US9392539B2 - User equipment and method for feedback of user equipment performance metrics during dynamic radio switching - Google Patents

User equipment and method for feedback of user equipment performance metrics during dynamic radio switching Download PDF

Info

Publication number
US9392539B2
US9392539B2 US14/107,400 US201314107400A US9392539B2 US 9392539 B2 US9392539 B2 US 9392539B2 US 201314107400 A US201314107400 A US 201314107400A US 9392539 B2 US9392539 B2 US 9392539B2
Authority
US
United States
Prior art keywords
radio
base station
message
performance metrics
rat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/107,400
Other versions
US20140323133A1 (en
Inventor
Shu-Ping Yeh
Nageen Himayat
Shilpa Talwar
Alexander Sirotkin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Intel Corp
Original Assignee
Intel IP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/107,400 priority Critical patent/US9392539B2/en
Application filed by Intel IP Corp filed Critical Intel IP Corp
Priority to EP14788674.1A priority patent/EP2989827B1/en
Priority to CN201480017237.9A priority patent/CN105052202B/en
Priority to PCT/US2014/035409 priority patent/WO2014176480A1/en
Assigned to Intel IP Corporation reassignment Intel IP Corporation ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TALWAR, SHILPA, SIROTKIN, Sasha, YEH, SHU-PING, HIMAYAT, NAGEEN
Publication of US20140323133A1 publication Critical patent/US20140323133A1/en
Priority to HK16105109.9A priority patent/HK1217145A1/en
Publication of US9392539B2 publication Critical patent/US9392539B2/en
Application granted granted Critical
Assigned to INTEL CORPORATION reassignment INTEL CORPORATION CONFIRMATORY ASSIGNMENT Assignors: Intel IP Corporation
Assigned to APPLE INC. reassignment APPLE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTEL CORPORATION
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • H04L12/1403Architecture for metering, charging or billing
    • H04L12/1407Policy-and-charging control [PCC] architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0033Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation each allocating device acting autonomously, i.e. without negotiation with other allocating devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • H04L65/1006
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1045Proxies, e.g. for session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1069Session establishment or de-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1073Registration or de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols
    • H04L65/1104Session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/40Support for services or applications
    • H04L65/403Arrangements for multi-party communication, e.g. for conferences
    • H04L65/602
    • H04L65/608
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/65Network streaming protocols, e.g. real-time transport protocol [RTP] or real-time control protocol [RTCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/75Media network packet handling
    • H04L65/762Media network packet handling at the source 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/02Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/14Systems for two-way working
    • H04N7/141Systems for two-way working between two video terminals, e.g. videophone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/14Systems for two-way working
    • H04N7/141Systems for two-way working between two video terminals, e.g. videophone
    • H04N7/147Communication arrangements, e.g. identifying the communication as a video-communication, intermediate storage of the signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/14Systems for two-way working
    • H04N7/15Conference systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0066Transmission or use of information for re-establishing the radio link of control information between different types of networks in order to establish a new radio link in the target network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • H04W72/0486
    • H04W72/1231
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • H04W76/023
    • H04W76/048
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/472End-user interface for requesting content, additional data or services; End-user interface for interacting with content, e.g. for content reservation or setting reminders, for requesting event notification, for manipulating displayed content
    • H04N21/4728End-user interface for requesting content, additional data or services; End-user interface for interacting with content, e.g. for content reservation or setting reminders, for requesting event notification, for manipulating displayed content for selecting a Region Of Interest [ROI], e.g. for requesting a higher resolution version of a selected region
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/478Supplemental services, e.g. displaying phone caller identification, shopping application
    • H04N21/4788Supplemental services, e.g. displaying phone caller identification, shopping application communicating with other users, e.g. chatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/643Communication protocols
    • H04N21/6437Real-time Transport Protocol [RTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/06Access restriction performed under specific conditions based on traffic conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W76/027
    • H04W76/068
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/38Connection release triggered by timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • Y02B60/50
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments described herein generally relate to wireless networks. Some embodiments relate generally to user equipment feedback in a wireless network.
  • Wireless, radio access networks enable mobile devices (e.g., radiotelephones, cellular telephones, user equipment (UE)) to communicate within that network with a fixed landline infrastructure (e.g., base station, evolved node B (eNodeB)).
  • a fixed landline infrastructure e.g., base station, evolved node B (eNodeB)
  • these radio access networks can include WiFiTM, 3 rd Generation Partnership Projects (3GPP), or BluetoothTM
  • Typical UEs may be equipped with multiple radios. While it may be desirable to actively transmit on only one radio during an active session due to hardware limitations, energy efficiency considerations, and an overall system performance perspective, it may also be desirable to move the active session across multiple radio access technologies (RATs) in a seamless fashion.
  • RATs radio access technologies
  • FIG. 1 illustrates a plot of percent of users versus data rate in accordance with a method for feedback of user equipment performance metrics.
  • FIG. 2 illustrates an embodiment of a signal flow diagram in accordance with the method for feedback of user equipment performance metrics.
  • FIG. 3 illustrates a diagram of an embodiment of a communication system.
  • FIG. 4 illustrates a block diagram of an embodiment of user equipment.
  • RAT radio access technology
  • a RAT refers to an underlying physical connection method for a radio based communication network.
  • Each radio may be configured to support a different RAT (e.g., WiFiTM, 3GPP, BluetoothTM, 4G, Long Term Evolution (LTE)).
  • the WiFiTM may be part of an IEEE 802.11 standard.
  • base station may be used subsequently to refer to any fixed transceiver apparatus that may communicate using one or more particular radio technologies.
  • base station can refer to an access point, an eNodeB, or a cell site.
  • UE User equipment
  • UE may include a plurality of radios each associated with a different RAT of multiple RATs that may select various networks or be “steered” to those networks.
  • the UE RATs can employ network selection or traffic steering between different radio access networks (RAN) such as WiFiTM, 3GPP, BluetoothTM, 4G, LTE, or other wireless networks.
  • RAN radio access networks
  • RAN radio access networks
  • Several solutions, based on UE-centric and network centric techniques may be used for load balancing between one network using a first radio technology (e.g., 3GPP) and second network using a second radio technology (e.g., wireless local area network (WLAN)).
  • a first radio technology e.g., 3GPP
  • WLAN wireless local area network
  • While the UE may be equipped with multiple radios, often it is still desirable to actively transmit on only one radio at a time due to hardware limitations, energy efficiency considerations, and/or an overall system performance perspective. It may also be desirable to move a given active session across one or more (RATs) in a seamless fashion such that minimal disruption to application performance may be observed by the user. For example, this may be true when moving a real-time application flow across RATs or when the channel or interference environment across RATs is changing dynamically.
  • One example of moving a real-time application flow across RATs may be when the UE is using a WiFi RAT in a WiFi network for video streaming may have the flexibility to switch to LTE to receive the remainder of the video stream using an LTE RAT.
  • the state and metrics associated with the application may be useful for the radio network in allocating radio resources to better maintain application quality of service (QoS).
  • QoS application quality of service
  • MAC proportional fair media access control
  • MAC proportional fair media access control
  • Unavailability of a user's past throughput knowledge may degrade user/system performance until the system achieves steady state again.
  • UEs When UEs are allowed to dynamically switch between different radios, there may be a temporary performance degradation during the RAT transition. For example, cooperation between two or more radio networks may not be available because the two radios on the network side may not be collocated in the same physical devices or a backhaul interface cannot support high signaling overhead for RAT coordination.
  • the UE feeding back its application state/performance metrics to the new RAT at the time a session is transferred to the new RAT.
  • the user or application performance indicator may be fed back along with the message used to trigger the switching to the new radio network.
  • the performance indicator may also be fed back in a separate message following the message used to trigger the switching. In such an embodiment, the delay between the session transfer and the feedback of the performance indicator should be reduced as much as possible.
  • the past performance indicators may be part of the metric that the scheduler uses to determine how to efficiently and fairly allocate resources to its users (e.g., UEs). Therefore, with UE feedback of such performance indicators to their new radio, the schedulers may allocate the resources based on more accurate metrics and, hence, improve the overall performance.
  • the UE may also feedback certain QoS metrics per application.
  • the network can then allocate resources to maintain a desired QoS of the application without interruption.
  • Examples of UE/application performance metrics may include: UE time-averaged throughput for a proportional-fair scheduler, video buffer size for streaming data, and/or quality of experience (QoE) metrics. These performance metrics are for purposes of illustration only. The present embodiments are not limited to any certain performance metrics.
  • the UE may feedback its past time-averaged throughput measured over a certain time window (i.e., latency time scale of the scheduler) to the new RAT.
  • a proportional-fair scheduler aims to optimize the sum log throughput of its users.
  • the sum log throughput may be a metric that balances between total data rate and UE fairness.
  • a proportional-fair scheduler may compare the metric, instantaneous rate divided by smooth-throughput, and selects the UE with the highest value of the metric to be scheduled. By providing the smooth-throughput metric, the overall performance for proportional-fair schedulers may be improved and network-wide sum log throughput can be improved without disruption due to session transfer.
  • FIG. 1 illustrates a plot of percent of users versus data rate (Mbps). The figure shows that, with feedback of the time-averaged throughput metric, the overall fairness may be improved for two different UE-centric RAT selection rules.
  • throughput-based metrics may include measurements related to “on-time” throughput.
  • On-time throughput may capture the probability of receiving a packet before its delay deadline. This metric may be useful for a scheduler that has maximized a number of UE receiving their targeted on-time throughput.
  • the UE may also feedback their video buffer size for streaming data.
  • the buffer size may be fed back to the new radio if the UE is receiving streaming video from the base station.
  • the scheduler may have a reasonable estimate of the buffer size based on acknowledgement messages from the UE.
  • the scheduler may no longer have an estimate on the buffer size of the video. Though such information may be exchanged among the schedulers through a backbone, the UE feedback can be a more timely approach to ensure a smooth transition between RATs.
  • the UE may also feedback QoE metrics to the new RAT.
  • QoE metrics include, but are not limited to, throughput, metrics indicating acceptable video viewing quality (e.g., few dropped frames, low jittering), or metrics indicating acceptable voice over internet protocol (VoIP) conversation (e.g., short packet delay, no interruption of the conversation).
  • throughput metrics indicating acceptable video viewing quality (e.g., few dropped frames, low jittering)
  • VoIP voice over internet protocol
  • FIG. 2 illustrates a signal flow diagram for a session transfer between RATs with UE feedback of performance metrics.
  • the UE receives an indication 201 from a first base station (BS 1 ), associated with a first RAT, that the UE should switch its session to a second base station (BS 2 ).
  • the UE transmits a message 203 to the second base station to trigger the switch.
  • the UE transmits its performance metrics to the second base station.
  • the UE also switches its internal radio from the RAT associated with the first base station to the RAT associated with the second base station.
  • the first base station may be a 3GPP eNodeB and the second base station may be a WiFi access point.
  • the UE may be running a session wherein it is streaming video from the first base station.
  • the first base station instructs the UE to switch.
  • the UE determines that the second base station is the closest base station and switches its session to the second base station necessitating switching from the 3GPP RAT to the WiFi RAT.
  • the UE feedback of performance metrics during dynamic RAT switching may improve RAT switching in multi-RAT networks.
  • the UE feedback indicators/metrics of application performance to overcome the lack of information exchange between schedulers of uncoordinated RATs.
  • the performance indicators may provide useful information to the new scheduler to improve the proportional fair throughput as well as the QoE performance across applications. By aggregating the performance indicator feedback with the RAT selection decision, the information may be immediately used and performance disruption may be reduced.
  • FIG. 3 illustrates a diagram of an embodiment of a wireless communication system comprising the UE in a multiple base station environment.
  • the illustrated communication system includes a plurality of antennas 302 , 303 for communicating with the UE 301 .
  • the antennas 302 , 303 may be eNodeB's and/or base stations for communicating in a cellular environment.
  • the antennas 302 , 303 may also be access points (AP) for communicating in a WiFi environment.
  • AP access points
  • the first antenna 302 may be an eNodeB with a base station to enable the UE 301 to communicate in a 3GPP environment while the second antenna 303 may be an access point to enable the UE 301 to communicate in a WiFi environment.
  • the method for UE feedback of performance metrics may be used in the communication system to enable it to seamlessly switch between the 3GPP environment to the WiFi environment.
  • the UE 301 may be executing an application that is interfacing with the 3GPP antenna 302 by streaming video.
  • the UE 3012 moves away from the 3GPP antenna 302 and gets within range of the WiFi AP 303 , the UE transmits its performance metrics to the WiFi AP 303 RAT prior to switching to the UE 301 switching from using its 3GPP RAT to its WiFi RAT.
  • Such a switch may be accomplished using the signaling method illustrated in FIG. 2 .
  • the UE 301 may thus switch from a first radio associated with a first RAT of the communication system to a second radio associated with a second RAT of the communication system.
  • Each of the RATs may be associated with a different network or communication system.
  • the first antenna 302 may be part of a first network or communication system and the second antenna 303 may be part of a second network or communication system.
  • the user performance metric may be fed back to the base station/access point (BS/AP) to help in making scheduling decisions.
  • the user performance metric can be exchanged across RATs within UEs and UEs may then feed back this information to their BS/AP through the new UE RAT. Additionally, the user performance metric can be fed back through the old RAT and exchanged between BS's/AP's over a backbone or between schedulers for different RATs if the two RATs are located in the same AP.
  • FIG. 4 is a block diagram illustrating a machine in the example form of user equipment 400 , within which a set or sequence of instructions may be executed to cause the machine to perform any one of the methodologies discussed herein, according to an example embodiment.
  • the machine operates as a standalone device or may be connected (e.g., networked) to other machines.
  • the machine may operate in the capacity of either a server or a client machine in server-client network environments, or it may act as a peer machine in peer-to-peer (or distributed) network environments.
  • the machine may be a mobile communication device (e.g., cellular telephone), a computer, a personal computer (PC), a tablet PC, a hybrid tablet, a personal digital assistant (PDA), or any machine capable of executing instructions (sequential or otherwise) that specify actions to be taken by that machine.
  • a mobile communication device e.g., cellular telephone
  • PC personal computer
  • PDA personal digital assistant
  • machine shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
  • the term “processor-based system” shall be taken to include any set of one or more machines that are controlled by or operated by a processor (e.g., a computer) to individually or jointly execute instructions to perform any one or more of the methodologies discussed herein.
  • Example user equipment 400 includes at least one processor 402 (e.g., a central processing unit (CPU), a graphics processing unit (GPU) or both, processor cores, compute nodes, etc.), a main memory 404 and a static memory 406 , which communicate with each other via a link 408 (e.g., bus).
  • the user equipment 400 may further include a video display unit 410 and an alphanumeric input device 412 (e.g., a keypad). In one embodiment, the video display unit 410 and input device 412 are incorporated into a touch screen display.
  • the user equipment 400 may additionally include a storage device 416 (e.g., a drive unit), a signal generation device 418 (e.g., a speaker), a network interface device 420 , and one or more sensors (not shown).
  • the storage device 416 includes a machine-readable medium 422 on which is stored one or more sets of data structures and instructions 424 (e.g., software) embodying or utilized by any one or more of the methodologies or functions described herein.
  • the instructions 424 may also reside, completely or at least partially, within the main memory 404 , static memory 406 , and/or within the processor 402 during execution thereof by the user equipment 400 , with the main memory 404 , static memory 406 , and the processor 402 also constituting machine-readable media.
  • machine-readable medium 422 is illustrated in an example embodiment to be a single medium, the term “machine-readable medium” may include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more instructions 424 .
  • the term “machine-readable medium” shall also be taken to include any tangible medium that is capable of storing, encoding or carrying instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure or that is capable of storing, encoding or carrying data structures utilized by or associated with such instructions.
  • the term “machine-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media.
  • machine-readable media include non-volatile memory, including but not limited to, by way of example, semiconductor memory devices (e.g., electrically programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM)) and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks.
  • semiconductor memory devices e.g., electrically programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM)
  • EPROM electrically programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory devices e.g., electrically programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM)
  • flash memory devices e.g., electrically programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM
  • the instructions 424 may further be transmitted or received over a communications network 426 using a transmission medium via the network interface device 420 utilizing any one of a number of well-known transfer protocols (e.g., HTTP).
  • Examples of communication networks include a local area network (LAN), a wide area network (WAN), a wireless local area network (WLAN) the Internet, mobile telephone networks, plain old telephone (POTS) networks, and wireless data networks (e.g., WI-FITM (IEEE 802.11), 3GPP, 4G LTE/LTE-A or WiMAX networks).
  • transmission medium shall be taken to include any intangible medium that is capable of storing, encoding, or carrying instructions for execution by the machine, and includes digital or analog communications signals or other intangible medium to facilitate communication of such software.
  • the network interface device may include one or more antennas for communicating with the wireless network.

Abstract

An embodiment of a method for user equipment feedback of performance metrics during dynamic radio switching is disclosed. The method may include the UE receiving an indication to switch from a first radio associated with a first radio access technology (RAT) of a communication system to a second radio associated with a second RAT of the communication system. The UE transmits the performance metrics to the second radio and switches from a first radio of the plurality of radios to a second radio of the plurality of radios, the first radio associated with the first RAT and the second radio associated with the second RAT.

Description

RELATED APPLICATION
This application claims the benefit of priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application Ser. No. 61/816,662, filed Apr. 26, 2013, which is incorporated herein by reference in its entirety.
TECHNICAL FIELD
Embodiments described herein generally relate to wireless networks. Some embodiments relate generally to user equipment feedback in a wireless network.
BACKGROUND
Wireless, radio access networks (RAN) enable mobile devices (e.g., radiotelephones, cellular telephones, user equipment (UE)) to communicate within that network with a fixed landline infrastructure (e.g., base station, evolved node B (eNodeB)). For example, these radio access networks can include WiFi™, 3rd Generation Partnership Projects (3GPP), or Bluetooth™
Typical UEs may be equipped with multiple radios. While it may be desirable to actively transmit on only one radio during an active session due to hardware limitations, energy efficiency considerations, and an overall system performance perspective, it may also be desirable to move the active session across multiple radio access technologies (RATs) in a seamless fashion.
There are general needs for dynamic radio switching in user equipment.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a plot of percent of users versus data rate in accordance with a method for feedback of user equipment performance metrics.
FIG. 2 illustrates an embodiment of a signal flow diagram in accordance with the method for feedback of user equipment performance metrics.
FIG. 3 illustrates a diagram of an embodiment of a communication system.
FIG. 4 illustrates a block diagram of an embodiment of user equipment.
DETAILED DESCRIPTION
Subsequent use of the term radio access technology (RAT) may refer to a radio dedicated to a particular wireless technology. As is known by one of ordinary skill in the art, a RAT refers to an underlying physical connection method for a radio based communication network. Each radio may be configured to support a different RAT (e.g., WiFi™, 3GPP, Bluetooth™, 4G, Long Term Evolution (LTE)). The WiFi™ may be part of an IEEE 802.11 standard.
The term “base station” may be used subsequently to refer to any fixed transceiver apparatus that may communicate using one or more particular radio technologies. For example, base station can refer to an access point, an eNodeB, or a cell site.
User equipment (UE) may include a plurality of radios each associated with a different RAT of multiple RATs that may select various networks or be “steered” to those networks. For example, the UE RATs can employ network selection or traffic steering between different radio access networks (RAN) such as WiFi™, 3GPP, Bluetooth™, 4G, LTE, or other wireless networks. Several solutions, based on UE-centric and network centric techniques may be used for load balancing between one network using a first radio technology (e.g., 3GPP) and second network using a second radio technology (e.g., wireless local area network (WLAN)).
While the UE may be equipped with multiple radios, often it is still desirable to actively transmit on only one radio at a time due to hardware limitations, energy efficiency considerations, and/or an overall system performance perspective. It may also be desirable to move a given active session across one or more (RATs) in a seamless fashion such that minimal disruption to application performance may be observed by the user. For example, this may be true when moving a real-time application flow across RATs or when the channel or interference environment across RATs is changing dynamically. One example of moving a real-time application flow across RATs may be when the UE is using a WiFi RAT in a WiFi network for video streaming may have the flexibility to switch to LTE to receive the remainder of the video stream using an LTE RAT.
While several architectures and mobility protocols support fast session transfer, the overall user application state at the time of the session transfer is still unavailable at the new radio network at the time of the transfer. The state and metrics associated with the application may be useful for the radio network in allocating radio resources to better maintain application quality of service (QoS). For example, a proportional fair media access control (MAC) scheduler for a given RAT may rely on past throughput of the user to make its scheduling decisions across users. Unavailability of a user's past throughput knowledge may degrade user/system performance until the system achieves steady state again.
When UEs are allowed to dynamically switch between different radios, there may be a temporary performance degradation during the RAT transition. For example, cooperation between two or more radio networks may not be available because the two radios on the network side may not be collocated in the same physical devices or a backhaul interface cannot support high signaling overhead for RAT coordination.
These and other problems may be solved by the UE feeding back its application state/performance metrics to the new RAT at the time a session is transferred to the new RAT. There may be a performance improvement when such feedback is made available to the new radio network. Thus, it may be important for the UE to feedback the past user performance indicator(s) (e.g., throughput) of their past application performance to the new network controller/scheduler in order to assist the scheduler of the new RAT.
The user or application performance indicator may be fed back along with the message used to trigger the switching to the new radio network. The performance indicator may also be fed back in a separate message following the message used to trigger the switching. In such an embodiment, the delay between the session transfer and the feedback of the performance indicator should be reduced as much as possible.
The past performance indicators may be part of the metric that the scheduler uses to determine how to efficiently and fairly allocate resources to its users (e.g., UEs). Therefore, with UE feedback of such performance indicators to their new radio, the schedulers may allocate the resources based on more accurate metrics and, hence, improve the overall performance.
The UE may also feedback certain QoS metrics per application. The network can then allocate resources to maintain a desired QoS of the application without interruption.
Examples of UE/application performance metrics may include: UE time-averaged throughput for a proportional-fair scheduler, video buffer size for streaming data, and/or quality of experience (QoE) metrics. These performance metrics are for purposes of illustration only. The present embodiments are not limited to any certain performance metrics.
The UE may feedback its past time-averaged throughput measured over a certain time window (i.e., latency time scale of the scheduler) to the new RAT. A proportional-fair scheduler aims to optimize the sum log throughput of its users. The sum log throughput may be a metric that balances between total data rate and UE fairness. When performing resource allocation, a proportional-fair scheduler may compare the metric, instantaneous rate divided by smooth-throughput, and selects the UE with the highest value of the metric to be scheduled. By providing the smooth-throughput metric, the overall performance for proportional-fair schedulers may be improved and network-wide sum log throughput can be improved without disruption due to session transfer.
FIG. 1 illustrates a plot of percent of users versus data rate (Mbps). The figure shows that, with feedback of the time-averaged throughput metric, the overall fairness may be improved for two different UE-centric RAT selection rules.
Other examples of throughput-based metrics may include measurements related to “on-time” throughput. On-time throughput may capture the probability of receiving a packet before its delay deadline. This metric may be useful for a scheduler that has maximized a number of UE receiving their targeted on-time throughput.
The UE may also feedback their video buffer size for streaming data. The buffer size may be fed back to the new radio if the UE is receiving streaming video from the base station. When the UE connects to only one radio, the scheduler may have a reasonable estimate of the buffer size based on acknowledgement messages from the UE. However, when the UE is switched to a different RAT, the scheduler may no longer have an estimate on the buffer size of the video. Though such information may be exchanged among the schedulers through a backbone, the UE feedback can be a more timely approach to ensure a smooth transition between RATs.
The UE may also feedback QoE metrics to the new RAT. QoE metrics include, but are not limited to, throughput, metrics indicating acceptable video viewing quality (e.g., few dropped frames, low jittering), or metrics indicating acceptable voice over internet protocol (VoIP) conversation (e.g., short packet delay, no interruption of the conversation).
FIG. 2 illustrates a signal flow diagram for a session transfer between RATs with UE feedback of performance metrics. The UE receives an indication 201 from a first base station (BS1), associated with a first RAT, that the UE should switch its session to a second base station (BS2). The UE transmits a message 203 to the second base station to trigger the switch. As part of that message or in an optional separate message 207, the UE transmits its performance metrics to the second base station. During this session switch, the UE also switches its internal radio from the RAT associated with the first base station to the RAT associated with the second base station.
As an example of operation, the first base station may be a 3GPP eNodeB and the second base station may be a WiFi access point. The UE may be running a session wherein it is streaming video from the first base station. As the UE moves away from the first base station and closer to the second base station, the first base station instructs the UE to switch. The UE determines that the second base station is the closest base station and switches its session to the second base station necessitating switching from the 3GPP RAT to the WiFi RAT.
The UE feedback of performance metrics during dynamic RAT switching may improve RAT switching in multi-RAT networks. The UE feedback indicators/metrics of application performance to overcome the lack of information exchange between schedulers of uncoordinated RATs. The performance indicators may provide useful information to the new scheduler to improve the proportional fair throughput as well as the QoE performance across applications. By aggregating the performance indicator feedback with the RAT selection decision, the information may be immediately used and performance disruption may be reduced.
FIG. 3 illustrates a diagram of an embodiment of a wireless communication system comprising the UE in a multiple base station environment. The illustrated communication system includes a plurality of antennas 302, 303 for communicating with the UE 301.
The antennas 302, 303 may be eNodeB's and/or base stations for communicating in a cellular environment. The antennas 302, 303 may also be access points (AP) for communicating in a WiFi environment. For example, the first antenna 302 may be an eNodeB with a base station to enable the UE 301 to communicate in a 3GPP environment while the second antenna 303 may be an access point to enable the UE 301 to communicate in a WiFi environment.
The method for UE feedback of performance metrics may be used in the communication system to enable it to seamlessly switch between the 3GPP environment to the WiFi environment. In such a scenario, the UE 301 may be executing an application that is interfacing with the 3GPP antenna 302 by streaming video. As the UE 3012 moves away from the 3GPP antenna 302 and gets within range of the WiFi AP 303, the UE transmits its performance metrics to the WiFi AP 303 RAT prior to switching to the UE 301 switching from using its 3GPP RAT to its WiFi RAT. This switches the UE 301 from communicating with the 3GPP eNodeB 302 to the WiFi access point 303. Such a switch may be accomplished using the signaling method illustrated in FIG. 2.
The UE 301 may thus switch from a first radio associated with a first RAT of the communication system to a second radio associated with a second RAT of the communication system. Each of the RATs may be associated with a different network or communication system. For example, the first antenna 302 may be part of a first network or communication system and the second antenna 303 may be part of a second network or communication system.
In the above embodiments, the user performance metric may be fed back to the base station/access point (BS/AP) to help in making scheduling decisions. The user performance metric can be exchanged across RATs within UEs and UEs may then feed back this information to their BS/AP through the new UE RAT. Additionally, the user performance metric can be fed back through the old RAT and exchanged between BS's/AP's over a backbone or between schedulers for different RATs if the two RATs are located in the same AP.
FIG. 4 is a block diagram illustrating a machine in the example form of user equipment 400, within which a set or sequence of instructions may be executed to cause the machine to perform any one of the methodologies discussed herein, according to an example embodiment. In alternative embodiments, the machine operates as a standalone device or may be connected (e.g., networked) to other machines. In a networked deployment, the machine may operate in the capacity of either a server or a client machine in server-client network environments, or it may act as a peer machine in peer-to-peer (or distributed) network environments. The machine may be a mobile communication device (e.g., cellular telephone), a computer, a personal computer (PC), a tablet PC, a hybrid tablet, a personal digital assistant (PDA), or any machine capable of executing instructions (sequential or otherwise) that specify actions to be taken by that machine. Further, while only a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein. Similarly, the term “processor-based system” shall be taken to include any set of one or more machines that are controlled by or operated by a processor (e.g., a computer) to individually or jointly execute instructions to perform any one or more of the methodologies discussed herein.
Example user equipment 400 includes at least one processor 402 (e.g., a central processing unit (CPU), a graphics processing unit (GPU) or both, processor cores, compute nodes, etc.), a main memory 404 and a static memory 406, which communicate with each other via a link 408 (e.g., bus). The user equipment 400 may further include a video display unit 410 and an alphanumeric input device 412 (e.g., a keypad). In one embodiment, the video display unit 410 and input device 412 are incorporated into a touch screen display. The user equipment 400 may additionally include a storage device 416 (e.g., a drive unit), a signal generation device 418 (e.g., a speaker), a network interface device 420, and one or more sensors (not shown).
The storage device 416 includes a machine-readable medium 422 on which is stored one or more sets of data structures and instructions 424 (e.g., software) embodying or utilized by any one or more of the methodologies or functions described herein. The instructions 424 may also reside, completely or at least partially, within the main memory 404, static memory 406, and/or within the processor 402 during execution thereof by the user equipment 400, with the main memory 404, static memory 406, and the processor 402 also constituting machine-readable media.
While the machine-readable medium 422 is illustrated in an example embodiment to be a single medium, the term “machine-readable medium” may include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more instructions 424. The term “machine-readable medium” shall also be taken to include any tangible medium that is capable of storing, encoding or carrying instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure or that is capable of storing, encoding or carrying data structures utilized by or associated with such instructions. The term “machine-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media. Specific examples of machine-readable media include non-volatile memory, including but not limited to, by way of example, semiconductor memory devices (e.g., electrically programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM)) and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks.
The instructions 424 may further be transmitted or received over a communications network 426 using a transmission medium via the network interface device 420 utilizing any one of a number of well-known transfer protocols (e.g., HTTP). Examples of communication networks include a local area network (LAN), a wide area network (WAN), a wireless local area network (WLAN) the Internet, mobile telephone networks, plain old telephone (POTS) networks, and wireless data networks (e.g., WI-FI™ (IEEE 802.11), 3GPP, 4G LTE/LTE-A or WiMAX networks). The term “transmission medium” shall be taken to include any intangible medium that is capable of storing, encoding, or carrying instructions for execution by the machine, and includes digital or analog communications signals or other intangible medium to facilitate communication of such software. The network interface device may include one or more antennas for communicating with the wireless network.

Claims (9)

What is claimed is:
1. A method for dynamic radio switching with user equipment (UE) feedback of UE performance metrics, the UE having a plurality of UE radios, the method comprising:
the UE receiving a first message to switch from a first base station radio, of a first base station, associated with a first radio access technology (RAT) of a communication system to a second base station radio, of a second base station, associated with a second RAT of the communication system;
the UE transmitting a second message to the second base station radio, in response to the first message, to trigger a switch from the first base station radio to the second base station radio, the second message comprising the first message and the UE performance metrics, wherein the UE performance metrics comprise at least one of a UE application state, UE time-averaged throughput for a proportional-fair scheduler, a UE video buffer size for streaming data UE quality of experience (QuE) metrics; and
the UE switching, in response to the first message, an active UE transmission session from a first UE radio of the plurality of UE radios to a second UE radio of the plurality of UE radios, the first UE radio associated with the first RAT and the second UE radio associated with the second RAT.
2. The method of claim 1 wherein the QoE metrics comprise throughput, metrics indicating acceptable video viewing quality, or metrics indicating acceptable voice over internet protocol (VoIP) conversation.
3. The method of claim.1 wherein the UE transmitting the UE performance metrics to the second base station radio comprises transmitting a past time-averaged UE throughput measured over a predetermined time window.
4. The method of claim 1 wherein the performance metrics comprise past application performance of an application being executed by the UE.
5. The method of claim 1 wherein the UE transmitting the performance metrics to the second base station radio comprises the UE transmitting the performance metrics during session transfer.
6. The method of claim 1 wherein the performance metrics are part of a metric used by a scheduler of the communication system to determine how to allocate resources to different UEs.
7. User equipment (UE) for operating in a plurality of wireless networks, the user equipment comprising:
a network interface device to communicate with a plurality of base stations each having an antenna, the network interface device to receive a transfer session indication from a first base station of the plurality of base stations to transfer an active UE transmission session from the first base station to a second base station of the plurality of base stations, wherein the first base station communicates using a first base station radio associated with a first radio access technology and the second base station communicates using a second base station radio associated with a second radio access technology;
a plurality of UE radios, each UE radio of the plurality of UE radios to operate on a different radio access technology; and
a processor coupled to the network interface and the plurality of UE radios to control operation of the user equipment and dynamically switch from a first UE radio of the plurality of UE radios to a second UE radio of the plurality of UE radios in response to a received message from the first base station radio, the operation: determines UE performance metrics and controls transmission of a switch message to the second base station radio, in response to the received message, to switch the UE from the first base station radio to the second base station radio, wherein the switch message comprises the received message and the UE performance metrics, the UE performance metrics including at least one of a UE application state, UE time-averaged throughput for a proportional-fair scheduler, a UE video buffer size for streaming data, or UE quality of experience (QoE)metrics.
8. The user equipment of claim 7 wherein the plurality of radios each operate on one of IEEE 802.11, 3GPP, 4G LTE/LTE-A or WiMAX network radio access technology.
9. A non-transitory computer-readable storage medium that stores instructions for execution by one or more processors for dynamic radio switching of user equipment (UE), wherein the instructions to switch the UE comprise:
receive a first message at the UE to switch from a first base station radio, of a first base station, associated with a first radio access technology (RAT) of a communication system to a second base station radio, of a second base station, associated with a second RAT of the communication system;
transmit a second message from the UE to the second base station radio, in response to the first message, to trigger a switch from the first base station radio to the second base station radio, the second message comprising the first message and the UE performance metrics, wherein the UE performance metrics comprise at least one of a UE application state, UE time-averaged throughput for a proportional-fair scheduler, a UE video buffer size for streaming data, or UE quality of experience (QoE) metrics; and
switch an active transmission session of the UE from a first UE radio of the plurality of UE radios to a second UE radio of the plurality of UE radios in response to the first message, the first UE radio associated with the first RAT and the second UE radio associated with the second RAT.
US14/107,400 2013-04-26 2013-12-16 User equipment and method for feedback of user equipment performance metrics during dynamic radio switching Active 2034-01-09 US9392539B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/107,400 US9392539B2 (en) 2013-04-26 2013-12-16 User equipment and method for feedback of user equipment performance metrics during dynamic radio switching
EP14788674.1A EP2989827B1 (en) 2013-04-26 2014-04-25 User equipment and method for feedback of user equipment performance metrics during dynamic radio switching
CN201480017237.9A CN105052202B (en) 2013-04-26 2014-04-25 User equipment and method during dynamic radio switching for feedback user equipment performance measurement
PCT/US2014/035409 WO2014176480A1 (en) 2013-04-26 2014-04-25 User equipment and method for feedback of user equipment performance metrics during dynamic radio switching
HK16105109.9A HK1217145A1 (en) 2013-04-26 2016-05-04 User equipment and method for feedback of user equipment performance metrics during dynamic radio switching

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361816662P 2013-04-26 2013-04-26
US14/107,400 US9392539B2 (en) 2013-04-26 2013-12-16 User equipment and method for feedback of user equipment performance metrics during dynamic radio switching

Publications (2)

Publication Number Publication Date
US20140323133A1 US20140323133A1 (en) 2014-10-30
US9392539B2 true US9392539B2 (en) 2016-07-12

Family

ID=51788911

Family Applications (19)

Application Number Title Priority Date Filing Date
US14/778,037 Active 2033-12-15 US10306589B2 (en) 2013-04-26 2013-12-12 Hybrid reference signals for wireless communication
US14/107,400 Active 2034-01-09 US9392539B2 (en) 2013-04-26 2013-12-16 User equipment and method for feedback of user equipment performance metrics during dynamic radio switching
US14/109,121 Active 2034-01-24 US9307192B2 (en) 2013-04-26 2013-12-17 Interactive zooming in video conferencing
US14/132,525 Active 2034-02-26 US9325937B2 (en) 2013-04-26 2013-12-18 Radio access technology information storage in a mobile network
US14/132,974 Active 2034-05-09 US9294714B2 (en) 2013-04-26 2013-12-18 User equipment and methods for adapting system parameters based on extended paging cycles
US14/135,265 Abandoned US20140321369A1 (en) 2013-04-26 2013-12-19 System and method for interference cancellation and/or supression on physical downlink shared channel at the user equipment
US14/141,034 Active 2035-04-03 US9621845B2 (en) 2013-04-26 2013-12-26 Architecture for web-based real-time communications (WebRTC) to access internet protocol multimedia subsystem (IMS)
US14/140,823 Active 2034-04-30 US9414306B2 (en) 2013-03-29 2013-12-26 Device-to-device (D2D) preamble design
US14/141,985 Active 2034-04-25 US9288434B2 (en) 2013-04-26 2013-12-27 Apparatus and method for congestion control in wireless communication networks
US14/778,985 Abandoned US20160057769A1 (en) 2013-04-26 2014-03-11 Uplink enhancements for efficient operation in small cell environments
US14/779,228 Active US10237846B2 (en) 2013-04-26 2014-03-11 Wireless local area network (WLAN) selection rules
US14/771,869 Active 2034-10-04 US9974048B2 (en) 2013-04-26 2014-03-27 Systems, methods, and devices for distributed scheduling for device-to-device interference mitigation
US14/778,983 Active 2037-04-12 US11122538B2 (en) 2013-04-26 2014-03-28 Diameter/XML protocol conversion
US14/771,859 Active 2035-04-08 US10638449B2 (en) 2013-04-26 2014-03-28 Systems and methods using a centralized node to collect ran user plane congestion information
US15/076,500 Active US10420065B2 (en) 2013-04-26 2016-03-21 User equipment and methods for adapting system parameters based on extended paging cycles
US15/083,897 Active US9743380B2 (en) 2013-04-26 2016-03-29 MTSI based UE configurable for video region-of-interest (ROI) signaling
US15/483,831 Abandoned US20170244765A1 (en) 2013-04-26 2017-04-10 Architecture for web-based real-time communications (webrtc) to access internet protocol multimedia subsystem (ims)
US15/682,168 Active US10225817B2 (en) 2013-04-26 2017-08-21 MTSI based UE configurable for video region-of-interest (ROI) signaling
US16/830,684 Abandoned US20200229136A1 (en) 2013-04-26 2020-03-26 Systems and Methods Using a Centralized Node to Collect RAN User Plane Congestion Information

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/778,037 Active 2033-12-15 US10306589B2 (en) 2013-04-26 2013-12-12 Hybrid reference signals for wireless communication

Family Applications After (17)

Application Number Title Priority Date Filing Date
US14/109,121 Active 2034-01-24 US9307192B2 (en) 2013-04-26 2013-12-17 Interactive zooming in video conferencing
US14/132,525 Active 2034-02-26 US9325937B2 (en) 2013-04-26 2013-12-18 Radio access technology information storage in a mobile network
US14/132,974 Active 2034-05-09 US9294714B2 (en) 2013-04-26 2013-12-18 User equipment and methods for adapting system parameters based on extended paging cycles
US14/135,265 Abandoned US20140321369A1 (en) 2013-04-26 2013-12-19 System and method for interference cancellation and/or supression on physical downlink shared channel at the user equipment
US14/141,034 Active 2035-04-03 US9621845B2 (en) 2013-04-26 2013-12-26 Architecture for web-based real-time communications (WebRTC) to access internet protocol multimedia subsystem (IMS)
US14/140,823 Active 2034-04-30 US9414306B2 (en) 2013-03-29 2013-12-26 Device-to-device (D2D) preamble design
US14/141,985 Active 2034-04-25 US9288434B2 (en) 2013-04-26 2013-12-27 Apparatus and method for congestion control in wireless communication networks
US14/778,985 Abandoned US20160057769A1 (en) 2013-04-26 2014-03-11 Uplink enhancements for efficient operation in small cell environments
US14/779,228 Active US10237846B2 (en) 2013-04-26 2014-03-11 Wireless local area network (WLAN) selection rules
US14/771,869 Active 2034-10-04 US9974048B2 (en) 2013-04-26 2014-03-27 Systems, methods, and devices for distributed scheduling for device-to-device interference mitigation
US14/778,983 Active 2037-04-12 US11122538B2 (en) 2013-04-26 2014-03-28 Diameter/XML protocol conversion
US14/771,859 Active 2035-04-08 US10638449B2 (en) 2013-04-26 2014-03-28 Systems and methods using a centralized node to collect ran user plane congestion information
US15/076,500 Active US10420065B2 (en) 2013-04-26 2016-03-21 User equipment and methods for adapting system parameters based on extended paging cycles
US15/083,897 Active US9743380B2 (en) 2013-04-26 2016-03-29 MTSI based UE configurable for video region-of-interest (ROI) signaling
US15/483,831 Abandoned US20170244765A1 (en) 2013-04-26 2017-04-10 Architecture for web-based real-time communications (webrtc) to access internet protocol multimedia subsystem (ims)
US15/682,168 Active US10225817B2 (en) 2013-04-26 2017-08-21 MTSI based UE configurable for video region-of-interest (ROI) signaling
US16/830,684 Abandoned US20200229136A1 (en) 2013-04-26 2020-03-26 Systems and Methods Using a Centralized Node to Collect RAN User Plane Congestion Information

Country Status (12)

Country Link
US (19) US10306589B2 (en)
EP (12) EP2989833B1 (en)
JP (3) JP6272984B2 (en)
KR (4) KR20150121110A (en)
CN (13) CN105144768B (en)
BR (1) BR112015024631A2 (en)
ES (2) ES2666554T3 (en)
HK (10) HK1217140A1 (en)
HU (2) HUE037091T2 (en)
PL (1) PL2989777T3 (en)
TW (15) TWI523555B (en)
WO (14) WO2014175919A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170012891A1 (en) * 2014-02-21 2017-01-12 Telefonaktiebolaget L M Ericsson (Publ) Service delivery in a communication network
US9621845B2 (en) 2013-04-26 2017-04-11 Intel IP Corporation Architecture for web-based real-time communications (WebRTC) to access internet protocol multimedia subsystem (IMS)

Families Citing this family (188)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9363133B2 (en) 2012-09-28 2016-06-07 Avaya Inc. Distributed application of enterprise policies to Web Real-Time Communications (WebRTC) interactive sessions, and related methods, systems, and computer-readable media
US10164929B2 (en) 2012-09-28 2018-12-25 Avaya Inc. Intelligent notification of requests for real-time online interaction via real-time communications and/or markup protocols, and related methods, systems, and computer-readable media
US9407302B2 (en) 2012-12-03 2016-08-02 Intel Corporation Communication device, mobile terminal, method for requesting information and method for providing information
US9294458B2 (en) 2013-03-14 2016-03-22 Avaya Inc. Managing identity provider (IdP) identifiers for web real-time communications (WebRTC) interactive flows, and related methods, systems, and computer-readable media
US10153816B2 (en) * 2013-05-09 2018-12-11 Intel IP Corporation Small data communications
EP3000255A1 (en) * 2013-05-20 2016-03-30 Telefonaktiebolaget LM Ericsson (publ) Congestion control in a communications network
US10205624B2 (en) 2013-06-07 2019-02-12 Avaya Inc. Bandwidth-efficient archiving of real-time interactive flows, and related methods, systems, and computer-readable media
CN105684470B (en) 2013-06-13 2020-09-15 瑞典爱立信有限公司 Controlling plant-to-plant communications using a distributed scheme
US9525718B2 (en) 2013-06-30 2016-12-20 Avaya Inc. Back-to-back virtual web real-time communications (WebRTC) agents, and related methods, systems, and computer-readable media
US9113030B2 (en) * 2013-07-25 2015-08-18 Verizon Patent And Licensing Inc. Multimedia-enhanced emergency call systems
EP2986041B1 (en) * 2013-07-26 2018-04-04 Huawei Device (Dongguan) Co., Ltd. Communication method, user equipment and network device
US9614890B2 (en) 2013-07-31 2017-04-04 Avaya Inc. Acquiring and correlating web real-time communications (WEBRTC) interactive flow characteristics, and related methods, systems, and computer-readable media
WO2015021229A1 (en) * 2013-08-08 2015-02-12 Intel IP Corporation Method and system of advanced interference cancellation on pdsch at the ue
US9531808B2 (en) 2013-08-22 2016-12-27 Avaya Inc. Providing data resource services within enterprise systems for resource level sharing among multiple applications, and related methods, systems, and computer-readable media
JP6226458B2 (en) * 2013-08-30 2017-11-08 シャープ株式会社 Program and base station apparatus
US10225212B2 (en) 2013-09-26 2019-03-05 Avaya Inc. Providing network management based on monitoring quality of service (QOS) characteristics of web real-time communications (WEBRTC) interactive flows, and related methods, systems, and computer-readable media
US9241289B1 (en) * 2013-10-23 2016-01-19 Sprint Communications Company L.P. Dynamic adjustment of cell reselection parameters for a wireless communication device
US10263952B2 (en) 2013-10-31 2019-04-16 Avaya Inc. Providing origin insight for web applications via session traversal utilities for network address translation (STUN) messages, and related methods, systems, and computer-readable media
US9769214B2 (en) * 2013-11-05 2017-09-19 Avaya Inc. Providing reliable session initiation protocol (SIP) signaling for web real-time communications (WEBRTC) interactive flows, and related methods, systems, and computer-readable media
CN110087216B (en) * 2013-11-08 2021-11-30 富士通互联科技有限公司 Method for acquiring system information and user equipment
US9641310B2 (en) * 2013-12-13 2017-05-02 Qualcomm Incorporated Network assisted interference cancellation signaling
US10129243B2 (en) 2013-12-27 2018-11-13 Avaya Inc. Controlling access to traversal using relays around network address translation (TURN) servers using trusted single-use credentials
US9386275B2 (en) * 2014-01-06 2016-07-05 Intel IP Corporation Interactive video conferencing
KR102313625B1 (en) * 2014-01-10 2021-10-19 삼성전자 주식회사 Method and apparatus for allocating radio resource for device to device communication in mobile communication system
US9491725B2 (en) * 2014-01-30 2016-11-08 Intel Corporation User equipment and methods for device-to-device communication over an LTE air interface
EP3105974B1 (en) * 2014-02-14 2020-08-12 Telefonaktiebolaget LM Ericsson (publ) Pcrf assisted apn selection
US9348495B2 (en) 2014-03-07 2016-05-24 Sony Corporation Control of large screen display using wireless portable computer and facilitating selection of audio on a headphone
JP6321201B2 (en) * 2014-03-12 2018-05-09 エルジー エレクトロニクス インコーポレイティド Method and apparatus for transmitting uplink control channel in wireless communication system supporting changing usage of radio resource
KR102172468B1 (en) * 2014-03-14 2020-10-30 삼성전자 주식회사 Method for user equipment to access ims network via web browser for web real-time communication
JP6478229B2 (en) * 2014-03-20 2019-03-06 シャープ株式会社 Terminal device, base station device, and integrated circuit
US10420086B2 (en) * 2014-03-20 2019-09-17 Sharp Kabushiki Kaisha Terminal device and integrated circuit
US9294337B2 (en) * 2014-03-26 2016-03-22 Sonus Networks, Inc. Methods and systems for integrating independent IMS and WebRTC networks
US10492219B2 (en) * 2014-03-30 2019-11-26 Lg Electronics Inc. Method for transmitting and receiving signal for device-to-device communication in wireless communication system and device therefor
US9749363B2 (en) * 2014-04-17 2017-08-29 Avaya Inc. Application of enterprise policies to web real-time communications (WebRTC) interactive sessions using an enterprise session initiation protocol (SIP) engine, and related methods, systems, and computer-readable media
US10581927B2 (en) * 2014-04-17 2020-03-03 Avaya Inc. Providing web real-time communications (WebRTC) media services via WebRTC-enabled media servers, and related methods, systems, and computer-readable media
US20150326362A1 (en) * 2014-05-08 2015-11-12 Intel IP Corporation Demodulation reference signal (dmrs) sequence design for device-to-device (d2d) discovery
WO2015171063A1 (en) * 2014-05-08 2015-11-12 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for controlling the activity state of a wireless device having device-to-device communication capabilities
JP6261455B2 (en) * 2014-06-13 2018-01-17 パナソニック株式会社 Communication control station apparatus, communication terminal apparatus and communication control method
US9912705B2 (en) * 2014-06-24 2018-03-06 Avaya Inc. Enhancing media characteristics during web real-time communications (WebRTC) interactive sessions by using session initiation protocol (SIP) endpoints, and related methods, systems, and computer-readable media
WO2015199462A1 (en) * 2014-06-27 2015-12-30 Samsung Electronics Co., Ltd. Method and apparatus for providing quality of service for web-based real-time communication
US20170150395A1 (en) * 2014-07-04 2017-05-25 Telefonaktiebolaget Lm Ericsson (Publ) Mobility management of user equipment
WO2016010379A1 (en) 2014-07-16 2016-01-21 엘지전자 주식회사 Method and device for estimating channel in wireless communication system
US9705993B1 (en) * 2014-07-18 2017-07-11 Sprint Communications Company L.P. Information exchange between a directory assistance application server and a web-RTC engine
CN105337684B (en) * 2014-07-25 2019-09-13 华为技术有限公司 A kind of method, base station and terminal transmitted, store downlink data
US9648525B2 (en) * 2014-08-12 2017-05-09 Qualcomm Incorporated System and methods for improving intra-frequency cell reselection on a wireless communication device in connected mode
US10356807B2 (en) * 2014-08-22 2019-07-16 Qualcomm Incorporated Techniques for transmitting and receiving channel occupancy identifiers over an unlicensed radio frequency spectrum band
WO2016045739A1 (en) * 2014-09-25 2016-03-31 Telefonaktiebolaget L M Ericsson (Publ) Congestion mitigation by offloading to non-3gpp networks
WO2016048428A1 (en) * 2014-09-25 2016-03-31 Intel IP Corporation Apparatuses, systems, and methods for probabilistic transmission of device-to-device (d2d) discovery messages
US9935807B2 (en) * 2014-09-26 2018-04-03 Telefonaktiebolaget L M Ericsson (Publ) Discovery signal design
US20160098180A1 (en) * 2014-10-01 2016-04-07 Sony Corporation Presentation of enlarged content on companion display device
US9516220B2 (en) 2014-10-02 2016-12-06 Intel Corporation Interactive video conferencing
US9716758B2 (en) * 2014-10-13 2017-07-25 General Motors Llc Network-coordinated DRx transmission reduction for a network access device of a telematics-equipped vehicle
CN105592285B (en) * 2014-10-21 2020-04-21 华为技术有限公司 ROI video implementation method and device
KR20160057873A (en) * 2014-11-14 2016-05-24 삼성전자주식회사 Communication method, electronic apparatus and storage medium
US10652798B2 (en) * 2014-11-14 2020-05-12 Motorola Mobility Llc Method and device for routing traffic of applications installed on a mobile device
US10021346B2 (en) 2014-12-05 2018-07-10 Intel IP Corporation Interactive video conferencing
KR102253868B1 (en) 2014-12-12 2021-05-20 삼성전자주식회사 Apparatus and method for operating ad hoc mode in wireless communication network
JP6436762B2 (en) * 2014-12-25 2018-12-12 株式会社野村総合研究所 Information processing apparatus and service providing method
WO2016112988A1 (en) * 2015-01-15 2016-07-21 Sony Corporation Radio terminal measurements in extended drx
EP3245818B1 (en) * 2015-01-16 2019-12-25 Telefonaktiebolaget LM Ericsson (publ) A core network node and a method therein for an extended drx paging cycle
EP3247162B1 (en) * 2015-02-09 2019-04-10 Huawei Technologies Co., Ltd. Method for retransmitting rlc data packet and base station
US9769646B2 (en) * 2015-02-26 2017-09-19 T-Mobile Usa, Inc. Realm translation in an IMS network
US9661529B2 (en) * 2015-03-05 2017-05-23 Cisco Technology, Inc. Congestion mitigation for roamers
US10129788B2 (en) * 2015-03-11 2018-11-13 Cisco Technology, Inc. System and method for deferred delivery of content based on congestion in a network environment
US9723652B2 (en) * 2015-04-23 2017-08-01 Acer Incorporated Device and method of handling cell reselection
EP3295732B1 (en) * 2015-05-13 2019-01-30 Telefonaktiebolaget LM Ericsson (publ) Paging coordination between a wireless communication device and a core network node
EP3295703B8 (en) * 2015-05-14 2021-01-20 Apple Inc. Evolved node-b, shared spectrum controller
US10630717B2 (en) * 2015-05-15 2020-04-21 Avaya, Inc. Mitigation of WebRTC attacks using a network edge system
US9504012B1 (en) * 2015-05-22 2016-11-22 Sony Corporation Extended discontinuous reception mechanism
US10756869B2 (en) * 2015-08-12 2020-08-25 Apple Inc. Demodulation in wireless communications
US9788219B1 (en) * 2015-08-25 2017-10-10 Amdocs Development Limited System, method, and computer program for remotely driving mobile web application testing on mobile devices
CN105245919B (en) * 2015-10-08 2018-01-16 清华大学 The adaptive stream media distribution method of intelligent terminal energy optimization
US10178414B2 (en) 2015-10-14 2019-01-08 International Business Machines Corporation Aggregated region-based reduced bandwidth video streaming
WO2017065677A1 (en) * 2015-10-14 2017-04-20 Telefonaktiebolaget Lm Ericsson (Publ) Managing transitions between different user equipment activity configurations
US10127096B2 (en) 2015-11-20 2018-11-13 Geotab Inc. Big telematics data network communication fault identification system
GB201520519D0 (en) * 2015-11-20 2016-01-06 Microsoft Technology Licensing Llc Communication system
US10382256B2 (en) * 2015-11-20 2019-08-13 Geotab Inc. Big telematics data network communication fault identification device
US10136392B2 (en) 2015-11-20 2018-11-20 Geotab Inc. Big telematics data network communication fault identification system method
US10299205B2 (en) 2015-11-20 2019-05-21 Geotab Inc. Big telematics data network communication fault identification method
GB201520509D0 (en) 2015-11-20 2016-01-06 Microsoft Technology Licensing Llc Communication system
US11223518B2 (en) 2015-11-20 2022-01-11 Geotab Inc. Big telematics data network communication fault identification device
US10952259B2 (en) 2015-12-15 2021-03-16 Samsung Electronics Co., Ltd. Device and method for transmitting/receiving data in wireless communication system
EP3389331B1 (en) * 2015-12-31 2020-08-26 Huawei Technologies Co., Ltd. Mobility management methods, apparatus, and computer-readable storage medium
RU2682397C1 (en) * 2016-01-08 2019-03-19 Телефонактиеболагет Лм Эрикссон (Пабл) Method and device for management of radio resources
CN105657722B (en) * 2016-03-10 2019-06-18 北京佰才邦技术有限公司 Frequency spectrum resource selection method and device
KR102373794B1 (en) * 2016-05-02 2022-03-14 한국전자통신연구원 Method and appartus for convetrting signaling
EP3456089B1 (en) * 2016-05-11 2020-08-05 Telefonaktiebolaget LM Ericsson (PUBL) Validation of pal protection areas
US10798736B2 (en) * 2016-05-17 2020-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Network node and method for resource allocation for multiple radio access technologies
US9888420B2 (en) 2016-06-29 2018-02-06 Alcatel-Lucent Usa Inc. Processing handovers for mobile terminals capable of interference cancellation
US9961600B2 (en) * 2016-06-30 2018-05-01 Qualcomm Incorporated Techniques for employing antenna switched diversity in wireless communications
US10419264B2 (en) * 2016-07-27 2019-09-17 Qualcomm Incorporated Subframe structure for the co-existence network of sidelink and mission critical mobile devices
US10917256B2 (en) * 2016-08-03 2021-02-09 Telefonaktiebolaget Lm Ericsson (Publ) Guest user access in the IP multimedia subsystem IMS
US10536955B2 (en) 2016-08-12 2020-01-14 Qualcomm Incorporated Capability coordination across radio access technologies
US20180054806A1 (en) * 2016-08-22 2018-02-22 Alcatel-Lucent Usa, Inc. Systems and methods for decoupling control and data channels in wireless networks
CN107770141B (en) * 2016-08-23 2022-04-19 中兴通讯股份有限公司 Communication method and device of video conference system
EP3504911B1 (en) * 2016-09-01 2022-06-01 Huawei Technologies Co., Ltd. Method of configuring parameters for a base station
US10484878B2 (en) * 2016-09-16 2019-11-19 Qualcomm Incorporated Mixed-access mode communication for standalone operation on a shared communication medium
US10756785B2 (en) * 2016-09-29 2020-08-25 Nokia Technologies Oy Flexible reference signal design
US10944849B2 (en) * 2016-09-30 2021-03-09 Extreme Networks, Inc. Selective policy network device operation
US10142886B2 (en) * 2016-09-30 2018-11-27 Cisco Technology, Inc. System and method to facilitate group reporting of user equipment congestion information in a network environment
EP3451604A4 (en) 2016-09-30 2019-06-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting downlink control information, network side device and terminal device
CN108024335A (en) * 2016-10-31 2018-05-11 普天信息技术有限公司 The dynamic spectrum resource management method and device of a kind of sensory perceptual system
US10505697B2 (en) 2016-11-03 2019-12-10 At&T Intellectual Property I, L.P. Facilitating a mobile device specific physical downlink shared channel resource element mapping indicator
US10652851B2 (en) * 2016-11-03 2020-05-12 Huawei Technologies Co., Ltd. Uplink-based user equipment tracking for connected inactive state
US10362574B2 (en) * 2016-11-18 2019-07-23 Qualcomm Incorporated Uplink resource allocation techniques for shared radio frequency spectrum
CN110313209B (en) * 2016-12-23 2023-08-04 瑞典爱立信有限公司 Method for transmission scheduling and data transmission, radio control unit, processing device and storage medium
CN108616905B (en) * 2016-12-28 2021-03-19 大唐移动通信设备有限公司 Method and system for optimizing user plane in narrow-band Internet of things based on honeycomb
US10212192B2 (en) * 2017-01-10 2019-02-19 Mavenir Systems, Inc. Systems and methods for interworking with over the top applications in communications network
CN110178368B (en) 2017-01-31 2021-12-14 惠普发展公司,有限责任合伙企业 Video zoom control based on received information
CN112469127B (en) * 2017-03-20 2024-03-19 华为技术有限公司 Communication method, terminal and network equipment
CN108632005B (en) * 2017-03-24 2023-12-15 华为技术有限公司 Reference signal transmission method, device and system
CN113395779A (en) * 2017-03-24 2021-09-14 中兴通讯股份有限公司 Processing method and device for beam recovery
WO2018171783A1 (en) * 2017-03-24 2018-09-27 华为技术有限公司 Method, apparatus and system for signal transmission
US10091777B1 (en) 2017-03-31 2018-10-02 At&T Intellectual Property I, L.P. Facilitating physical downlink shared channel resource element mapping indicator
WO2018186667A1 (en) * 2017-04-03 2018-10-11 엘지전자 주식회사 D2d operation method of terminal in wireless communication system, and terminal using method
EP3386250A1 (en) 2017-04-07 2018-10-10 Telefonaktiebolaget LM Ericsson (publ) A network node, a first communications device and methods therein for monitoring of an information signal in monitoring time periods of different time durations
SG11201909953PA (en) * 2017-04-25 2019-11-28 Guangdong Oppo Mobile Telecommunications Corp Ltd Signal processing method and apparatus
KR102418891B1 (en) * 2017-04-25 2022-07-08 삼성전자주식회사 Apparatus and method for controlling of traffic in wireless communication system
CN111148263B (en) * 2017-05-05 2021-04-09 华为技术有限公司 Method and device for transmitting data
US11356928B2 (en) * 2017-05-05 2022-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for reducing system information (SI) acquisition time
US10469298B2 (en) * 2017-05-12 2019-11-05 Qualcomm Incorporated Increasing reference signal density in wireless communications
EP3625988A4 (en) * 2017-05-14 2021-01-27 Fg Innovation Company Limited Methods, devices, and systems for beam refinement during handover
US10592417B2 (en) * 2017-06-03 2020-03-17 Vmware, Inc. Video redirection in virtual desktop environments
US10648829B2 (en) * 2017-06-08 2020-05-12 Microsoft Technology Licensing, Llc Selecting content items using map contexts by background applications
US10812532B2 (en) 2017-06-15 2020-10-20 Palo Alto Networks, Inc. Security for cellular internet of things in mobile networks
US11050789B2 (en) 2017-06-15 2021-06-29 Palo Alto Networks, Inc. Location based security in service provider networks
EP4054120A1 (en) * 2017-06-15 2022-09-07 Palo Alto Networks, Inc. Location based security in service provider networks
US10708306B2 (en) 2017-06-15 2020-07-07 Palo Alto Networks, Inc. Mobile user identity and/or SIM-based IoT identity and application identity based security enforcement in service provider networks
US10721272B2 (en) 2017-06-15 2020-07-21 Palo Alto Networks, Inc. Mobile equipment identity and/or IOT equipment identity and application identity based security enforcement in service provider networks
US10455638B2 (en) * 2017-07-06 2019-10-22 Qualcomm Incorporated Techniques and apparatuses for configuring an extended discontinuous reception cycle
WO2019018716A1 (en) * 2017-07-21 2019-01-24 Infrared5, Inc. System and method for using a proxy to communicate between secure and unsecure devices
KR102325521B1 (en) * 2017-08-14 2021-11-12 삼성전자 주식회사 Method and apparatus for handling network congestion control to rrc-inactive or light-connection device
WO2019035007A1 (en) 2017-08-15 2019-02-21 American Well Corporation Methods and apparatus for remote camera control with intention based controls and machine learning vision state management
US11082458B2 (en) * 2017-08-18 2021-08-03 T-Mobile Usa, Inc. Web access in 5G environments
US10666857B2 (en) 2017-09-05 2020-05-26 Facebook, Inc. Modifying capture of video data by an image capture device based on video data previously captured by the image capture device
US10868955B2 (en) * 2017-09-05 2020-12-15 Facebook, Inc. Modifying capture of video data by an image capture device based on video data previously captured by the image capture device
US10805521B2 (en) 2017-09-05 2020-10-13 Facebook, Inc. Modifying capture of video data by an image capture device based on video data previously captured by the image capture device
US10666489B2 (en) * 2017-09-18 2020-05-26 Apple Inc. Synchronization sequence design for device-to-device communication
EP3698568B1 (en) * 2017-10-16 2023-02-22 Nokia Technologies Oy Spectrum sharing adaptation function
CN110710275B (en) * 2017-11-10 2020-12-18 Oppo广东移动通信有限公司 Terminal strategy configuration method, terminal and network equipment
WO2019136645A1 (en) * 2018-01-10 2019-07-18 Oppo广东移动通信有限公司 Method for determining state of a terminal device, terminal device, and access network device
US10405192B2 (en) * 2018-01-15 2019-09-03 Charter Communications Operating, Llc Methods and apparatus for allocation and reconciliation of quasi-licensed wireless spectrum across multiple entities
US10735969B2 (en) * 2018-02-22 2020-08-04 T-Mobile Usa, Inc. 600 MHz spectrum access systems and methods
US10887843B2 (en) * 2018-05-11 2021-01-05 Lenovo (Singapore) Pte. Ltd. Method and apparatus for transmitting an uplink transmission based on a pathloss estimate
US10756863B2 (en) 2018-05-11 2020-08-25 At&T Intellectual Property I, L.P. Transmitting reference signals in 5G or other next generation communication systems
US20190372897A1 (en) * 2018-05-31 2019-12-05 T-Mobile Usa, Inc. Systems and methods for congestion measurements in data networks via qos availability
US10986219B2 (en) 2018-06-19 2021-04-20 At&T Intellectual Property I, L.P. LTE fault-tolerant signaling approach
WO2019241967A1 (en) 2018-06-21 2019-12-26 Qualcomm Incorporated Signaling design for non-linear precoding schemes
US10681559B2 (en) * 2018-06-29 2020-06-09 Verizon Patent And Licensing Inc. Method and system for supporting voice calls in 5G new radio environments
WO2020040680A1 (en) * 2018-08-22 2020-02-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for enabling spectrum allocation using smart contracts
CN110933623B (en) * 2018-09-17 2021-08-31 华为技术有限公司 Communication method and device
KR20200033166A (en) * 2018-09-19 2020-03-27 삼성전자주식회사 Method and apparatus for transmitting and receiving data in a wireless communication system
US10771570B2 (en) * 2018-10-15 2020-09-08 Citrix Systems, Inc. Scalable message passing architecture a cloud environment
US20200154267A1 (en) * 2018-11-12 2020-05-14 Qualcomm Incorporated Configuring a maximum number of layers
WO2020108741A1 (en) * 2018-11-27 2020-06-04 Unify Patente Gmbh & Co. Kg Computer-implemented method for sharing a data stream displayed on a display of a first client, and communication and collaboration platform
CN113196866B (en) * 2018-12-19 2024-03-29 瑞典爱立信有限公司 Method, remote radio unit and baseband unit for a distributed base station system for processing uplink signals
US10754526B2 (en) 2018-12-20 2020-08-25 Microsoft Technology Licensing, Llc Interactive viewing system
US10942633B2 (en) 2018-12-20 2021-03-09 Microsoft Technology Licensing, Llc Interactive viewing and editing system
KR102240904B1 (en) * 2019-01-24 2021-04-15 주식회사 브리지텍 Metho and apparstus for providing for call center service
US11343865B2 (en) * 2019-02-12 2022-05-24 Qualcomm Incorporated Unicast link management via radio resource control signaling
US11191077B2 (en) * 2019-03-11 2021-11-30 Qualcomm Incorporated Enhanced discovery resource configuration with staggering for directional vehicle to anything (V2X)
US20220191766A1 (en) * 2019-03-29 2022-06-16 Telefonaktiebolaget Lm Ericsson (Publ) Ue, network nodes for handling ue category information
US10805246B1 (en) 2019-06-12 2020-10-13 International Business Machines Corporation Direct communication between a secure application and a local application running on the same device
US11012690B2 (en) 2019-08-21 2021-05-18 Tencent America LLC Method and apparatus for video coding
CN112448875B (en) * 2019-08-28 2023-10-20 华为技术有限公司 Communication processing method, communication processing device and system
EP3787352B1 (en) * 2019-08-29 2023-05-31 Nokia Technologies Oy Method for user equipment's registration update
US20230156609A1 (en) * 2019-09-29 2023-05-18 Lenovo (Beijing) Limited Method and Apparatus for Power Control
CN111083568A (en) * 2019-12-13 2020-04-28 维沃移动通信有限公司 Video data processing method and electronic equipment
EP4114071A4 (en) * 2020-02-27 2023-11-01 Ntt Docomo, Inc. Terminal, wireless communication method, and base station
CN111404880B (en) * 2020-02-28 2022-08-23 深圳震有科技股份有限公司 Registration management method of IMS (IP multimedia subsystem), storage medium and intelligent terminal
US11601831B2 (en) * 2020-03-05 2023-03-07 Qualcomm Incorporated Switching reference signals for beam or link failure detection
GB2596118B (en) 2020-06-18 2022-07-20 British Telecomm Cellular telecommunications network
GB2596128B (en) * 2020-06-18 2022-10-05 British Telecomm Cellular telecommunications network
WO2022013326A1 (en) * 2020-07-16 2022-01-20 Nokia Technologies Oy Viewport dependent delivery methods for omnidirectional conversational video
WO2022030814A1 (en) * 2020-08-07 2022-02-10 삼성전자 주식회사 Method for managing wireless connection of electronic device, and apparatus therefor
US11496575B2 (en) * 2020-09-10 2022-11-08 T-Mobile Usa, Inc. Enhanced messaging as a platform
CN112367271B (en) * 2020-09-25 2023-04-18 福建星网智慧科技有限公司 AI-based congestion control feature extraction method, device, equipment and medium
JP2022085981A (en) * 2020-11-30 2022-06-09 株式会社日立製作所 Communication support system and method
US11901983B1 (en) * 2021-03-17 2024-02-13 T-Mobile Innovations Llc Selectively assigning uplink transmission layers
US11509408B1 (en) * 2021-07-30 2022-11-22 Inntot Technologies Private Limited System and method for large data transmission in digital radio broadcasting
CN113727386B (en) * 2021-08-09 2023-06-23 中国联合网络通信集团有限公司 Communication method and device
CN114040511B (en) * 2021-10-11 2023-05-16 深圳市联平半导体有限公司 Communication device, OBO counter value method thereof, electronic device and storage medium
CN113660146B (en) * 2021-10-20 2021-12-21 成都数默科技有限公司 Network boundary traffic acquisition method, device and storage medium
US11792712B2 (en) 2021-12-23 2023-10-17 T-Mobile Usa, Inc. Cell reselection priority assignment based on performance triggers
US11900677B2 (en) 2022-02-25 2024-02-13 Cisco Technology, Inc. User-selected multi-view videoconferencing
US11765052B1 (en) 2022-03-11 2023-09-19 T-Mobile Usa, Inc. User equipment hosting for customizable 5G services
WO2023210957A1 (en) * 2022-04-28 2023-11-02 Lg Electronics Inc. Method and apparatus for performing data transmissions based on congestion indicator in wireless communication system
US20240098671A1 (en) * 2022-09-20 2024-03-21 Qualcomm Incorporated Timing and synchronization techniques for secure networks

Citations (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331413A (en) 1992-09-28 1994-07-19 The United States Of America As Represented By The United States National Aeronautics And Space Administration Adjustable control station with movable monitors and cameras for viewing systems in robotics and teleoperations
US5617422A (en) 1995-08-10 1997-04-01 Mci Communications Corp. High speed interface in a telecommunications network
US5686957A (en) 1994-07-27 1997-11-11 International Business Machines Corporation Teleconferencing imaging system with automatic camera steering
US5963203A (en) 1997-07-03 1999-10-05 Obvious Technology, Inc. Interactive video icon with designated viewing position
US6104721A (en) 1997-12-02 2000-08-15 Symmetry Communcations System DSP based dynamic resource allocation multiprocessor communications board
US6573907B1 (en) 1997-07-03 2003-06-03 Obvious Technology Network distribution and management of interactive video and multi-media containers
US20040192211A1 (en) * 2001-02-26 2004-09-30 Gallagher Michael D. Apparatus for supporting the handover of a telecommunication session between a licensed wireless system and an unlicensed wireless system
US20050143084A1 (en) * 2003-12-29 2005-06-30 Jung-Fu Cheng Network controlled channel information reporting
US20050202823A1 (en) 2004-03-12 2005-09-15 Interdigital Technology Corporation Method and system for switching a radio access technology between wireless communication systems with a multi-mode wireless transmit/receive unit
US20060238444A1 (en) 2005-03-01 2006-10-26 Haohong Wang Quality metric-biased region-of-interest coding for video telephony
WO2007053851A2 (en) 2005-11-01 2007-05-10 Qualcomm Incorporated Mobile device-initiated measurement gap request
US20080096566A1 (en) * 2006-07-31 2008-04-24 Qualcomm Incorporated Determination of cell rf parameters based on measurements by user equipments
US20080141239A1 (en) 2003-12-22 2008-06-12 Telefonaktiebolaget Lm Ericsson (Publ) Downloading and Upgrading Terminal Software Over the Air of a Wireless Device
KR20080067273A (en) 2007-01-15 2008-07-18 삼성전자주식회사 Method and apparatus for drx resume after up-link data transmission in mobile telecommunication system
KR20090006281A (en) 2007-07-11 2009-01-15 (주)케이티에프테크놀로지스 Portable terminal and displaying method during video telephony using the same
US20090017826A1 (en) * 2007-07-09 2009-01-15 Interdigital Technology Corporation Method and apparatus for handover and session continuity using pre-registration tunneling procedure
US20090040955A1 (en) 2005-12-10 2009-02-12 Soo-Jung Jung Method for Adaptive Discontinuous Reception Based On Extented Paging Indicator for Improvement of Power Effective Performance at Mobile Terminal on WCDMA
US20090111478A1 (en) 2007-10-24 2009-04-30 Commissariat A L'energie Atomique Method of searching for free band for a cognitive telecommunication terminal
US20090147685A1 (en) 2007-12-06 2009-06-11 Richa Malhotra Controlling congestion in a packet switched data network
US20090210766A1 (en) 2008-02-20 2009-08-20 Rintaro Katayama Wireless communication system, terminal and base station
US20090280802A1 (en) 2008-05-11 2009-11-12 Qualcomm Incorporated Systems and methods for multi-mode terminal operations in overlaid networks
US20090323613A1 (en) 2008-06-30 2009-12-31 Nokia Siemens Networks Oy Selecting between normal and virtual dual layer ACK/NACK
US20100026781A1 (en) 2008-08-04 2010-02-04 Microsoft Corporation Video region of interest features
US20100045773A1 (en) 2007-11-06 2010-02-25 Ritchey Kurtis J Panoramic adapter system and method with spherical field-of-view coverage
US20100067433A1 (en) 2008-09-17 2010-03-18 Qualcomm Incorporated Methods and systems for multi-mode signal quality reporting
US20100074182A1 (en) 2008-09-23 2010-03-25 Huawei Technologies Co., Ltd. Method and device for suspending data
US20100081391A1 (en) 2008-09-29 2010-04-01 Fujitsu Limited Wireless communication system
US20100118111A1 (en) 2008-11-10 2010-05-13 Nokia Corporation Method and apparatus for remote camera control indications in video conferencing
KR20100054015A (en) 2008-11-13 2010-05-24 주식회사 케이티테크 Method for setting discontinuous reception mode cycle in mobile communication apparatus and apparatus the same
US20100130237A1 (en) 2008-11-18 2010-05-27 Qualcomm Incorporated Method and apparatus for determining drx cycle used for paging
US20100202476A1 (en) 2007-05-02 2010-08-12 Sung Duck Chun Method of transmitting data in a wireless communication system
US20100202561A1 (en) 2009-02-11 2010-08-12 Qualcomm Incorporated Method and apparatus for modulation and layer mapping in a wireless communication system
US20100208607A1 (en) 2009-02-13 2010-08-19 Qualcomm Incorporated Methods and systems for qos translation during handover between wireless networks
US20100220652A1 (en) 2007-06-19 2010-09-02 Ntt Docomo, Inc. Base station apparatus and communication control method
US20100238805A1 (en) 2007-08-22 2010-09-23 Reiner Ludwig Data Transmission Control Methods And Devices
US20100317394A1 (en) 2009-06-10 2010-12-16 Motorola, Inc. Femto-cell power control using idle-mode user equipment in a cellular communication system
US20110019633A1 (en) 2008-04-28 2011-01-27 Fujitsu Limited Connection processing method in wireless communication system, wireless base station, and wireless terminal
US20110109716A1 (en) 2009-11-11 2011-05-12 Choi Manchul Method and apparatus for sharing data in video conference system
US20110161441A1 (en) 2008-02-15 2011-06-30 Nokia Siemens Networks Oy Interworking between messaging service domains
US20110195710A1 (en) 2010-02-11 2011-08-11 Petrus Wilhelmus Adrianus Jacobus Maria Nas Methods, systems, and computer readable media for dynamic subscriber profile adaptation
US8009735B2 (en) 2005-04-04 2011-08-30 Canon Kabushiki Kaisha Method and device for transmitting and receiving image sequences between a server and client
US20110217980A1 (en) * 2010-03-03 2011-09-08 Rene Faurie Methods and apparatus to indicate space requirements for communicating capabilities of a device
US20110217985A1 (en) 2009-09-28 2011-09-08 Qualcomm Incorporated Predictive short-term channel quality reporting utilizing reference signals
US8019175B2 (en) 2005-03-09 2011-09-13 Qualcomm Incorporated Region-of-interest processing for video telephony
KR20110102935A (en) 2008-12-30 2011-09-19 콸콤 인코포레이티드 Centralized control of peer discovery pilot transmission
US20110235706A1 (en) 2010-03-25 2011-09-29 Texas Instruments Incorporated Region of interest (roi) video encoding
US20110242975A1 (en) 2010-03-31 2011-10-06 Qualcomm Incorporated Single and Dual Internet Protocol Bearer Support
US20110250888A1 (en) 2010-04-13 2011-10-13 Jin Sook Ryu Method and apparatus for performing cell reselection in wireless communication system
US20110258313A1 (en) 2010-04-15 2011-10-20 Qualcomm Incorporated Network-assisted peer discovery
US20110263255A1 (en) * 2010-04-23 2011-10-27 Telefonaktiebolaget Lm Ericsson Detection of early inter-radio access technology (irat) handover triggering
US20110268084A1 (en) 2007-08-21 2011-11-03 Ntt Docomo, Inc. Radio communication system, radio communication method, and mobile station
US20120008574A1 (en) 2008-07-30 2012-01-12 Datang Mobile Communications Equipment Co., Ltd. Method, system and device for adaptive modulation and coding
US20120087396A1 (en) 2010-10-06 2012-04-12 Motorola Mobility, Inc. Method and apparatus in wireless communication systems
US20120122440A1 (en) 2010-11-12 2012-05-17 Motorola Mobility, Inc. Positioning Reference Signal Assistance Data Signaling for Enhanced Interference Coordination in a Wireless Communication Network
WO2012065658A1 (en) 2010-11-19 2012-05-24 Telefonica, S.A. A communications system and a method for communications between internet and ngn/ims subsystems
US20120151009A1 (en) * 2010-06-18 2012-06-14 Nokia Corporation Method and Apparatus for Generating and Handling Streaming Media Quality-of-Experience Metrics
US20120176884A1 (en) 2011-01-07 2012-07-12 Interdigital Patent Holdings, Inc. Method, system and apparatus for downlink shared channel reception in cooperative multipoint transmissions
KR20120099805A (en) 2010-01-22 2012-09-11 콸콤 인코포레이티드 Method and apparatus for acknowledgment detection during preamble transmission
US20120281621A1 (en) 2011-04-05 2012-11-08 Interdigital Patent Holdings, Inc. Wireless peer-to-peer network topology
US20120287881A1 (en) * 2009-12-23 2012-11-15 Robert Arnott Resource allocation
TW201246954A (en) 2003-06-16 2012-11-16 Qualcomm Inc Apparatus, system, and method for managing reverse link communication resources in a distributed communication system
US20120307794A1 (en) 2009-11-06 2012-12-06 Interdigital Patent Holdings, Inc. Method and apparatus for inter-device transfer (handoff) between ims and generic ip clients
US8331760B2 (en) 2010-06-02 2012-12-11 Microsoft Corporation Adaptive video zoom
US20120320141A1 (en) 2011-06-16 2012-12-20 Vtel Products Corporation, Inc. Video conference control system and method
TW201301920A (en) 2011-05-27 2013-01-01 Qualcomm Inc Allocating access to multiple radio access technologies via a multi-mode access point
US8358613B1 (en) 2009-02-27 2013-01-22 L-3 Communications Corp. Transmitter-directed security for wireless-communications
US8364698B2 (en) 2008-07-11 2013-01-29 Videosurf, Inc. Apparatus and software system for and method of performing a visual-relevance-rank subsequent search
US20130039339A1 (en) 2011-08-12 2013-02-14 Venkata Ratnakar Rao Rayavarapu Other Network Component Receiving RRC Configuration Information from eNB
US20130040671A1 (en) * 2011-08-12 2013-02-14 Qualcomm Incorporated Antenna to transceiver mapping of a multimode wireless device
US20130039180A1 (en) 2010-04-29 2013-02-14 Electronics And Telecommunications Research Institute Apparatus and method for wideband short-range wireless communication
US20130044697A1 (en) 2011-08-17 2013-02-21 Qualcomm Incorporated Network coordination for improved interference cancellation
US20130045707A1 (en) 2011-08-19 2013-02-21 Samsung Electronics Co., Ltd. Apparatus and method for transmitting an emergency call in a portable terminal
WO2013025040A2 (en) 2011-08-18 2013-02-21 엘지전자 주식회사 Method for performing device to device direct communication, method for supporting the same, and device therefor
US20130051277A1 (en) 2011-08-30 2013-02-28 Renesas Mobile Corporation Method and apparatus for allocating resources for device-to-device discovery
US20130101036A1 (en) 2011-10-25 2013-04-25 Texas Instruments Incorporated Sample-Based Angular Intra-Prediction in Video Coding
US8452902B2 (en) 2006-11-06 2013-05-28 Samsung Electronics Co., Ltd. Methods for transmitting buffer size information
US20130170415A1 (en) 2011-04-04 2013-07-04 Kyocera Corporation Mobile communication method and radio terminal
US20130170479A1 (en) 2011-11-11 2013-07-04 Mo-Han Fong Random backoff for extended access barring
US20130195074A1 (en) * 2012-01-27 2013-08-01 Telefonaktiebolaget L M Ericsson (Publ) Single radio voice call continuity handover of calls with video media from a circuit switched access network
US20130201824A1 (en) 2012-02-06 2013-08-08 Muthaiah Venkatachalam Handling user plane congestion in a wireless communication network
US20130258919A1 (en) 2007-02-05 2013-10-03 Qualcomm Incorporated Flexible dtx and drx in a wireless communication system
US20130301501A1 (en) 2012-05-09 2013-11-14 Interdigital Patent Holdings, Inc. Methods and apparatus for handling mtc long drx cycle/sleep lengths
US8711198B2 (en) 2009-06-04 2014-04-29 Hewlett-Packard Development Company, L.P. Video conference
US20140176663A1 (en) 2012-12-20 2014-06-26 Microsoft Corporation Privacy camera
US20140219088A1 (en) 2011-09-30 2014-08-07 Ozgur Oyman Quality of experience enhancements over wireless networks
US20140225918A1 (en) 2013-02-14 2014-08-14 Qualcomm Incorporated Human-body-gesture-based region and volume selection for hmd
US8830892B2 (en) 2012-08-30 2014-09-09 Apple Inc. Radio power saving techniques for video conference applications
US8842919B2 (en) 2011-08-11 2014-09-23 Eyesight Mobile Technologies Ltd. Gesture based interface system and method
US20140286215A1 (en) 2012-11-01 2014-09-25 Ali Taha Koc Extended discontinuous reception (drx) cycle length in wireless communication networks
US20140295864A1 (en) * 2011-10-12 2014-10-02 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for terminal reporting
WO2014160765A1 (en) 2013-03-29 2014-10-02 Intel IP Corporation Device-to-device (d2d) preamble design
WO2014176200A1 (en) 2013-04-26 2014-10-30 Intel IP Corporation An apparatus and method for congestion control in wireless communication networks
US8922718B2 (en) 2009-10-21 2014-12-30 Disney Enterprises, Inc. Key generation through spatial detection of dynamic objects
US8977063B2 (en) 2005-03-09 2015-03-10 Qualcomm Incorporated Region-of-interest extraction for video telephony
EP2849494A1 (en) 2012-05-23 2015-03-18 Huawei Technologies Co., Ltd Lte cellular communication system based d2d device discovering method and apparatus
US9055216B1 (en) 2012-11-19 2015-06-09 A9.Com, Inc. Using sensor data to enhance image data
US20150195490A1 (en) 2014-01-06 2015-07-09 Intel IP Corporation Interactive video conferencing

Family Cites Families (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5822313A (en) * 1996-05-24 1998-10-13 National Semiconductor Corporation Seamless handover in a cordless TDMA system
US5770275A (en) * 1996-08-23 1998-06-23 Raman; Narayan K. Molecular sieving silica membrane fabrication process
US5771275A (en) * 1996-12-17 1998-06-23 Telefonaktiebolaget Lm Ericsson Use of ISDN to provide wireless office environment connection to the public land mobile network
WO1999044504A1 (en) * 1998-03-06 1999-09-10 Hitachi Medical Corporation Ultrasonic video apparatus
CN1231825A (en) * 1999-03-08 1999-10-20 梁东海 Mixed insecticide and its preparing method
US6831895B1 (en) 1999-05-19 2004-12-14 Lucent Technologies Inc. Methods and devices for relieving congestion in hop-by-hop routed packet networks
US6253146B1 (en) 1999-12-06 2001-06-26 At&T Corp. Network-based traffic congestion notification service
US7046632B2 (en) 2000-04-01 2006-05-16 Via Technologies, Inc. Method and switch controller for relieving flow congestion in network
WO2003045028A1 (en) 2001-11-23 2003-05-30 Nokia Corporation Method and system for handling network congestion
US6799038B2 (en) * 2002-01-09 2004-09-28 Motorola, Inc. Method and apparatus for wireless network selection
US7116833B2 (en) 2002-12-23 2006-10-03 Eastman Kodak Company Method of transmitting selected regions of interest of digital video data at selected resolutions
US7559026B2 (en) 2003-06-20 2009-07-07 Apple Inc. Video conferencing system having focus control
US7738901B2 (en) * 2003-07-10 2010-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Secondary link power control in a wireless communication network
US20050024487A1 (en) 2003-07-31 2005-02-03 William Chen Video codec system with real-time complexity adaptation and region-of-interest coding
CN1293728C (en) * 2003-09-30 2007-01-03 华为技术有限公司 Rapid interactive method for selection of accessing mobile network by user terminal in WLAN
ES2905988T3 (en) 2003-11-13 2022-04-12 Wireless Innovations Llc Network selection procedures and devices with own network prioritization after network signal recovery or power on
TW201215213A (en) * 2004-04-13 2012-04-01 Qualcomm Inc Multimedia communication using co-located care of address for bearer traffic
CA2553434C (en) * 2004-04-23 2012-08-07 Sumitomo Electric Industries, Ltd. Coding method for motion-image data, decoding method, terminal equipment executing these, and two-way interactive system
US8897828B2 (en) * 2004-08-12 2014-11-25 Intellectual Ventures Holding 81 Llc Power control in a wireless communication system
US20060062478A1 (en) * 2004-08-16 2006-03-23 Grandeye, Ltd., Region-sensitive compression of digital video
GB2419774A (en) 2004-10-27 2006-05-03 Ericsson Telefon Ab L M Accessing IP multimedia subsystem (IMS) services
JP4627182B2 (en) * 2004-12-03 2011-02-09 富士通株式会社 Data communication system and communication terminal device
US20060166677A1 (en) * 2005-01-27 2006-07-27 Lucent Technologies, Inc. Balancing load of cells in inter-frequency handover of wireless communications
US20090144167A1 (en) * 2005-02-10 2009-06-04 Pablo Calamera System and method for managing data and voice connectivity for wireless devices
US8693537B2 (en) 2005-03-01 2014-04-08 Qualcomm Incorporated Region-of-interest coding with background skipping for video telephony
US7801328B2 (en) 2005-03-31 2010-09-21 Honeywell International Inc. Methods for defining, detecting, analyzing, indexing and retrieving events using video image processing
ATE541393T1 (en) * 2005-04-01 2012-01-15 Ericsson Telefon Ab L M PROCEDURE FOR INITIATING IMS-BASED COMMUNICATIONS
RU2377736C2 (en) 2005-04-13 2009-12-27 Нокиа Корпорейшн Encoding, storage and transmission of information on scalability
US7937083B2 (en) 2005-04-14 2011-05-03 Nokia Corporation Method, apparatus and computer program providing for rapid network selection in a multimode device
US8964029B2 (en) 2005-04-29 2015-02-24 Chubb Protection Corporation Method and device for consistent region of interest
US8112094B1 (en) * 2005-06-09 2012-02-07 At&T Mobility Ii Llc Radio access layer management
CN100583935C (en) * 2005-07-29 2010-01-20 Ut斯达康通讯有限公司 Charging method for cluster communication in IMS/PoC system
US20070024706A1 (en) * 2005-08-01 2007-02-01 Brannon Robert H Jr Systems and methods for providing high-resolution regions-of-interest
WO2007028122A2 (en) * 2005-09-02 2007-03-08 Nortel Networks Limited Sip header reduction
CN101313578B (en) * 2005-09-26 2011-10-19 韩国电子通信研究院 Method and apparatus for defining and reconstructing rois in scalable video coding
KR101255226B1 (en) * 2005-09-26 2013-04-16 한국과학기술원 Method and Apparatus for defining and reconstructing ROIs in Scalable Video Coding
US8019170B2 (en) 2005-10-05 2011-09-13 Qualcomm, Incorporated Video frame motion-based automatic region-of-interest detection
US8208758B2 (en) 2005-10-05 2012-06-26 Qualcomm Incorporated Video sensor-based automatic region-of-interest detection
US20070118881A1 (en) * 2005-11-18 2007-05-24 Julian Mitchell Application control at a policy server
EP1964349B1 (en) 2005-12-19 2015-12-16 Telefonaktiebolaget LM Ericsson (publ) Technique for providing interoperability between different protocol domains
US8265349B2 (en) 2006-02-07 2012-09-11 Qualcomm Incorporated Intra-mode region-of-interest video object segmentation
US8150155B2 (en) 2006-02-07 2012-04-03 Qualcomm Incorporated Multi-mode region-of-interest video object segmentation
US8219080B2 (en) * 2006-04-28 2012-07-10 Research In Motion Limited Methods and apparatus for producing a user-controlled PLMN list for a SIM/USIM card with use of a user agent application
US8818321B2 (en) * 2006-06-20 2014-08-26 Nokia Corporation Method and system for providing reply-controlled discontinuous reception
US7423201B2 (en) * 2006-07-12 2008-09-09 Mertec Llc Soybean cultivar 306734323
CN101507281B (en) * 2006-07-12 2013-06-05 诺基亚公司 Signaling of region-of-interest scalability information in media files
KR101637798B1 (en) * 2006-10-03 2016-07-07 인터디지탈 테크날러지 코포레이션 Combined open loop/closed loop (cqi-based) uplink transmit power control with interference mitigation for e-utra
US20080089411A1 (en) 2006-10-16 2008-04-17 Nokia Corporation Multiple-hypothesis cross-layer prediction
EP2082546B1 (en) 2006-11-16 2015-09-23 Telefonaktiebolaget LM Ericsson (publ) Gateway selection mechanism
US8351513B2 (en) 2006-12-19 2013-01-08 Allot Communications Ltd. Intelligent video signal encoding utilizing regions of interest information
US8315466B2 (en) 2006-12-22 2012-11-20 Qualcomm Incorporated Decoder-side region of interest video processing
US8959238B2 (en) * 2007-01-18 2015-02-17 At&T Intellectual Property I, L.P. Systems, methods and computer program products for providing access to web services via device authentication in an IMS network
CN101257437A (en) 2007-02-28 2008-09-03 华为技术有限公司 System, switch and method for reselecting call arbitration node failure routing
US20080220773A1 (en) * 2007-03-07 2008-09-11 Research In Motion Limited Apparatus, and associated method, for facilitating i-wlan plmn selection
CA2821614C (en) * 2007-03-21 2016-08-23 Interdigital Technology Corporation Mimo wireless communication method and apparatus for transmitting and decoding resource block structures based on a dedicated reference signal mode
US8446454B2 (en) 2007-05-21 2013-05-21 Polycom, Inc. Dynamic adaption of a continuous presence videoconferencing layout based on video content
US8542266B2 (en) 2007-05-21 2013-09-24 Polycom, Inc. Method and system for adapting a CP layout according to interaction between conferees
US8289371B2 (en) 2007-05-21 2012-10-16 Polycom, Inc. Smart cropping of video images in a videoconferencing session
KR101498968B1 (en) 2007-07-05 2015-03-12 삼성전자주식회사 Apparatus and method for determining communication resource of peer to peer in a communication system
US8526410B2 (en) 2007-07-06 2013-09-03 Qualcomm Incorporated Methods and apparatus related to interference management when sharing downlink bandwidth between wide area network usage and peer to peer signaling
US8718548B2 (en) * 2007-07-10 2014-05-06 Qualcomm Incorporated Method and apparatus for adaptive partitioning of links
CN101345981B (en) 2007-07-13 2012-02-29 华为技术有限公司 Network selection method, communication system and mobile terminal
KR101421587B1 (en) 2007-08-23 2014-07-22 삼성전자주식회사 Method and Apparatus for determining preferred image format in IP-based mobile video telephony
KR101199252B1 (en) * 2007-09-07 2012-11-09 가부시키가이샤 엔티티 도코모 Mobile communication method, mobile exchange station, radio base station, mobile station
US8929891B2 (en) * 2007-10-02 2015-01-06 Blackberry Limited Measurement control for handover from one radio access technology to another
US8041375B2 (en) 2007-10-31 2011-10-18 Qualcomm Incorporated Methods and apparatus for use in peer to peer communications devices and/or systems relating to rate scheduling, traffic scheduling, rate control, and/or power control
EP2218010B1 (en) * 2007-12-01 2019-07-03 Alcatel-Lucent USA Inc. Ims diameter router with load balancing
WO2009096752A1 (en) * 2008-02-03 2009-08-06 Lg Electronics Inc. Method and apparatus for supporting harq
CN102176790B (en) * 2008-04-28 2014-01-01 富士通株式会社 Connection processing method in wireless communication system, wireless base station and wireless terminal
WO2009134267A1 (en) * 2008-05-01 2009-11-05 Lucent Technologies Inc Centralized charging system and method for offline and online charging
US8189807B2 (en) 2008-06-27 2012-05-29 Microsoft Corporation Satellite microphone array for video conferencing
CN101626482B (en) 2008-07-11 2011-11-09 华为技术有限公司 Method, device and system for implementing video conference
KR20110061609A (en) 2008-09-04 2011-06-09 파워웨이브 코그니션, 인크. Enhanced wireless ad hoc communication technique
US8576760B2 (en) 2008-09-12 2013-11-05 Qualcomm Incorporated Apparatus and methods for controlling an idle mode in a wireless device
MY155379A (en) * 2008-09-26 2015-10-15 Ericsson Telefon Ab L M Congestion control method and devices
US8406297B2 (en) 2008-10-17 2013-03-26 Futurewei Technologies, Inc. System and method for bit-allocation in video coding
JP5189460B2 (en) * 2008-10-30 2013-04-24 株式会社エヌ・ティ・ティ・ドコモ Base station apparatus, user apparatus and method in mobile communication system
KR101632208B1 (en) * 2008-11-07 2016-06-21 엘지전자 주식회사 Method for transmitting a reference signal
CN104243118B (en) * 2008-12-26 2017-10-20 夏普株式会社 Base station apparatus, mobile station apparatus, communication system and communication means
US20100178919A1 (en) * 2009-01-15 2010-07-15 Qualcomm Incorporated Optimum technology selection
EP2211117B1 (en) * 2009-01-27 2015-12-02 Rational AG Method for selecting and assembling representatives for programs and cooking device for same
US10057775B2 (en) * 2009-01-28 2018-08-21 Headwater Research Llc Virtualized policy and charging system
US8289848B2 (en) * 2009-02-02 2012-10-16 Telefonaktiebolaget Lm Ericsson (Publ) Controlling a packet flow from a user equipment
US8806587B2 (en) * 2009-04-07 2014-08-12 Togewa Holding Ag Method and system for authenticating a network node in a UAM-based WLAN network
US8369885B2 (en) 2009-04-14 2013-02-05 Samsung Electronics Co., Ltd. Multi-user MIMO transmissions in wireless communication systems
JP5420062B2 (en) 2009-04-29 2014-02-19 サムスン エレクトロニクス カンパニー リミテッド Termination device, coordinator and method for managing emergency events
US8724707B2 (en) * 2009-05-07 2014-05-13 Qualcomm Incorporated Video decoding using temporally constrained spatial dependency
KR20100121384A (en) * 2009-05-08 2010-11-17 삼성전자주식회사 System and method for providing service related to telephone to a plurality of devices using upnp in the home network
CN101945459B (en) 2009-05-22 2013-06-05 中兴通讯股份有限公司 Single-mode service continuity implementation method and single-mode service continuity system
US9055105B2 (en) 2009-05-29 2015-06-09 Nokia Technologies Oy Method and apparatus for engaging in a service or activity using an ad-hoc mesh network
US9264097B2 (en) 2009-06-04 2016-02-16 Qualcomm Incorporated Interference mitigation for downlink in a wireless communication system
KR101637589B1 (en) * 2009-06-12 2016-07-08 엘지전자 주식회사 Apparatus and method of flow control in wireless communication system
WO2010148402A2 (en) * 2009-06-19 2010-12-23 Research In Motion Limited Reference signal design for wireless communication system
EP2437558A4 (en) * 2009-06-22 2012-09-19 Huawei Tech Co Ltd Policy information processing method, device and system
US20110021153A1 (en) * 2009-07-10 2011-01-27 Saeid Safavi Centralized cross-layer enhanced method and apparatus for interference mitigation in a wireless network
KR101782640B1 (en) 2009-07-16 2017-09-28 엘지전자 주식회사 Method and apparatus for performing harq in multiple carrier system
US8428521B2 (en) * 2009-08-04 2013-04-23 Qualcomm Incorporated Control for uplink in MIMO communication system
US9083958B2 (en) 2009-08-06 2015-07-14 Qualcomm Incorporated Transforming video data in accordance with three dimensional input formats
US8629899B2 (en) 2009-08-06 2014-01-14 Qualcomm Incorporated Transforming video data in accordance with human visual system feedback metrics
US8878912B2 (en) 2009-08-06 2014-11-04 Qualcomm Incorporated Encapsulating three-dimensional video data in accordance with transport protocols
US8300587B2 (en) * 2009-08-17 2012-10-30 Nokia Corporation Initialization of reference signal scrambling
US9344953B2 (en) * 2009-08-17 2016-05-17 Nokia Technologies Oy Apparatus and method for initialization and mapping of reference signals in a communication system
US8345749B2 (en) 2009-08-31 2013-01-01 IAD Gesellschaft für Informatik, Automatisierung und Datenverarbeitung mbH Method and system for transcoding regions of interests in video surveillance
US8948097B2 (en) 2009-09-30 2015-02-03 Qualcomm Incorporated UE-RS sequence initialization for wireless communication systems
US8958306B2 (en) * 2009-10-16 2015-02-17 Tekelec, Inc. Methods, systems, and computer readable media for providing diameter signaling router with integrated monitoring functionality
KR101663617B1 (en) * 2009-10-29 2016-10-07 엘지전자 주식회사 A method for transmitting and receiving downlink reference signals, and a base station and a user equipment thereof
WO2011056828A1 (en) * 2009-11-03 2011-05-12 Interdigital Patent Holdings, Inc. Method and apparatus for inter-device session transfer between internet protocol (ip) multimedia subsystem (ims) and h.323 based clients
ES2421167T3 (en) * 2009-11-06 2013-08-29 Gemalto M2M Gmbh Differentiation between mobile and stationary mobile radiotelephony terminals
US20110124335A1 (en) * 2009-11-25 2011-05-26 Hans Martin Enhanced plmn list
CN101711041B (en) * 2009-12-09 2012-10-17 华为技术有限公司 Congestion control method, operation-maintenance center equipment and base station
KR101102446B1 (en) * 2010-01-08 2012-01-05 고려대학교 산학협력단 Method for assigning resource in mobile communication system
PL2524543T3 (en) * 2010-01-11 2019-04-30 Nokia Solutions & Networks Oy Network selection mechanisms
CN101771615B (en) 2010-01-26 2012-01-25 华为技术有限公司 Neighborhood relationship building method, communication equipment and system thereof
US20110202635A1 (en) 2010-02-18 2011-08-18 Alcatel-Lucent Canada Inc. Policy controller application enablement api for wireline/wireless converged solution
US9319318B2 (en) * 2010-03-15 2016-04-19 Tekelec, Inc. Methods, systems, and computer readable media for performing PCRF-based user information pass through
WO2011117261A2 (en) * 2010-03-22 2011-09-29 Data Connection Limited System for connecting applications to networks
US9185637B2 (en) * 2010-04-27 2015-11-10 Nokia Solutions And Networks Oy Updating of network selection information
WO2011141931A2 (en) * 2010-05-10 2011-11-17 Global Rural Netco Ltd. A method and system to attain multi-band, multi-carrier, multi-user through access point base station - a femtocell.
US8792365B2 (en) * 2010-05-26 2014-07-29 Qualcomm Incorporated Service-based inter-radio access technology (inter-RAT) handover
EP2578050B1 (en) * 2010-05-28 2018-12-12 Nokia Technologies Oy Method, and apparatus for determining a network interface preference policy
KR101707543B1 (en) * 2010-06-24 2017-02-16 주식회사 케이티 Method for handover according to services based on PMIP and system thereof
KR20120009772A (en) 2010-07-21 2012-02-02 삼성전자주식회사 Signaling method and device for interference mitigation in m2m communication system
US20120030331A1 (en) * 2010-07-30 2012-02-02 Interdigital Patent Holdings, Inc. Method and apparatus for managing and processing policy profile restrictions
PT105235B (en) * 2010-08-04 2013-05-20 Portugal Telecom Inovacao S A LINK LAYER RESOURCE MANAGEMENT FOR THE INDEPENDENT MEDIA TRANSFER.
JP5437195B2 (en) * 2010-08-05 2014-03-12 日本電信電話株式会社 Network control method and system
IT1402430B1 (en) 2010-09-17 2013-09-04 St Microelectronics Srl "PROCEDURE AND DEVICE FOR THE DEVELOPMENT OF VIDEO SIGNALS, TRANSMITTER OR RELATED COMPUTER PRODUCT"
US9369887B2 (en) * 2010-09-21 2016-06-14 Telefonaktiebolaget Lm Ericsson (Publ) Network signal tracing using charging identifiers as trace recording session references
AU2010361098B2 (en) 2010-09-24 2014-08-14 Intel Corporation Method and system for access point congestion detection and reduction
KR101688546B1 (en) * 2010-09-29 2016-12-21 삼성전자주식회사 Method of transmitting and receiving for uplink mimo retransmission according to phich in lte system and apparatus thereof
US20120083293A1 (en) 2010-09-30 2012-04-05 Yigal Bejerano Method And Apparatus For Group Paging In Wireless Communication
MX2013003358A (en) * 2010-10-01 2013-06-05 Research In Motion Ltd Method and apparatus for avoiding in-device coexistence interference.
CN102457863A (en) * 2010-10-15 2012-05-16 电信科学技术研究院 Method, device and system for realizing cell switch based on CR (Cognitive Radio)
US8620263B2 (en) 2010-10-20 2013-12-31 Tekelec, Inc. Methods, systems, and computer readable media for diameter routing agent (DRA) based credit status triggered policy control
US8626156B2 (en) * 2010-10-20 2014-01-07 Tekelec, Inc. Methods, systems, and computer readable media for selective policy enhancement (PE) for high-usage roamers
CN103210683A (en) * 2010-11-11 2013-07-17 高通股份有限公司 Systems and methods for improving circuit switched fallback performance
WO2012092935A1 (en) 2011-01-04 2012-07-12 Nokia Siemens Networks Oy Access network selection in communications system
WO2012108688A2 (en) * 2011-02-10 2012-08-16 엘지전자 주식회사 Method and apparatus for monitoring scheduling information
JP5895163B2 (en) 2011-03-11 2016-03-30 パナソニックIpマネジメント株式会社 WIRELESS VIDEO TRANSMITTING DEVICE, WIRELESS VIDEO RECEIVING DEVICE, AND WIRELESS VIDEO TRANSMISSION SYSTEM PROVIDED WITH THE SAME
JP5645021B2 (en) * 2011-03-14 2014-12-24 独立行政法人情報通信研究機構 Self-coexistence mechanism for frame acquisition in wireless networks
US9313776B2 (en) * 2011-03-15 2016-04-12 Lg Electronics Inc. Method for transmitting/receiving signal and device therefor
US9191180B2 (en) * 2011-03-21 2015-11-17 Lg Electronics Inc. Method and device for executing HARQ in TDD-based wireless communication system
KR20180044439A (en) * 2011-04-01 2018-05-02 인터디지탈 패튼 홀딩스, 인크 Method and apparatus for triggering and synchronizing machine type communication devices
EP2697776A4 (en) 2011-04-11 2015-06-10 Intel Corp Object of interest based image processing
US8788113B2 (en) * 2011-06-13 2014-07-22 Ford Global Technologies, Llc Vehicle driver advisory system and method
EP3379755A1 (en) 2011-06-14 2018-09-26 Interdigital Patent Holdings, Inc. Methods, systems and apparatus for defining and using phich resources for carrier aggregation
US9204329B2 (en) * 2011-07-21 2015-12-01 Movik Networks Distributed RAN information collection, consolidation and RAN-analytics
US20130035095A1 (en) * 2011-08-01 2013-02-07 Mediatek Inc. Apparatuses and methods for roaming public land mobile network (plmn) selection
US9048986B2 (en) * 2011-08-12 2015-06-02 Qualcomm Incorporated Mitigation of lost resource allocation synchronization between a user equipment (UE) and an evolved node B (eNodeB)
CN107370577B (en) * 2011-08-12 2020-06-19 松下电器(美国)知识产权公司 Communication apparatus and retransmission control method
US20130051321A1 (en) * 2011-08-24 2013-02-28 Qualcomm Incorporated Multiple description coding (mdc) for channel state information reference signals (csi-rs)
CN102347950B (en) * 2011-09-29 2018-02-06 中兴通讯股份有限公司 Communication network provides the method and system of conversational services to internet
US20130083684A1 (en) * 2011-09-30 2013-04-04 Electronics And Telecommunications Research Institute Methods of device to device communication
EP2764739B1 (en) 2011-10-04 2018-07-04 Nokia Solutions and Networks Oy Minimal access transfer control function requirements for single radio voice call continuity handover
US9584819B2 (en) 2011-10-24 2017-02-28 Qualcomm Incorporated Grouping of tiles for video coding
EP2603046B1 (en) * 2011-12-05 2014-08-06 Alcatel Lucent Communication process and communication network comprising a local access network discovery and selection function, L-ANDSF
US9215060B2 (en) * 2012-02-21 2015-12-15 Lg Electronics Inc. Communication method for user equipment and user equipment, and communication method for base station and base station
CN102547984B (en) 2012-02-23 2015-03-11 华为技术有限公司 Method and device for paging in device-to-device communication
US8923865B2 (en) * 2012-03-15 2014-12-30 Qualcomm Incorporated Apparatus and method of inter-radio access technology measurement scheduling
GB2501675B (en) 2012-03-27 2014-11-19 Microsoft Corp Encoding and transmitting video streams
CN102647771B (en) * 2012-04-10 2016-05-25 华为技术有限公司 The discovery of WLAN and system of selection, equipment and system and terminal
EP2658202B1 (en) * 2012-04-24 2017-10-11 Telefonaktiebolaget LM Ericsson (publ) Identification of an ip-can session in a policy and charging control apparatus
US9407391B2 (en) * 2012-05-11 2016-08-02 Intel Corporation User equipment power savings for machine type communications
US8982693B2 (en) * 2012-05-14 2015-03-17 Google Technology Holdings LLC Radio link monitoring in a wireless communication device
CN102724735A (en) * 2012-05-28 2012-10-10 中兴通讯股份有限公司 Method, device and terminal for selecting public land mobile network (PLMN)
US9917772B2 (en) * 2012-05-29 2018-03-13 Alcatel Lucent Diameter message mirroring and spoofing
US20140019876A1 (en) * 2012-07-11 2014-01-16 International Business Machines Corporation Calendar synch with another user and preferred free time search for scheduling an event
US9106276B2 (en) * 2012-08-13 2015-08-11 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for reference signal transmission and reception
WO2014074200A2 (en) 2012-08-21 2014-05-15 Skybox Imaging, Inc. Multi-resolution pyramid for georeferenced video
US8842541B2 (en) * 2012-09-04 2014-09-23 Verizon Patent And Licensing Inc. Providing policies using a direct interface between network devices
US8890923B2 (en) 2012-09-04 2014-11-18 Cisco Technology, Inc. Generating and rendering synthesized views with multiple video streams in telepresence video conference sessions
WO2014043565A1 (en) * 2012-09-13 2014-03-20 Huawei Technologies Co., Ltd. System and methods for dual mode network selection
US9231774B2 (en) * 2012-09-27 2016-01-05 Alcatel Lucent Congestion control for radio access networks (RAN)
WO2014071551A1 (en) * 2012-11-06 2014-05-15 华为技术有限公司 Method for paging ue, base station and ue
CN103874170A (en) * 2012-12-10 2014-06-18 中兴通讯股份有限公司 User equipment and method and system utilizing extended paging cycles for paging
US9832717B2 (en) * 2012-12-19 2017-11-28 Blackberry Limited Method and apparatus for layer 3 configuration in a heterogeneous network
JP6249305B2 (en) * 2012-12-31 2017-12-20 ▲ホア▼▲ウェイ▼技術有限公司Huawei Technologies Co.,Ltd. Radio bearer control method, device, and system
US10051668B2 (en) * 2013-01-08 2018-08-14 Lg Electronics Inc. Method and apparatus for communicating in carrier aggregation system
WO2014110380A1 (en) * 2013-01-11 2014-07-17 Huawei Technologies Co., Ltd. System and method for network selection
US9973966B2 (en) * 2013-01-11 2018-05-15 Interdigital Patent Holdings, Inc. User-plane congestion management
KR102039541B1 (en) * 2013-01-21 2019-11-01 삼성전자 주식회사 Method and apparatus for controlling of selection wireless lan access point of user equipment in wireless communication system
US10045032B2 (en) 2013-01-24 2018-08-07 Intel Corporation Efficient region of interest detection
GB2511730A (en) 2013-01-28 2014-09-17 Microsoft Corp Spatially adaptive video coding
EP2959726B1 (en) * 2013-02-22 2019-07-10 Intel IP Corporation Systems and methods for access network selection and traffic routing
US9386511B2 (en) * 2013-02-25 2016-07-05 Lg Electronics Inc. Method and an apparatus for access network selection in visited network in a wireless communication system
KR101729878B1 (en) * 2013-02-25 2017-04-24 엘지전자 주식회사 Method and terminal for determining access on basis of policy
US10057824B2 (en) * 2013-03-07 2018-08-21 Telefonaktiebolaget L M Ericsson (Publ) Radio link monitoring
US9686284B2 (en) * 2013-03-07 2017-06-20 T-Mobile Usa, Inc. Extending and re-using an IP multimedia subsystem (IMS)
US9749946B2 (en) * 2013-03-11 2017-08-29 Qualcomm Incorporated Method and apparatus for improved reselection during mode transitions
US10219206B2 (en) * 2013-03-22 2019-02-26 Qualcomm Incorporated Selecting a network node based on precedence of network policies
EP2982188B1 (en) * 2013-04-05 2017-10-04 Telefonaktiebolaget LM Ericsson (publ) User equipment, network node, and methods for managing an extended discontinuous reception cycle mode
EP2984864B1 (en) * 2013-04-08 2017-03-01 Telefonaktiebolaget LM Ericsson (publ) Methods of performing inter-frequency measurements in the idle state
KR20140136365A (en) * 2013-05-20 2014-11-28 삼성전자주식회사 Method and apparatus for selecting wlan efficiently
EP2819455A1 (en) * 2013-06-28 2014-12-31 Alcatel Lucent Off-path notification of RAN congestion information in an EPS network
WO2015005842A1 (en) * 2013-07-09 2015-01-15 Telefonaktiebolaget L M Ericsson (Publ) Core network node, radio access network node and methods therein for contrail overload in core network
US9668203B2 (en) * 2014-05-29 2017-05-30 Apple Inc. Device-type specific preferred PLMN list
US9516220B2 (en) 2014-10-02 2016-12-06 Intel Corporation Interactive video conferencing
US10021346B2 (en) 2014-12-05 2018-07-10 Intel IP Corporation Interactive video conferencing

Patent Citations (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331413A (en) 1992-09-28 1994-07-19 The United States Of America As Represented By The United States National Aeronautics And Space Administration Adjustable control station with movable monitors and cameras for viewing systems in robotics and teleoperations
US5686957A (en) 1994-07-27 1997-11-11 International Business Machines Corporation Teleconferencing imaging system with automatic camera steering
US5617422A (en) 1995-08-10 1997-04-01 Mci Communications Corp. High speed interface in a telecommunications network
US5963203A (en) 1997-07-03 1999-10-05 Obvious Technology, Inc. Interactive video icon with designated viewing position
US6573907B1 (en) 1997-07-03 2003-06-03 Obvious Technology Network distribution and management of interactive video and multi-media containers
US6104721A (en) 1997-12-02 2000-08-15 Symmetry Communcations System DSP based dynamic resource allocation multiprocessor communications board
US20040192211A1 (en) * 2001-02-26 2004-09-30 Gallagher Michael D. Apparatus for supporting the handover of a telecommunication session between a licensed wireless system and an unlicensed wireless system
TW201246954A (en) 2003-06-16 2012-11-16 Qualcomm Inc Apparatus, system, and method for managing reverse link communication resources in a distributed communication system
US20080141239A1 (en) 2003-12-22 2008-06-12 Telefonaktiebolaget Lm Ericsson (Publ) Downloading and Upgrading Terminal Software Over the Air of a Wireless Device
US20050143084A1 (en) * 2003-12-29 2005-06-30 Jung-Fu Cheng Network controlled channel information reporting
US20050202823A1 (en) 2004-03-12 2005-09-15 Interdigital Technology Corporation Method and system for switching a radio access technology between wireless communication systems with a multi-mode wireless transmit/receive unit
US7724972B2 (en) 2005-03-01 2010-05-25 Qualcomm Incorporated Quality metric-biased region-of-interest coding for video telephony
US20060238444A1 (en) 2005-03-01 2006-10-26 Haohong Wang Quality metric-biased region-of-interest coding for video telephony
US8019175B2 (en) 2005-03-09 2011-09-13 Qualcomm Incorporated Region-of-interest processing for video telephony
US8977063B2 (en) 2005-03-09 2015-03-10 Qualcomm Incorporated Region-of-interest extraction for video telephony
US8009735B2 (en) 2005-04-04 2011-08-30 Canon Kabushiki Kaisha Method and device for transmitting and receiving image sequences between a server and client
WO2007053851A2 (en) 2005-11-01 2007-05-10 Qualcomm Incorporated Mobile device-initiated measurement gap request
US20090040955A1 (en) 2005-12-10 2009-02-12 Soo-Jung Jung Method for Adaptive Discontinuous Reception Based On Extented Paging Indicator for Improvement of Power Effective Performance at Mobile Terminal on WCDMA
US20080096566A1 (en) * 2006-07-31 2008-04-24 Qualcomm Incorporated Determination of cell rf parameters based on measurements by user equipments
US8452902B2 (en) 2006-11-06 2013-05-28 Samsung Electronics Co., Ltd. Methods for transmitting buffer size information
KR20080067273A (en) 2007-01-15 2008-07-18 삼성전자주식회사 Method and apparatus for drx resume after up-link data transmission in mobile telecommunication system
US20130258919A1 (en) 2007-02-05 2013-10-03 Qualcomm Incorporated Flexible dtx and drx in a wireless communication system
US20100202476A1 (en) 2007-05-02 2010-08-12 Sung Duck Chun Method of transmitting data in a wireless communication system
US20100220652A1 (en) 2007-06-19 2010-09-02 Ntt Docomo, Inc. Base station apparatus and communication control method
US20090017826A1 (en) * 2007-07-09 2009-01-15 Interdigital Technology Corporation Method and apparatus for handover and session continuity using pre-registration tunneling procedure
KR20090006281A (en) 2007-07-11 2009-01-15 (주)케이티에프테크놀로지스 Portable terminal and displaying method during video telephony using the same
US20110268084A1 (en) 2007-08-21 2011-11-03 Ntt Docomo, Inc. Radio communication system, radio communication method, and mobile station
US20100238805A1 (en) 2007-08-22 2010-09-23 Reiner Ludwig Data Transmission Control Methods And Devices
US20090111478A1 (en) 2007-10-24 2009-04-30 Commissariat A L'energie Atomique Method of searching for free band for a cognitive telecommunication terminal
US20100045773A1 (en) 2007-11-06 2010-02-25 Ritchey Kurtis J Panoramic adapter system and method with spherical field-of-view coverage
US20090147685A1 (en) 2007-12-06 2009-06-11 Richa Malhotra Controlling congestion in a packet switched data network
US20110161441A1 (en) 2008-02-15 2011-06-30 Nokia Siemens Networks Oy Interworking between messaging service domains
US20090210766A1 (en) 2008-02-20 2009-08-20 Rintaro Katayama Wireless communication system, terminal and base station
US20110019633A1 (en) 2008-04-28 2011-01-27 Fujitsu Limited Connection processing method in wireless communication system, wireless base station, and wireless terminal
US20090280802A1 (en) 2008-05-11 2009-11-12 Qualcomm Incorporated Systems and methods for multi-mode terminal operations in overlaid networks
US20090323613A1 (en) 2008-06-30 2009-12-31 Nokia Siemens Networks Oy Selecting between normal and virtual dual layer ACK/NACK
US8364698B2 (en) 2008-07-11 2013-01-29 Videosurf, Inc. Apparatus and software system for and method of performing a visual-relevance-rank subsequent search
US9031974B2 (en) 2008-07-11 2015-05-12 Videosurf, Inc. Apparatus and software system for and method of performing a visual-relevance-rank subsequent search
US20120008574A1 (en) 2008-07-30 2012-01-12 Datang Mobile Communications Equipment Co., Ltd. Method, system and device for adaptive modulation and coding
US8570359B2 (en) 2008-08-04 2013-10-29 Microsoft Corporation Video region of interest features
US20100026781A1 (en) 2008-08-04 2010-02-04 Microsoft Corporation Video region of interest features
US20100067433A1 (en) 2008-09-17 2010-03-18 Qualcomm Incorporated Methods and systems for multi-mode signal quality reporting
US20100074182A1 (en) 2008-09-23 2010-03-25 Huawei Technologies Co., Ltd. Method and device for suspending data
US20100081391A1 (en) 2008-09-29 2010-04-01 Fujitsu Limited Wireless communication system
US20100118111A1 (en) 2008-11-10 2010-05-13 Nokia Corporation Method and apparatus for remote camera control indications in video conferencing
KR20100054015A (en) 2008-11-13 2010-05-24 주식회사 케이티테크 Method for setting discontinuous reception mode cycle in mobile communication apparatus and apparatus the same
US20100130237A1 (en) 2008-11-18 2010-05-27 Qualcomm Incorporated Method and apparatus for determining drx cycle used for paging
KR20110102935A (en) 2008-12-30 2011-09-19 콸콤 인코포레이티드 Centralized control of peer discovery pilot transmission
US20100202561A1 (en) 2009-02-11 2010-08-12 Qualcomm Incorporated Method and apparatus for modulation and layer mapping in a wireless communication system
US20100208607A1 (en) 2009-02-13 2010-08-19 Qualcomm Incorporated Methods and systems for qos translation during handover between wireless networks
US8358613B1 (en) 2009-02-27 2013-01-22 L-3 Communications Corp. Transmitter-directed security for wireless-communications
US8711198B2 (en) 2009-06-04 2014-04-29 Hewlett-Packard Development Company, L.P. Video conference
US20100317394A1 (en) 2009-06-10 2010-12-16 Motorola, Inc. Femto-cell power control using idle-mode user equipment in a cellular communication system
US20110217985A1 (en) 2009-09-28 2011-09-08 Qualcomm Incorporated Predictive short-term channel quality reporting utilizing reference signals
US8922718B2 (en) 2009-10-21 2014-12-30 Disney Enterprises, Inc. Key generation through spatial detection of dynamic objects
US20120307794A1 (en) 2009-11-06 2012-12-06 Interdigital Patent Holdings, Inc. Method and apparatus for inter-device transfer (handoff) between ims and generic ip clients
KR20110051787A (en) 2009-11-11 2011-05-18 엘지전자 주식회사 A method and apparatus for sharing data in a video conference system
US20110109716A1 (en) 2009-11-11 2011-05-12 Choi Manchul Method and apparatus for sharing data in video conference system
US20120287881A1 (en) * 2009-12-23 2012-11-15 Robert Arnott Resource allocation
KR20120099805A (en) 2010-01-22 2012-09-11 콸콤 인코포레이티드 Method and apparatus for acknowledgment detection during preamble transmission
US20110195710A1 (en) 2010-02-11 2011-08-11 Petrus Wilhelmus Adrianus Jacobus Maria Nas Methods, systems, and computer readable media for dynamic subscriber profile adaptation
US20110217980A1 (en) * 2010-03-03 2011-09-08 Rene Faurie Methods and apparatus to indicate space requirements for communicating capabilities of a device
US20110235706A1 (en) 2010-03-25 2011-09-29 Texas Instruments Incorporated Region of interest (roi) video encoding
US20110242975A1 (en) 2010-03-31 2011-10-06 Qualcomm Incorporated Single and Dual Internet Protocol Bearer Support
US20110250888A1 (en) 2010-04-13 2011-10-13 Jin Sook Ryu Method and apparatus for performing cell reselection in wireless communication system
US20110258313A1 (en) 2010-04-15 2011-10-20 Qualcomm Incorporated Network-assisted peer discovery
US20110263255A1 (en) * 2010-04-23 2011-10-27 Telefonaktiebolaget Lm Ericsson Detection of early inter-radio access technology (irat) handover triggering
US20130039180A1 (en) 2010-04-29 2013-02-14 Electronics And Telecommunications Research Institute Apparatus and method for wideband short-range wireless communication
US8331760B2 (en) 2010-06-02 2012-12-11 Microsoft Corporation Adaptive video zoom
US20120151009A1 (en) * 2010-06-18 2012-06-14 Nokia Corporation Method and Apparatus for Generating and Handling Streaming Media Quality-of-Experience Metrics
US20120087396A1 (en) 2010-10-06 2012-04-12 Motorola Mobility, Inc. Method and apparatus in wireless communication systems
US20120122440A1 (en) 2010-11-12 2012-05-17 Motorola Mobility, Inc. Positioning Reference Signal Assistance Data Signaling for Enhanced Interference Coordination in a Wireless Communication Network
WO2012065658A1 (en) 2010-11-19 2012-05-24 Telefonica, S.A. A communications system and a method for communications between internet and ngn/ims subsystems
US20120176884A1 (en) 2011-01-07 2012-07-12 Interdigital Patent Holdings, Inc. Method, system and apparatus for downlink shared channel reception in cooperative multipoint transmissions
US20130170415A1 (en) 2011-04-04 2013-07-04 Kyocera Corporation Mobile communication method and radio terminal
US20120281621A1 (en) 2011-04-05 2012-11-08 Interdigital Patent Holdings, Inc. Wireless peer-to-peer network topology
TW201301920A (en) 2011-05-27 2013-01-01 Qualcomm Inc Allocating access to multiple radio access technologies via a multi-mode access point
US20120320141A1 (en) 2011-06-16 2012-12-20 Vtel Products Corporation, Inc. Video conference control system and method
US8970653B2 (en) 2011-06-16 2015-03-03 Vtel Products Corporation, Inc. Video conference control system and method
US8842919B2 (en) 2011-08-11 2014-09-23 Eyesight Mobile Technologies Ltd. Gesture based interface system and method
US20130040671A1 (en) * 2011-08-12 2013-02-14 Qualcomm Incorporated Antenna to transceiver mapping of a multimode wireless device
US20130039339A1 (en) 2011-08-12 2013-02-14 Venkata Ratnakar Rao Rayavarapu Other Network Component Receiving RRC Configuration Information from eNB
US20130044697A1 (en) 2011-08-17 2013-02-21 Qualcomm Incorporated Network coordination for improved interference cancellation
WO2013025040A2 (en) 2011-08-18 2013-02-21 엘지전자 주식회사 Method for performing device to device direct communication, method for supporting the same, and device therefor
US20130045707A1 (en) 2011-08-19 2013-02-21 Samsung Electronics Co., Ltd. Apparatus and method for transmitting an emergency call in a portable terminal
US20130051277A1 (en) 2011-08-30 2013-02-28 Renesas Mobile Corporation Method and apparatus for allocating resources for device-to-device discovery
US20140219088A1 (en) 2011-09-30 2014-08-07 Ozgur Oyman Quality of experience enhancements over wireless networks
US20140295864A1 (en) * 2011-10-12 2014-10-02 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for terminal reporting
US20130101036A1 (en) 2011-10-25 2013-04-25 Texas Instruments Incorporated Sample-Based Angular Intra-Prediction in Video Coding
US20130170479A1 (en) 2011-11-11 2013-07-04 Mo-Han Fong Random backoff for extended access barring
US20130195074A1 (en) * 2012-01-27 2013-08-01 Telefonaktiebolaget L M Ericsson (Publ) Single radio voice call continuity handover of calls with video media from a circuit switched access network
US20130201824A1 (en) 2012-02-06 2013-08-08 Muthaiah Venkatachalam Handling user plane congestion in a wireless communication network
US20130301501A1 (en) 2012-05-09 2013-11-14 Interdigital Patent Holdings, Inc. Methods and apparatus for handling mtc long drx cycle/sleep lengths
EP2849494A1 (en) 2012-05-23 2015-03-18 Huawei Technologies Co., Ltd Lte cellular communication system based d2d device discovering method and apparatus
US8830892B2 (en) 2012-08-30 2014-09-09 Apple Inc. Radio power saving techniques for video conference applications
US20140286215A1 (en) 2012-11-01 2014-09-25 Ali Taha Koc Extended discontinuous reception (drx) cycle length in wireless communication networks
US9055216B1 (en) 2012-11-19 2015-06-09 A9.Com, Inc. Using sensor data to enhance image data
US20140176663A1 (en) 2012-12-20 2014-06-26 Microsoft Corporation Privacy camera
US20140225918A1 (en) 2013-02-14 2014-08-14 Qualcomm Incorporated Human-body-gesture-based region and volume selection for hmd
US20140321360A1 (en) 2013-03-29 2014-10-30 Seunghee Han Device-to-device (d2d) preamble design
EP2979373A1 (en) 2013-03-29 2016-02-03 Intel IP Corporation Device-to-device (d2d) preamble design
CN105009482A (en) 2013-03-29 2015-10-28 英特尔Ip公司 Device-to-device (D2D) preamble design
WO2014160765A1 (en) 2013-03-29 2014-10-02 Intel IP Corporation Device-to-device (d2d) preamble design
US20140321369A1 (en) 2013-04-26 2014-10-30 Alexei Vladimirovich Davydov System and method for interference cancellation and/or supression on physical downlink shared channel at the user equipment
WO2014176480A1 (en) 2013-04-26 2014-10-30 Shilpa Talwar User equipment and method for feedback of user equipment performance metrics during dynamic radio switching
US20140320587A1 (en) 2013-04-26 2014-10-30 Ozgur Oyman Interactive zooming in video conferencing
US20140321272A1 (en) 2013-04-26 2014-10-30 Sangeetha L. Bangolae Apparatus and method for congestion control in wireless communication networks
US20140321343A1 (en) 2013-04-26 2014-10-30 Maruti Gupta User equipment and methods for adapting system parameters based on extended paging cycles
TW201446026A (en) 2013-04-26 2014-12-01 Intel Ip Corp An apparatus and method for congestion control in wireless communication networks
WO2014176200A1 (en) 2013-04-26 2014-10-30 Intel IP Corporation An apparatus and method for congestion control in wireless communication networks
TW201501498A (en) 2013-04-26 2015-01-01 英特爾Ip公司 Radio access technology information storage in a mobile network
TW201507374A (en) 2013-04-26 2015-02-16 英特爾智財公司 System and method for interference cancellation and/or supression on physical downlink shared channel at the user equipment
WO2014176089A1 (en) 2013-04-26 2014-10-30 Intel IP Corporation Architecture for web-based real-time communications (webrtc) to access internet protocol multimedia subsystem (ims)
WO2014176106A1 (en) 2013-04-26 2014-10-30 Intel IP Corporation Radio access technology information storage in a mobile network
WO2014176087A1 (en) 2013-04-26 2014-10-30 Intel IP Corporation Interactive zooming in video conferencing
WO2014176245A1 (en) 2013-04-26 2014-10-30 Intel IP Corporation System and method for interference cancellation and/or supression on physical downlink shared channel at the user equipment
US20140325078A1 (en) 2013-04-26 2014-10-30 Chang Hong Shan Architecture for web-based real-time communications (webrtc) to access internet protocol multimedia subsystem (ims)
WO2014176058A1 (en) 2013-04-26 2014-10-30 Intel IP Corporation User equipment and methods for adapting system parameters based on extended paging cycles
US20140323128A1 (en) 2013-04-26 2014-10-30 Robert Zaus Radio access technology information storage in a mobile network
CN105052109A (en) 2013-04-26 2015-11-11 英特尔Ip公司 Architecture for web-based real-time communications (WebRTC) to access internet protocol multimedia subsystem (IMS)
CN105052202A (en) 2013-04-26 2015-11-11 英特尔Ip公司 User equipment and method for feedback of user equipment performance metrics during dynamic radio switching
CN105103622A (en) 2013-04-26 2015-11-25 英特尔Ip公司 Anpparatus and method for congestion control in wireless communication networks
US20150195490A1 (en) 2014-01-06 2015-07-09 Intel IP Corporation Interactive video conferencing

Non-Patent Citations (60)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 11)", 3GPP TS 36.213 V11.4.0, (Sep. 2013), 182.
"Control Signaling to Support for Enhanced DL MIMO", R1-104021, 3GPP TSG RAN WG1 Meeting #61bis, (2010), 6 pgs.
"Discussion on scenarios for evaluation of interference cancellation and suppression schemes", R1-130927, 3GPP TSG-RAN WG1 #72bis, (2013), 3 pgs.
"Views on the use of DM RS ports / scrambling sequences for MU-MIMO", 3GPP TSG-RAN WG1 Meeting #61bis R1-103830 Dresden, (Jun. 28-Jul. 2, 2010).
"Views on the use of DM RS ports / scrambling sequences for MU-MIMO", R1-103830, 3GPP TSG-RAN WG1 Meeting #61bis, (2010), 6 pgs.
International Application Serial No. PCT/US2014/031845, International Preliminary Report on Patentability mailed Oct. 8, 2015, 6 pgs.
International Application Serial No. PCT/US2014/031845, International Search Report mailed Aug. 26, 2014, 3 pgs.
International Application Serial No. PCT/US2014/031845, Written Opinion mailed Aug. 26, 2014, 4 pgs.
International Application Serial No. PCT/US2014/033965, International Preliminary Report on Patentability mailed Nov. 5, 2015, 7 pgs.
International Application Serial No. PCT/US2014/033965, International Search Report mailed Aug. 7, 2014, 3 pgs.
International Application Serial No. PCT/US2014/033965, Written Opinion mailed Aug. 7, 2014, 5 pgs.
International Application Serial No. PCT/US2014/034307, International Preliminary Report on Patentability mailed Nov. 5, 2015, 7 pgs.
International Application Serial No. PCT/US2014/034307, International Search Report mailed Aug. 11, 2014, 3 pgs.
International Application Serial No. PCT/US2014/034307, Written Opinion mailed Aug. 11, 2014, 5 pgs.
International Application Serial No. PCT/US2014/034337, International Preliminary Report on Patentability mailed Nov. 5, 2015, 8 pgs.
International Application Serial No. PCT/US2014/034337, International Search Report mailed Aug. 8, 2014, 3 pgs.
International Application Serial No. PCT/US2014/034337, Written Opinion mailed Aug. 8, 2014, 6 pgs.
International Application Serial No. PCT/US2014/034480, International Preliminary Report on Patentability mailed Nov. 5, 2015, 6 pgs.
International Application Serial No. PCT/US2014/034480, International Search Report mailed Aug. 26, 2014, 3 pgs.
International Application Serial No. PCT/US2014/034480, Written Opinion mailed Aug. 26, 2014, 4 pgs.
International Application Serial No. PCT/US2014/034879, International Preliminary Report on Patentability mailed Nov. 5, 2015, 10 pgs.
International Application Serial No. PCT/US2014/034879, International Search Report mailed Aug. 28, 2014, 3 pgs.
International Application Serial No. PCT/US2014/034879, Written Opinion mailed Aug. 28, 2014, 8 pgs.
International Application Serial No. PCT/US2014/034966, International Preliminary Report on Patentability mailed Nov. 5, 2015, 7 pgs.
International Application Serial No. PCT/US2014/034966, International Search Report mailed Aug. 22, 2014, 3 pgs.
International Application Serial No. PCT/US2014/034966, Written Opinion mailed Aug. 22, 2014, 5 pgs.
International Application Serial No. PCT/US2014/035409, International Preliminary Report on Patentability mailed Nov. 5, 2015, 8 pgs.
International Application Serial No. PCT/US2014/035409, International Search Report mailed Aug. 26, 2014, 4 pgs.
International Application Serial No. PCT/US2014/035409, Written Opinion mailed Aug. 26, 2014, 6 pgs.
Suckchel, Yang, "An Adaptive Discontinuous Reception Mechanism Based on Extended Paging Indicator for Power Saving in UMTS", In: Vehicular Technology Conference, VTC-2006 Fall. IEEE 64th, [Online]. Retrieved from the Internet: , (2006), 5 pgs.
Suckchel, Yang, "An Adaptive Discontinuous Reception Mechanism Based on Extended Paging Indicator for Power Saving in UMTS", In: Vehicular Technology Conference, VTC-2006 Fall. IEEE 64th, [Online]. Retrieved from the Internet: <http://i.eexplore.ieee.org/stamp/stamp.jsparnumber=4109444>, (2006), 5 pgs.
Taiwanese Application Serial No. 103113700, Office Action mailed Oct. 28, 2015, W/ English Search Report, 9 pgs.
Taiwanese Application Serial No. 103113875, Amendment filed Oct. 16, 2014, English Translation, 2 pgs.
Taiwanese Application Serial No. 103113875, Office Action mailed Oct. 8, 2015, W/ English Translation, 22 pgs.
Taiwanese Application Serial No. 103113875, Response filed Jan. 13, 2016 to Office Action mailed Oct. 8, 2015, (English Translation of Claims), 13 pgs.
Taiwanese Application Serial No. 103113897, Office Action mailed Dec. 14, 2015, W/ English Search Report, 7 pgs.
Taiwanese Application Serial No. 103113898, Office Action mailed Sep. 17, 2015, W/ English Search Report, 9 pgs.
U.S. Appl. No. 14/109,121, Corrected Notice of Allowance mailed Jan. 7, 2016, 2 pgs.
U.S. Appl. No. 14/109,121, Non Final Office Action mailed Apr. 29, 2015, 6 pgs.
U.S. Appl. No. 14/109,121, Non Final Office Action mailed Aug. 14, 2015, 8 pgs.
U.S. Appl. No. 14/109,121, Notice of Allowance mailed Nov. 25, 2015, 9 pgs.
U.S. Appl. No. 14/109,121, Response filed Jul. 28, 2015 to Non Final Office Action mailed Apr. 29, 2015, 10 pgs.
U.S. Appl. No. 14/109,121, Response filed Nov. 13, 2015 to Non Final Office Action mailed Aug. 14, 2015, 10 pgs.
U.S. Appl. No. 14/132,525, Examiner Interview Summary mailed May 28, 2015, 3 pgs.
U.S. Appl. No. 14/132,525, Non Final Office Action mailed May 7, 2015, 15 pgs.
U.S. Appl. No. 14/132,525, Notice of Allowance mailed Dec. 22, 2015, 9 pgs.
U.S. Appl. No. 14/132,525, Response filed Aug. 7, 2015 to Non Final Office Action mailed May 7, 2015, 14 pgs.
U.S. Appl. No. 14/132,974, Non Final Office Action mailed Jul. 10, 2015, 8 pgs.
U.S. Appl. No. 14/132,974, Notice of Allowance mailed Nov. 16, 2015, 7 pgs.
U.S. Appl. No. 14/132,974, Response filed Oct. 2, 2015 to Non Final Office Action mailed Jul. 10, 2015, 7 pgs.
U.S. Appl. No. 14/135,265, Non Final Office Action mailed Jul. 29, 2015, 11 pgs.
U.S. Appl. No. 14/135,265, Response filed Oct. 28, 2015 to Non Final Office Action mailed Jul. 29, 2015, 8 pgs.
U.S. Appl. No. 14/140,823, Non Final Office Action mailed Aug. 5, 2015, 6 pgs.
U.S. Appl. No. 14/140,823, Non Final Office Action mailed Nov. 23, 2015, 11 pgs.
U.S. Appl. No. 14/140,823, Preliminary Amendment filed Mar. 26, 2014, 3 pgs.
U.S. Appl. No. 14/140,823, Response filed Nov. 5, 2015 to Non Final Office Action mailed Aug. 5, 2015, 7 pgs.
U.S. Appl. No. 14/141,034, Preliminary Amendment filed Dec. 26, 2014, 7 pgs.
U.S. Appl. No. 14/141,985, Non Final Office Action mailed Jul. 8, 2015, 20 pgs.
U.S. Appl. No. 14/141,985, Notice of Allowance mailed Oct. 26, 2015, 18 pgs.
U.S. Appl. No. 14/141,985, Response filed Oct. 2, 2015 to Non Final Office Action mailed Jul. 8, 2015, 7 pgs.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9621845B2 (en) 2013-04-26 2017-04-11 Intel IP Corporation Architecture for web-based real-time communications (WebRTC) to access internet protocol multimedia subsystem (IMS)
US9743380B2 (en) 2013-04-26 2017-08-22 Intel IP Corporation MTSI based UE configurable for video region-of-interest (ROI) signaling
US10225817B2 (en) 2013-04-26 2019-03-05 Intel IP Corporation MTSI based UE configurable for video region-of-interest (ROI) signaling
US10420065B2 (en) 2013-04-26 2019-09-17 Intel IP Corporation User equipment and methods for adapting system parameters based on extended paging cycles
US20170012891A1 (en) * 2014-02-21 2017-01-12 Telefonaktiebolaget L M Ericsson (Publ) Service delivery in a communication network
US11271862B2 (en) * 2014-02-21 2022-03-08 Telefonaktiebolaget Lm Ericsson (Publ) Service delivery in a communication network

Also Published As

Publication number Publication date
WO2014176245A1 (en) 2014-10-30
EP2989772A1 (en) 2016-03-02
CN105052227B (en) 2019-05-21
CN105144768A (en) 2015-12-09
US9325937B2 (en) 2016-04-26
TWI635751B (en) 2018-09-11
KR20150121190A (en) 2015-10-28
BR112015024631A2 (en) 2017-12-19
EP2989728A4 (en) 2016-12-07
US9294714B2 (en) 2016-03-22
WO2014175967A1 (en) 2014-10-30
HK1217832A1 (en) 2017-01-20
WO2014176089A1 (en) 2014-10-30
CN105103626B (en) 2020-04-24
WO2014176200A1 (en) 2014-10-30
TW201611634A (en) 2016-03-16
EP3094063A1 (en) 2016-11-16
CN105324952B (en) 2018-10-16
EP2989827B1 (en) 2020-08-26
US9414306B2 (en) 2016-08-09
TW201511591A (en) 2015-03-16
HUE040641T2 (en) 2019-03-28
EP2989790A4 (en) 2016-11-09
EP3094063B1 (en) 2018-03-07
EP2989790A1 (en) 2016-03-02
EP2989833A1 (en) 2016-03-02
CN105052052A (en) 2015-11-11
KR102063460B1 (en) 2020-01-08
US20160050619A1 (en) 2016-02-18
US20160294514A1 (en) 2016-10-06
TW201513672A (en) 2015-04-01
WO2014175997A1 (en) 2014-10-30
US20160057769A1 (en) 2016-02-25
HK1218034A1 (en) 2017-01-27
TW201507388A (en) 2015-02-16
CN105052202B (en) 2019-05-10
JP2016521395A (en) 2016-07-21
KR20170010448A (en) 2017-01-31
CN105052052B (en) 2019-02-22
TW201720140A (en) 2017-06-01
TW201507381A (en) 2015-02-16
HK1220846A1 (en) 2017-05-12
EP2989829A4 (en) 2017-02-22
US20160056992A1 (en) 2016-02-25
US20140320587A1 (en) 2014-10-30
US20170055239A1 (en) 2017-02-23
US20160227166A1 (en) 2016-08-04
HK1217144A1 (en) 2016-12-23
EP2989729A1 (en) 2016-03-02
CN105103519B (en) 2018-12-18
CN105052109A (en) 2015-11-11
JP2016517234A (en) 2016-06-09
US20160029247A1 (en) 2016-01-28
US9288434B2 (en) 2016-03-15
JP2017195603A (en) 2017-10-26
CN111935128A (en) 2020-11-13
US20170244765A1 (en) 2017-08-24
EP2989734A4 (en) 2017-04-26
TW201507374A (en) 2015-02-16
TW201507511A (en) 2015-02-16
EP2989728A1 (en) 2016-03-02
TWI559790B (en) 2016-11-21
KR20150121110A (en) 2015-10-28
US20140321343A1 (en) 2014-10-30
TWI589159B (en) 2017-06-21
EP2989829B1 (en) 2018-10-24
TW201446026A (en) 2014-12-01
US9307192B2 (en) 2016-04-05
TWI542231B (en) 2016-07-11
CN105103519A (en) 2015-11-25
HUE037091T2 (en) 2018-08-28
WO2014175990A1 (en) 2014-10-30
EP2989734A1 (en) 2016-03-02
TWI578796B (en) 2017-04-11
US9743380B2 (en) 2017-08-22
EP2989842B1 (en) 2019-09-11
TWI568207B (en) 2017-01-21
JP6138340B2 (en) 2017-05-31
HK1217140A1 (en) 2016-12-23
TW201501498A (en) 2015-01-01
WO2014175923A1 (en) 2014-10-30
US20170374647A1 (en) 2017-12-28
US20140321360A1 (en) 2014-10-30
US9621845B2 (en) 2017-04-11
WO2014176058A1 (en) 2014-10-30
HK1220858A1 (en) 2017-05-12
CN105340327A (en) 2016-02-17
EP2989772A4 (en) 2016-12-07
TW201446027A (en) 2014-12-01
US10420065B2 (en) 2019-09-17
EP2989777B1 (en) 2022-07-13
KR101825073B1 (en) 2018-03-14
EP2989833B1 (en) 2019-09-04
TW201509204A (en) 2015-03-01
WO2014175968A1 (en) 2014-10-30
TWI559776B (en) 2016-11-21
CN105103648A (en) 2015-11-25
PL2989777T3 (en) 2022-10-03
US20160037547A1 (en) 2016-02-04
ES2666554T3 (en) 2018-05-07
EP2989829A1 (en) 2016-03-02
WO2014175919A1 (en) 2014-10-30
TWI523555B (en) 2016-02-21
TWI559714B (en) 2016-11-21
US10638449B2 (en) 2020-04-28
US20140323128A1 (en) 2014-10-30
HK1217852A1 (en) 2017-01-20
EP2989830A1 (en) 2016-03-02
ES2703980T3 (en) 2019-03-13
US20200229136A1 (en) 2020-07-16
TWI539769B (en) 2016-06-21
US10225817B2 (en) 2019-03-05
US20140325078A1 (en) 2014-10-30
US10237846B2 (en) 2019-03-19
HK1218210A1 (en) 2017-02-03
EP2989827A4 (en) 2016-12-21
CN105144768B (en) 2019-05-21
KR20180019770A (en) 2018-02-26
CN105103622A (en) 2015-11-25
EP2989830A4 (en) 2017-01-11
US11122538B2 (en) 2021-09-14
CN105324952A (en) 2016-02-10
TW201507480A (en) 2015-02-16
HK1217146A1 (en) 2016-12-23
TW201728165A (en) 2017-08-01
TWI578809B (en) 2017-04-11
WO2014176480A1 (en) 2014-10-30
US9974048B2 (en) 2018-05-15
US20140321272A1 (en) 2014-10-30
WO2014176087A1 (en) 2014-10-30
EP2989790B1 (en) 2021-08-04
US20140323133A1 (en) 2014-10-30
TWI517726B (en) 2016-01-11
EP2989772B1 (en) 2020-06-17
US10306589B2 (en) 2019-05-28
TWI552619B (en) 2016-10-01
JP6272984B2 (en) 2018-01-31
TW201631957A (en) 2016-09-01
TWI578723B (en) 2017-04-11
CN111935128B (en) 2022-11-11
EP2989827A1 (en) 2016-03-02
EP2989729A4 (en) 2017-03-22
EP2989777A1 (en) 2016-03-02
CN105052202A (en) 2015-11-11
EP2989833A4 (en) 2017-02-15
EP2989842A1 (en) 2016-03-02
TWI688275B (en) 2020-03-11
CN105103626A (en) 2015-11-25
CN105052227A (en) 2015-11-11
US20140321369A1 (en) 2014-10-30
WO2014175999A1 (en) 2014-10-30
EP2989777A4 (en) 2016-12-14
CN105052114A (en) 2015-11-11
WO2014176106A1 (en) 2014-10-30
HK1217145A1 (en) 2016-12-23
EP2989842A4 (en) 2016-11-23

Similar Documents

Publication Publication Date Title
US9392539B2 (en) User equipment and method for feedback of user equipment performance metrics during dynamic radio switching
US10841838B2 (en) Communication method and device
EP2868134B1 (en) Devices and methods for radio communication network guided traffic offload
JP6635044B2 (en) Radio resource control system, radio base station, relay device, radio resource control method and program
EP2827649B1 (en) User equipment and method for user equipment feedback of flow-to-rat mapping preferences
US9313697B2 (en) Optimized offloading to WLAN in 3GPP-RAT mobility
US20170111854A1 (en) Quality of service aware access point and device steering
US10212631B2 (en) Methods and devices for fast downlink radio access technology selection
US10659994B2 (en) Network nodes, wireless communication system and methods thereof
US20140355566A1 (en) Cross Radio Access Technology Access with Handoff and Interference Management Using Communication Performance Data
US20170318602A1 (en) Network node and method for handling a process of controlling a data transfer related to video data of a video streaming service
US11917471B2 (en) Dynamically changing the primary cell (PCell) for fifth generation (5G) carrier aggregation
US20190268814A1 (en) Network Node and Methods Therein for User Plane Switching
US9237461B1 (en) Selecting access nodes for broadcast
US9001769B1 (en) Managing access node channel loading
KR20120012865A (en) Method and apparatus for allocating resource of base station in mobile communication system
US9525535B1 (en) Systems and methods for scheduling transmissions from an access node
US20210352529A1 (en) A network node and method in a wireless communications network
Goudar et al. Implementation of an offloading strategy in heterogeneous environment

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTEL IP CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YEH, SHU-PING;HIMAYAT, NAGEEN;TALWAR, SHILPA;AND OTHERS;SIGNING DATES FROM 20140124 TO 20140605;REEL/FRAME:033391/0768

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: INTEL CORPORATION, CALIFORNIA

Free format text: CONFIRMATORY ASSIGNMENT;ASSIGNOR:INTEL IP CORPORATION;REEL/FRAME:053066/0388

Effective date: 20200529

AS Assignment

Owner name: APPLE INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTEL CORPORATION;REEL/FRAME:053062/0703

Effective date: 20191130

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8