yang Method And Apparatus For Coordinated Beamforming
WO2013192112A1 (en) 2012-06-20 2013-12-27 Qualcomm Incorporated METHODS FOR SIGNALING A MAXIMUM NUMBER OF MSDUs IN A TRANSMISSION
US20140010089A1 (en) 2012-07-06 2014-01-09 Futurewei Technologies, Inc. System and Method for Active Scanning in Multi-channel Wi-Fi System
US20140010211A1 (en) 2012-07-09 2014-01-09 Qualcomm Incorporated Methods and apparatus for requested reverse direction protocol
US20140071873A1 (en) 2012-09-13 2014-03-13 Interdigital Patent Holdings, Inc. Method, wireless transmit/receive unit (wtru) and base station for transferring small packets
US20140086081A1 (en) 2012-09-24 2014-03-27 Interdigital Patent Holdings, Inc. Channel quality measurement and transmit power allocation in a dynamic spectrum management system
US20140086077A1 (en) 2012-09-26 2014-03-27 Futurewei Technologies, Inc. Method and Apparatus for Combined Adaptive Beamforming and MIMO in Indoor Wireless LAN
US20140098681A1 (en) 2012-10-05 2014-04-10 Cisco Technology, Inc. High Density Deployment Using Transmit or Transmit-Receive Interference Suppression with Selective Channel Dimension Reduction/Attenuation and Other Parameters
US20140119288A1 (en) 2012-10-31 2014-05-01 Samsung Electronics Co., Ltd. Method and system for uplink multi-user multiple-input-multiple-output communication in wireless networks
US20140154992A1 (en) 2012-12-03 2014-06-05 Cisco Technology, Inc. Explicit and Implicit Hybrid Beamforming Channel Sounding
US20140185501A1 (en) 2012-12-29 2014-07-03 Minyoung Park Methods and arrangements to coordinate communications in a wireless network
US20140192820A1 (en) 2013-01-08 2014-07-10 Shahrnaz Azizi Methods and arrangements to mitigate collisions in wireless networks
US8797969B1 (en) 2013-02-08 2014-08-05 Magnolia Broadband Inc. Implementing multi user multiple input multiple output (MU MIMO) base station using single-user (SU) MIMO co-located base stations
US8983548B2 (en) 2013-02-13 2015-03-17 Magnolia Broadband Inc. Multi-beam co-channel Wi-Fi access point
US20140241182A1 (en) 2013-02-27 2014-08-28 Research In Motion Limited Access Point And Channel Selection In A Wireless Network For Reduced RF Interference
US20140307653A1 (en) 2013-04-15 2014-10-16 Broadcom Corporation Multiple narrow bandwidth channel access and MAC operation within wireless communications
US20150016438A1 (en) * 2013-07-10 2015-01-15 Magnolia Broadband Inc. System and method for simultaneous co-channel access of neighboring access points
US20150030094A1 (en) 2013-07-26 2015-01-29 Marvell World Trade Ltd. Interference Avoidance for Beamforming Transmissions in Wireless Communication Devices and Systems
US20150139212A1 (en) * 2013-10-17 2015-05-21 Mediatek Singapore Pte. Ltd. Snooping Sensor STA or Neighbor AP Ranging and Positioning in Wireless Local Area Networks
US8891598B1 (en) 2013-11-19 2014-11-18 Magnolia Broadband Inc. Transmitter and receiver calibration for obtaining the channel reciprocity for time division duplex MIMO systems
US8942134B1 (en) 2013-11-20 2015-01-27 Magnolia Broadband Inc. System and method for selective registration in a multi-beam system

Non-Patent Citations (122)

* Cited by examiner, † Cited by third party
Title
Ahmadi-Shokouh et al., "Pre-LNA Smart Soft Antenna Selection for MIMO Spatial Multiplexing/Diversity System when Amplifier/Sky Noise Dominates", European Transactions on Telecommunications, Wiley & Sons, Chichester, GB, vol. 21, No. 7, Nov. 1, 2010, pp. 663-677.
Alcatel-Lucent Shanghai Bell et al., "Antenna Array Calibration for TDD CoMP", 3GPP Draft; R1-100427, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, Vol. RAN WG1, no. Valencia, Spain; 20100118, Jan. 12, 2010, pp. 1-5.
Huang et al., "Antenna Mismatch and Calibration Problem in Coordinated Multi-point Transmission System," IET Communications, 2012, vol. 6, Issue 3, pp. 289-299.
International Search Report and Written Opinion for International Application No. PCT/US14/65958 dated Jan. 13, 2015.
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/064185 dated Feb. 5, 2015.
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/064346 dated Jan. 29, 2015.
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/065635 dated Feb. 13, 2015.
Kai Yang et al., "Coordinated Dual-Layer Beamforming for Public Safety Network: Architecture and Algorithms", Communications (ICC), 2012 IEEE International Conference on, IEEE, Jun. 10, 2012, pp. 4095-4099.
Mitsubishi Electric, "Discussion on Antenna Calibration in TDD", 3GPP Draft; R1-090043, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, no. Ljubljana; 20090107, Jan. 7, 2009, pp. 1-4.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Jul. 31, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,159 dated Jun. 20, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,188 dated Aug. 19, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,191 dated Jul. 19, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/770,255 dated Sep. 17, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated May 13, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated Jan. 31, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Jul. 8, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Nov. 10, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Apr. 14, 2015.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Feb. 3, 2015.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,194 dated Apr. 9, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,320 dated Feb. 21, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Aug. 6, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Oct. 20, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated Jul. 25, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/065,182 dated Mar. 25, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/068,863 dated Mar. 25, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,252 dated Aug. 27, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,352 dated Jul. 23, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/087,376 dated May 9, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Dec. 31, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Sep. 8, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/102,539 dated Jun. 24, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/109,904 dated Jul. 2, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/143,580 dated Sep. 8, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/171,736 mailed Feb. 20, 2015.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/172,500 dated Mar. 26, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,155 dated Jan. 26, 2015.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,280 dated Nov. 18, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/273,866 dated Mar. 25, 2015.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/281,358 dated Dec. 16, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/296,209 dated Jan. 27, 2015.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/297,898 dated Dec. 5, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/449,431 dated Mar. 23, 2015.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/450,625 dated Nov. 20, 2015.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/467,415 dated Nov. 25, 2015.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/517,114 dated Jan. 6, 2016.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/672,634 dated Dec. 4, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Jan. 22, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Mar. 27, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,159 dated Apr. 16, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,188 dated May 15, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,191 dated May 2, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/770,255 dated Jun. 6, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Jan. 7, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Jul. 17, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Mar. 23, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Nov. 17, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated Jun. 11, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated Nov. 5, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated May 21, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated Oct. 23, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/858,302 dated Jan. 16, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/888,057 dated Dec. 3, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Apr. 9, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Sep. 25, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Mar. 7, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Oct. 28, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,194 dated Oct. 30, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,320 dated Oct. 15, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Apr. 4, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Dec. 17, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Dec. 23, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Jul. 1, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated May 20, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated Nov. 5, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/018,965 dated Jan. 13, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Dec. 1, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Dec. 31, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Jan. 16, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Jul. 31, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/065,182 dated Dec. 17, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/068,863 dated Dec. 17, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,252 dated Jun. 18, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,352 dated Apr. 7, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/087,376 dated Jan. 29, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/094,644 dated Feb. 6, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/094,644 dated Jun. 24, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Apr. 22, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/102,539 dated Jan. 27, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/109,904 dated Feb. 27, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/143,580 dated May 9, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/171,736 dated Oct. 16, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/173,640 dated Feb. 3, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/173,640 dated Oct. 29, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/173,640 dated Oct. 6, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated Aug. 29, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated Jan. 5, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated May 13, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,155 dated Sep. 12, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,280 dated Jul. 29, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/250,767 dated Apr. 29, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/250,767 dated Dec. 26, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/250,767 dated Jan. 5, 2016.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/250,767 dated Jul. 10, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/273,866 dated Nov. 28, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/296,209 dated Sep. 4, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/297,898 dated Aug. 15, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/306,458 dated Aug. 13, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/306,458 dated Jan. 9, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/320,920 dated Feb. 23, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/320,920 dated Oct. 23, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/449,431 dated Oct. 10, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/450,625 dated Apr. 28, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/467,415 dated Oct. 15, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/480,920 dated Nov. 18, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/481,319 dated Nov. 19, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/481,319 dated Nov. 3, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/517,114 dated Apr. 6, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/543,357 dated Apr. 23, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/658,986 dated Nov. 4, 2015.
Songtao et al., "A Distributed Adaptive GSC Beamformer over Coordinated Antenna Arrays Network for Interference Mitigation", Asilomar Conference on Signals, Systems and Computers, Conference Record, IEEE Computer Society, US, Nov. 4, 2012, pp. 237-242.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361765B2 (en) * 2013-05-31 2019-07-23 Samsung Electronics Co., Ltd. Apparatus and method for controlling array antenna device in communication system
US20180309487A1 (en) * 2015-12-31 2018-10-25 Huawei Technologies Co., Ltd. Beamforming method, receiver, transmitter, and system
US10581504B2 (en) * 2015-12-31 2020-03-03 Huawei Technologies Co., Ltd. Beamforming method, receiver, transmitter, and system

Also Published As

Publication number Publication date
US20150281993A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
US9271176B2 (en) System and method for backhaul based sounding feedback
CN110800220B (en) MIMO channel access
EP3245824B1 (en) Location reporting for extremely high frequency (ehf) devices
CN109716674B (en) MIMO mode adaptation in mmwave WLAN systems
US20150270879A1 (en) System and method for explicit channel sounding between access points
CN110870218B (en) Multi-channel multiple-input multiple-output beamforming training in millimeter wave systems
CN108476043B (en) Beamforming training using multiple-input multiple-output transmission scheme
EP4102762B1 (en) Bss-color enhanced transmission in wlans (bss-cet)
US9923702B2 (en) Sectorization feedback and multi-sector transmission in wireless networks
US9100154B1 (en) Method and system for explicit AP-to-AP sounding in an 802.11 network
JP2021132397A (en) Multiple input multiple output (mimo) setup in millimeter wave (mmw) wlan systems
JP7157515B2 (en) User equipment, wireless communication method, base station and system
CN108476048B (en) System and method for reducing interference from neighboring wireless devices
US9172446B2 (en) Method and system for supporting sparse explicit sounding by implicit data
KR20190064568A (en) mmW Multi-channel transmission in WLAN systems
US9060362B2 (en) Method and system for accessing an occupied Wi-Fi channel by a client using a nulling scheme
EP3602838A1 (en) Beam management procedures for user equipment and transmission and reception point
JP2019525610A (en) Downlink beam training method and apparatus
JP7095080B2 (en) Packet transmission considering interference
TW202315346A (en) Antenna array gain settings based on polarization diversity
WO2016068969A1 (en) Method and system for accessing an occupied wi-fi channel by a client using a nulling scheme

Legal Events

Date Code Title Description
AS Assignment

Owner name: MAGNOLIA BROADBAND INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, PHIL F.;JEFFERY, STUART S.;KLUDT, KENNETH;AND OTHERS;REEL/FRAME:034815/0917

Effective date: 20140826

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362