US9428604B1 - Nanoparticle fillers and methods of mixing into elastomers - Google Patents

Nanoparticle fillers and methods of mixing into elastomers Download PDF

Info

Publication number
US9428604B1
US9428604B1 US13/731,666 US201213731666A US9428604B1 US 9428604 B1 US9428604 B1 US 9428604B1 US 201213731666 A US201213731666 A US 201213731666A US 9428604 B1 US9428604 B1 US 9428604B1
Authority
US
United States
Prior art keywords
elastomer
nanoparticle
latex
nanoparticles
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/731,666
Inventor
William L. Hergenrother
Waruna C. B. Kiridena
James H. Pawlow
James D. Ulmer
Christopher G. Robertson
Michael Davis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to US13/731,666 priority Critical patent/US9428604B1/en
Assigned to BRIDGESTONE CORPORATION reassignment BRIDGESTONE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAVIS, MICHAEL C., KIRIDENA, WARUNA C.B., QUINN, JEFFREY D., ROBERTSON, CHRISTOPHER G., ULMER, JAMES D., HERGENROTHER, WILLIAM L., PAWLOW, JAMES H.
Priority to US15/250,025 priority patent/US10407522B1/en
Application granted granted Critical
Publication of US9428604B1 publication Critical patent/US9428604B1/en
Priority to US16/564,718 priority patent/US11505635B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/20Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds unconjugated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • C08L13/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • C08L9/08Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene
    • C08J2309/08Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2313/00Characterised by the use of rubbers containing carboxyl groups
    • C08J2313/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/08Copolymers of styrene

Definitions

  • This disclosure relates to nanoparticles and methods of blending them into polymeric matrices.
  • core-shell particles for use in plastic compositions as impact modifiers have been in use for many years.
  • Rubber compositions may also include core-shell particles, as taught, for example, by U.S. Pat. No. 6,437,050.
  • Living anionic polymerization methods are known for making core-shell nanoparticles. These may be formed by crosslinking polymer chains that are formed into a micelle. Furthermore, certain functionalized nanoparticles have also been synthesized.
  • determining what functional groups on an additive will be useful with a particular polymer matrix is a challenge.
  • a particular challenge with functionalized polymeric nanoparticles is to maintain the stability of the particle suspension during the polymerization formation and to maintain while compounding with a polymer matrix.
  • challenges are also present for efficient and thorough blending of the particles into a polymer system with uniform distribution.
  • Rubber polymeric matrices in particular, may be advantageously modified by the addition of various nanoparticles.
  • the physical properties of rubber moldability and tenacity can be improved through such additions.
  • the simple indiscriminate addition of nanoparticles to rubber is likely to be inhomogeneous and cause degradation of the matrix material.
  • the selection of nanoparticles having suitable size, material composition, and surface chemistry, etc. will improve the matrix characteristics.
  • An efficient technique for blending the nanoparticles into the rubber to maximize uniform distribution is also desirable.
  • a polymeric nanoparticle includes a copolymer comprising a vinyl-aromatic monomer and a heterocyclic monomer.
  • the copolymer is crosslinked with a multifunctional crosslinking agent that is polymerizable through an addition reaction.
  • a composition in another embodiment, includes an elastomer and polymeric nanoparticles, wherein each polymeric nanoparticle comprises a copolymer including a vinyl-aromatic monomer and a heterocyclic monomer.
  • the copolymer is crosslinked with a multifunctional crosslinking agent that is polymerizable through an addition reaction.
  • a method for making a composition includes the steps of: mixing, in the substantial absence of solvent, a dry elastomer; and adding to the dry elastomer and mixing, in aqueous solution, a nanoparticle latex that comprises polymerized mono-vinyl monomer-contributed units crosslinked with a multifunctional crosslinking agent that is polymerizable through an addition reaction.
  • a nanoparticle latex that comprises polymerized mono-vinyl monomer-contributed units crosslinked with a multifunctional crosslinking agent that is polymerizable through an addition reaction.
  • an additional unsaturated elastomer that may be the same or different as the dry unsaturated elastomer is mixed in.
  • the nanoparticles are present in a volume fraction of the composition of about 0.02 to about 0.50.
  • a method for making a composition includes: blending (a) a polymeric nanoparticle latex comprising polymerized mono-vinyl monomer contributed units crosslinked with a multifunctional crosslinking agent that is polymerizable by means of an addition reaction into (b) an elastomer latex, thereby forming a pre-blended nanoparticle latex, and then mixing the pre-blended nanoparticle elastomer latex into a dry unsaturated elastomer.
  • a polymeric nanoparticle composition in another embodiment, includes nanoparticles having a polymeric core including vinyl-aromatic mono-vinyl monomer contributed units crosslinked with a multifunctional crosslinking agent polymerizable through an addition reaction.
  • the polymeric core is essentially free of units of unsaturation and has a weight average particle diameter of about 10 to about 500 nanometers as determined by field flow fractionation on a sample swollen in THF solvent.
  • a method for making a polymeric nanoparticle composition includes: dissolving an elastomer in a solvent or providing an elastomer dissolved in solvent; mixing the elastomer in solution with an aqueous nanoparticle latex in a multi-elements static mixer to form an elastomer and nanoparticle latex mixture; then flash drying the elastomer and nanoparticle latex mixture upon exiting the mixer.
  • a method for making an elastomeric nanoparticle composition includes: mixing an elastomer with an aqueous nanoparticle latex in an intermeshing mixer; venting the intermeshing mixer to remove water; and recovering the elastomeric nanoparticle composition.
  • FIG. 1 is a plot of G′ and tan delta versus strain % corresponding to Examples 14 and
  • FIG. 2 is a plot of tan delta versus temperature corresponding to Examples 20-23.
  • FIG. 3 is a plot of G′ versus strain % corresponding to Examples 20-23.
  • FIG. 4 is a plot of tan delta versus strain % corresponding to Examples 20-23.
  • FIG. 5 is 13 C NMR spectra of A) styrene, ethyl styrene, and DVB monomers in liquid state, B) sodium lauryl sulfate in solid state, C) nanoparticles as described herein in solid state and including the sodium lauryl sulfate, and D) a styrene-butadiene copolymer mixed with the nanoparticles shown in C), in solid state.
  • FIG. 6 is a plot of strain sweep (SS) versus tan delta corresponding to Examples 31-37.
  • emulsion synthesized nanoparticles that may be functionalized, elastomer compositions incorporating such nanoparticles, and several techniques for incorporating functionalized or un-functionalized nanoparticles into elastomeric compositions.
  • the nanoparticles function as at least a partial replacement for reinforcing filler in the elastomeric composition.
  • the nanoparticles are formed through aqueous free-radical emulsion polymerization of a vinyl-aromatic monomer and crosslinked with a multifunctional crosslinking agent that is polymerizable through an addition reaction.
  • the nanoparticles are functionalized with a group that will promote polymer interaction, but that will limit agglomeration of the functional groups on the particles to themselves, similar to the Payne effect that is seen with silica.
  • this type of particle is a moderate density polymeric composition that is much less dense than typical reinforcing fillers, such as carbon black or silica.
  • embodiments of the nanoparticles disclosed herein are believed to be a capable substitute for all or part of the carbon-black or silica reinforcement.
  • the nanoparticles are a copolymer of a vinyl-aromatic monomer and heterocyclic monomer, such as an oxazoline monomer.
  • the copolymer is crosslinked with a cross-linking agent that is multifunctional and polymerizable through an addition reaction.
  • the vinyl-aromatic monomer may, for example, be a monomer represented by the formula I:
  • R 2 is selected from hydrogen, or substituted or unsubstituted, straight or branched, cyclic or acyclic C 3 -C 8 alkyl groups.
  • R 3 is an alkyl group selected from phenyl, naphthyl, pyridyl, or R 2 substituted phenyl, naphthyl, or pyridyl.
  • styrene alpha-methylstyrene, 1-vinyl naphthalene, 2-vinyl naphthalene, 1-alpha-methyl vinyl naphthalene, 2-alpha-methyl vinyl naphthalene, vinyl toluene, isomers of vinyl toluene, 2-, 3-, and 4-substituted vinyl toluene, and 2-, 3-, or 4-ethyl styrene (ES) e, methoxystyrene, t-butoxystyrene, as well as alkyl, cycloalkyl, aryl, alkaryl, and aralkyl substituted aromatic groups, in which the total number of carbon atoms in the combined hydrocarbon is not greater than 18.
  • ES ethyl styrene
  • vinyl-aromatic monomer contributed units comprise about 30 to about 99 weight percent of the total weight of the nanoparticles such as about 50% to about 95%, or about 55% to about 75%.
  • the multifunctional crosslinking agent that is polymerizable through an addition reaction includes monomers that are at least bifunctional, wherein the two functional groups are capable of reacting with the vinyl-aromatic monomer.
  • suitable cross-linking agents include multiple-vinyl-aromatic monomers in general.
  • cross-linking agents include di- or tri-vinyl-substituted aromatic hydrocarbons, such as diisopropenylbenzene, triiisopropenylbenzene, divinylbenzene (DVB), trivinylbenzene, N,N′-m-phenylenedimaleimide, N,N′-(4-methyl-m-phenylene)dimaleimide, acrylates and methacrylates of polyhydric C 2 -C 10 alcohols, acrylates and methacrylates of polyethylene glycol having from 2 to 20 oxyethylene units, polyesters composed of aliphatic di- and/or polyols, with maleic acid, fumaric acid, and itaconic acid.
  • Multiple-vinyl-aromatics, such as divinylbenzene provide excellent properties for some applications.
  • the multifunctional crosslinking agent is present in an amount of about 1% to about 30% of the total combined weight of the crosslinking agent and mono-vinyl-aromatic monomer, such as about 5% to about 25% or about 10% to about 20%, or in another embodiment, up to 60%, such as about 4% to about 45%, or about 8% to about 35%.
  • the multifunctional crosslinking agent is included in a weight equal to about 0.1 to about 20 weight percent of the heterocyclic monomer contributed unit, such as about 0.1 to about 15%, about 0.5 to about 5%, about 10 to about 20%, or about 7 to about 15%.
  • the heterocyclic monomer may, for example, comprise a 4 to 8 membered hydrocarbon ring including one, two, three, or four heteroatoms.
  • the ring structure may include one or more units of unsaturation.
  • the heteroatoms may be selected from one or more of nitrogen, oxygen, and sulfur.
  • the cyclic structure may have constituent groups, including a group with a polymerizable double bond.
  • heterocyclic monomer is according to formula (II):
  • R 1 -R 5 are independently selected from the group consisting of hydrogen, a branched or linear C 1 -C 20 alkyl group, a branched or linear C 3 -C 20 , cycloalkyl group, a branched or linear C 6 -C 20 aryl group and a branched or linear C 7 -C 20 alkylaryl group.
  • R 1 contains at least a polymerizable double bond.
  • R 1 may be an unsaturated isopropenyl group, a vinyl group, or a phenyl group substituted with an unsaturated moiety.
  • the oxazoline may be one of the vinyl oxazoline compounds disclosed in U.S. Pat. No. 6,596,798 and U.S. Pat. No. 7,186,845 incorporated herein by reference.
  • the oxazoline monomer is 2-isopropenyl-2-oxazoline (IPO).
  • the oxazoline functionality is believed to provide interaction with a functionalized polymer while not contributing to agglomeration of the nanoparticle filler.
  • the nanoparticles include about 0.1 to about 30 weight percent of the heterocyclic monomer contributed unit, such as about 0.1% to about 15%, about 0.5% to about 5%, about 10% to about 20%, or about 7% to about 15%.
  • the nanoparticles are not functionalized or copolymerized with functional group containing monomers.
  • Such nanoparticles include a core comprising vinyl-aromatic monomer contributed units that are crosslinked with a multifunctional crosslinking agent that is polymerizable through an addition reaction.
  • the vinyl-aromatic monomer and crosslinking agent are as described above.
  • the term “core” used herein is not meant to imply that a separate outer layer must also be present.
  • the nanoparticles disclosed herein have a polymeric core that is essentially free of units of unsaturation. Essentially free as used herein means other reactants are absent to the extent they materially affect the basic and novel properties of the composition.
  • the nanoparticles disclosed herein have a weight average diameter of about 10 nm to about 500 nm as measured by field flow fractionation (FFF) with the nanoparticles swollen in THF solvent, such as, for example, about 15 to about 300 nm, about 15 to about 100 nm, about 25 to about 200 nm, or about 50 to about 100 nm.
  • FFF analysis may also be performed on an aqueous solution of the nanoparticles, and this will give particle diameters of non-swollen nanoparticles. These measurements are approximately 60% the size of the nanoparticles that are swollen in THF, but this will vary depending on the degree of crosslinking.
  • the nanoparticles disclosed herein have a density ranging from about 0.8 to about 1.5 g/cc, such as about 0.9 to about 1.2 g/cc.
  • the nanoparticles may have a density that is about 60% of the density of carbon black (CB) or silica fillers (approximately 1.8 g/cc for CB and approximately 2.0 g/cc for silica).
  • the nanoparticles have a density of about 30% to 90%, or 50% to 70% of carbon black or silica. This feature allows for a much lower weight reinforcing material with the same volume fraction (v f ) of filler and provides lower rolling resistance of a tire tread.
  • the nanoparticle density may be affected by a number of factors including the use of termonomer functional groups or the degree of crosslinking.
  • the nanoparticles disclosed have a relatively high glass transition temperature (T g ), such as about 40° C. to about 200° C., such as about 150° C. to about 195° C., or about 100° C. to about 150° C.
  • T g may be affected by a number of factors including the nature of the monomer contributed units in the nanoparticle and the degree of crosslinking.
  • the nanoparticle T g should be at least high enough to withstand temperatures required for vulcanization and use in a tire tread, or for example, about 60° C. and above, or about 120° C. and above.
  • the nanoparticles are incorporated into an elastomer having unsaturation to form a well-distributed elastomeric composition.
  • the elastomer may be selected from the group consisting of: conjugated diene polymers, copolymers or terpolymers of conjugated diene monomers and monovinyl-aromatic monomers, or more specifically, poly(styrene-butadiene), polybutadiene, natural rubber, polyisoprene, poly(isoprene-styrene), poly(isoprene-butadiene), poly(styrene-isoprene-butadiene), nitrile rubber, halobutyl rubber, butyl rubber, and combinations thereof.
  • the elastomer is functionalized with a carboxyl functional group.
  • Other functional groups may also be used, such as hydroxyl, vinyl, hydroxylaromatics, (such as phenolics).
  • the functional group may be incorporated into the elastomer by polymerizing functional monomers or through other known means such as post polymerization functionalization, or by functional terminators or initiators.
  • the elastomer may be carboxylated poly(styrene-butadiene).
  • the elastomer has a number average molecular weight of about 100 kg/mol and higher, such as about 150 kg/mol to about 700 kg/mol, about 200 kg/mol to about 500 kg/mol, or about 250 kg/mol to about 450 kg/mol.
  • the nanoparticles are present in the elastomer composition in a volume fraction (v f ) of about 0.02 to about 0.5, such as, for example, about 0.05 to about 0.4, about 0.16 to about 0.35, or about 0.24 to about 0.3.
  • the nanoparticles can be used in volume amounts that exceed the volume amounts that typical carbon black or silica fillers can be effectively used in rubber compositions, such as, for example volume fractions of about 0.20 to about 0.28, or about 0.22 to about 0.26.
  • Embodiments of the methods and compositions disclosed herein allow for a higher volume fraction of filler than is conventional with other reinforcing fillers.
  • volume fraction of nanoparticles in a like elastomeric matrix can be difficult (e.g. when both the nanoparticles and the elastomeric matrix include the same monomer-contributed units) with existing NMR analysis techniques. As disclosed in the Examples section a method of analysis with 13 C MAS NMR was developed to determine the nanoparticle volume fraction in a like rubber matrix.
  • the unsaturated elastomer of the composition is synthesized by emulsion polymerization and may be dry or in a latex. In another embodiment, the unsaturated elastomer is synthesized by solution polymerization.
  • the composition may have significant reductions (e.g. 5% and greater) in compound density, reduced abrasion resistance, and 60° C. tan ⁇ .
  • nanoparticles disclosed herein are expected to provide reinforcement akin to a conventional filler, they do not self-associate and cause an increase in the Payne effect.
  • An embodiment of the composition containing the nanoparticles may also include a portion of reinforcing filler, such as silica, carbon black, and/or other mineral fillers.
  • reinforcing silica fillers which can be used in the vulcanizable elastomeric compositions of the present disclosure include wet silica (hydrated silicic acid), dry silica (anhydrous silicic acid), and calcium silicate. Such reinforcing fillers are commercially available. Other suitable fillers include aluminum silicate, and magnesium silicate. In one embodiment, precipitated amorphous wet-process, hydrated silicas can be employed. For example, silica can be employed in an amount of about 1 to about 80 phr, in an amount of about 5 to about 60 phr, or in an amount of about 10 to about 40 phr.
  • silica fillers examples include, but are not limited to, HI-SIL 190, HI-SIL 210, HI-SIL 215, HI-SIL 233, and HI-SIL 243, produced by PPG Industries of Pittsburgh, Pa., U.S.A.
  • HI-SIL 190 examples include, but are not limited to, HI-SIL 190, HI-SIL 210, HI-SIL 215, HI-SIL 233, and HI-SIL 243, produced by PPG Industries of Pittsburgh, Pa., U.S.A.
  • a number of useful commercial grades of different silicas are also available from EVONIK (e.g., VN2, VN3), RHODIA (e.g., ZEOSIL 1165 MP0), and J. M. HUBER.
  • the rubber compositions of the present disclosure can be compounded with any form of carbon black, with silica, as described above, or with both carbon black and silica.
  • the carbon black can be present, for example, in an amount ranging from about 1 to about 80 phr, such as, for example, in an amount of about 5 to about 60 phr, or in an amount of about 10 to about 40 phr.
  • the carbon black can include any commonly available, commercially-produced carbon black.
  • carbon blacks having a surface area of at least 10 m 2 /g, such as, in the range of from 35 m 2 /g to 200 m 2 /g, can be used in the present disclosure.
  • useful carbon blacks are furnace blacks, channel blacks, thermal blacks, and lamp blacks.
  • a mixture of two or more of the above blacks can be used in preparing the carbon black products of the present disclosure.
  • suitable carbon blacks useful in the present disclosure include, but are not limited to, N-110, N-220, N-339, N-330, N-352, N-550, N-660, as designated by ASTM D-1765-82a.
  • certain additional fillers can also be utilized in the vulcanizable elastomeric compositions of the present disclosure, including mineral fillers, such as clay, talc, aluminum hydrate, aluminum hydroxide and mica.
  • mineral fillers such as clay, talc, aluminum hydrate, aluminum hydroxide and mica.
  • the foregoing additional fillers may, for example, be utilized in an amount in the range of from about 0.1 to about 40 phr.
  • Silica-based coupling and compatibilizing agents suitable for use in the present disclosure include, but are not limited to, silane coupling agents containing polysulfide components, or structures such as, for example, trialkoxyorganosilane polysulfides, containing from about 2 to about 8 sulfur atoms in a polysulfide bridge such as, for example, bis-(3-triethoxysilylpropyl)tetrasulfide (“Si-69”), bis-(3-triethoxysilylpropyl)disulfide (“Si-75”), and a NXT silane.
  • the composition is free of silane coupling agents.
  • the rubber composition can be compounded by methods generally known in the rubber compounding art, such as mixing the various vulcanizable polymer(s) with various commonly used additive materials such as, for example, curing agents, activators, retarders and accelerators, processing additives, such as oils, resins (including tackifying resins), plasticizers, pigments, additional fillers, fatty acids, zinc oxide, waxes, antioxidants, anti-ozonants, and peptizing agents.
  • additives mentioned above are selected and commonly used in conventional amounts.
  • Vulcanizable elastomeric compositions can be prepared by mixing a rubber and a nanoparticle composition either alone or with reinforcing fillers comprising silica, a carbon black, or a mixture of the two.
  • a rubber and nanoparticle composition can also be mixed in a pre-blended composition with subsequent addition to additional rubber components.
  • the composition can also comprise a processing aid and/or a coupling agent, a curing agent, and/or an effective amount of sulfur to achieve a satisfactory cure of the composition.
  • Rubbers suitable for use to make tire rubber formulations according to the present disclosure include, for example, conjugated diene polymers, copolymers or terpolymers of conjugated diene monomers and monovinyl-aromatic monomers, or more specifically, poly(styrene-butadiene), polybutadiene, natural rubber, polyisoprene, poly(isoprene-butadiene), poly(styrene-isoprene), pol(isoprene-isoprene-butadiene), nitrile rubber, halobutyl rubber, butyl rubber, and combinations thereof.
  • rubbers may also be additionally utilized in the composition, including neoprene, silicone rubber, the fluoroelastomers, ethylene acrylic rubber, ethylene-propylene rubber, ethylene-propylene terpolymer, ethylene vinyl acetate copolymer, epichlorohydrin rubber, chlorinated polyethylene-propylene rubbers, chlorosulfonated polyethylene rubber, hydrogenated nitrile rubber, and tetrafluoroethylene-propylene rubber.
  • silicone rubber the fluoroelastomers
  • ethylene acrylic rubber ethylene-propylene rubber
  • ethylene-propylene terpolymer ethylene vinyl acetate copolymer
  • epichlorohydrin rubber chlorinated polyethylene-propylene rubbers
  • chlorosulfonated polyethylene rubber chlorosulfonated polyethylene rubber
  • hydrogenated nitrile rubber hydrogenated nitrile rubber
  • tetrafluoroethylene-propylene rubber tetrafluoroethylene-propy
  • the nanoparticles are synthesized by free radical aqueous emulsion polymerization.
  • the nanoparticles may be synthesized by mixing a vinyl-aromatic monomer, such as those discussed above, with a multifunctional crosslinking agent that is polymerizable through an addition reaction, such as those discussed above.
  • an aqueous solution including vinyl-aromatic monomers such as divinylbenzene, styrene, and ethyl styrene monomers may be prepared.
  • Antioxidants used to stabilize the supplied materials may be extracted with a base, such as sodium hydroxide. Washing with distilled water may be performed until a substantially neutral pH is obtained, such as a pH of about 6.5 to about 8, less than 7 to about 7.3. Subsequent to the washing step, drying over a drying agent, such as anhydrous sodium sulfate may be performed.
  • a non-functionalized nanoparticle is synthesized.
  • a vinyl-aromatic monomer blend including the crosslinking agent, such as a DVB/Styrene/Ethyl Styrene monomer blend is added to oxygen-free water.
  • a surfactant such as sodium dodecyl sulfate or other common surfactants, is added.
  • the mixture is then stirred while heating.
  • the pH of the mixture may be controlled by adding a base such as sodium bicarbonate.
  • a radical generating initiator such as potassium persulfate or other free radical initiator known to those in the art, is then added to start the polymerization reaction.
  • reaction is terminated by adding a quenching or terminating agent.
  • a quenching or terminating agent for example, aqueous solutions of sodium salt diethyldithiocarbamic acid, dimethyldithiocarbamic acid, Na 2 S 2 O 3 , 1,4-hydroquinone, or other known quenching or terminating agents may be used.
  • a functionalized nanoparticle is synthesized.
  • a vinyl-aromatic monomer blend including the crosslinking agent, such as a DVB/styrene/ethyl styrene monomer blend is added to oxygen free water.
  • a functional monomer such as the oxazoline monomer discussed above, is also added.
  • a surfactant such as sodium dodecyl sulfate or other common surfactants, is added. The mixture is then stirred while heating. The pH of the mixture may be controlled by adding a base such as sodium bicarbonate.
  • a radical generating initiator such as potassium persulfate or a free radical initiator known to those in the art, is then added to start the polymerization reaction.
  • reaction is terminated by adding a quenching or terminating agent.
  • a quenching or terminating agent for example, aqueous solutions of sodium salt diethyldithiocarbamic acid, dimethyldithiocarbamic acid, such as sodium hyposulfate, or other known quenching or terminating agents may be used.
  • the functional monomer can be added at the same time as the monomer and the crosslinking agent.
  • nanoparticles and elastomers blended by these methods may, for example, be the nanoparticles and elastomers disclosed herein.
  • the nanoparticles comprising polymerized mono-vinyl aromatic monomers crosslinked with a multifunctional crosslinking agent that is polymerizable through an addition reaction.
  • the unsaturated elastomer may be dissolved in a suitable solvent such as hexane, and then this solution is mixed with the aqueous nanoparticle latex in a multi-elements static mixer.
  • the static mixer should have sufficient elements to produce an emulsion that may be flash dried directly upon exiting the mixer. The number of elements necessary for producing such an emulsion may be readily determined by those of skill in the art. Flash drying can be accomplished by flash evaporation of the solvent at high temperatures, such as from about 100° to about 160° C.
  • This first embodiment corresponds to the following mixing method. Dissolving an unsaturated and uncured elastomer in a solvent. Then, mixing the elastomer in solution with an aqueous nanoparticle latex in a multi-elements static mixer to form an elastomer and nanoparticle latex mixture. Upon exiting the mixer the elastomer and nanoparticle latex mixture is flash dried.
  • a second embodiment includes adding a stable, aqueous latex of the unsaturated elastomer to a mildly-stirred, stable, aqueous nanoparticle latex to give a homogenous blend of the two lattices.
  • this blend can then be desolventized by: (a) evaporation, (b) coagulation with salts or polar alcohols, or (c) flash evaporation from about 60° to about 160° C.
  • This blend may be referred to as a pre-blended nanoparticle elastomer latex, as in an embodiment it is added to and subsequently blended with a dry elastomer.
  • This second embodiment corresponds to the following mixing method. Blending (a) a polymeric nanoparticle latex comprising polymerized mono-vinyl monomers crosslinked with a multifunctional crosslinking agent that is polymerizable through an addition reaction into (b) an unsaturated elastomer latex to thereby form a pre-blended nanoparticle elastomer latex; and then mixing the pre-blended nanoparticle elastomer latex into a dry unsaturated elastomer.
  • the pre-blended nanoparticle-elastomer latex is dried by known techniques to give an elastomeric nanoparticle blend, such as by coagulation or drum drying.
  • a third approach involves first introducing a dry, solid, solvent-free, unvulcanized, unsaturated elastomer to a heated mixer such as a Brabender forming a viscous mass of elastomer. Then adding an aqueous nanoparticle latex to the viscous mass of elastomer while maintaining mixing at a speed from 10 to 300 rpms and allowing the water in the nanoparticle latex to be vented off.
  • the heating can vary from about 100° to about 180° C. with the speed varying to prevent excess foaming of the mixture.
  • the third method described above corresponds to the following mixing method: blending, in the substantial absence of solvent, a dry, uncured, unsaturated elastomer. Then a nanoparticle latex (nanoparticles in an aqueous latex) is added and mixed into the composition.
  • the nanoparticles comprise polymerized mono-vinyl monomer contributed units crosslinked with a multifunctional crosslinking agent that is polymerizable through an addition reaction
  • a fourth approach for mixing nanoparticles and elastomers comprises adding a nanoparticle latex (nanoparticles in an aqueous latex) and an elastomer into a vented, intermeshing mixer.
  • the elastomer may be dry, uncured, and unsaturated. However, in an embodiment, the elastomer is not necessarily dry, and may be in an aqueous latex form also.
  • An intermeshing mixer imparts high shear forces through the design and rotation of the rotors of the mixing apparatus.
  • Example intermeshing mixers include twin-screw extruders or tandem mixers.
  • the intermeshing mixing imparts additional energy to the composition being mixed.
  • this energy may be measured by the difference in the initial temperature and the drop or dump temperature of the composition undergoing mixing.
  • the temperature difference is about 5° C. to about 50° C., such as, for example, about 10° C. to about 35° C., or about 15° C. to about 30° C.
  • the intermeshing mixer may be set to various power levels such as about 10 to about 100 rpm, about 15 to about 90 rpm, or about 20 to about 60 rpm.
  • the composition may be resident in the intermeshing mixer for a time of about 1 to about 5 minutes, such as, for example, about 2 to about 4 minutes, or about 2.5 to about 3.5 minutes.
  • the intermeshing mixer is vented, so as to allow removal of the water from the nanoparticle latex portion.
  • the mixture should be heated to at least the boiling point of water. This is facilitated by a vented intermeshing mixer, which, unlike some other conventional elastomer mixers has reduced foaming of latex mixtures when the temperature is raised above 100° C.
  • the intermeshing mixer has several zones.
  • a zone is provided for feeding the mixing components, such as the elastomer and nanoparticle latex.
  • the elastomer in the feeding zone, is continuously mixing while the aqueous nanoparticle latex is added.
  • Example temperatures for the feeding zone are ambient temperature to less than 100° C., such as about 25° C. to about 90° C. or about 40° C. to about 60° C.
  • the temperature of the mixture in the intermeshing mixer is held at or above 100° C.
  • the temperature of the mixture may range from about 100° C. to about 180° C., such as, for example, about 155° C. to about 175° C., or about 115° C. to about 150° C.
  • a second zone is closed while the composition undergoes mixing.
  • a third zone is open for venting.
  • a fourth zone is closed for additional mixing, and the mixture is extruded in a final zone as a dry elastomer and nanoparticle mixture.
  • the extrudate may be re-cycled through the intermeshing mixer for several passes until the dry elastomer and nanoparticle mixture is substantially free of water, e.g. less than 5%, less than 3%, or less than 1% water.
  • the composition undergoes multiple passes through the extruder, such as, for example, two, three, four, or five passes through the extruder. Additional passes through a vented extruder allow for a greater amount of water to be vented, thereby concentrating the nanoparticle filler volume fraction in the elastomeric composition.
  • the nanoparticle latex prior to the intermeshing mixing step, is concentrated by vacuum concentration to further aid in reducing the water content of the composition.
  • the vented intermeshing mixer method aids in handling of the components, provides good dispersion, and facilitates higher volume fractions of nanoparticles, e.g. about 0.26 to about 0.35, or about 0.3 to about 0.5.
  • the weight percent of the nanoparticles can determined by solid state NMR such that the composition of the extrudate can be accurately measured and adjusted to a desired v f by normal rubber mixing techniques.
  • This allows the preparation of a master batch such that it can be conveniently used for blending with other fillers or polymers to provide improved properties.
  • 13 C MAS NMR may be performed on a dry elastomer and nanoparticle composition and using this data the volume fraction of nanoparticles in the dry elastomer and nanoparticle composition can be determined.
  • the v f of the composition can be adjusted by conventional rubber mixing techniques to a desired level by mixing in additional elastomer.
  • the above methods may further comprise adding an additional unsaturated elastomer that may be the same or different as the dry unsaturated elastomer.
  • the nanoparticles and rubber latex or the dry nanoparticles and elastomer mixture are added as a pre-blend to the additional unsaturated elastomer.
  • additional mixing steps may be performed at elevated temperatures to allow water to be removed while leaving a dry nanoparticle filled rubber.
  • the subsequently mixed dry unsaturated elastomer may be synthesized by solution polymerization or emulsion polymerization, natural rubber, or polymers synthesized by other polymerization processes. Thus, these methods of mixing are versatile in the types of elastomers that can be used.
  • the methods for making a nanoparticle-filled elastomeric composition further include, adding and mixing in to the composition, at a temperature of up to about 190° C., or up to about 180° C., additional components for cured elastomer compositions, known to those of skill in the art, including those discussed above, for example, silica, carbon black, oil, resin, wax, coupling agents, and combinations thereof.
  • a curing agent may be added at a temperature of up to about 50° C. to about 110° C., and the composition may be cured at a temperature of about 140° C. to about 200° C.
  • the dry nanoparticle-elastomer composition may be compounded by methods generally known in the rubber compounding art, such as mixing the unsaturated elastomer and the nanoparticles with conventional amounts of various commonly used additive materials, using standard rubber mixing equipment and procedures.
  • a vulcanized rubber product may be produced by thermomechanically mixing the rubbery matrix polymer containing nanoparticles, and various ingredients in a sequentially step-wise manner in a rubber mixer, followed by shaping and curing the composition.
  • thermomechanical mixing it is meant that various ingredients in the composition are mixed under high shear conditions where the composition autogenously heats up, with an accompanying temperature rise, as a result of the mixing primarily due to shear and associated friction within the composition in the rubber mixer.
  • composition of this invention can be used for various purposes and in various articles of manufacture, such as a tire component.
  • tire components can be built, shaped, molded and cured by various methods which are known and will be readily apparent to those having skill in such art.
  • a molded unvulcanized tire component is charged into a vulcanizing mold and then vulcanized to produce a tire component, comprising the composition described above.
  • a 19% divinylbenzene (DVB) solution mixed with styrene (S) and ethyl styrene (ES) was prepared by mixing 55% DVB/ES with S.
  • Antioxidants were extracted with 10% aqueous sodium hydroxide. This was performed three times until no color appeared in the aqueous extract. Washing with distilled water was then performed until a pH of about 7 was obtained. Drying over anhydrous sodium sulfate was performed before further use.
  • the oxygen-free distilled water was prepared by boiling distilled water while bubbling nitrogen gas through the liquid and then cooled while continuing the nitrogen purge. Oxygen-free distilled water was used as the reaction media and to prepare all reagents.
  • a Wyatt Technology instrument was used for the FFF analysis.
  • the samples for FFF were prepared by dilution of the latex to approximately five-tenths of a milligram of nanoparticles per 1 mL of water. The samples were then injected into the instrument thereby introducing about 50 micrograms of nanoparticles into the sample chamber.
  • Pyrolysis GC-FID was used to confirm the particle composition in certain Examples.
  • samples with known compositions were used for the calibration of styrene, ethyl styrene and divinylbenzene. The conditions used are shown below.
  • FID Flame ionization detector
  • Air flow to the detector 300 mL/min
  • Table 1 below shows the temperature program of the GC column oven.
  • Example 2 was prepared by the same method as Example 1, however, the component amounts were varied and the potassium persulfate was added in solid form. The component details and particle measurements are reported in Table 2.
  • the calculated polymeric solids were 22.19%.
  • Examples 4 and 5 were prepared by the same method as Example 1; however, the component amounts were varied. Further details are reported in Table 2.
  • a white emulsion was initially formed that became opaque within 10 minutes.
  • the power was interrupted for 50 minutes at this point, just as the exothermic reaction began and the temperature reached 52° C.
  • the stirring was continued at 670 rpm and the temperature was increased from 48 to 72° C. for the next hour before being reduced to 450 rpm for 16 hours at the 72° C.
  • heating was stopped and 0.72 mL of a 3.30M aqueous solution of 40% sodium salt of dimethyl dithiocarbamic acid was added.
  • the calculated polymeric solids were 23.76%, which had a composition of 14.86% IPO and 16.11% DVB.
  • the incorporation of the IPO was confirmed by pyrolysis GC-FID.
  • Nanoparticles g/100 21.53 24.29 22.19 23.80 25.70 23.76 22.39 mL Total Weight, grams 105.02 90.23 815.30 112.34 109.06 835.45 110.79 FFF particle size d n , ave nm 21.7 20.8 81.2 59.4 76.6 20.1 d w , ave nm 22.6 23.1 93.8 89.4 161.7 23.2 d z , ave nm 24.7 27.3 113.8 220.1 234.7 32 Dispersion, w/n 1.04 1.11 1.16 1.51 2.11 1.15
  • Latex samples of nanoparticles formed in Examples 3 and 6 were blended with emulsion-polymerized styrene-butadiene rubber (E-SBR) latexes and then dried to form a polymer-filler composite with filler volume fraction of approximately 0.2 (100 phr of polymer and 30 phr of nanoparticles).
  • E-SBR emulsion-polymerized styrene-butadiene rubber
  • the dried nanoparticle and polymer pre-blends were mixed in the formulation given below using a Brabender mixer having cam rotors that have a 307 cm 3 working volume.
  • the nanoparticles were employed as the only filler in the rubber and were also considered in combination with carbon black (50/50 by volume). All of the final compounds were designed to have a filler volume fraction of approximately 0.2, which required a lower phr amount of the nanoparticles than carbon black. This was due to the lower density (approx. 1.1 g/cc) of the nanoparticles compared to carbon black (approx. 1.8 g/cc). Test results are reported in Table 3 and FIG. 1 .
  • significant reductions e.g. 5% and greater
  • Abrasion loss may be performed as disclosed in U.S. 2003/0127169, which is herein incorporated by reference.
  • N/A represent data which could not be acquired due to difficult de-molding of compounds sticking to the mixer and the mill.
  • Testing denoted as SS was done in a strain sweep mode from 0.25 to 14.75% E in 0.25% increments.
  • TS was done by a temperature sweep from ⁇ 80° C. to 100° C. in 5° C. increments.
  • a total of 798.24 g of latex was obtained with a pH of about 7, as measured by a paper strip.
  • the calculated polymeric solids were 23.34%, which had a composition of 9.90% IPO and 16.59% DVB.
  • the incorporation of the IPO was confirmed by pyrolysis GC.
  • the isolated weight of latex was 823.82 g and it had a pH of about 7 as measured by a paper strip.
  • the calculated polymeric solids were 23.24% and 26.54% total solids.
  • the FFF analysis was also performed on an aqueous solution of the nanoparticles that did not cause the nanoparticles to swell, and the measurements were approximately 60% the size of the nanoparticles that were swollen in THF.
  • the d m of the nanoparticles in water (a non-swelling solvent) was 12.0, and the d z was 16.1.
  • nanoparticle latexes of Examples 18 and 19 were then blended in a Brabender mixer with a standard solution styrene-butadiene rubber (std. S-SBR), having a 12% vinyl polybutadiene content, a 23.5% styrene content, a Mooney ML 4 at 100° C. of 55, and a T g of ⁇ 62° C. Further details of the blending are presented in Table 4.
  • std. S-SBR standard solution styrene-butadiene rubber
  • Example 21 Std. S-SBR (phr) 100 100 Nanoparticle latex Ex. 18 Ex. 19 used % nanoparticles in 26.34 23.24 latex g latex used 39.86 45.18 g nanoparticles 10.5 10.5 used phr, nanoparticles 30.00 30.00 in mixture % solids (inorganic 3.15 3.31 salts) v f 0.2023 0.2023 Particle Yes No functionality Step Temp rpm Mins. Step Temp Rpm Mins.
  • Rubber 105 50 1 Rubber 105 50 1 Conditions 1 ⁇ 3 105 30 3 1 ⁇ 3 105 30 3 (small Brabender latex latex mixer with a 59.5 1 ⁇ 3 105 30 3 1 ⁇ 3 105 30 3 cm 3 working latex latex volume) 1 ⁇ 3 105 30 3 1 ⁇ 3 105 30 3 latex latex 130 30 3 130 30 3 140 50 2 140 50 2 Drop 25 Drop 25 Mix Number- 1 2 Average 1 2 Average latex, charge, g 41.52 41.6 41.56 44.62 44.23 44.43 Latex used, g 40.86 40.93 40.90 43.49 43.48 43.49 Particles used, g 10.76 10.78 10.77 10.11 10.10 10.11 phr, particles used 30.75 30.80 30.78 28.88 28.87 28.87 v f of particles in 0.2063 0.2066 0.2065 0.1962 0.1962 0.1962 mix Salts present, g 1.29 1.29 1.29 1.44 1.44 1.44 TY recovery, g 47.05 47.
  • Example 22 and 23 the nanoparticle/solution SBR blends of Examples 20 and 21 were blended with dried rubber in a small Brabender mixer by first adding solution polymerized SBR having a 12% vinyl polybutadiene content, a 23.5% styrene content, a Mooney ML 4 at 100° C. of 55, and a T g of ⁇ 62° C. Then the nanoparticle latex was added as shown in Table 4. The nanoparticles were employed as the only filler in the rubber and were calculated to have a filler volume fraction (v f ) of approximately 0.2.
  • Example 24 a control with 50 phr CB was prepared with this rubber and had the same v f as the nanoparticles.
  • Example 25 differs from Example 24 in that 4 phr of the SBR was replaced with 4 phr of sodium dodecyl sulfate. Additional sodium dodecyl sulfate surfactant was added in Example 25 to demonstrate whether the surfactant had any effect on the properties. It did not show any relevant effect. The density difference between the two fillers thus allows a lower density filled rubber stock to be prepared.
  • the nanoparticles of Examples 22 and 23 have an approximate density of 1.1 g/cc as compared to the carbon black of Example 24 at approximately 1.8 g/cc.
  • Table 5 and FIGS. 2-5 report further details of Examples 22-25. According to these teachings, significant reductions in compound density and 60° C. tan ⁇ (e.g. 5% or more) may be possible.
  • the stirring was continued at 360 rpm and the temperature was increased to 73° C. during the next 1.3 hrs. The temperature was held above 53° C. for the next 3 hours before 0.72 mL of a 3.30M aqueous solution of 40% sodium salt of dimethyl dithiocarbamic acid was added to deactivate the remaining persulfate catalyst.
  • the emulsion was then removed from the reactor and allowed to cool. Upon cooling no odor of DVB, S or ES could be detected. The absence of DVB, S, or ES was confirmed by GC analysis.
  • a total of 1115.03 g of latex was obtained with a pH of about 7 as measured by a paper strip.
  • the latex had a calculated nanoparticle concentration of 17.28% and total solid concentration of 19.75%.
  • Example 24 was concentrated in a 1 L flask with a Roto-Vac, using moderate vacuum while heating the water bath to 36° C. to 42° C. over an 8 hour period.
  • the final concentrated latex obtained weighed 471.61 g and had a calculated concentration of 36.5% nanoparticles and 41.7% total solids.
  • S-SBR solution polymerized SBR having a 12% vinyl polybutadiene content, a 23.5% styrene content, a Mooney ML 4 at 100° C. of 55, and a T g of ⁇ 62° C.
  • a ZSK-30 co-rotating twin screw extruder was used with the configuration listed on Table 6 below.
  • aqueous nanoparticle latexes of Examples 19 and 27 were mixed with the S-SBR by the sequence described above to give the products listed on Table 7.
  • Each length of extrudate was mixed on a two roll mill with 10 passes to ensure that the sample for subsequent analysis was homogenous.
  • three different mixes were sequentially prepared such that the amount of water that needed to be vented off during the process could be evaluated. The results of this indicated that under the conditions chosen, the foam generated by the water removal was found to be mild enough to run continuously for the mixtures chosen.
  • a solid state NMR technique was developed to determine the true concentration of the nanoparticles in the rubber.
  • Example 28A-30A the volume fraction of the components in Examples 28-30 were determined by NMR analysis. 13 C MAS NMR studies were conducted on a Varian Inova spectrometer interfaced to a Doty 5 mm double resonance NMR probe operating at an external magnetic field strength of 11.7 T (corresponding to an observational frequency of 125.68 MHz for 13 C). An rf-field strength of 45 kHz was used and the spinning speed regulated to 3500 Hz. A total of 15,000 transients were acquired while simultaneously decoupling 1H. For the spectrum in FIG. 5C a 4 mm Doty probe operating at a spinning speed of 10 kHz was used.
  • FIG. 5 shows: A.) a 13 C liquid state NMR spectrum of ethyl styrene, styrene, and divinyl benzene monomers; and 13 C MAS NMR solid state spectra plotted with normalized intensity of B.) sodium lauryl sulfate (a surfactant used in making nanoparticles), C.) dried nanoparticles of Example 1 containing sodium lauryl sulfate, and D.) the Example 21 nanoparticle and SBR rubber blend (which included the nanoparticles of Example 1.
  • the 13 C MAS NMR spectrum of the SBR polymer with nanoparticles indicated almost an identical spectrum to what is expected from a pure SBR.
  • the only clearly resolved peaks between the SBR polymer, the DVB, ES and S of the nanoparticles, and the SLS are the methyl peak on the ES, observable as a broad resonance near 15 ppm ( FIG. 5C ), the methyl peak of the SLS, observable as a broad peak at 14.3 ppm ( FIG. 5B ), and the vinyl peaks of the SBR polymer and ethyl styrene DVB monomer mixture, observable at 142 ppm and 115 ppm ( FIGS. 5A and 5D ).
  • This set of spectra also demonstrate there is substantially no unsaturation in the core of the nanoparticles attributed to the vinyl peaks shown in the FIG. 5A monomer mixture, as such peaks are not present or at least are so small as to be lost in the noise in the spectrum of the formed nanoparticles in FIG. 5C .
  • a peak resulting from unreacted vinyl monomer may be present at about 112 ppm, but it is too small to be identified over the noise.
  • the vinyl peaks can be used to determine the amount of SBR since the ES, S, and DVB in the nanoparticles should be fully polymerized in the scheme used.
  • the relative amount of ES and S, to DVB was readily measured from the starting material and when mixed with S it was found to be 1.0 to 1.3 to 5.4 moles of ES to DVB to S monomer. Also known is the weight percent of vinyl, styrene, and 1,4 BD in the Std.
  • S-SBR starting material (11% vinyl (polybutadiene), 22.5% styrene).
  • the amount of nanoparticles in the sample can be quantified (Table 8) by using the areas of the vinyl resonances, which only arise from the SBR, the methyl peak of the ES, which is only from the nanoparticles, and the methyl peak for the sodium lauryl sulfate (SLS) at 14.5 ppm through the equations
  • Vinyl ⁇ ⁇ ( g ) Area Vinyl ⁇ ( 142 ⁇ ⁇ ppm ) + Area Vinyl ⁇ ( 115 ⁇ ⁇ ppm ) 2 ⁇ 54 ⁇ ⁇ g ⁇ / ⁇ mol
  • Ethyl ⁇ ⁇ Styrene ⁇ ⁇ ( g ) ( Area Methyl ⁇ ( 15.5 ⁇ ⁇ ppm ) ) ⁇ 130 ⁇ ⁇ g ⁇ / ⁇ mol
  • SLS ⁇ ⁇ ( g ) ( Area SLS - Methyl ⁇ ( 14.5 ⁇ ⁇ ppm ) ) ⁇ 288 ⁇ ⁇ g ⁇ / ⁇ mol .
  • the amount of S and 1,4 BD can be calculated from the mass of vinyl.
  • the amount of polystyrene and DVB in the nanoparticles can be calculated from the mass of ES allowing the total weight percent of each component in the mixture to be determined as reported in Table 8 (all values reported by weight).
  • examples 31-36 the nanoparticle/elastomer blend of Examples 28-30 were compounded in a Brabender mixer and cured.
  • Examples 35 and 36 were control examples filled with carbon black.
  • the polymer and filler component of Examples 31 and 32 were comprised entirely of the extrusion blend from Examples 28 and 29 to give 0.10 and 0.25 nanoparticle of stocks in the mixer.
  • Example 33 was blended with the S-SBR to produce a composition with 24.15 phr of nanoparticle filler.
  • Example 34 unused portions of Examples 31 and 32 were blended to give a desired 31.71 phr filler.
  • Examples 33 and 34 were prepared to have matching v f of 0.167 and 0.205 with the Control Examples 35 and 36 that were filled with N339 carbon black.
  • Examples 31-36 were further compounded with 2.5 phr ZnO, 2.0 phr stearic acid, 1.0 phr antioxidant in a 160° C. Brabender having an internal volume of 59 cc with a cam rotor. The final mix was also done in the same Brabender with 1.3 phr sulfur and 1.9 phr accelerators at 90 to 110° C. Curing at 171° C. produced the composition on which the property values reported in Table 9 were determined.
  • the polymer and nanoparticle dry blends from the extruder were diluted with the S-SBR to achieve a desired volume fraction by conventional rubber mixing techniques.
  • the carbon black-filled Examples 35 and 36 were mixed in the same manner.
  • the volume fraction reported below was determined by NMR and checked by pyrolysis.
  • the strain sweep (SS) of Examples 31-37 is shown in FIG. 6 and shows that nanoparticles at low strains have lower values in tan 6 than the carbon black filled elastomers. However, the nanoparticles do not show a decrease in the tan 6 at the highest strain levels. Overall, the nanoparticles show unexpected rubber reinforcement.

Abstract

A nanoparticle includes a copolymer comprising a vinyl-aromatic monomer and a heterocyclic monomer. The copolymer is crosslinked with a multifunctional crosslinking agent polymerizable through an addition reaction. A nanoparticle and elastomer composition is disclosed. Several methods of mixing heterocyclic and non-heterocyclic monomer nanoparticles into an elastomer are also disclosed. These methods include mixing in a multi-elements static mixer and an intermeshing mixer with venting, among others.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of priority to the U.S. provisional application having the Ser. No. 61/582,226, filed on Dec. 30, 2011. This prior application is herein incorporated by reference for all purposes.
FIELD
This disclosure relates to nanoparticles and methods of blending them into polymeric matrices.
BACKGROUND
Various types of small particulate additives have been used in polymer compositions. For example, core-shell particles for use in plastic compositions as impact modifiers have been in use for many years. Rubber compositions may also include core-shell particles, as taught, for example, by U.S. Pat. No. 6,437,050. Living anionic polymerization methods are known for making core-shell nanoparticles. These may be formed by crosslinking polymer chains that are formed into a micelle. Furthermore, certain functionalized nanoparticles have also been synthesized.
As with any polymer composition, determining what functional groups on an additive will be useful with a particular polymer matrix is a challenge. In addition to the general unpredictability of the art, a particular challenge with functionalized polymeric nanoparticles is to maintain the stability of the particle suspension during the polymerization formation and to maintain while compounding with a polymer matrix. Furthermore, challenges are also present for efficient and thorough blending of the particles into a polymer system with uniform distribution.
Rubber polymeric matrices, in particular, may be advantageously modified by the addition of various nanoparticles. The physical properties of rubber moldability and tenacity can be improved through such additions. However, the simple indiscriminate addition of nanoparticles to rubber is likely to be inhomogeneous and cause degradation of the matrix material. Moreover, only the selection of nanoparticles having suitable size, material composition, and surface chemistry, etc., will improve the matrix characteristics. An efficient technique for blending the nanoparticles into the rubber to maximize uniform distribution is also desirable.
SUMMARY
In an embodiment a polymeric nanoparticle includes a copolymer comprising a vinyl-aromatic monomer and a heterocyclic monomer. The copolymer is crosslinked with a multifunctional crosslinking agent that is polymerizable through an addition reaction.
In another embodiment, a composition includes an elastomer and polymeric nanoparticles, wherein each polymeric nanoparticle comprises a copolymer including a vinyl-aromatic monomer and a heterocyclic monomer. The copolymer is crosslinked with a multifunctional crosslinking agent that is polymerizable through an addition reaction.
In another embodiment a method for making a composition includes the steps of: mixing, in the substantial absence of solvent, a dry elastomer; and adding to the dry elastomer and mixing, in aqueous solution, a nanoparticle latex that comprises polymerized mono-vinyl monomer-contributed units crosslinked with a multifunctional crosslinking agent that is polymerizable through an addition reaction. Optionally, an additional unsaturated elastomer that may be the same or different as the dry unsaturated elastomer is mixed in. The nanoparticles are present in a volume fraction of the composition of about 0.02 to about 0.50.
In another embodiment, a method for making a composition includes: blending (a) a polymeric nanoparticle latex comprising polymerized mono-vinyl monomer contributed units crosslinked with a multifunctional crosslinking agent that is polymerizable by means of an addition reaction into (b) an elastomer latex, thereby forming a pre-blended nanoparticle latex, and then mixing the pre-blended nanoparticle elastomer latex into a dry unsaturated elastomer.
In another embodiment, a polymeric nanoparticle composition includes nanoparticles having a polymeric core including vinyl-aromatic mono-vinyl monomer contributed units crosslinked with a multifunctional crosslinking agent polymerizable through an addition reaction. The polymeric core is essentially free of units of unsaturation and has a weight average particle diameter of about 10 to about 500 nanometers as determined by field flow fractionation on a sample swollen in THF solvent.
In another embodiment a method for making a polymeric nanoparticle composition includes: dissolving an elastomer in a solvent or providing an elastomer dissolved in solvent; mixing the elastomer in solution with an aqueous nanoparticle latex in a multi-elements static mixer to form an elastomer and nanoparticle latex mixture; then flash drying the elastomer and nanoparticle latex mixture upon exiting the mixer.
In another embodiment a method for making an elastomeric nanoparticle composition includes: mixing an elastomer with an aqueous nanoparticle latex in an intermeshing mixer; venting the intermeshing mixer to remove water; and recovering the elastomeric nanoparticle composition.
The terms “a,” “an,” and “the” are used to mean “one or more” unless the context clearly indicates to the contrary.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a plot of G′ and tan delta versus strain % corresponding to Examples 14 and
FIG. 2 is a plot of tan delta versus temperature corresponding to Examples 20-23.
FIG. 3 is a plot of G′ versus strain % corresponding to Examples 20-23.
FIG. 4 is a plot of tan delta versus strain % corresponding to Examples 20-23.
FIG. 5 is 13C NMR spectra of A) styrene, ethyl styrene, and DVB monomers in liquid state, B) sodium lauryl sulfate in solid state, C) nanoparticles as described herein in solid state and including the sodium lauryl sulfate, and D) a styrene-butadiene copolymer mixed with the nanoparticles shown in C), in solid state.
FIG. 6 is a plot of strain sweep (SS) versus tan delta corresponding to Examples 31-37.
DETAILED DESCRIPTION
Disclosed herein are emulsion synthesized nanoparticles that may be functionalized, elastomer compositions incorporating such nanoparticles, and several techniques for incorporating functionalized or un-functionalized nanoparticles into elastomeric compositions. In certain embodiments disclosed herein, the nanoparticles function as at least a partial replacement for reinforcing filler in the elastomeric composition.
In an embodiment, the nanoparticles are formed through aqueous free-radical emulsion polymerization of a vinyl-aromatic monomer and crosslinked with a multifunctional crosslinking agent that is polymerizable through an addition reaction. In an embodiment, the nanoparticles are functionalized with a group that will promote polymer interaction, but that will limit agglomeration of the functional groups on the particles to themselves, similar to the Payne effect that is seen with silica. In an embodiment, this type of particle is a moderate density polymeric composition that is much less dense than typical reinforcing fillers, such as carbon black or silica. Without being bound by theory, embodiments of the nanoparticles disclosed herein are believed to be a capable substitute for all or part of the carbon-black or silica reinforcement.
In an embodiment the nanoparticles are a copolymer of a vinyl-aromatic monomer and heterocyclic monomer, such as an oxazoline monomer. The copolymer is crosslinked with a cross-linking agent that is multifunctional and polymerizable through an addition reaction.
The vinyl-aromatic monomer may, for example, be a monomer represented by the formula I:
Figure US09428604-20160830-C00001

R2 is selected from hydrogen, or substituted or unsubstituted, straight or branched, cyclic or acyclic C3-C8 alkyl groups. R3 is an alkyl group selected from phenyl, naphthyl, pyridyl, or R2 substituted phenyl, naphthyl, or pyridyl.
Further specific examples include styrene, alpha-methylstyrene, 1-vinyl naphthalene, 2-vinyl naphthalene, 1-alpha-methyl vinyl naphthalene, 2-alpha-methyl vinyl naphthalene, vinyl toluene, isomers of vinyl toluene, 2-, 3-, and 4-substituted vinyl toluene, and 2-, 3-, or 4-ethyl styrene (ES) e, methoxystyrene, t-butoxystyrene, as well as alkyl, cycloalkyl, aryl, alkaryl, and aralkyl substituted aromatic groups, in which the total number of carbon atoms in the combined hydrocarbon is not greater than 18.
In an embodiment, vinyl-aromatic monomer contributed units comprise about 30 to about 99 weight percent of the total weight of the nanoparticles such as about 50% to about 95%, or about 55% to about 75%.
The multifunctional crosslinking agent that is polymerizable through an addition reaction includes monomers that are at least bifunctional, wherein the two functional groups are capable of reacting with the vinyl-aromatic monomer. Examples of suitable cross-linking agents include multiple-vinyl-aromatic monomers in general. Specific examples of cross-linking agents include di- or tri-vinyl-substituted aromatic hydrocarbons, such as diisopropenylbenzene, triiisopropenylbenzene, divinylbenzene (DVB), trivinylbenzene, N,N′-m-phenylenedimaleimide, N,N′-(4-methyl-m-phenylene)dimaleimide, acrylates and methacrylates of polyhydric C2-C10 alcohols, acrylates and methacrylates of polyethylene glycol having from 2 to 20 oxyethylene units, polyesters composed of aliphatic di- and/or polyols, with maleic acid, fumaric acid, and itaconic acid. Multiple-vinyl-aromatics, such as divinylbenzene, provide excellent properties for some applications.
In an embodiment the multifunctional crosslinking agent is present in an amount of about 1% to about 30% of the total combined weight of the crosslinking agent and mono-vinyl-aromatic monomer, such as about 5% to about 25% or about 10% to about 20%, or in another embodiment, up to 60%, such as about 4% to about 45%, or about 8% to about 35%.
In an embodiment the multifunctional crosslinking agent is included in a weight equal to about 0.1 to about 20 weight percent of the heterocyclic monomer contributed unit, such as about 0.1 to about 15%, about 0.5 to about 5%, about 10 to about 20%, or about 7 to about 15%.
The heterocyclic monomer, may, for example, comprise a 4 to 8 membered hydrocarbon ring including one, two, three, or four heteroatoms. The ring structure may include one or more units of unsaturation. The heteroatoms may be selected from one or more of nitrogen, oxygen, and sulfur. The cyclic structure may have constituent groups, including a group with a polymerizable double bond.
In an embodiment, the heterocyclic monomer is according to formula (II):
Figure US09428604-20160830-C00002

wherein R1-R5 are independently selected from the group consisting of hydrogen, a branched or linear C1-C20 alkyl group, a branched or linear C3-C20, cycloalkyl group, a branched or linear C6-C20 aryl group and a branched or linear C7-C20 alkylaryl group. In addition to the requirements above, R1 contains at least a polymerizable double bond. For example, R1 may be an unsaturated isopropenyl group, a vinyl group, or a phenyl group substituted with an unsaturated moiety. The oxazoline may be one of the vinyl oxazoline compounds disclosed in U.S. Pat. No. 6,596,798 and U.S. Pat. No. 7,186,845 incorporated herein by reference. In an embodiment, the oxazoline monomer is 2-isopropenyl-2-oxazoline (IPO).
Without being bound by theory, the oxazoline functionality is believed to provide interaction with a functionalized polymer while not contributing to agglomeration of the nanoparticle filler.
In an embodiment the nanoparticles include about 0.1 to about 30 weight percent of the heterocyclic monomer contributed unit, such as about 0.1% to about 15%, about 0.5% to about 5%, about 10% to about 20%, or about 7% to about 15%.
In an embodiment, the nanoparticles are not functionalized or copolymerized with functional group containing monomers. Such nanoparticles include a core comprising vinyl-aromatic monomer contributed units that are crosslinked with a multifunctional crosslinking agent that is polymerizable through an addition reaction. The vinyl-aromatic monomer and crosslinking agent are as described above. The term “core” used herein is not meant to imply that a separate outer layer must also be present.
In an embodiment, the nanoparticles disclosed herein have a polymeric core that is essentially free of units of unsaturation. Essentially free as used herein means other reactants are absent to the extent they materially affect the basic and novel properties of the composition.
In an embodiment, the nanoparticles disclosed herein have a weight average diameter of about 10 nm to about 500 nm as measured by field flow fractionation (FFF) with the nanoparticles swollen in THF solvent, such as, for example, about 15 to about 300 nm, about 15 to about 100 nm, about 25 to about 200 nm, or about 50 to about 100 nm. FFF analysis may also be performed on an aqueous solution of the nanoparticles, and this will give particle diameters of non-swollen nanoparticles. These measurements are approximately 60% the size of the nanoparticles that are swollen in THF, but this will vary depending on the degree of crosslinking.
In an embodiment, the nanoparticles disclosed herein have a density ranging from about 0.8 to about 1.5 g/cc, such as about 0.9 to about 1.2 g/cc. The nanoparticles may have a density that is about 60% of the density of carbon black (CB) or silica fillers (approximately 1.8 g/cc for CB and approximately 2.0 g/cc for silica). In embodiments, the nanoparticles have a density of about 30% to 90%, or 50% to 70% of carbon black or silica. This feature allows for a much lower weight reinforcing material with the same volume fraction (vf) of filler and provides lower rolling resistance of a tire tread. The nanoparticle density may be affected by a number of factors including the use of termonomer functional groups or the degree of crosslinking.
In an embodiment, the nanoparticles disclosed have a relatively high glass transition temperature (Tg), such as about 40° C. to about 200° C., such as about 150° C. to about 195° C., or about 100° C. to about 150° C. Tg may be affected by a number of factors including the nature of the monomer contributed units in the nanoparticle and the degree of crosslinking. In an embodiment, the nanoparticle Tg should be at least high enough to withstand temperatures required for vulcanization and use in a tire tread, or for example, about 60° C. and above, or about 120° C. and above.
In an embodiment, the nanoparticles are incorporated into an elastomer having unsaturation to form a well-distributed elastomeric composition.
The elastomer may be selected from the group consisting of: conjugated diene polymers, copolymers or terpolymers of conjugated diene monomers and monovinyl-aromatic monomers, or more specifically, poly(styrene-butadiene), polybutadiene, natural rubber, polyisoprene, poly(isoprene-styrene), poly(isoprene-butadiene), poly(styrene-isoprene-butadiene), nitrile rubber, halobutyl rubber, butyl rubber, and combinations thereof.
In an embodiment the elastomer is functionalized with a carboxyl functional group. Other functional groups may also be used, such as hydroxyl, vinyl, hydroxylaromatics, (such as phenolics). The functional group may be incorporated into the elastomer by polymerizing functional monomers or through other known means such as post polymerization functionalization, or by functional terminators or initiators. For example, the elastomer may be carboxylated poly(styrene-butadiene).
In an embodiment, the elastomer has a number average molecular weight of about 100 kg/mol and higher, such as about 150 kg/mol to about 700 kg/mol, about 200 kg/mol to about 500 kg/mol, or about 250 kg/mol to about 450 kg/mol.
In an embodiment, the nanoparticles are present in the elastomer composition in a volume fraction (vf) of about 0.02 to about 0.5, such as, for example, about 0.05 to about 0.4, about 0.16 to about 0.35, or about 0.24 to about 0.3. Notably, the nanoparticles can be used in volume amounts that exceed the volume amounts that typical carbon black or silica fillers can be effectively used in rubber compositions, such as, for example volume fractions of about 0.20 to about 0.28, or about 0.22 to about 0.26. Embodiments of the methods and compositions disclosed herein allow for a higher volume fraction of filler than is conventional with other reinforcing fillers.
Determining volume fraction of nanoparticles in a like elastomeric matrix can be difficult (e.g. when both the nanoparticles and the elastomeric matrix include the same monomer-contributed units) with existing NMR analysis techniques. As disclosed in the Examples section a method of analysis with 13C MAS NMR was developed to determine the nanoparticle volume fraction in a like rubber matrix.
In an embodiment, the unsaturated elastomer of the composition is synthesized by emulsion polymerization and may be dry or in a latex. In another embodiment, the unsaturated elastomer is synthesized by solution polymerization.
Depending on the amount used and the character of the nanoparticles and the unsaturated elastomer, when the nanoparticle-filled composition is compared to an identical composition with the exception that the nanoparticles replace carbon black filler, the composition may have significant reductions (e.g. 5% and greater) in compound density, reduced abrasion resistance, and 60° C. tan δ.
Although the nanoparticles disclosed herein are expected to provide reinforcement akin to a conventional filler, they do not self-associate and cause an increase in the Payne effect. An embodiment of the composition containing the nanoparticles may also include a portion of reinforcing filler, such as silica, carbon black, and/or other mineral fillers.
Examples of reinforcing silica fillers which can be used in the vulcanizable elastomeric compositions of the present disclosure include wet silica (hydrated silicic acid), dry silica (anhydrous silicic acid), and calcium silicate. Such reinforcing fillers are commercially available. Other suitable fillers include aluminum silicate, and magnesium silicate. In one embodiment, precipitated amorphous wet-process, hydrated silicas can be employed. For example, silica can be employed in an amount of about 1 to about 80 phr, in an amount of about 5 to about 60 phr, or in an amount of about 10 to about 40 phr. Examples of commercially available silica fillers which can be used in the present disclosure include, but are not limited to, HI-SIL 190, HI-SIL 210, HI-SIL 215, HI-SIL 233, and HI-SIL 243, produced by PPG Industries of Pittsburgh, Pa., U.S.A. A number of useful commercial grades of different silicas are also available from EVONIK (e.g., VN2, VN3), RHODIA (e.g., ZEOSIL 1165 MP0), and J. M. HUBER.
In one embodiment, the rubber compositions of the present disclosure can be compounded with any form of carbon black, with silica, as described above, or with both carbon black and silica. The carbon black can be present, for example, in an amount ranging from about 1 to about 80 phr, such as, for example, in an amount of about 5 to about 60 phr, or in an amount of about 10 to about 40 phr. The carbon black can include any commonly available, commercially-produced carbon black. In one embodiment, carbon blacks having a surface area of at least 10 m2/g, such as, in the range of from 35 m2/g to 200 m2/g, can be used in the present disclosure. Among useful carbon blacks are furnace blacks, channel blacks, thermal blacks, and lamp blacks. A mixture of two or more of the above blacks can be used in preparing the carbon black products of the present disclosure. Examples of suitable carbon blacks useful in the present disclosure include, but are not limited to, N-110, N-220, N-339, N-330, N-352, N-550, N-660, as designated by ASTM D-1765-82a.
In some embodiments, certain additional fillers can also be utilized in the vulcanizable elastomeric compositions of the present disclosure, including mineral fillers, such as clay, talc, aluminum hydrate, aluminum hydroxide and mica. The foregoing additional fillers may, for example, be utilized in an amount in the range of from about 0.1 to about 40 phr.
Numerous coupling agents and compatibilizing agents are known for use in combining silica and rubber, and can also be employed in the present disclosure. Silica-based coupling and compatibilizing agents suitable for use in the present disclosure include, but are not limited to, silane coupling agents containing polysulfide components, or structures such as, for example, trialkoxyorganosilane polysulfides, containing from about 2 to about 8 sulfur atoms in a polysulfide bridge such as, for example, bis-(3-triethoxysilylpropyl)tetrasulfide (“Si-69”), bis-(3-triethoxysilylpropyl)disulfide (“Si-75”), and a NXT silane. In an embodiment the composition is free of silane coupling agents.
It will be readily understood by those skilled in the art that the rubber composition can be compounded by methods generally known in the rubber compounding art, such as mixing the various vulcanizable polymer(s) with various commonly used additive materials such as, for example, curing agents, activators, retarders and accelerators, processing additives, such as oils, resins (including tackifying resins), plasticizers, pigments, additional fillers, fatty acids, zinc oxide, waxes, antioxidants, anti-ozonants, and peptizing agents. As known to those skilled in the art, depending on the intended use of the sulfur vulcanizable and sulfur vulcanized material (rubbers), the additives mentioned above are selected and commonly used in conventional amounts.
One application for nanoparticle-containing rubber compounds is in tire rubber formulations for tire components, such as, for example, tire treads, tire sidewalls, inner liners, carcass plies, et al. Vulcanizable elastomeric compositions according to the present disclosure can be prepared by mixing a rubber and a nanoparticle composition either alone or with reinforcing fillers comprising silica, a carbon black, or a mixture of the two. A rubber and nanoparticle composition can also be mixed in a pre-blended composition with subsequent addition to additional rubber components. The composition can also comprise a processing aid and/or a coupling agent, a curing agent, and/or an effective amount of sulfur to achieve a satisfactory cure of the composition.
Rubbers suitable for use to make tire rubber formulations according to the present disclosure include, for example, conjugated diene polymers, copolymers or terpolymers of conjugated diene monomers and monovinyl-aromatic monomers, or more specifically, poly(styrene-butadiene), polybutadiene, natural rubber, polyisoprene, poly(isoprene-butadiene), poly(styrene-isoprene), pol(isoprene-isoprene-butadiene), nitrile rubber, halobutyl rubber, butyl rubber, and combinations thereof. Other rubbers may also be additionally utilized in the composition, including neoprene, silicone rubber, the fluoroelastomers, ethylene acrylic rubber, ethylene-propylene rubber, ethylene-propylene terpolymer, ethylene vinyl acetate copolymer, epichlorohydrin rubber, chlorinated polyethylene-propylene rubbers, chlorosulfonated polyethylene rubber, hydrogenated nitrile rubber, and tetrafluoroethylene-propylene rubber.
In an embodiment of a method for making the nanoparticles disclosed herein, the nanoparticles are synthesized by free radical aqueous emulsion polymerization. For example, the nanoparticles may be synthesized by mixing a vinyl-aromatic monomer, such as those discussed above, with a multifunctional crosslinking agent that is polymerizable through an addition reaction, such as those discussed above.
For example, an aqueous solution including vinyl-aromatic monomers, such as divinylbenzene, styrene, and ethyl styrene monomers may be prepared. Antioxidants used to stabilize the supplied materials may be extracted with a base, such as sodium hydroxide. Washing with distilled water may be performed until a substantially neutral pH is obtained, such as a pH of about 6.5 to about 8, less than 7 to about 7.3. Subsequent to the washing step, drying over a drying agent, such as anhydrous sodium sulfate may be performed.
In an embodiment, a non-functionalized nanoparticle is synthesized. In this embodiment, a vinyl-aromatic monomer blend, including the crosslinking agent, such as a DVB/Styrene/Ethyl Styrene monomer blend is added to oxygen-free water. A surfactant, such as sodium dodecyl sulfate or other common surfactants, is added. The mixture is then stirred while heating. The pH of the mixture may be controlled by adding a base such as sodium bicarbonate. In an embodiment, a radical generating initiator, such as potassium persulfate or other free radical initiator known to those in the art, is then added to start the polymerization reaction. After polymerization occurs, the reaction is terminated by adding a quenching or terminating agent. For example, aqueous solutions of sodium salt diethyldithiocarbamic acid, dimethyldithiocarbamic acid, Na2S2O3, 1,4-hydroquinone, or other known quenching or terminating agents may be used.
In another embodiment, a functionalized nanoparticle is synthesized. In this embodiment, a vinyl-aromatic monomer blend, including the crosslinking agent, such as a DVB/styrene/ethyl styrene monomer blend is added to oxygen free water. A functional monomer, such as the oxazoline monomer discussed above, is also added. A surfactant, such as sodium dodecyl sulfate or other common surfactants, is added. The mixture is then stirred while heating. The pH of the mixture may be controlled by adding a base such as sodium bicarbonate. A radical generating initiator, such as potassium persulfate or a free radical initiator known to those in the art, is then added to start the polymerization reaction. After polymerization occurs, the reaction is terminated by adding a quenching or terminating agent. For example, aqueous solutions of sodium salt diethyldithiocarbamic acid, dimethyldithiocarbamic acid, such as sodium hyposulfate, or other known quenching or terminating agents may be used.
The functional monomer can be added at the same time as the monomer and the crosslinking agent.
Four exemplary methods for making a composition including the nanoparticles and an unsaturated elastomer are provided herein. The nanoparticles and elastomers blended by these methods, may, for example, be the nanoparticles and elastomers disclosed herein. Such as, for example, the nanoparticles comprising polymerized mono-vinyl aromatic monomers crosslinked with a multifunctional crosslinking agent that is polymerizable through an addition reaction.
In a first embodiment of the method, the unsaturated elastomer may be dissolved in a suitable solvent such as hexane, and then this solution is mixed with the aqueous nanoparticle latex in a multi-elements static mixer. The static mixer should have sufficient elements to produce an emulsion that may be flash dried directly upon exiting the mixer. The number of elements necessary for producing such an emulsion may be readily determined by those of skill in the art. Flash drying can be accomplished by flash evaporation of the solvent at high temperatures, such as from about 100° to about 160° C.
This first embodiment corresponds to the following mixing method. Dissolving an unsaturated and uncured elastomer in a solvent. Then, mixing the elastomer in solution with an aqueous nanoparticle latex in a multi-elements static mixer to form an elastomer and nanoparticle latex mixture. Upon exiting the mixer the elastomer and nanoparticle latex mixture is flash dried.
A second embodiment includes adding a stable, aqueous latex of the unsaturated elastomer to a mildly-stirred, stable, aqueous nanoparticle latex to give a homogenous blend of the two lattices. In an embodiment, this blend can then be desolventized by: (a) evaporation, (b) coagulation with salts or polar alcohols, or (c) flash evaporation from about 60° to about 160° C. This blend may be referred to as a pre-blended nanoparticle elastomer latex, as in an embodiment it is added to and subsequently blended with a dry elastomer.
This second embodiment corresponds to the following mixing method. Blending (a) a polymeric nanoparticle latex comprising polymerized mono-vinyl monomers crosslinked with a multifunctional crosslinking agent that is polymerizable through an addition reaction into (b) an unsaturated elastomer latex to thereby form a pre-blended nanoparticle elastomer latex; and then mixing the pre-blended nanoparticle elastomer latex into a dry unsaturated elastomer. In an embodiment, prior to blending into the dry unsaturated elastomer, the pre-blended nanoparticle-elastomer latex is dried by known techniques to give an elastomeric nanoparticle blend, such as by coagulation or drum drying.
A third approach involves first introducing a dry, solid, solvent-free, unvulcanized, unsaturated elastomer to a heated mixer such as a Brabender forming a viscous mass of elastomer. Then adding an aqueous nanoparticle latex to the viscous mass of elastomer while maintaining mixing at a speed from 10 to 300 rpms and allowing the water in the nanoparticle latex to be vented off. The heating can vary from about 100° to about 180° C. with the speed varying to prevent excess foaming of the mixture.
The third method described above corresponds to the following mixing method: blending, in the substantial absence of solvent, a dry, uncured, unsaturated elastomer. Then a nanoparticle latex (nanoparticles in an aqueous latex) is added and mixed into the composition. The nanoparticles comprise polymerized mono-vinyl monomer contributed units crosslinked with a multifunctional crosslinking agent that is polymerizable through an addition reaction
A fourth approach for mixing nanoparticles and elastomers comprises adding a nanoparticle latex (nanoparticles in an aqueous latex) and an elastomer into a vented, intermeshing mixer. The elastomer may be dry, uncured, and unsaturated. However, in an embodiment, the elastomer is not necessarily dry, and may be in an aqueous latex form also.
An intermeshing mixer imparts high shear forces through the design and rotation of the rotors of the mixing apparatus. Example intermeshing mixers include twin-screw extruders or tandem mixers.
The intermeshing mixing imparts additional energy to the composition being mixed. For example, this energy may be measured by the difference in the initial temperature and the drop or dump temperature of the composition undergoing mixing. In an embodiment, the temperature difference is about 5° C. to about 50° C., such as, for example, about 10° C. to about 35° C., or about 15° C. to about 30° C.
While the following will be dependent on the mass of the composition and the size of the mixer, inter alia, some example settings are provided. The intermeshing mixer may be set to various power levels such as about 10 to about 100 rpm, about 15 to about 90 rpm, or about 20 to about 60 rpm. The composition may be resident in the intermeshing mixer for a time of about 1 to about 5 minutes, such as, for example, about 2 to about 4 minutes, or about 2.5 to about 3.5 minutes.
The intermeshing mixer is vented, so as to allow removal of the water from the nanoparticle latex portion. To properly vent and remove the water, the mixture should be heated to at least the boiling point of water. This is facilitated by a vented intermeshing mixer, which, unlike some other conventional elastomer mixers has reduced foaming of latex mixtures when the temperature is raised above 100° C.
In an embodiment, the intermeshing mixer has several zones. A zone is provided for feeding the mixing components, such as the elastomer and nanoparticle latex. In an embodiment, in the feeding zone, the elastomer is continuously mixing while the aqueous nanoparticle latex is added. Example temperatures for the feeding zone are ambient temperature to less than 100° C., such as about 25° C. to about 90° C. or about 40° C. to about 60° C.
In an embodiment, in subsequent zones, the temperature of the mixture in the intermeshing mixer is held at or above 100° C. For example, in these zones the temperature of the mixture may range from about 100° C. to about 180° C., such as, for example, about 155° C. to about 175° C., or about 115° C. to about 150° C.
In an embodiment, a second zone is closed while the composition undergoes mixing. A third zone is open for venting. A fourth zone is closed for additional mixing, and the mixture is extruded in a final zone as a dry elastomer and nanoparticle mixture. If necessary to remove latent water or for other purposes, the extrudate may be re-cycled through the intermeshing mixer for several passes until the dry elastomer and nanoparticle mixture is substantially free of water, e.g. less than 5%, less than 3%, or less than 1% water. In an embodiment, the composition undergoes multiple passes through the extruder, such as, for example, two, three, four, or five passes through the extruder. Additional passes through a vented extruder allow for a greater amount of water to be vented, thereby concentrating the nanoparticle filler volume fraction in the elastomeric composition.
In an embodiment, prior to the intermeshing mixing step, the nanoparticle latex is concentrated by vacuum concentration to further aid in reducing the water content of the composition.
The vented intermeshing mixer method aids in handling of the components, provides good dispersion, and facilitates higher volume fractions of nanoparticles, e.g. about 0.26 to about 0.35, or about 0.3 to about 0.5.
While intermeshing mixing is inherently difficult to accurately calculate a volume fraction of filler, with the 13C MAS NMR method disclosed below, the weight percent of the nanoparticles can determined by solid state NMR such that the composition of the extrudate can be accurately measured and adjusted to a desired vf by normal rubber mixing techniques. This allows the preparation of a master batch such that it can be conveniently used for blending with other fillers or polymers to provide improved properties. For example, 13C MAS NMR may be performed on a dry elastomer and nanoparticle composition and using this data the volume fraction of nanoparticles in the dry elastomer and nanoparticle composition can be determined. With this knowledge, the vf of the composition can be adjusted by conventional rubber mixing techniques to a desired level by mixing in additional elastomer.
In an embodiment, the above methods may further comprise adding an additional unsaturated elastomer that may be the same or different as the dry unsaturated elastomer. In an embodiment, the nanoparticles and rubber latex or the dry nanoparticles and elastomer mixture are added as a pre-blend to the additional unsaturated elastomer. Optionally, additional mixing steps may be performed at elevated temperatures to allow water to be removed while leaving a dry nanoparticle filled rubber. The subsequently mixed dry unsaturated elastomer may be synthesized by solution polymerization or emulsion polymerization, natural rubber, or polymers synthesized by other polymerization processes. Thus, these methods of mixing are versatile in the types of elastomers that can be used.
In an embodiment, the methods for making a nanoparticle-filled elastomeric composition further include, adding and mixing in to the composition, at a temperature of up to about 190° C., or up to about 180° C., additional components for cured elastomer compositions, known to those of skill in the art, including those discussed above, for example, silica, carbon black, oil, resin, wax, coupling agents, and combinations thereof.
A curing agent may be added at a temperature of up to about 50° C. to about 110° C., and the composition may be cured at a temperature of about 140° C. to about 200° C.
The dry nanoparticle-elastomer composition may be compounded by methods generally known in the rubber compounding art, such as mixing the unsaturated elastomer and the nanoparticles with conventional amounts of various commonly used additive materials, using standard rubber mixing equipment and procedures.
A vulcanized rubber product may be produced by thermomechanically mixing the rubbery matrix polymer containing nanoparticles, and various ingredients in a sequentially step-wise manner in a rubber mixer, followed by shaping and curing the composition. By thermomechanical mixing, it is meant that various ingredients in the composition are mixed under high shear conditions where the composition autogenously heats up, with an accompanying temperature rise, as a result of the mixing primarily due to shear and associated friction within the composition in the rubber mixer.
The composition of this invention can be used for various purposes and in various articles of manufacture, such as a tire component. Such tire components can be built, shaped, molded and cured by various methods which are known and will be readily apparent to those having skill in such art. In an embodiment, a molded unvulcanized tire component is charged into a vulcanizing mold and then vulcanized to produce a tire component, comprising the composition described above.
The following examples are included to provide additional guidance to those skilled in the art in practicing the claimed invention. The examples provided are merely representative of the work that contributes to the teaching of the present application. Accordingly, these examples are not intended to limit the invention, as defined in the appended claims, in any manner.
Examples 1-7
A 19% divinylbenzene (DVB) solution mixed with styrene (S) and ethyl styrene (ES) was prepared by mixing 55% DVB/ES with S. Antioxidants were extracted with 10% aqueous sodium hydroxide. This was performed three times until no color appeared in the aqueous extract. Washing with distilled water was then performed until a pH of about 7 was obtained. Drying over anhydrous sodium sulfate was performed before further use. The oxygen-free distilled water was prepared by boiling distilled water while bubbling nitrogen gas through the liquid and then cooled while continuing the nitrogen purge. Oxygen-free distilled water was used as the reaction media and to prepare all reagents.
A Wyatt Technology instrument was used for the FFF analysis. The samples for FFF were prepared by dilution of the latex to approximately five-tenths of a milligram of nanoparticles per 1 mL of water. The samples were then injected into the instrument thereby introducing about 50 micrograms of nanoparticles into the sample chamber.
In each example, where applicable, pyrolysis GC-MS was used to identify the DVB/S and IPO incorporation.
Pyrolysis GC-FID was used to confirm the particle composition in certain Examples. For the pyrolysis analysis, samples with known compositions were used for the calibration of styrene, ethyl styrene and divinylbenzene. The conditions used are shown below.
Pyrolysis unit: CDS 5250 Pyrolysis with the auto sampler
Gas chromatograph: Agilent 7890 GC system
Detector: Flame ionization detector (FID)
Sample sizes use for the pyrolysis: about 1 mg
Pyrolyzer valve-oven temperature: 300° C.
Pyrolysis temperature: 700° C.
Pyrolysis time: 6 sec
Transfer line temperature: 300° C.
GC injection port temperature: 280° C.
GC split ratio: 1:50
GC column: HP-5MS (30 m×0.25 mm×0.5 11 μm film)
GC column flow rate: 2 mL/min
Air flow to the detector: 300 mL/min
H2 flow to the detector: 30 mL/min
Make up N2 gas to the detector: 30 mL/min
Table 1 below shows the temperature program of the GC column oven.
TABLE 1
Temperature/ Rate Hold Total
° C. ° C./min time/min time/min
Initial
40 1 1
Final 260 15 10 25.7
All samples were run multiple times with blanks in between. U.S. provisional application 61/487,756 filed on May 19, 2011, filed as non-provisional application U.S. Ser. No. 13/476,387, filed on May 21, 2012, published as U.S. 2012/0296054, which provides a full discussion of the general pyrolysis method is herein incorporated by reference.
Example 1
To a 250 mL Erlenmeyer flask containing a 5 mm magnetic stir bar was added 68.02 grams of oxygen-free water. To this flask was then added 22.61 grams of a 19.01% DVB/S mixture that contained 4.30 grams of DVB, 14.79 grams of S and 3.52 grams of ES. This was followed by 0.19 g of sodium bicarbonate and 3.20 g of sodium dodecyl sulfate. This mixture was stirred slowly (about 120 rpm) with a magnetic stirrer while heating in a water bath that was controlled at 60° C. At this time a white opaque mixture was obtained. Then 8.0 mL of a 0.037 M aqueous solution (from oxygen-free water) of potassium persulfate was added and the stirring speed was increased to 300 to 400 rpm. Within 30 minutes the mixture went from a white opaque suspension to an almost translucent blue-white milky emulsion. The temperature of the water bath was held in the 58° C. to 63° C. range for 7 hours before termination of the polymerization with 0.6 mL of a 0.5 M aqueous solution of 1,4-hydroquinone.
Upon cooling, no odor of DVB, S, or ES could be detected. The pH measured was about 7 by paper strip measurement. The calculated solids content of the latex was 24.923%. Field Flow Fractionation (FFF) measurement in THF as a solvent showed the following particle size distributions of dn=21.4 nm, dw=22.6 nm, and dz=24.7 nm. The particles were swollen in the THF solvent. Further details are reported in Table 2.
Example 2
Example 2 was prepared by the same method as Example 1, however, the component amounts were varied and the potassium persulfate was added in solid form. The component details and particle measurements are reported in Table 2.
Example 3
To a 2 L resin kettle containing an N2 inlet tube and an electric stirrer with a paddle blade was added 542.40 grams of oxygen-free distilled water. Then 1.53 grams of sodium bicarbonate and 25.77 grams of sodium dodecyl sulfate were added while maintaining the nitrogen purge, stirring at 150 rpm, and heating to 45° C. To this aqueous solution was added 180.88 grams of 18.86% DVB/S mixture that had been extracted free of antioxidant. Immediately after the monomers were added, 64 mL of a 0.037 M aqueous solution of potassium persulfate (prepared with oxygen free water) was added. A white emulsion was initially formed that became opaque within 30 minutes while further heating the emulsion to above 60° C. and stirring at about 400 rpm. After reacting for 4 hours the heating was stopped and 0.72 mL of a 3.30M aqueous solution of 40% sodium salt of dimethyl dithiocarbamic acid was added.
Upon cooling, no odor of DVB, S or ES could be detected. The absence of DVB, S, and ES was confirmed by GC analysis. The pH measured was about 7 by a paper strip measurement.
The calculated polymeric solids were 22.19%. The maximum particle size in the latex was determined by FFF measurement in THF as a solvent, which showed the following particle size distributions: dn=20.8 nm, dw=23.1 nm, and dz=27.3 nm with a dispersion of 1.11. Further details are reported in Table 2.
Examples 4 and 5
Examples 4 and 5 were prepared by the same method as Example 1; however, the component amounts were varied. Further details are reported in Table 2.
Example 6
To a 2 L resin kettle containing a N2 inlet tube and an electric stirrer with a paddle blade was added 541.70 grams of oxygen-free distilled water. Then 2.88 grams of sodium bicarbonate and 27.65 grams of sodium dodecyl sulfate were added while maintaining the nitrogen purge. The components were stirred at 150 rpm while heating to 45° C. To this aqueous solution was added 160.0 grams of 18.92% DVB/S mixture that had been extracted free of antioxidant and 29.5 grams of 2-isopropenyl-2-oxazoline (IPO). Immediately after the monomers were added, 64 mL of a 0.037 M aqueous solution of potassium persulfate (prepared with oxygen free water) was added. A white emulsion was initially formed that became opaque within 10 minutes. The power was interrupted for 50 minutes at this point, just as the exothermic reaction began and the temperature reached 52° C. When the power was restored the stirring was continued at 670 rpm and the temperature was increased from 48 to 72° C. for the next hour before being reduced to 450 rpm for 16 hours at the 72° C. After this time, heating was stopped and 0.72 mL of a 3.30M aqueous solution of 40% sodium salt of dimethyl dithiocarbamic acid was added.
Upon cooling, no odor of DVB, S, ES or IPO could be detected. The absence of DVB, S, ES, and IPO was confirmed by GC analysis. The pH measured was about 7 by a paper strip measurement. The particle size in the latex was determined by FFF measurement in THF as a solvent and showed the following distribution of THF swollen particle: dn=76.6 nm, dw=161.7 nm and dz=234.7 nm, with a dispersion of 2.11. Further details are reported in Table 2.
The calculated polymeric solids were 23.76%, which had a composition of 14.86% IPO and 16.11% DVB. The incorporation of the IPO was confirmed by pyrolysis GC-FID.
Example 7
To a 250 mL Erlenmeyer flask containing a 5 cm magnetic stir bar was added 74.15 grams of oxygen free water, 22.61 grams of a 19.01% DVB/S mixture that contained 4.01 grams of DVB, 13.81 grams of S and 3.28 grams of ES. This was followed by 0.26 g of sodium bicarbonate, 3.40 g of sodium dodecyl sulfate and 3.70 grams of 2-isopropenyl-2-oxazoline (IPO). This mixture was stirred slowly (about 120 rpm) with a magnetic stirred while heating in a water bath that controlled at 60° C. At this time a white opaque mixture was obtained. Then 8.0 mL of a 0.037 M aqueous solution (prepared from oxygen free water) of potassium persulfate was added and the stirring speed was increased to 300 to 400 rpm. Within 30 minutes the mixture went from a white opaque suspension to an almost translucent blue-white milky emulsion. The temperature of the water bath was held in the 58 to 63° C. range for 7 hours before termination the polymerization with 0.07 grams of the sodium salt diethyl dithiocarbamic acid. Upon cooling no odor of DVB, S, ES or IPO could be detected. The pH measured was ˜7 by paper strip measurement. The calculated functional crosslinked styrene content was 22.39% and the total solids of the latex was 25.94%, FFF (Field Flow Fraction) measurement in THF as the solvent showed the swollen particle size distributions of dn=20.1 nm, dw=23.2 nm and dz=32.0 nm with a dispersion of 1.15.
TABLE 2
Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7
Water grams 68.02 63.33 542.4 73.5 68.92 541.7 74.15
SLS grams 3.20 1.70 25.77 3.51 3.50 27.65 3.40
NaHCO3 grams 0.19 0.18 1.53 0.29 0.31 2.88 0.36
Extracted mix of
Styrene (S) grams 65.45 27.34 132.00 132.20 132.10 132.20 65.45
55% DVB grams 34.58 4.68 68.88 69.34 69.36 69.34 34.58
% DVB in mix 19.01 8.04 18.86 18.92 18.94 18.92 19.01
S/DVB Mixture, grams 22.61 21.92 180.88 24.6 25.17 169.4 21.11
DVB grams 4.30 1.76 34.11 4.66 4.77 31.98 4.01
Et Styrene grams 3.52 1.44 27.91 3.81 3.90 26.17 3.28
(ES)
IPO grams 0 0 0 2.14 2.86 29.50 3.70
DVB/hundred vinyl- 19.01 8.04 18.86 17.41 17.00 16.11 16.18
aromatics, wt %
IPO in particle, wt % 0 0 0 8.00 10.20 14.86 14.91
K2S2O8, grams 0.1
K2S2O8, mL of 0.037M soln. 8.0 64.0 8.0 8.0 64.0 8.0
1,4-Hydroquinone, mL 0.5M 3 3
soln.
Et2NCS2Na, grams 0.07
Me2NCS2Na, mL of 3.30M 0.72 0.30 0.30 0.72
soln.
Nanoparticles, g/100 21.53 24.29 22.19 23.80 25.70 23.76 22.39
mL
Total Weight, grams 105.02 90.23 815.30 112.34 109.06 835.45 110.79
FFF particle size
dn, ave nm 21.7 20.8 81.2 59.4 76.6 20.1
dw, ave nm 22.6 23.1 93.8 89.4 161.7 23.2
dz, ave nm 24.7 27.3 113.8 220.1 234.7 32
Dispersion, w/n 1.04 1.11 1.16 1.51 2.11 1.15
Examples 8-17
Latex samples of nanoparticles formed in Examples 3 and 6 were blended with emulsion-polymerized styrene-butadiene rubber (E-SBR) latexes and then dried to form a polymer-filler composite with filler volume fraction of approximately 0.2 (100 phr of polymer and 30 phr of nanoparticles). The E-SBR materials included non-functionalized E-SBR latex, (ROVENE 4848 with rosin acid soap emulsifier (Tg=−38° C., 51% total solids, from Mallard Creek Polymers, Inc., Charlotte, N.C.) and carboxylated E-SBR (ROVENE 5044 with anionic emulsifier (Tg=−35° C.; 51% total solids; from Mallard Creek Polymers, Inc., Charlotte, N.C.).
The dried nanoparticle and polymer pre-blends were mixed in the formulation given below using a Brabender mixer having cam rotors that have a 307 cm3 working volume. The nanoparticles were employed as the only filler in the rubber and were also considered in combination with carbon black (50/50 by volume). All of the final compounds were designed to have a filler volume fraction of approximately 0.2, which required a lower phr amount of the nanoparticles than carbon black. This was due to the lower density (approx. 1.1 g/cc) of the nanoparticles compared to carbon black (approx. 1.8 g/cc). Test results are reported in Table 3 and FIG. 1.
According to the disclosure herein, in certain embodiments, significant reductions (e.g. 5% and greater) in compound density, abrasion loss, and 60° C. tan δ may be seen. Abrasion loss may be performed as disclosed in U.S. 2003/0127169, which is herein incorporated by reference.
The areas in the table marked N/A represent data which could not be acquired due to difficult de-molding of compounds sticking to the mixer and the mill. Testing denoted as SS was done in a strain sweep mode from 0.25 to 14.75% E in 0.25% increments. TS was done by a temperature sweep from −80° C. to 100° C. in 5° C. increments.
TABLE 3
Example: 8 9 10 11 12 13 14 15 16 17
Carboxylated E-SBR (phr): 100 100 100 100 100
E-SBR (phr): 100 100 100 100 100
Example 6 nanoparticles 30 15 30 15
Example 3 nanoparticles 30 15 30 15
N339 CB (phr): 25 25 50 25 25 50
Stearic Acid (phr) 2 2 2 2 2 2 2 2 2 2
Zinc Oxide (phr) 2 2 2 2 2 2 2 2 2 2
Antioxidant (phr) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Sulfur (phr) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
CBS Accelerator (phr) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
t50% [171° C. Cure] (min): 11.5 9.5 7.1 5.8 5.1 8.3 5.4 4.9 4.2 2.5
ML1 + 4@130° C.: 26.5 17.9 29.2 25.2 36.7 52.6 17.6 57.7 33.8 53.2
G′ [TS, 0° C., 10 Hz, 2%] 17.7 N/A 20.4 26.5 27.4 18.5 17.6 20.0 20.0 11.9
(MPa):
tanδ [TS, 0° C., 10 Hz, 2%]: 0.485 N/A 0.527 0.465 0.573 0.312 0.386 0.398 0.475 0.572
G′ [TS, 60° C., 10 Hz, 2%] 2.67 N/A 2.75 3.60 3.73 5.43 4.27 4.96 3.84 4.00
(MPa):
tanδ [TS, 60° C., 10 Hz, 2%]: 0.257 N/A 0.300 0.315 0.347 0.175 0.224 0.223 0.287 0.334
Decrease in tanδ at 60° C. 25.9 N/A 13.5 9.2 0.0 47.6 32.9 33.2 14.1 0.0
(%):
G′ [SS, 60° C., 10 Hz, 5%] 1.66 N/A 1.65 2.07 2.05 4.53 N/A 3.26 2.15 2.02
(MPa):
tanδ [SS, 60° C., 10 Hz, 5%]: 0.315 N/A 0.362 0.375 0.376 0.234 N/A 0.293 0.348 0.391
ΔG′ [SS, 60° C., 10 Hz, 0.03% 0.72 N/A 1.23 2.67 2.33 4.83 N/A 4.36 3.14 3.62
−15%] (MPa):
50% Modulus@23° C.(MPa): 2.19 N/A 2.08 1.65 2.78 1.22 0.69 1.35 1.02 1.74
300% Modulus @23° C. N/A N/A N/A N/A N/A 3.87 1.67 5.95 5.03 N/A
(MPa):
Break Stress@23° C. (MPa): 6.4 N/A 6.0 6.1 7.1 5.3 4.8 6.3 6.1 7.8
Elongation at Break @23° C. 197 N/A 183 244 151 426 612 324 366 220
(%):
Wear Wt. Loss at 25% slip 0.241 N/A 0.281 0.241 0.280 0.089 0.061 0.128 0.126 0.173
(g):
Wear Resist. Improvement 13.9 N/A −0.4 13.9 0.0 48.6 64.7 26.0 27.2 0.0
at 25% slip (%):
Cured Compound Density 1.009 N/A 1.085 1.088 1.162 1.007 1.004 1.080 1.082 1.166
(g/cc):
Decrease in Compound 13.2 N/A 6.6 6.4 0.0 13.6 13.9 7.4 7.2 0.0
Density (%):
Example 18
To a 2 L resin kettle containing a N2 inlet tube and an electric stirrer with a paddle blade was added 566.19 grams of oxygen-free distilled water. Then, 1.51 grams of sodium bicarbonate and 25.05 grams of sodium dodecyl sulfate were added while maintaining the nitrogen purge, stirring at about 150 rpm, and heating to 48° C. To this aqueous solution was added 195.51 grams of 18.98% DVB/S mixture that had been extracted free of antioxidant and 28.12 grams of IPO. Immediately after the monomers were added, 32 mL of a 0.037 M aqueous solution of potassium persulfate (prepared with oxygen-free water) was added. A white emulsion was initially formed that became opaque within 10 minutes. The stirring was continued at 380 rpm and the temperature was increased to 83° C. for the next hour. Then the heating was stopped and 0.72 mL of a 3.30M aqueous solution of 40% sodium salt of dimethyl dithiocarbamic acid was added.
Upon cooling, no odor of DVB, S, ES or IPO could be detected. The absence of DVB, S, ES and IPO was confirmed by GC analysis.
A total of 798.24 g of latex was obtained with a pH of about 7, as measured by a paper strip. The calculated polymeric solids were 23.34%, which had a composition of 9.90% IPO and 16.59% DVB. The incorporation of the IPO was confirmed by pyrolysis GC. The particle size in the latex was determined by FFF measurement, as discussed above, in THF as a solvent and showed the following distribution of THF swollen particle: dn=15.3 nm, dw=17.2 nm and dz=19.2 nm with a dispersion of 1.12. Further details of the blend are presented in Table 4.
Example 19
To a 2 L resin kettle containing an N2 inlet tube and an electric stirrer with a paddle blade was added 590.16 grams of oxygen-free distilled water. Then 1.56 grams of sodium bicarbonate and 26.29 grams of sodium dodecyl sulfate were added while maintaining the nitrogen purge, stirring at 150 rpm, and heating to 45° C. To this aqueous solution was added 196.98 grams of 18.81% DVB/S monomer mixture that had been extracted free of antioxidant. Immediately after the monomers were added, 32 mL of a 0.037 M aqueous solution of potassium persulfate (prepared with oxygen free water) was added. A white emulsion was initially formed that became opaque within 30 minutes while further heating to 83° C. and stirring at about 360 rpm. After reacting for 4 hours, the heating was stopped, and 0.72 mL of a 3.30M aqueous solution of 40% sodium salt of dimethyl dithiocarbamic acid was added.
Upon cooling, no odor of DVB, S or ES could be detected. The absence of DVB, S, and ES was confirmed by GC analysis.
The isolated weight of latex was 823.82 g and it had a pH of about 7 as measured by a paper strip. The calculated polymeric solids were 23.24% and 26.54% total solids. The particle size in the latex was determined by FFF measurement, as discussed above, using THF as a solvent and showed a distributions of dn=18.7 nm, dw=19.9 nm and dz=21.0 nm with a dispersion of 1.06. The FFF analysis was also performed on an aqueous solution of the nanoparticles that did not cause the nanoparticles to swell, and the measurements were approximately 60% the size of the nanoparticles that were swollen in THF. The dm of the nanoparticles in water (a non-swelling solvent) was 12.0, and the dz was 16.1.
Examples 20 and 21
The nanoparticle latexes of Examples 18 and 19 were then blended in a Brabender mixer with a standard solution styrene-butadiene rubber (std. S-SBR), having a 12% vinyl polybutadiene content, a 23.5% styrene content, a Mooney ML4 at 100° C. of 55, and a Tg of −62° C. Further details of the blending are presented in Table 4.
TABLE 4
Example 20 Example 21
Std. S-SBR (phr) 100 100
Nanoparticle latex Ex. 18 Ex. 19
used
% nanoparticles in 26.34 23.24
latex
g latex used 39.86 45.18
g nanoparticles 10.5 10.5
used
phr, nanoparticles 30.00 30.00
in mixture
% solids (inorganic 3.15 3.31
salts)
vf 0.2023 0.2023
Particle Yes No
functionality
Step Temp rpm Mins. Step Temp Rpm Mins.
Mixing Rubber 105 50 1 Rubber 105 50 1
Conditions 105 30 3 105 30 3
(small Brabender latex latex
mixer with a 59.5 105 30 3 105 30 3
cm3 working latex latex
volume) 105 30 3 105 30 3
latex latex
130 30 3 130 30 3
140 50 2 140 50 2
Drop 25 Drop 25
Mix Number- 1 2 Average 1 2 Average
latex, charge, g 41.52 41.6 41.56 44.62 44.23 44.43
Latex used, g 40.86 40.93 40.90 43.49 43.48 43.49
Particles used, g 10.76 10.78 10.77 10.11 10.10 10.11
phr, particles used 30.75 30.80 30.78 28.88 28.87 28.87
vf of particles in 0.2063 0.2066 0.2065 0.1962 0.1962 0.1962
mix
Salts present, g 1.29 1.29 1.29 1.44 1.44 1.44
TY recovery, g 47.05 47.07 47.06 46.55 46.54 46.55
Actual recovery, g 46.53 46.1 46.32 43.7 46.16 44.93
% recovered 98.9% 97.9% 98.4% 93.9% 99.2% 96.5%
Examples 22-25
In Examples 22 and 23, the nanoparticle/solution SBR blends of Examples 20 and 21 were blended with dried rubber in a small Brabender mixer by first adding solution polymerized SBR having a 12% vinyl polybutadiene content, a 23.5% styrene content, a Mooney ML4 at 100° C. of 55, and a Tg of −62° C. Then the nanoparticle latex was added as shown in Table 4. The nanoparticles were employed as the only filler in the rubber and were calculated to have a filler volume fraction (vf) of approximately 0.2.
In Examples 24 and 25, a control with 50 phr CB was prepared with this rubber and had the same vf as the nanoparticles. Example 25 differs from Example 24 in that 4 phr of the SBR was replaced with 4 phr of sodium dodecyl sulfate. Additional sodium dodecyl sulfate surfactant was added in Example 25 to demonstrate whether the surfactant had any effect on the properties. It did not show any relevant effect. The density difference between the two fillers thus allows a lower density filled rubber stock to be prepared. The nanoparticles of Examples 22 and 23 have an approximate density of 1.1 g/cc as compared to the carbon black of Example 24 at approximately 1.8 g/cc.
Table 5 and FIGS. 2-5 report further details of Examples 22-25. According to these teachings, significant reductions in compound density and 60° C. tan δ (e.g. 5% or more) may be possible.
TABLE 5
Ex. 22 Ex. 23 Ex. 24 Ex. 25
Std. S-SBR (phr): 100 100 100 96
CB (N339) (phr): 50 50
Example 18 nanoparticles 30
(IPO functionalized)
Example 19 nanoparticles 30
Sodium Dodecyl Sulfate (phr): 4
Stearic Acid (phr) 2 2 2 2
Zinc Oxide (phr) 2.5 2.5 2.5 2.5
Antioxidant (phr) 1 1 1 1
Sulfur (phr) 1.3 1.3 1.3 1.3
DPG Accelerator (phr) 0.2 0.2 0.2 0.2
CBS Accelerator (phr) 1.7 1.7 1.7 1.7
Approx. Filler Volume fraction, vf: 0.2 0.2 0.2 0.2
t50% [171° C. Cure] (min): 4.9 4.4 2.5 2.3
t90% [171° C. Cure] (min): 6.5 5.8 3.4 3.3
MH-ML [171° C. Cure] (dN-m): 11.8 10.6 18.9 17.8
ts5 [ML Scorch at 130° C.] (min): 52.8 39.1 17.6 16.6
ML1 + 4 @ 130° C.: 50.8 41.9 75.9 75.9
50% Modulus @ 23° C. (MPa): 0.97 0.85 1.57 1.62
300% Modulus @ 23° C. (MPa): 2.9 2.5 14.4 13.7
Tb, Break Stress @ 23° C. (MPa): 5.7 5.6 15.7 16.9
Eb, Elong. at Break @ 23° C. (%): 537 533 322 357
tan δ [TS; 0° C.; 10 Hz, 2%]: 0.104 0.11 0.221 0.225
G′(MPa) [TS; 0° C.; 10 Hz, 2%]: 5.72 4.79 10.67 13.46
tan δ [TS; 30° C.; 10 Hz, 2%]: 0.1 0.106 0.196 0.208
G′(MPa) [TS; 30° C.; 10 Hz, 2%]: 4.67 3.82 7.46 9.23
tan δ [TS; 60° C.; 10 Hz, 2%]: 0.092 0.092 0.172 0.187
G′(MPa) [TS; 60° C.; 10 Hz, 2%]: 4.02 3.37 5.95 6.93
Lambourn Wear Index at 25% slip: 98 97 100 102
Cured Compound Density (g/cc): 1.005 1.008 1.169 1.155
Decrease in Compound Density(%): 14.0 13.8 0.0 1.2
Example 26 Preparation of Low Solids Latex of Styrene/Divinylbenzene Particles
To a 2 L resin kettle containing an N2 inlet tube and an electric stirrer with a paddle blade was added 840.72 grams of oxygen-free distilled water. Then 1.57 grams of sodium bicarbonate and 26.15 grams of sodium dodecyl sulfate while added while maintaining the nitrogen purge, while stirring at about 150 rpm and heating to 40° C. To this aqueous solution was added 195.14 grams of 19.35% DVB/S monomer mixture that had been extracted free of antioxidant. Immediately after the monomers were added, stirring was increased and 32 mL of a 0.037 M aqueous solution of potassium persulfate (prepared with oxygen free water) was added. A white emulsion was initially formed that became opaque within 10 minutes. The stirring was continued at 360 rpm and the temperature was increased to 73° C. during the next 1.3 hrs. The temperature was held above 53° C. for the next 3 hours before 0.72 mL of a 3.30M aqueous solution of 40% sodium salt of dimethyl dithiocarbamic acid was added to deactivate the remaining persulfate catalyst.
The emulsion was then removed from the reactor and allowed to cool. Upon cooling no odor of DVB, S or ES could be detected. The absence of DVB, S, or ES was confirmed by GC analysis.
A total of 1115.03 g of latex was obtained with a pH of about 7 as measured by a paper strip. The latex had a calculated nanoparticle concentration of 17.28% and total solid concentration of 19.75%. The nanoparticles that had a composition of 19.35% DVB were diluted with THF to provide swollen particles having average diameter as measured by FFF of: dn=18.7 nm, dw=21.5 nm and dz=24.5 nm with a dispersion of 1.15. Repeating the FFF using water as the media gave a dz of 20.3 nm.
Example 27
Example 24 was concentrated in a 1 L flask with a Roto-Vac, using moderate vacuum while heating the water bath to 36° C. to 42° C. over an 8 hour period. The final concentrated latex obtained weighed 471.61 g and had a calculated concentration of 36.5% nanoparticles and 41.7% total solids.
Examples 28-30
For the mixing of nanoparticle latexes with dry solvent-free. solution polymerized SBR (S-SBR) having a 12% vinyl polybutadiene content, a 23.5% styrene content, a Mooney ML4 at 100° C. of 55, and a Tg of −62° C., a ZSK-30 co-rotating twin screw extruder was used with the configuration listed on Table 6 below.
TABLE 6
Status for manual feeding at 20 rpm
Zone Temp Port addition status
Number ° C. Rubber and Latex
1 51 feed
2 116 closed
3 122 open for venting
4 127 closed
5 126 extrusion
The aqueous nanoparticle latexes of Examples 19 and 27 were mixed with the S-SBR by the sequence described above to give the products listed on Table 7. Each length of extrudate was mixed on a two roll mill with 10 passes to ensure that the sample for subsequent analysis was homogenous. To conserve on materials three different mixes were sequentially prepared such that the amount of water that needed to be vented off during the process could be evaluated. The results of this indicated that under the conditions chosen, the foam generated by the water removal was found to be mild enough to run continuously for the mixtures chosen.
TABLE 7
Latex Nano- Latex
Ex- particle S- La- Rate Collect- Ob-
am- conc. SBR tex mL/30 ed served Charge
ple wt. % gm. mL sec gm. Venting wt. %
Exam- 27 36.5 58 45 2.0 64 Trace 0.221
ple 28
Exam- 27 36.5 58 90 4.0 94 Slight 0.362
ple 29 foam
Exam- 19 23.2 58 73 3.1 65 Moder- 0.226
ple 30 ate
foam
A solid state NMR technique was developed to determine the true concentration of the nanoparticles in the rubber.
Examples 28A-30A
In Examples 28A-30A the volume fraction of the components in Examples 28-30 were determined by NMR analysis. 13C MAS NMR studies were conducted on a Varian Inova spectrometer interfaced to a Doty 5 mm double resonance NMR probe operating at an external magnetic field strength of 11.7 T (corresponding to an observational frequency of 125.68 MHz for 13C). An rf-field strength of 45 kHz was used and the spinning speed regulated to 3500 Hz. A total of 15,000 transients were acquired while simultaneously decoupling 1H. For the spectrum in FIG. 5C a 4 mm Doty probe operating at a spinning speed of 10 kHz was used.
FIG. 5 shows: A.) a 13C liquid state NMR spectrum of ethyl styrene, styrene, and divinyl benzene monomers; and 13C MAS NMR solid state spectra plotted with normalized intensity of B.) sodium lauryl sulfate (a surfactant used in making nanoparticles), C.) dried nanoparticles of Example 1 containing sodium lauryl sulfate, and D.) the Example 21 nanoparticle and SBR rubber blend (which included the nanoparticles of Example 1.
Attempts to perform 13C liquid state NMR of the aqueous nanoparticle latex was unsuccessful and only resonances from the SLS were observed. This observation is attributed to the size, rigidity, and highly crosslinked structure of the nanoparticles in the latex preventing the particles from rapidly reorienting themselves thus causing resonances to be significantly broadened and, therefore, unobservable on the timescale of the experiment. To confirm, an aliquot of the aqueous nanoparticle latex was placed in a beaker and allowed to air dry for 72 hours after which time the dried nanoparticle composition was analyzed by 13C MAS NMR (FIG. 5C). Results confirm that the line shapes for the nanoparticles are significantly broad compared to the SLS (FIG. 5B).
The 13C MAS NMR spectrum of the SBR polymer with nanoparticles (FIG. 5D) indicated almost an identical spectrum to what is expected from a pure SBR. The only clearly resolved peaks between the SBR polymer, the DVB, ES and S of the nanoparticles, and the SLS are the methyl peak on the ES, observable as a broad resonance near 15 ppm (FIG. 5C), the methyl peak of the SLS, observable as a broad peak at 14.3 ppm (FIG. 5B), and the vinyl peaks of the SBR polymer and ethyl styrene DVB monomer mixture, observable at 142 ppm and 115 ppm (FIGS. 5A and 5D). This set of spectra also demonstrate there is substantially no unsaturation in the core of the nanoparticles attributed to the vinyl peaks shown in the FIG. 5A monomer mixture, as such peaks are not present or at least are so small as to be lost in the noise in the spectrum of the formed nanoparticles in FIG. 5C. A peak resulting from unreacted vinyl monomer may be present at about 112 ppm, but it is too small to be identified over the noise.
The vinyl peaks can be used to determine the amount of SBR since the ES, S, and DVB in the nanoparticles should be fully polymerized in the scheme used. The relative amount of ES and S, to DVB was readily measured from the starting material and when mixed with S it was found to be 1.0 to 1.3 to 5.4 moles of ES to DVB to S monomer. Also known is the weight percent of vinyl, styrene, and 1,4 BD in the Std. S-SBR starting material (11% vinyl (polybutadiene), 22.5% styrene). Despite the significant spectral overlap between the nanoparticles and the SBR polymer, therefore, the amount of nanoparticles in the sample can be quantified (Table 8) by using the areas of the vinyl resonances, which only arise from the SBR, the methyl peak of the ES, which is only from the nanoparticles, and the methyl peak for the sodium lauryl sulfate (SLS) at 14.5 ppm through the equations
Vinyl ( g ) = Area Vinyl ( 142 ppm ) + Area Vinyl ( 115 ppm ) 2 54 g / mol
Ethyl Styrene ( g ) = ( Area Methyl ( 15.5 ppm ) ) 130 g / mol SLS ( g ) = ( Area SLS - Methyl ( 14.5 ppm ) ) 288 g / mol .
Through the appropriate mass balance the amount of S and 1,4 BD can be calculated from the mass of vinyl. Likewise, the amount of polystyrene and DVB in the nanoparticles can be calculated from the mass of ES allowing the total weight percent of each component in the mixture to be determined as reported in Table 8 (all values reported by weight).
TABLE 8
1,4 Ethyl Poly- Nano-
Vinyl Styrene BD Styrene DVB styrene particles SLS
Example 7.1 17.4 54.5 3.0 3.8 12.6 19.4 1.7
28
Example 6.3 15.3 48.0 4.1 5.2 17.3 26.6 3.8
29
Example 6.8 16.6 52.1 3.4 4.3 14.3 22.0 2.6
30
Examples 31-36
In examples 31-36 the nanoparticle/elastomer blend of Examples 28-30 were compounded in a Brabender mixer and cured. Examples 35 and 36 were control examples filled with carbon black. The polymer and filler component of Examples 31 and 32 were comprised entirely of the extrusion blend from Examples 28 and 29 to give 0.10 and 0.25 nanoparticle of stocks in the mixer. Example 33 was blended with the S-SBR to produce a composition with 24.15 phr of nanoparticle filler. In Example 34, unused portions of Examples 31 and 32 were blended to give a desired 31.71 phr filler. Examples 33 and 34 were prepared to have matching vf of 0.167 and 0.205 with the Control Examples 35 and 36 that were filled with N339 carbon black.
Examples 31-36 were further compounded with 2.5 phr ZnO, 2.0 phr stearic acid, 1.0 phr antioxidant in a 160° C. Brabender having an internal volume of 59 cc with a cam rotor. The final mix was also done in the same Brabender with 1.3 phr sulfur and 1.9 phr accelerators at 90 to 110° C. Curing at 171° C. produced the composition on which the property values reported in Table 9 were determined.
The polymer and nanoparticle dry blends from the extruder were diluted with the S-SBR to achieve a desired volume fraction by conventional rubber mixing techniques. The carbon black-filled Examples 35 and 36 were mixed in the same manner. The volume fraction reported below was determined by NMR and checked by pyrolysis.
Table 9 reports further details of the compositions and their properties.
TABLE 9
Ex. 31 Ex. 32 Ex. 33 Ex. 34 Ex. 35 Ex. 36
Polymer/NP Dry Blend from Ex. 28 Ex. 29 Ex. 30 blend none none
Extruder
NP identity Ex. 27 Ex. 27 Ex.19 blend none none
Filler, nanoparticle dn or (CB 18.7 18.7 18.7 18.7 N339 N339
type)
Filler, vf 0.100 0.248 0.167 0.205 0.167 0.205
Filler, phr 13.24 40.00 24.15 31.71 39.53 51.00
50% Modulus @23° C. (MPa) 0.82 1.08 0.79 1.02 1.19 1.57
300% Modulus @23° C. (MPa) 2.84 3.21 2.38 3.08 11.02 14.91
Tensile Break Stress @23° C. 2.81 6.84 3.64 5.19 14.26 17.38
(MPa)
Elongation at Break @23° C. 294 535 430 463 359 340
(%)
Toughness @23° C. 4.45 16.74 8.01 11.91 21.26 25.55
100% Modulus @100° C. (MPa) 1.04 1.03 0.97 1.06 1.9 2.55
Tensile Break Stress @100° C.
(MPa) 1.43 2.22 1.47 1.96 6.71 8.70
Tensile Break Stress @100° C.
(MPa) 1.43 2.22 1.47 1.96 6.71 8.70
Elongation at Break @100° C.
(%) 170 309 210 265 237 226
Toughness @100° C. 1.43 3.97 1.88 3.09 6.45 8.14
tan δ [SS; 60° C.; 10 Hz, 5%] 0.1136 0.1952 0.1339 0.1747 0.1716 0.1976
G′(MPa) [SS; 0° C.; 10 Hz, 5%] 2.658 9.09 3.099 6.288 4.771 6.77
G′(MPa) [SS; 30° C.; 10 Hz, 5%] 2.189 6.818 2.551 4.566 3.489 5.069
G′(MPa) [SS; 60° C.; 10 Hz, 5%] 1.873 4.99 2.027 3.319 2.841 3.913
ΔG′(MPa) [SS; 0° C.; 10 Hz, 1.025 9.031 1.289 4.836 4.304 8.611
0.25%-14.25%]
ΔG'(MPa) [SS; 30° C.;] 0.885 7.36 1.228 3.851 2.824 6.116
ΔG'(MPa) [SS; 60° C.; 10 Hz, 0.692 5.25 0.837 2.427 1.938 3.729
0.25%-14.25%]
25% Lambourn Index 1.50 0.91 1.21 1.01 1.00 0.81
The strain sweep (SS) of Examples 31-37 is shown in FIG. 6 and shows that nanoparticles at low strains have lower values in tan 6 than the carbon black filled elastomers. However, the nanoparticles do not show a decrease in the tan 6 at the highest strain levels. Overall, the nanoparticles show unexpected rubber reinforcement.

Claims (12)

It is claimed:
1. A method for making a composition, the steps of which comprise:
mixing a first elastomer and a nanoparticle latex that comprises polymerized mono-vinyl aromatic monomer contributed units crosslinked with a multifunctional crosslinking agent that is polymerizable through an addition reaction;
wherein either the first elastomer is a dry elastomer, or mixing an additional elastomer that is dry and that is the same or different as the first elastomer;
wherein the nanoparticles are present in a volume fraction of the composition of about 0.02 to about 0.50.
2. The method of claim 1, wherein the first elastomer is dry and substantially free of solvent prior to mixing with the nanoparticle latex.
3. The method of claim 1, wherein the first elastomer is a latex, and wherein the elastomer latex and nanoparticle latex are mixed to form a pre-blended nanoparticle elastomer latex, wherein the additional elastomer that is dry is mixed in thereafter.
4. The method of claim 1, wherein the first elastomer is a solution of elastomer and non-aqueous solvent.
5. The method of claim 4, further including the step of mixing the first elastomer in solution with an aqueous nanoparticle latex in a multi-elements static mixer to form an elastomer and nanoparticle latex mixture; and flash drying the elastomer and nanoparticle latex mixture upon exiting the mixer.
6. The method of claim 1, wherein the first elastomer and nanoparticle latex are mixed in an intermeshing mixer; and further including the steps of venting the intermeshing mixer to remove water; and recovering the elastomeric nanoparticle composition.
7. The method of claim 6, wherein the intermeshing mixer is a twin-screw extruder.
8. The method of claim 6, further comprising vulcanizing the elastomeric nanoparticle composition.
9. The method of claim 6, further comprising performing 13C MAS NMR on the elastomeric nanoparticle composition and determining a volume fraction of nanoparticles in the elastomeric nanoparticle composition; and adjusting the volume fraction to a desired level by mixing in the additional elastomer.
10. The method of claim 1, wherein the nanoparticles are present in a volume fraction of the composition of about 0.20 to about 0.40.
11. The method of claim 1, further comprising adding a curing agent at a temperature of about 50° C. to about 110° C. and curing the composition at a temperature of about 140° C. to about 200° C.
12. The method of claim 1, wherein the nanoparticles of the nanoparticle latex further comprise heterocyclic monomer contributed units.
US13/731,666 2011-12-30 2012-12-31 Nanoparticle fillers and methods of mixing into elastomers Active 2034-07-01 US9428604B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/731,666 US9428604B1 (en) 2011-12-30 2012-12-31 Nanoparticle fillers and methods of mixing into elastomers
US15/250,025 US10407522B1 (en) 2011-12-30 2016-08-29 Nanoparticle fillers and methods of mixing into elastomers
US16/564,718 US11505635B2 (en) 2011-12-30 2019-09-09 Nanoparticle fillers and methods of mixing into elastomers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161582226P 2011-12-30 2011-12-30
US13/731,666 US9428604B1 (en) 2011-12-30 2012-12-31 Nanoparticle fillers and methods of mixing into elastomers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/250,025 Division US10407522B1 (en) 2011-12-30 2016-08-29 Nanoparticle fillers and methods of mixing into elastomers

Publications (1)

Publication Number Publication Date
US9428604B1 true US9428604B1 (en) 2016-08-30

Family

ID=56739830

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/731,666 Active 2034-07-01 US9428604B1 (en) 2011-12-30 2012-12-31 Nanoparticle fillers and methods of mixing into elastomers
US15/250,025 Expired - Fee Related US10407522B1 (en) 2011-12-30 2016-08-29 Nanoparticle fillers and methods of mixing into elastomers
US16/564,718 Active 2034-06-03 US11505635B2 (en) 2011-12-30 2019-09-09 Nanoparticle fillers and methods of mixing into elastomers

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/250,025 Expired - Fee Related US10407522B1 (en) 2011-12-30 2016-08-29 Nanoparticle fillers and methods of mixing into elastomers
US16/564,718 Active 2034-06-03 US11505635B2 (en) 2011-12-30 2019-09-09 Nanoparticle fillers and methods of mixing into elastomers

Country Status (1)

Country Link
US (3) US9428604B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10407522B1 (en) 2011-12-30 2019-09-10 Bridgestone Corporation Nanoparticle fillers and methods of mixing into elastomers

Citations (234)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2531396A (en) 1947-03-29 1950-11-28 Nat Lead Co Elastomer reinforced with a modified clay
US3177186A (en) 1963-06-07 1965-04-06 American Cyanamid Co Crystallizable polymers of t-butyl acrylate and methacrylate
US3598884A (en) 1967-08-04 1971-08-10 Polymer Corp Cross-linking of polymers
US3793402A (en) 1971-11-05 1974-02-19 F Owens Low haze impact resistant compositions containing a multi-stage,sequentially produced polymer
US3840620A (en) 1970-04-15 1974-10-08 Stauffer Chemical Co Additives for the preparation of clear,impact resistant vinyl chloride polymer compositions
SU465010A3 (en) 1967-12-21 1975-03-25 Асахи Касеи Когио Кабусики Кайша (Фирма) The method of obtaining thermoplastic elastomers
US3927143A (en) 1973-10-12 1975-12-16 Exxon Research Engineering Co Thermoplastic block copolymers
US3972963A (en) 1973-06-20 1976-08-03 Mobil Oil Corporation Organic reinforcing fillers for rubber
US4075186A (en) 1974-10-29 1978-02-21 The Firestone Tire & Rubber Company Graft copolymers of polybutadiene and substituted polyacrylate
US4233409A (en) 1979-07-05 1980-11-11 Monsanto Company Polymeric blend
US4247434A (en) 1978-12-29 1981-01-27 Lovelace Alan M Administrator Process for preparation of large-particle-size monodisperse
US4248986A (en) 1979-08-27 1981-02-03 The Goodyear Tire & Rubber Company Selective cyclization of block copolymers
US4326008A (en) 1976-08-27 1982-04-20 California Institute Of Technology Protein specific fluorescent microspheres for labelling a protein
US4386125A (en) 1981-02-20 1983-05-31 Asahi Kasei Kogyo Kabushiki Kaisha Film, sheet or tube of a block copolymer or a composition containing the same
US4408018A (en) 1982-10-29 1983-10-04 Rohm And Haas Company Acetoacetate functionalized polymers and monomers useful for crosslinking formulations
US4417029A (en) 1981-08-03 1983-11-22 Atlantic Richfield Company Derivatization of star-block copolymers
US4471093A (en) 1982-02-26 1984-09-11 Sumimoto Rubber Industries, Ltd. Elastomer composition comprising a blend of SBR rubbers
US4543403A (en) 1983-03-15 1985-09-24 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Curable composition
US4600749A (en) 1965-12-29 1986-07-15 Asahi Kasej Kogyo Kabushiki Kaisha Thermoplastic elastomers
US4617346A (en) 1984-01-24 1986-10-14 Mitsubishi Gas Chemical Company, Inc. Polyphenylene ether resin composition
US4659790A (en) 1984-06-05 1987-04-21 Japan Synthetic Rubber Co., Ltd. Heat-resistant copolymer of alpha-methylstyrene and acrylonitrile, process for preparing the same, and thermoplastic resin composition containing the same
US4659782A (en) 1984-07-05 1987-04-21 E. I. Du Pont De Nemours And Company Acrylic star polymers containing single-and multi-functional monomers in the core
US4717655A (en) 1982-08-30 1988-01-05 Becton, Dickinson And Company Method and apparatus for distinguishing multiple subpopulations of cells
US4722770A (en) 1985-07-25 1988-02-02 Universite Paul Sabatier Method for making continuous and closed hollow bodies, hollow bodies so obtained and apparatus for making the hollow spheres
US4725522A (en) 1986-10-16 1988-02-16 Xerox Corporation Processes for cold pressure fixable encapsulated toner compositions
EP0265142A2 (en) 1986-10-21 1988-04-27 Rohm And Haas Company Core-shell polymers and compositions containing core-shell polymers
US4764572A (en) 1985-07-23 1988-08-16 Shell Oil Company Anionic polymerization process
US4774189A (en) 1984-12-24 1988-09-27 Flow Cytometry Standards Corp. Fluorescent calibration microbeads simulating stained cells
US4798691A (en) 1984-10-03 1989-01-17 Japan Synthetic Rubber Co., Ltd. Capsule-shaped polymer particles and process for the production thereof
US4818785A (en) * 1985-04-16 1989-04-04 Mitsui Petrochemical Industries, Ltd. Fine particulate crosslinked amorphous copolymer and preparation and use thereof
DE3735403A1 (en) 1987-10-20 1989-05-03 Basf Ag BRANCHED COPOLYMERISATES AND METHOD FOR THE PRODUCTION THEREOF
US4829135A (en) 1987-12-29 1989-05-09 Mobil Oil Corporation Multi-stage anionic dispersion homopolymerization to form microparticles with narrow size distribution
US4837401A (en) 1984-12-12 1989-06-06 Kanegafuchi Chemical Industry, Co., Ltd. Curable polymer composition comprising organic polymer having silicon-contaiing reactive group
US4837274A (en) 1986-09-30 1989-06-06 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Curable composition
US4861131A (en) 1987-05-11 1989-08-29 Sick-Optique-Electronique Displacement transducer with staggered optical fibres
US4870144A (en) 1987-02-20 1989-09-26 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for producing an isobutylene polymer having functional terminal end groups
US4871814A (en) 1986-08-28 1989-10-03 Mobil Oil Corporation High impact, highly transparent linear styrene-diene block copolymers with five or more blocks and their preparations by anionic dispersion polymerization
US4904730A (en) 1988-04-08 1990-02-27 The Dow Chemical Company Rubber-modified resin blends
US4920160A (en) 1987-07-30 1990-04-24 Tioxide Group Plc Polymeric particles and their preparation
US4942209A (en) 1987-12-18 1990-07-17 Mobil Oil Corporation Anionic polymerization in high viscosity dispersing medium to form microparticles with narrow size distribution
US4987202A (en) 1986-04-14 1991-01-22 Zeigler John M Methods for the synthesis of polysilanes
WO1991004992A1 (en) 1989-10-03 1991-04-18 Exxon Chemical Patents Inc. Functionalized copolymers of para-alkylstyrene/isoolefin prepared by nucleophilic substitution
EP0322905A3 (en) 1987-12-29 1991-05-02 ENICHEM S.p.A. Process for the imidization of copolymers of maleic anhydride and vinyl-aromatic monomers
US5036138A (en) 1987-10-19 1991-07-30 Shell Oil Company Elastomeric compositions, process for the preparation thereof and tires containing them
US5066729A (en) 1990-04-09 1991-11-19 Bridgestone/Firestone, Inc. Diene polymers and copolymers terminated by reaction with n-alkyl and n-aryl imines
US5073498A (en) 1984-12-24 1991-12-17 Caribbean Microparticles Corporation Fluorescent alignment microbeads with broad excitation and emission spectra and its use
US5075377A (en) 1989-06-23 1991-12-24 Nippon Zeon Co., Ltd. Block copolymer composition
EP0143500B1 (en) 1983-11-23 1992-01-22 The Dow Chemical Company Rubber.reinforced polymers of monovinylidene aromatic compounds having a unique balance of gloss and physical strength properties and a method for their preparation
EP0472344A2 (en) 1990-08-14 1992-02-26 Ube Industries, Ltd. Reinforced elastomer composition and polypropylene composition containing same
US5130377A (en) 1990-01-02 1992-07-14 Phillips Petroleum Company Tapered block styrene/butadiene copolymers
US5169914A (en) 1988-05-03 1992-12-08 Edison Polymer Innovation Corporation Uniform molecular weight polymers
US5183851A (en) 1986-11-11 1993-02-02 Elf Atochem Italia S.R.L. Low haze transparent compositions and processes for preparing them
US5194300A (en) 1987-07-15 1993-03-16 Cheung Sau W Methods of making fluorescent microspheres
US5219945A (en) 1992-02-20 1993-06-15 E. I. Du Pont De Nemours And Company ABC triblock methacrylate polymers
US5227419A (en) 1990-12-20 1993-07-13 Phillips Petroleum Company Tapered block styrene/butadiene copolymers
US5237015A (en) 1991-11-04 1993-08-17 Polysar Rubber Corporation Core-shell polymer for use in tire treads
US5241008A (en) 1991-09-03 1993-08-31 Bridgestone/Firestone, Inc. Process for producing continuously tapered polymers and copolymers and products produced thereby
US5256736A (en) 1991-05-08 1993-10-26 Phillips Petroleum Company Tapered block copolymers of conjugated dienes and monovinylarenes
US5290875A (en) 1992-11-30 1994-03-01 Phillips Petroleum Company Conjugated diene/monovinylarene block copolymers with multiple tapered blocks
US5290878A (en) 1992-06-10 1994-03-01 Sumitomo Chemical Company, Limited Butadiene copolymer and process for preparing same
US5296547A (en) 1993-01-28 1994-03-22 Minnesota Mining And Manufacturing Company Block copolymer having mixed molecular weight endblocks
US5298559A (en) 1991-12-05 1994-03-29 Mitsubishi Gas Chemical Company, Inc. Multi-layered polymers
EP0590491A2 (en) 1992-10-02 1994-04-06 Bridgestone Corporation Soluble anionic polymerization initiators and products therefrom
DE4241538A1 (en) 1992-12-10 1994-06-16 Leuna Werke Ag Non-equimolar alpha-methylstyrene/maleic anhydride copolymer(s) prodn. - by radical-initiated soln. copolymerisation in presence of organo-bromine cpds., esp. tetra-bromo-methane, or excess alpha-methylstyrene
US5331035A (en) 1992-12-22 1994-07-19 Bridgestone Corporation Process for the preparation of in situ dispersion of copolymers
US5336712A (en) 1992-05-08 1994-08-09 Shell Oil Company Process for making submicron stable latexes of block copolymers
JPH06248017A (en) 1993-02-23 1994-09-06 Monsant Kasei Kk Production of heat-resistant copolymer
US5362794A (en) 1992-07-31 1994-11-08 Sumitomo Chemical Company, Ltd. Rubber composition having excellent gripping power and rolling resistance, and production thereof
JPH0693057B2 (en) 1987-01-09 1994-11-16 富士写真フイルム株式会社 Autofocus device
CA2127919A1 (en) 1993-09-03 1995-03-04 Jessie Alvin Binkley Process for producing ultrafine sized latexes
US5395891A (en) 1992-06-24 1995-03-07 Bayer Aktiengesellschaft Rubber mixtures containing polybutadiene gel
US5395902A (en) 1991-09-03 1995-03-07 Bridgestone Corporation Dispersion copolymerization in liquid aliphatic hydrocarbons
US5399629A (en) 1990-01-16 1995-03-21 Mobil Oil Corporation Solid elastomeric block copolymers
US5399628A (en) 1993-12-02 1995-03-21 Phillips Petroleum Company Block copolymers of monovinylarenes and conjugated dienes containing two interior tapered blocks
EP0352042B1 (en) 1988-07-20 1995-03-29 Ube Industries, Ltd. High rigidity and impact resistance resin composition
US5405903A (en) 1993-03-30 1995-04-11 Shell Oil Company Process for the preparation of a block copolymer blend
US5421866A (en) 1994-05-16 1995-06-06 Dow Corning Corporation Water repellent compositions
US5436298A (en) 1993-09-30 1995-07-25 Phillips Petroleum Company Block copolymers of monovinylarenes and conjugated dienes and preparation thereof
US5438103A (en) 1994-03-23 1995-08-01 Phillips Petroleum Company Block copolymers of monovinylaromatic and conjugated diene monomers
US5462994A (en) 1994-01-27 1995-10-31 The Dow Chemical Company Preparation of conjugated diene-monoalkenyl arene block copolymers having a low polydispersity index
US5514734A (en) 1993-08-23 1996-05-07 Alliedsignal Inc. Polymer nanocomposites comprising a polymer and an exfoliated particulate material derivatized with organo silanes, organo titanates, and organo zirconates dispersed therein and process of preparing same
US5514753A (en) 1993-06-30 1996-05-07 Bridgestone Corporation Process for preparing a block copolymer
US5521309A (en) 1994-12-23 1996-05-28 Bridgestone Corporation Tertiary-amino allyl-or xylyl-lithium initiators and method of preparing same
US5525639A (en) 1993-04-27 1996-06-11 Asahi Kasei Kogyo Kabushiki Kaisha Expanded foamed bead of a rubber-modified styrene polymer
US5534592A (en) 1995-09-22 1996-07-09 The Goodyear Tire & Rubber Company High performance blend for tire treads
JPH08199062A (en) 1995-01-26 1996-08-06 Mitsubishi Chem Corp Polyamide molding
US5587423A (en) 1992-10-14 1996-12-24 Basf Aktiengesellschaft Preparation of block copolymers by ionic polymerization
US5594072A (en) 1993-06-30 1997-01-14 Shell Oil Company Liquid star polymers having terminal hydroxyl groups
WO1997004029A1 (en) 1995-07-17 1997-02-06 Exxon Chemical Patents Inc. Impact modifier for polyamides containing an elastomer and a halogenated isoolefin copolymer
US5614579A (en) 1992-12-22 1997-03-25 Bridgestone Corporation Process for the preparation of tapered copolymers via in situ dispersion
US5674592A (en) 1995-05-04 1997-10-07 Minnesota Mining And Manufacturing Company Functionalized nanostructured films
US5688856A (en) 1994-10-27 1997-11-18 Shell Oil Company Process for making submicron stable latexes of hydrogenated block copolymers
US5700897A (en) 1985-04-08 1997-12-23 Optical Sensors Incorporated Method for making fluorescent polymers
US5728791A (en) 1990-11-30 1998-03-17 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Polyvinyl graft-polymers and manufacturing method thereof
US5733975A (en) 1992-06-09 1998-03-31 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Polyolefin resin composition, process for the preparation thereof and molded article made thereof
US5742118A (en) 1988-09-09 1998-04-21 Hitachi, Ltd. Ultrafine particle film, process for producing the same, transparent plate and image display plate
US5747152A (en) 1993-12-02 1998-05-05 Dai Nippon Printing Co., Ltd. Transparent functional membrane containing functional ultrafine particles, transparent functional film, and process for producing the same
US5763551A (en) 1995-03-06 1998-06-09 Basf Aktiengesellschaft Process for preparing filterable polystyrene dispersion
US5773521A (en) 1995-12-19 1998-06-30 Shell Oil Company Coupling to produce inside-out star polymers with expanded cores
US5834563A (en) 1996-05-08 1998-11-10 Kaneka Corporation Composite rubber particles and graft copolymer particles of composite rubber
US5847054A (en) 1995-08-04 1998-12-08 Basf Aktiengesellschaft Polymer particles and their preparation
US5849847A (en) 1995-08-04 1998-12-15 Fmc Corporation Telechelic polystyrene/polyethylene copolymers and processes for making same
US5891947A (en) 1992-12-22 1999-04-06 Bridgestone Corporation In-situ anionic continuous dispersion polymerization process
US5897811A (en) 1996-05-24 1999-04-27 Rohm And Haas Company Fluorescent polymers and coating compositions
US5905116A (en) 1998-05-06 1999-05-18 Bridgestone Corporation Gels derived from extending grafted α-olefin-maleimide centipede polymers and polypropylene
US5910530A (en) 1997-05-19 1999-06-08 Bridgestone Corporation High damping gel derived from extending grafted elastomers and polypropylene
US5955537A (en) 1998-02-13 1999-09-21 The Goodyear Tire & Rubber Company Continuous polymerization process
US5986010A (en) 1997-05-28 1999-11-16 The Goodyear Tire & Rubber Company Polymer for asphalt cement modification
US5994468A (en) 1998-05-06 1999-11-30 Bridgestone Corporation High damping gels derived from nylon grafted polymers
US6011116A (en) 1996-05-08 2000-01-04 Kaneka Corporation Thermoplastic resin composition
US6046275A (en) 1987-09-14 2000-04-04 Idemitsu Kosan Co., Ltd. Styrene resin with rubber polymer particles
US6075092A (en) 1996-04-17 2000-06-13 Nippon Zeon Co., Ltd. Rubber composition
US6087016A (en) 1997-06-09 2000-07-11 Inmat, Llc Barrier coating of an elastomer and a dispersed layered filler in a liquid carrier
US6117932A (en) 1997-09-18 2000-09-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite
US6127488A (en) 1997-01-17 2000-10-03 Bayer Ag Rubber mixtures which contain SBR rubber gels
JP2000514791A (en) 1996-06-27 2000-11-07 ジー.ディー.サール アンド カンパニー Particles consisting of an amphiphilic copolymer having a crosslinked outer shell region and inner core region, useful for pharmaceutical and other applications
US6166855A (en) 1998-06-05 2000-12-26 Fuji Photo Film Co., Ltd. Anti-reflection film and display device having the same
EP0742268B1 (en) 1995-05-12 2001-01-03 Advanced Elastomer Systems, L.P. Thermoplastic elastomers having improved high temperature performance
US6180693B1 (en) 1995-11-29 2001-01-30 Vantico Inc. Core/shell particles, and curable epoxy resin composition comprising same
US6191217B1 (en) 1998-11-17 2001-02-20 Bridgestone Corporation Gels derived from polypropylene grafted alkyl vinylether-maleimide copolymers
US6204354B1 (en) 1998-05-06 2001-03-20 Bridgestone Corporation Soft compounds derived from polypropylene grafted disubstituted ethylene- maleimide copolymers
US6207263B1 (en) 1997-01-20 2001-03-27 Dai Nippon Printing Co., Ltd. Anti-reflection film and process for preparation thereof
US6252014B1 (en) 1998-08-04 2001-06-26 Colorado School Of Mines Star polymers and polymeric particles in the nanometer-sized range by step growth reactions
US6268451B1 (en) 2000-10-03 2001-07-31 University Of Massachusetts Lowell Silyl-functional pseudo-telechelic polyisobutylene terpolymers
WO2001087999A2 (en) 2000-05-16 2001-11-22 Dow Corning Corporation Virtually telechelic silyl-functional polyisobutylene
US20010053813A1 (en) 2000-05-01 2001-12-20 Jsr Corporation Rubber compositions
WO2002002472A1 (en) 2000-07-06 2002-01-10 Saint-Gobain Glass France Transparent textured substrate and methods for obtaining same
US20020007011A1 (en) 2000-04-27 2002-01-17 Jsr Corporation Crosslinked rubber particles and rubber compositions
US20020045714A1 (en) 1997-09-05 2002-04-18 Dow Chemical Nanocomposites of dendritic polymers
WO2002031002A1 (en) 2000-10-11 2002-04-18 Uab Research Foundation Nanostructures formed through cyclohexadiene polymerization
US6379791B1 (en) 2000-02-08 2002-04-30 3M Innovative Properties Company Compatibilized pressure-sensitive adhesives
US6395829B1 (en) 1999-02-22 2002-05-28 Kaneka Corporation Amorphous polyolefin resin composition
RU2184125C1 (en) 2000-11-30 2002-06-27 Институт катализа им. Г.К.Борескова СО РАН Aqueous heteropolymeric dispersion for preparing covers and method of its preparing
US6437050B1 (en) 2001-10-04 2002-08-20 Bridgestone Corporation Nano-particle preparation and applications
US6441090B1 (en) 1997-08-13 2002-08-27 The Dow Chemical Company High gloss high impact monovinylidene aromatic polymers
US6448353B1 (en) 2000-02-08 2002-09-10 3M Innovative Properties Company Continuous process for the production of controlled architecture materials
US6489378B1 (en) 1999-03-15 2002-12-03 Fina Technology, Inc. Method for the preparation of core-shell morphologies from polybutadiene-polystyrene graft copolymers
US6492466B2 (en) 1999-04-23 2002-12-10 Kraton Polymers U.S. Llc Increased throughput in the manufacture of anionic polymers by reduction in polymer cement viscosity through the addition of metal alkyls
WO2002100936A1 (en) 2001-06-13 2002-12-19 Exxonmobil Chemical Patents Inc. Low permeability nanocomposites
US6506567B2 (en) 2000-01-31 2003-01-14 Fuji Photo Film Co., Ltd. Water-soluble flourescent intercalator compound
US6524595B1 (en) 2000-05-12 2003-02-25 Coletica Cyclodextrins preferentially substituted on their primary face by acid or amine functions
WO2003032061A1 (en) 2001-10-04 2003-04-17 Fuji Photo Film Co., Ltd. Liquid crystal display of transmission type
US6573313B2 (en) 2001-01-16 2003-06-03 The Hong Kong Polytechnic University Amphiphilic core-shell latexes
US6573330B1 (en) 1995-11-30 2003-06-03 Sumitomo Seika Chemicals, Co., Ltd. Process for preparing water-absorbent resin
WO2002041987A3 (en) 2000-10-25 2003-06-05 Univ Tufts Polymeric microspheres
US20030124353A1 (en) 2001-12-31 2003-07-03 Bridgestone Corp. Crystalline polymer nano-particles
US20030149185A1 (en) 2001-10-04 2003-08-07 Bridgestone Corporation Multi-layer nano-particle preparation and applications
US20030171522A1 (en) 2001-11-30 2003-09-11 Brandenburg Charles J. Graft copolymers of methylene lactones and process for emulsion polymerization of methylene lactones
US6649702B1 (en) 1999-05-19 2003-11-18 University Of Utah Research Foundation Stabilization and acoustic activation of polymeric micelles for drug delivery
US20030225190A1 (en) 2002-04-26 2003-12-04 Janos Borbely Polymeric product for film formation
US6663960B1 (en) 1998-12-25 2003-12-16 Tokushu Paper Mfg. Co., Ltd. Fluorescent particles, method for preparing the same and paper preventing forgery using the fluorescent particle
WO2003106557A1 (en) 2002-06-17 2003-12-24 Merck Patent Gmbh Composite material containing a core-covering-particle
JP2004018557A (en) 2002-06-12 2004-01-22 Nisshinbo Ind Inc Polymer fine particle having initiating group for living radical polymerization and method for producing the same
US6693746B1 (en) 1999-09-29 2004-02-17 Fuji Photo Film Co., Ltd. Anti-glare and anti-reflection film, polarizing plate, and image display device
US20040033345A1 (en) 2002-08-15 2004-02-19 Benoit Dubertret Water soluble metal and semiconductor nanoparticle complexes
US6706823B2 (en) 2001-12-31 2004-03-16 Bridgestone Corporation Conductive gels
US20040059057A1 (en) 1995-08-29 2004-03-25 Chevron Phillips Chemical Company Lp Conjugated diene/monovinylarene block copolymers blends
US20040065425A1 (en) * 2002-10-07 2004-04-08 Kemira Chemicals, Inc. Latex paper sizing composition
US6727307B2 (en) 2000-12-27 2004-04-27 Bridgestone Corporation Rubber composition
US20040091546A1 (en) 2002-03-29 2004-05-13 Johnson Brian K Process and apparatuses for preparing nanoparticle compositions with amphiphilic copolymers and their use
US6737486B2 (en) 2002-07-16 2004-05-18 Eastman Kodak Company Polymerization process
US20040127603A1 (en) 2002-12-31 2004-07-01 The Goodyear Tire & Rubber Company Core-shell polymer particles
US20040143064A1 (en) 2003-01-16 2004-07-22 Bridgestone Corporation Polymer nano-strings
US6774185B2 (en) 2001-04-04 2004-08-10 Bridgestone Corporation Metal hydroxide filled rubber compositions and tire components
US6780937B2 (en) 2002-08-29 2004-08-24 The Goodyear Tire & Rubber Company Emulsion particles as reinforcing fillers
US20040202881A1 (en) 2000-09-25 2004-10-14 3M Innovative Properties Company Block copolymer hot-melt processable adhesives, methods of their preparation, and articles therefrom
CN1560094A (en) 2004-03-12 2005-01-05 清华大学 Nano macromolecule microball of epoxy function type cross-linked nucleocapsid structure and preparation process thereof
US20050006014A1 (en) 2002-08-16 2005-01-13 The Goodyear Tire & Rubber Company Functionalized monomers for synthesis of rubbery polymers
US20050101743A1 (en) 2003-11-10 2005-05-12 Stacy Nathan E. Monovinylarene/conjugated diene copolymers having lower glass transition temperatures
US20050122819A1 (en) 2003-12-03 2005-06-09 Samsung Electronics Co., Ltd. Power supply device in semiconductor memory
US20050182158A1 (en) 2003-09-27 2005-08-18 Torsten Ziser Microgels in crosslinkable organic media
US20050203248A1 (en) 2004-03-12 2005-09-15 Lei Zheng Hairy polymeric nanoparticles
US20050220890A1 (en) 2004-03-30 2005-10-06 Symyx Therapeutics, Inc. Ion binding compositions
US20050220750A1 (en) 2004-03-30 2005-10-06 Symyx Therapeutics, Inc. Methods and compositions for treatment of ion imbalances
US20050228074A1 (en) 2004-04-05 2005-10-13 Bridgestone Corporation Amphiphilic polymer micelles and use thereof
US20050282956A1 (en) 2004-06-21 2005-12-22 Xiaorong Wang Reversible polymer/metal nano-composites and method for manufacturing same
US20050288393A1 (en) 2004-06-24 2005-12-29 Lean John T Thermoplastic elastomer composition
JP2006072283A (en) 2004-08-02 2006-03-16 Bridgestone Corp Particle for display medium, and panel for information display and information display device using the same
RU2274647C2 (en) 1999-12-07 2006-04-20 Вестолит Гмбх Унд Ко Кг Method for preparing thermoplastic molding mass
JP2006106596A (en) 2004-10-08 2006-04-20 Bridgestone Corp Particle for display medium used for panel for information display
US20060116473A1 (en) 2004-11-30 2006-06-01 Castner Eric S Modified gel particles and rubber composition
US7056840B2 (en) 2003-09-30 2006-06-06 International Business Machines Corp. Direct photo-patterning of nanoporous organosilicates, and method of use
US7067199B2 (en) 2002-05-31 2006-06-27 Fuji Photo Film Co., Ltd. Magnetic particle of CuAu(1) or CuAu(III) type its production method, magnetic recording medium and its production method
US20060141150A1 (en) 2004-12-27 2006-06-29 Lei Zheng Core-shell particles synthesized through controlled free radical polymerization
US7071246B2 (en) 2004-04-13 2006-07-04 The Goodyear Tire & Rubber Company Rubber composition containing resinous nanopractice
US20060147714A1 (en) 2002-12-19 2006-07-06 Roehm Gmbh & Co. Kg Core and shell particle for modifying impact resistance of a mouldable poly (meth) acrylate material
WO2006069793A1 (en) 2004-12-31 2006-07-06 Societe De Technologie Michelin Elastomer composition which is reinforced with a functionalised polyvinylaromatic filler
US20060173130A1 (en) 2005-02-03 2006-08-03 Bridgestone Corporation Polymer nano-particle with polar core and method for manufacturing same
RU2282637C2 (en) 2002-12-24 2006-08-27 Эл-Джи КЕМ, ЛТД. Impact resistance modifier with multilayered structure, method for production thereof thermoplastic resin containing the same
US7112369B2 (en) 2004-03-02 2006-09-26 Bridgestone Corporation Nano-sized polymer-metal composites
US20060264553A1 (en) * 2003-10-20 2006-11-23 Jozsefne Karger-Kocsis Extrusion method for the production f strength-modified and phyllosilicate reinforced thermoplastic systems
US20060280798A1 (en) 2003-11-03 2006-12-14 Istituto Superiore Di Sanita Nanoparticles for delivery of a pharmacologically active agent
US7193004B2 (en) 2003-06-30 2007-03-20 The Goodyear Tire & Rubber Company Pneumatic tire having a component containing low PCA oil
US20070081830A1 (en) 2005-10-11 2007-04-12 Xerox Corporation Aromatic disiloxane compositions
US7205370B2 (en) 2004-01-12 2007-04-17 Bridgestone Corporation Polymeric nano-particles of flower-like structure and applications
EP1783168A3 (en) 2005-11-02 2007-06-06 Fujifilm Corporation Fluorescent polymer fine particle
US20070135579A1 (en) 2005-12-14 2007-06-14 Lanxess Deutschland Gmbh Microgel-containing vulcanizable composition based on hydrogenated nitrile rubber
US20070142559A1 (en) 2005-12-16 2007-06-21 Bridgestone Corporation Nanoparticles with controlled architecture and method thereof
US20070142550A1 (en) 2005-12-16 2007-06-21 Bridgestone Corporation Combined use of liquid polymer and polymeric nanoparticles for rubber applications
US20070149652A1 (en) 2005-12-28 2007-06-28 Eastman Kodak Company Suspension polymerization process
US20070149649A1 (en) 2005-12-19 2007-06-28 Xiaorong Wang Non-spherical nanoparticles made from living triblock polymer chains
US20070161754A1 (en) 2005-12-20 2007-07-12 Xiaorong Wang Nano-sized inorganic metal particles, preparation thereof, and application thereof in improving rubber properties
US20070181302A1 (en) 2004-12-30 2007-08-09 Sun Drilling Products Corporation Method for the fracture stimulation of a subterranean formation having a wellbore by using thermoset polymer nanocomposite particles as proppants, where said particles are prepared by using formulations containing reactive ingredients obtained or derived from renewable feedstocks
US20070196653A1 (en) 2005-12-20 2007-08-23 Hall James E Vulcanizable nanoparticles having a core with a high glass transition temperature
JP2007304409A (en) 2006-05-12 2007-11-22 Bridgestone Corp Particle for display medium, and panel for information display
US20080001116A1 (en) 2006-06-12 2008-01-03 Fredrickson Glenn H Method for producing bi-continuous and high internal phase nanostructures
WO2008014464A2 (en) 2006-07-28 2008-01-31 Bridgestone Corporation Polymeric core-shell nanoparticles with interphase region
US7347237B2 (en) 2004-04-13 2008-03-25 The Goodyear Tire & Rubber Company Rubber composition containing resinous nanoparticle
JP2008069346A (en) 2006-08-18 2008-03-27 Kaneka Corp Crosslinked polymer particle and process for producing the same
US20080145660A1 (en) 2006-12-19 2008-06-19 Xiaorong Wang Fluorescent Nanoparticles
KR20080057319A (en) 2005-09-30 2008-06-24 일립사, 인코포레이티드 Methods for preparing core-shell composites having cross-linked shells and core-shell composites resulting therefrom
US20080149238A1 (en) 2006-12-20 2008-06-26 Kleckner James P Rubber composition containing a polymer nanoparticle
US20080171272A1 (en) 2007-01-15 2008-07-17 Fujifilm Corporation Curable composition, color filter using the same and manufactuirng method therefor, and solid image pickup element
US20080188579A1 (en) 2006-12-28 2008-08-07 Xiaorong Wang Nanoporous polymeric material and preparation method
JP2008239769A (en) 2007-03-27 2008-10-09 Mitsubishi Rayon Co Ltd Graft copolymer and resin composition
JP2008274006A (en) 2007-04-25 2008-11-13 Nof Corp Manufacturing method of core-shell fine particle and manufacturing method of intermediate thereof
US20080286374A1 (en) 2005-12-20 2008-11-20 Xiaorong Wang Hollow nano-particles and method thereof
US20090005491A1 (en) 2007-06-29 2009-01-01 Sandra Warren One-Pot Synthesis Of Nanoparticles And Liquid Polymer For Rubber Applications
US20090209707A1 (en) 2006-08-29 2009-08-20 Mitsubishi Rayon Co., Ltd. Impact resistance improver, thermoplastic resin composition, shaped article and method for producing graft copolymer
US20090270558A1 (en) * 2004-12-31 2009-10-29 Michelin Recherche Et Technique S.A. Functionalized Polyvinylaromatic Nanoparticles
US20090306246A1 (en) 2005-12-07 2009-12-10 Laurent Gervat Crosslinked composition comprising a core/shell copolymer, method of obtaining same and uses thereof
US20100004365A1 (en) 2008-07-02 2010-01-07 E. I. Du Pont De Nemours And Company High film build coating composition containing polytrimethylene ether diol
US20100016472A1 (en) 2004-03-02 2010-01-21 Xiaorong Wang Rubber Composition Containing Functionalized Polymer Nanoparticles
US20100247845A1 (en) 2007-09-25 2010-09-30 Toyo Boseki Kabushiki Kaisha Process for production of heat-shrinkable polyester film, heat-shrinkable polyester film and packages
US20110008607A1 (en) 2008-02-27 2011-01-13 Toyo Boseki Kabushiki Kaisha Heat-shrinkable white polyester film, process for producing heat-shrinkable white polyester film, label, and package
US20110021702A1 (en) 2006-07-06 2011-01-27 Michelin Recherche Et Technique S.A. Functionalized vinyl polymer nanoparticles
US20110172364A1 (en) 2009-12-29 2011-07-14 Chen Yaohong Charged Nanoparticles And Method Of Controlling Charge
US7998554B2 (en) 2004-07-06 2011-08-16 Bridgestone Corporation Hydrophobic surfaces with nanoparticles
US20110213066A1 (en) 2009-04-03 2011-09-01 Xiaorong Wang Hairy Polymeric Nanoparticles With First And Second Shell Block Polymer Arms
US20110236686A1 (en) 2009-12-29 2011-09-29 Hideki Kitano Well Defined, Highly Crosslinked Nanoparticles And Method For Making Same
US8063142B2 (en) 2004-03-02 2011-11-22 Bridgestone Corporation Method of making nano-particles of selected size distribution
US20120108724A1 (en) 2008-11-13 2012-05-03 Lanxess Deutschland Gmbh Storage-stable, hydroxy-modified microgel latices
US20120132346A1 (en) 2008-12-31 2012-05-31 Yaohong Chen Core-First Nanoparticle Formation Process, Nanoparticle, And Composition
US8957154B2 (en) 2005-12-19 2015-02-17 Bridgestone Corporation Disk-like nanoparticles

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199293A (en) 1981-06-02 1982-12-07 Fujitsu Ltd Method of forming mounting group of printed circuit board
JPS5973514A (en) 1982-10-19 1984-04-25 Kureha Chem Ind Co Ltd Remedy for acute cerebral ischemia
JPH02191619A (en) 1988-10-21 1990-07-27 Mitsubishi Kasei Corp Production of microsphere of core shell type polymer
GB8826026D0 (en) 1988-11-07 1988-12-14 Shell Int Research Modified v i improvers
JPH072106B2 (en) 1988-11-17 1995-01-18 株式会社横山エンジニアリング Stirring blade in rice liquefier
JP3353351B2 (en) 1991-12-05 2002-12-03 三菱瓦斯化学株式会社 Multilayer polymer, thermoplastic resin composition containing the same, and molded article thereof
US5262213A (en) * 1992-09-14 1993-11-16 The Goodyear Tire & Rubber Company Styrene-butadiene rubber for truck tires
JP2600607B2 (en) 1993-04-27 1997-04-16 旭化成工業株式会社 Method for producing expanded polystyrene-based particles and molded polystyrene-based expanded particles
MY162317A (en) * 2005-02-28 2017-05-31 Toray Industries Styrene resin composition and method for manufacturing thereof
US9428604B1 (en) 2011-12-30 2016-08-30 Bridgestone Corporation Nanoparticle fillers and methods of mixing into elastomers
CN208138279U (en) 2015-07-14 2018-11-23 米沃奇电动工具公司 The quick-connect machanism of threaded stud component
WO2019186849A1 (en) 2018-03-28 2019-10-03 株式会社 東芝 Battery, battery pack, power storage device, vehicle, and flying object

Patent Citations (297)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2531396A (en) 1947-03-29 1950-11-28 Nat Lead Co Elastomer reinforced with a modified clay
US3177186A (en) 1963-06-07 1965-04-06 American Cyanamid Co Crystallizable polymers of t-butyl acrylate and methacrylate
US4600749A (en) 1965-12-29 1986-07-15 Asahi Kasej Kogyo Kabushiki Kaisha Thermoplastic elastomers
US3598884A (en) 1967-08-04 1971-08-10 Polymer Corp Cross-linking of polymers
SU465010A3 (en) 1967-12-21 1975-03-25 Асахи Касеи Когио Кабусики Кайша (Фирма) The method of obtaining thermoplastic elastomers
US3840620A (en) 1970-04-15 1974-10-08 Stauffer Chemical Co Additives for the preparation of clear,impact resistant vinyl chloride polymer compositions
US3793402A (en) 1971-11-05 1974-02-19 F Owens Low haze impact resistant compositions containing a multi-stage,sequentially produced polymer
US3972963A (en) 1973-06-20 1976-08-03 Mobil Oil Corporation Organic reinforcing fillers for rubber
US3927143A (en) 1973-10-12 1975-12-16 Exxon Research Engineering Co Thermoplastic block copolymers
US4075186A (en) 1974-10-29 1978-02-21 The Firestone Tire & Rubber Company Graft copolymers of polybutadiene and substituted polyacrylate
US4326008A (en) 1976-08-27 1982-04-20 California Institute Of Technology Protein specific fluorescent microspheres for labelling a protein
US4247434A (en) 1978-12-29 1981-01-27 Lovelace Alan M Administrator Process for preparation of large-particle-size monodisperse
US4233409A (en) 1979-07-05 1980-11-11 Monsanto Company Polymeric blend
US4248986A (en) 1979-08-27 1981-02-03 The Goodyear Tire & Rubber Company Selective cyclization of block copolymers
US4386125A (en) 1981-02-20 1983-05-31 Asahi Kasei Kogyo Kabushiki Kaisha Film, sheet or tube of a block copolymer or a composition containing the same
US4417029A (en) 1981-08-03 1983-11-22 Atlantic Richfield Company Derivatization of star-block copolymers
US4471093A (en) 1982-02-26 1984-09-11 Sumimoto Rubber Industries, Ltd. Elastomer composition comprising a blend of SBR rubbers
US4717655A (en) 1982-08-30 1988-01-05 Becton, Dickinson And Company Method and apparatus for distinguishing multiple subpopulations of cells
US4408018A (en) 1982-10-29 1983-10-04 Rohm And Haas Company Acetoacetate functionalized polymers and monomers useful for crosslinking formulations
US4543403A (en) 1983-03-15 1985-09-24 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Curable composition
EP0143500B1 (en) 1983-11-23 1992-01-22 The Dow Chemical Company Rubber.reinforced polymers of monovinylidene aromatic compounds having a unique balance of gloss and physical strength properties and a method for their preparation
US4617346A (en) 1984-01-24 1986-10-14 Mitsubishi Gas Chemical Company, Inc. Polyphenylene ether resin composition
US4659790A (en) 1984-06-05 1987-04-21 Japan Synthetic Rubber Co., Ltd. Heat-resistant copolymer of alpha-methylstyrene and acrylonitrile, process for preparing the same, and thermoplastic resin composition containing the same
US4659782A (en) 1984-07-05 1987-04-21 E. I. Du Pont De Nemours And Company Acrylic star polymers containing single-and multi-functional monomers in the core
US4798691A (en) 1984-10-03 1989-01-17 Japan Synthetic Rubber Co., Ltd. Capsule-shaped polymer particles and process for the production thereof
US4837401A (en) 1984-12-12 1989-06-06 Kanegafuchi Chemical Industry, Co., Ltd. Curable polymer composition comprising organic polymer having silicon-contaiing reactive group
US4774189A (en) 1984-12-24 1988-09-27 Flow Cytometry Standards Corp. Fluorescent calibration microbeads simulating stained cells
US5073498A (en) 1984-12-24 1991-12-17 Caribbean Microparticles Corporation Fluorescent alignment microbeads with broad excitation and emission spectra and its use
US5700897A (en) 1985-04-08 1997-12-23 Optical Sensors Incorporated Method for making fluorescent polymers
US4818785A (en) * 1985-04-16 1989-04-04 Mitsui Petrochemical Industries, Ltd. Fine particulate crosslinked amorphous copolymer and preparation and use thereof
US4764572A (en) 1985-07-23 1988-08-16 Shell Oil Company Anionic polymerization process
US4722770A (en) 1985-07-25 1988-02-02 Universite Paul Sabatier Method for making continuous and closed hollow bodies, hollow bodies so obtained and apparatus for making the hollow spheres
US4987202A (en) 1986-04-14 1991-01-22 Zeigler John M Methods for the synthesis of polysilanes
US4871814A (en) 1986-08-28 1989-10-03 Mobil Oil Corporation High impact, highly transparent linear styrene-diene block copolymers with five or more blocks and their preparations by anionic dispersion polymerization
US4837274A (en) 1986-09-30 1989-06-06 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Curable composition
US4725522A (en) 1986-10-16 1988-02-16 Xerox Corporation Processes for cold pressure fixable encapsulated toner compositions
EP0265142A2 (en) 1986-10-21 1988-04-27 Rohm And Haas Company Core-shell polymers and compositions containing core-shell polymers
US5686528A (en) 1986-10-21 1997-11-11 Rohm And Haas Company Core-shell impact modifiers for styrenic resins
US5183851A (en) 1986-11-11 1993-02-02 Elf Atochem Italia S.R.L. Low haze transparent compositions and processes for preparing them
JPH0693057B2 (en) 1987-01-09 1994-11-16 富士写真フイルム株式会社 Autofocus device
US4870144A (en) 1987-02-20 1989-09-26 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for producing an isobutylene polymer having functional terminal end groups
US4861131A (en) 1987-05-11 1989-08-29 Sick-Optique-Electronique Displacement transducer with staggered optical fibres
US5194300A (en) 1987-07-15 1993-03-16 Cheung Sau W Methods of making fluorescent microspheres
US4920160A (en) 1987-07-30 1990-04-24 Tioxide Group Plc Polymeric particles and their preparation
US6046275A (en) 1987-09-14 2000-04-04 Idemitsu Kosan Co., Ltd. Styrene resin with rubber polymer particles
US5036138A (en) 1987-10-19 1991-07-30 Shell Oil Company Elastomeric compositions, process for the preparation thereof and tires containing them
DE3735403A1 (en) 1987-10-20 1989-05-03 Basf Ag BRANCHED COPOLYMERISATES AND METHOD FOR THE PRODUCTION THEREOF
US4942209A (en) 1987-12-18 1990-07-17 Mobil Oil Corporation Anionic polymerization in high viscosity dispersing medium to form microparticles with narrow size distribution
EP0322905A3 (en) 1987-12-29 1991-05-02 ENICHEM S.p.A. Process for the imidization of copolymers of maleic anhydride and vinyl-aromatic monomers
US4829135A (en) 1987-12-29 1989-05-09 Mobil Oil Corporation Multi-stage anionic dispersion homopolymerization to form microparticles with narrow size distribution
US4904730A (en) 1988-04-08 1990-02-27 The Dow Chemical Company Rubber-modified resin blends
US5169914A (en) 1988-05-03 1992-12-08 Edison Polymer Innovation Corporation Uniform molecular weight polymers
EP0352042B1 (en) 1988-07-20 1995-03-29 Ube Industries, Ltd. High rigidity and impact resistance resin composition
US5742118A (en) 1988-09-09 1998-04-21 Hitachi, Ltd. Ultrafine particle film, process for producing the same, transparent plate and image display plate
US5075377A (en) 1989-06-23 1991-12-24 Nippon Zeon Co., Ltd. Block copolymer composition
WO1991004992A1 (en) 1989-10-03 1991-04-18 Exxon Chemical Patents Inc. Functionalized copolymers of para-alkylstyrene/isoolefin prepared by nucleophilic substitution
US5130377A (en) 1990-01-02 1992-07-14 Phillips Petroleum Company Tapered block styrene/butadiene copolymers
US5399629A (en) 1990-01-16 1995-03-21 Mobil Oil Corporation Solid elastomeric block copolymers
US5066729A (en) 1990-04-09 1991-11-19 Bridgestone/Firestone, Inc. Diene polymers and copolymers terminated by reaction with n-alkyl and n-aryl imines
EP0472344A2 (en) 1990-08-14 1992-02-26 Ube Industries, Ltd. Reinforced elastomer composition and polypropylene composition containing same
US5728791A (en) 1990-11-30 1998-03-17 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Polyvinyl graft-polymers and manufacturing method thereof
US5227419A (en) 1990-12-20 1993-07-13 Phillips Petroleum Company Tapered block styrene/butadiene copolymers
US5256736A (en) 1991-05-08 1993-10-26 Phillips Petroleum Company Tapered block copolymers of conjugated dienes and monovinylarenes
US5395902A (en) 1991-09-03 1995-03-07 Bridgestone Corporation Dispersion copolymerization in liquid aliphatic hydrocarbons
US5241008A (en) 1991-09-03 1993-08-31 Bridgestone/Firestone, Inc. Process for producing continuously tapered polymers and copolymers and products produced thereby
US5237015A (en) 1991-11-04 1993-08-17 Polysar Rubber Corporation Core-shell polymer for use in tire treads
US5298559A (en) 1991-12-05 1994-03-29 Mitsubishi Gas Chemical Company, Inc. Multi-layered polymers
US5219945A (en) 1992-02-20 1993-06-15 E. I. Du Pont De Nemours And Company ABC triblock methacrylate polymers
US5336712A (en) 1992-05-08 1994-08-09 Shell Oil Company Process for making submicron stable latexes of block copolymers
US5733975A (en) 1992-06-09 1998-03-31 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Polyolefin resin composition, process for the preparation thereof and molded article made thereof
US5290878A (en) 1992-06-10 1994-03-01 Sumitomo Chemical Company, Limited Butadiene copolymer and process for preparing same
US5395891A (en) 1992-06-24 1995-03-07 Bayer Aktiengesellschaft Rubber mixtures containing polybutadiene gel
US5362794A (en) 1992-07-31 1994-11-08 Sumitomo Chemical Company, Ltd. Rubber composition having excellent gripping power and rolling resistance, and production thereof
US5329005A (en) 1992-10-02 1994-07-12 Bridgestone Corporation Soluble anionic polymerization initiators and preparation thereof
EP0590491A2 (en) 1992-10-02 1994-04-06 Bridgestone Corporation Soluble anionic polymerization initiators and products therefrom
US5587423A (en) 1992-10-14 1996-12-24 Basf Aktiengesellschaft Preparation of block copolymers by ionic polymerization
US5290875A (en) 1992-11-30 1994-03-01 Phillips Petroleum Company Conjugated diene/monovinylarene block copolymers with multiple tapered blocks
DE4241538A1 (en) 1992-12-10 1994-06-16 Leuna Werke Ag Non-equimolar alpha-methylstyrene/maleic anhydride copolymer(s) prodn. - by radical-initiated soln. copolymerisation in presence of organo-bromine cpds., esp. tetra-bromo-methane, or excess alpha-methylstyrene
US5614579A (en) 1992-12-22 1997-03-25 Bridgestone Corporation Process for the preparation of tapered copolymers via in situ dispersion
US5891947A (en) 1992-12-22 1999-04-06 Bridgestone Corporation In-situ anionic continuous dispersion polymerization process
US5331035A (en) 1992-12-22 1994-07-19 Bridgestone Corporation Process for the preparation of in situ dispersion of copolymers
US5296547A (en) 1993-01-28 1994-03-22 Minnesota Mining And Manufacturing Company Block copolymer having mixed molecular weight endblocks
JPH06248017A (en) 1993-02-23 1994-09-06 Monsant Kasei Kk Production of heat-resistant copolymer
US5405903A (en) 1993-03-30 1995-04-11 Shell Oil Company Process for the preparation of a block copolymer blend
US5525639A (en) 1993-04-27 1996-06-11 Asahi Kasei Kogyo Kabushiki Kaisha Expanded foamed bead of a rubber-modified styrene polymer
US5514753A (en) 1993-06-30 1996-05-07 Bridgestone Corporation Process for preparing a block copolymer
US5594072A (en) 1993-06-30 1997-01-14 Shell Oil Company Liquid star polymers having terminal hydroxyl groups
US5514734A (en) 1993-08-23 1996-05-07 Alliedsignal Inc. Polymer nanocomposites comprising a polymer and an exfoliated particulate material derivatized with organo silanes, organo titanates, and organo zirconates dispersed therein and process of preparing same
CA2127919A1 (en) 1993-09-03 1995-03-04 Jessie Alvin Binkley Process for producing ultrafine sized latexes
US5436298A (en) 1993-09-30 1995-07-25 Phillips Petroleum Company Block copolymers of monovinylarenes and conjugated dienes and preparation thereof
US5747152A (en) 1993-12-02 1998-05-05 Dai Nippon Printing Co., Ltd. Transparent functional membrane containing functional ultrafine particles, transparent functional film, and process for producing the same
US5399628A (en) 1993-12-02 1995-03-21 Phillips Petroleum Company Block copolymers of monovinylarenes and conjugated dienes containing two interior tapered blocks
US5462994A (en) 1994-01-27 1995-10-31 The Dow Chemical Company Preparation of conjugated diene-monoalkenyl arene block copolymers having a low polydispersity index
US5438103A (en) 1994-03-23 1995-08-01 Phillips Petroleum Company Block copolymers of monovinylaromatic and conjugated diene monomers
US5421866A (en) 1994-05-16 1995-06-06 Dow Corning Corporation Water repellent compositions
US5688856A (en) 1994-10-27 1997-11-18 Shell Oil Company Process for making submicron stable latexes of hydrogenated block copolymers
US5521309A (en) 1994-12-23 1996-05-28 Bridgestone Corporation Tertiary-amino allyl-or xylyl-lithium initiators and method of preparing same
JPH08199062A (en) 1995-01-26 1996-08-06 Mitsubishi Chem Corp Polyamide molding
US5763551A (en) 1995-03-06 1998-06-09 Basf Aktiengesellschaft Process for preparing filterable polystyrene dispersion
US5674592A (en) 1995-05-04 1997-10-07 Minnesota Mining And Manufacturing Company Functionalized nanostructured films
EP0742268B1 (en) 1995-05-12 2001-01-03 Advanced Elastomer Systems, L.P. Thermoplastic elastomers having improved high temperature performance
WO1997004029A1 (en) 1995-07-17 1997-02-06 Exxon Chemical Patents Inc. Impact modifier for polyamides containing an elastomer and a halogenated isoolefin copolymer
US5849847A (en) 1995-08-04 1998-12-15 Fmc Corporation Telechelic polystyrene/polyethylene copolymers and processes for making same
US5847054A (en) 1995-08-04 1998-12-08 Basf Aktiengesellschaft Polymer particles and their preparation
US20040059057A1 (en) 1995-08-29 2004-03-25 Chevron Phillips Chemical Company Lp Conjugated diene/monovinylarene block copolymers blends
US5534592A (en) 1995-09-22 1996-07-09 The Goodyear Tire & Rubber Company High performance blend for tire treads
US6180693B1 (en) 1995-11-29 2001-01-30 Vantico Inc. Core/shell particles, and curable epoxy resin composition comprising same
US6573330B1 (en) 1995-11-30 2003-06-03 Sumitomo Seika Chemicals, Co., Ltd. Process for preparing water-absorbent resin
US5773521A (en) 1995-12-19 1998-06-30 Shell Oil Company Coupling to produce inside-out star polymers with expanded cores
US6075092A (en) 1996-04-17 2000-06-13 Nippon Zeon Co., Ltd. Rubber composition
US5834563A (en) 1996-05-08 1998-11-10 Kaneka Corporation Composite rubber particles and graft copolymer particles of composite rubber
US6011116A (en) 1996-05-08 2000-01-04 Kaneka Corporation Thermoplastic resin composition
US5897811A (en) 1996-05-24 1999-04-27 Rohm And Haas Company Fluorescent polymers and coating compositions
JP2000514791A (en) 1996-06-27 2000-11-07 ジー.ディー.サール アンド カンパニー Particles consisting of an amphiphilic copolymer having a crosslinked outer shell region and inner core region, useful for pharmaceutical and other applications
US6383500B1 (en) 1996-06-27 2002-05-07 Washington University Particles comprising amphiphilic copolymers, having a crosslinked shell domain and an interior core domain, useful for pharmaceutical and other applications
US6127488A (en) 1997-01-17 2000-10-03 Bayer Ag Rubber mixtures which contain SBR rubber gels
US6207263B1 (en) 1997-01-20 2001-03-27 Dai Nippon Printing Co., Ltd. Anti-reflection film and process for preparation thereof
US5910530A (en) 1997-05-19 1999-06-08 Bridgestone Corporation High damping gel derived from extending grafted elastomers and polypropylene
US5986010A (en) 1997-05-28 1999-11-16 The Goodyear Tire & Rubber Company Polymer for asphalt cement modification
US6087016A (en) 1997-06-09 2000-07-11 Inmat, Llc Barrier coating of an elastomer and a dispersed layered filler in a liquid carrier
US6441090B1 (en) 1997-08-13 2002-08-27 The Dow Chemical Company High gloss high impact monovinylidene aromatic polymers
US20020045714A1 (en) 1997-09-05 2002-04-18 Dow Chemical Nanocomposites of dendritic polymers
US6117932A (en) 1997-09-18 2000-09-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite
US5955537A (en) 1998-02-13 1999-09-21 The Goodyear Tire & Rubber Company Continuous polymerization process
US5994468A (en) 1998-05-06 1999-11-30 Bridgestone Corporation High damping gels derived from nylon grafted polymers
US6204354B1 (en) 1998-05-06 2001-03-20 Bridgestone Corporation Soft compounds derived from polypropylene grafted disubstituted ethylene- maleimide copolymers
US5905116A (en) 1998-05-06 1999-05-18 Bridgestone Corporation Gels derived from extending grafted α-olefin-maleimide centipede polymers and polypropylene
US6166855A (en) 1998-06-05 2000-12-26 Fuji Photo Film Co., Ltd. Anti-reflection film and display device having the same
US6252014B1 (en) 1998-08-04 2001-06-26 Colorado School Of Mines Star polymers and polymeric particles in the nanometer-sized range by step growth reactions
US6191217B1 (en) 1998-11-17 2001-02-20 Bridgestone Corporation Gels derived from polypropylene grafted alkyl vinylether-maleimide copolymers
US6663960B1 (en) 1998-12-25 2003-12-16 Tokushu Paper Mfg. Co., Ltd. Fluorescent particles, method for preparing the same and paper preventing forgery using the fluorescent particle
US6395829B1 (en) 1999-02-22 2002-05-28 Kaneka Corporation Amorphous polyolefin resin composition
US6489378B1 (en) 1999-03-15 2002-12-03 Fina Technology, Inc. Method for the preparation of core-shell morphologies from polybutadiene-polystyrene graft copolymers
US6492466B2 (en) 1999-04-23 2002-12-10 Kraton Polymers U.S. Llc Increased throughput in the manufacture of anionic polymers by reduction in polymer cement viscosity through the addition of metal alkyls
US6649702B1 (en) 1999-05-19 2003-11-18 University Of Utah Research Foundation Stabilization and acoustic activation of polymeric micelles for drug delivery
US6693746B1 (en) 1999-09-29 2004-02-17 Fuji Photo Film Co., Ltd. Anti-glare and anti-reflection film, polarizing plate, and image display device
RU2274647C2 (en) 1999-12-07 2006-04-20 Вестолит Гмбх Унд Ко Кг Method for preparing thermoplastic molding mass
US6506567B2 (en) 2000-01-31 2003-01-14 Fuji Photo Film Co., Ltd. Water-soluble flourescent intercalator compound
US6379791B1 (en) 2000-02-08 2002-04-30 3M Innovative Properties Company Compatibilized pressure-sensitive adhesives
US6448353B1 (en) 2000-02-08 2002-09-10 3M Innovative Properties Company Continuous process for the production of controlled architecture materials
US20020007011A1 (en) 2000-04-27 2002-01-17 Jsr Corporation Crosslinked rubber particles and rubber compositions
US20010053813A1 (en) 2000-05-01 2001-12-20 Jsr Corporation Rubber compositions
US6524595B1 (en) 2000-05-12 2003-02-25 Coletica Cyclodextrins preferentially substituted on their primary face by acid or amine functions
WO2001087999A2 (en) 2000-05-16 2001-11-22 Dow Corning Corporation Virtually telechelic silyl-functional polyisobutylene
WO2002002472A1 (en) 2000-07-06 2002-01-10 Saint-Gobain Glass France Transparent textured substrate and methods for obtaining same
US20040202881A1 (en) 2000-09-25 2004-10-14 3M Innovative Properties Company Block copolymer hot-melt processable adhesives, methods of their preparation, and articles therefrom
US6268451B1 (en) 2000-10-03 2001-07-31 University Of Massachusetts Lowell Silyl-functional pseudo-telechelic polyisobutylene terpolymers
WO2002031002A1 (en) 2000-10-11 2002-04-18 Uab Research Foundation Nanostructures formed through cyclohexadiene polymerization
WO2002041987A3 (en) 2000-10-25 2003-06-05 Univ Tufts Polymeric microspheres
WO2002044290A3 (en) 2000-11-30 2003-03-13 Dow Chemical Co Aqueous heteropolymer dispersion for manufacturing coatings and process of its production
RU2184125C1 (en) 2000-11-30 2002-06-27 Институт катализа им. Г.К.Борескова СО РАН Aqueous heteropolymeric dispersion for preparing covers and method of its preparing
US6727307B2 (en) 2000-12-27 2004-04-27 Bridgestone Corporation Rubber composition
US6573313B2 (en) 2001-01-16 2003-06-03 The Hong Kong Polytechnic University Amphiphilic core-shell latexes
US6774185B2 (en) 2001-04-04 2004-08-10 Bridgestone Corporation Metal hydroxide filled rubber compositions and tire components
WO2002100936A1 (en) 2001-06-13 2002-12-19 Exxonmobil Chemical Patents Inc. Low permeability nanocomposites
JP2005537341A (en) 2001-10-04 2005-12-08 株式会社ブリヂストン Nanoparticle production method and application
US20060084722A1 (en) 2001-10-04 2006-04-20 Bohm Georg G A Self assembly of molecules to form nano-particles
US7238751B2 (en) 2001-10-04 2007-07-03 Bridgestone Americas Holding, Inc. Multi-layer nano-particle preparation and applications
US6956084B2 (en) 2001-10-04 2005-10-18 Bridgestone Corporation Nano-particle preparation and applications
WO2003032061A1 (en) 2001-10-04 2003-04-17 Fuji Photo Film Co., Ltd. Liquid crystal display of transmission type
US7553909B2 (en) 2001-10-04 2009-06-30 Bridgestone Corporation Multi-layer nano-particle preparation and applications
US7544740B2 (en) 2001-10-04 2009-06-09 Bridgestone Corporation Multi-layer nano-particle preparation and applications
US20050197462A1 (en) 2001-10-04 2005-09-08 Bridgestone Corporation Multi-layer nano-particle preparation and applications
US20050192408A1 (en) 2001-10-04 2005-09-01 Bridggestone Corporation Nano-particle preparation and applications
US20030198810A1 (en) 2001-10-04 2003-10-23 Xiaorong Wang Nano-particle preparation and applications
US7718738B2 (en) 2001-10-04 2010-05-18 Bridgestone Corporation Self assembly of molecules to form nano-particles
US20030149185A1 (en) 2001-10-04 2003-08-07 Bridgestone Corporation Multi-layer nano-particle preparation and applications
US7795344B2 (en) 2001-10-04 2010-09-14 Bridgestone Corporation Nano-particle preparation and applications
US6872785B2 (en) 2001-10-04 2005-03-29 Bridgestone Corporation Multi-layer nano-particle preparation and applications
US20090048390A1 (en) 2001-10-04 2009-02-19 Xiaorong Wang Nano-Particle Preparation And Applications
US6437050B1 (en) 2001-10-04 2002-08-20 Bridgestone Corporation Nano-particle preparation and applications
US20030171522A1 (en) 2001-11-30 2003-09-11 Brandenburg Charles J. Graft copolymers of methylene lactones and process for emulsion polymerization of methylene lactones
US20030124353A1 (en) 2001-12-31 2003-07-03 Bridgestone Corp. Crystalline polymer nano-particles
US6706823B2 (en) 2001-12-31 2004-03-16 Bridgestone Corporation Conductive gels
US6689469B2 (en) 2001-12-31 2004-02-10 Bridgestone Corporation Crystalline polymer nano-particles
US20040091546A1 (en) 2002-03-29 2004-05-13 Johnson Brian K Process and apparatuses for preparing nanoparticle compositions with amphiphilic copolymers and their use
US20030225190A1 (en) 2002-04-26 2003-12-04 Janos Borbely Polymeric product for film formation
US7067199B2 (en) 2002-05-31 2006-06-27 Fuji Photo Film Co., Ltd. Magnetic particle of CuAu(1) or CuAu(III) type its production method, magnetic recording medium and its production method
JP2004018557A (en) 2002-06-12 2004-01-22 Nisshinbo Ind Inc Polymer fine particle having initiating group for living radical polymerization and method for producing the same
US7291394B2 (en) 2002-06-17 2007-11-06 Merck Patent Gmbh Composite material containing a core-covering particle
WO2003106557A1 (en) 2002-06-17 2003-12-24 Merck Patent Gmbh Composite material containing a core-covering-particle
US6737486B2 (en) 2002-07-16 2004-05-18 Eastman Kodak Company Polymerization process
US20040033345A1 (en) 2002-08-15 2004-02-19 Benoit Dubertret Water soluble metal and semiconductor nanoparticle complexes
US20050006014A1 (en) 2002-08-16 2005-01-13 The Goodyear Tire & Rubber Company Functionalized monomers for synthesis of rubbery polymers
US6780937B2 (en) 2002-08-29 2004-08-24 The Goodyear Tire & Rubber Company Emulsion particles as reinforcing fillers
US7217775B2 (en) 2002-08-29 2007-05-15 The Goodyear Tire & Rubber Company Emulsion particles as reinforcing fillers
US20040198917A1 (en) 2002-08-29 2004-10-07 The Goodyear Tire & Rubber Company Emulsion particles as reinforcing fillers
US20040065425A1 (en) * 2002-10-07 2004-04-08 Kemira Chemicals, Inc. Latex paper sizing composition
US7695813B2 (en) 2002-12-19 2010-04-13 Roehm Gmbh & Co. Kg Core and shell particle for modifying impact resistance of a mouldable poly (meth) acrylate material
US20060147714A1 (en) 2002-12-19 2006-07-06 Roehm Gmbh & Co. Kg Core and shell particle for modifying impact resistance of a mouldable poly (meth) acrylate material
RU2282637C2 (en) 2002-12-24 2006-08-27 Эл-Джи КЕМ, ЛТД. Impact resistance modifier with multilayered structure, method for production thereof thermoplastic resin containing the same
US20040127603A1 (en) 2002-12-31 2004-07-01 The Goodyear Tire & Rubber Company Core-shell polymer particles
US6777500B2 (en) 2002-12-31 2004-08-17 The Goodyear Tire & Rubber Company Core-shell polymer particles
US6875818B2 (en) 2003-01-16 2005-04-05 Bridgestone Corporation Polymer nano-strings
US7179864B2 (en) 2003-01-16 2007-02-20 Bridgestone Corporation Polymer nano-strings
US20040143064A1 (en) 2003-01-16 2004-07-22 Bridgestone Corporation Polymer nano-strings
US7193004B2 (en) 2003-06-30 2007-03-20 The Goodyear Tire & Rubber Company Pneumatic tire having a component containing low PCA oil
US20050182158A1 (en) 2003-09-27 2005-08-18 Torsten Ziser Microgels in crosslinkable organic media
US7056840B2 (en) 2003-09-30 2006-06-06 International Business Machines Corp. Direct photo-patterning of nanoporous organosilicates, and method of use
US20060264553A1 (en) * 2003-10-20 2006-11-23 Jozsefne Karger-Kocsis Extrusion method for the production f strength-modified and phyllosilicate reinforced thermoplastic systems
US20060280798A1 (en) 2003-11-03 2006-12-14 Istituto Superiore Di Sanita Nanoparticles for delivery of a pharmacologically active agent
US20050101743A1 (en) 2003-11-10 2005-05-12 Stacy Nathan E. Monovinylarene/conjugated diene copolymers having lower glass transition temperatures
US20050122819A1 (en) 2003-12-03 2005-06-09 Samsung Electronics Co., Ltd. Power supply device in semiconductor memory
US7205370B2 (en) 2004-01-12 2007-04-17 Bridgestone Corporation Polymeric nano-particles of flower-like structure and applications
US20070185273A1 (en) 2004-01-12 2007-08-09 Xiaorong Wang Polymeric Nano-Particles Of Flower-Like Structure And Applications
US7786236B2 (en) 2004-01-12 2010-08-31 Bridgestone Corporation Polymeric nano-particles of flower-like structure and applications
US7897690B2 (en) 2004-03-02 2011-03-01 Bridgestone Corporation Rubber composition containing functionalized polymer nanoparticles
US8063142B2 (en) 2004-03-02 2011-11-22 Bridgestone Corporation Method of making nano-particles of selected size distribution
US20100016472A1 (en) 2004-03-02 2010-01-21 Xiaorong Wang Rubber Composition Containing Functionalized Polymer Nanoparticles
US7112369B2 (en) 2004-03-02 2006-09-26 Bridgestone Corporation Nano-sized polymer-metal composites
US7718737B2 (en) 2004-03-02 2010-05-18 Bridgestone Corporation Rubber composition containing functionalized polymer nanoparticles
CN1560094A (en) 2004-03-12 2005-01-05 清华大学 Nano macromolecule microball of epoxy function type cross-linked nucleocapsid structure and preparation process thereof
US20050203248A1 (en) 2004-03-12 2005-09-15 Lei Zheng Hairy polymeric nanoparticles
US20080242813A1 (en) 2004-03-12 2008-10-02 The Goodyear Tire & Rubber Company Hairy polymeric nanoparticles
US7408005B2 (en) 2004-03-12 2008-08-05 The Goodyear Tire & Rubber Company Hairy polymeric nanoparticles
US20050220750A1 (en) 2004-03-30 2005-10-06 Symyx Therapeutics, Inc. Methods and compositions for treatment of ion imbalances
US20050220890A1 (en) 2004-03-30 2005-10-06 Symyx Therapeutics, Inc. Ion binding compositions
US20080160305A1 (en) 2004-04-05 2008-07-03 Bridgestone Corporation Amphiphilic polymer micelles and use thereof
US20050228074A1 (en) 2004-04-05 2005-10-13 Bridgestone Corporation Amphiphilic polymer micelles and use thereof
US7347237B2 (en) 2004-04-13 2008-03-25 The Goodyear Tire & Rubber Company Rubber composition containing resinous nanoparticle
US7071246B2 (en) 2004-04-13 2006-07-04 The Goodyear Tire & Rubber Company Rubber composition containing resinous nanopractice
US20080305336A1 (en) 2004-06-21 2008-12-11 Xiaorong Wang Reversible Polymer/Metal Nano-Composites And Method For Manufacturing Same
US20050282956A1 (en) 2004-06-21 2005-12-22 Xiaorong Wang Reversible polymer/metal nano-composites and method for manufacturing same
US8349964B2 (en) 2004-06-21 2013-01-08 Bridgestone Corporation Reversible polymer/metal nano-composites and method for manufacturing same
US20050288393A1 (en) 2004-06-24 2005-12-29 Lean John T Thermoplastic elastomer composition
US7244783B2 (en) 2004-06-24 2007-07-17 The Goodyear Tire & Rubber Company Thermoplastic elastomer composition
US7998554B2 (en) 2004-07-06 2011-08-16 Bridgestone Corporation Hydrophobic surfaces with nanoparticles
JP2006072283A (en) 2004-08-02 2006-03-16 Bridgestone Corp Particle for display medium, and panel for information display and information display device using the same
JP2006106596A (en) 2004-10-08 2006-04-20 Bridgestone Corp Particle for display medium used for panel for information display
US20110024011A1 (en) 2004-11-30 2011-02-03 The Goodyear Tire & Rubber Company Modified gel particles and rubber composition
US20060116473A1 (en) 2004-11-30 2006-06-01 Castner Eric S Modified gel particles and rubber composition
US20060141150A1 (en) 2004-12-27 2006-06-29 Lei Zheng Core-shell particles synthesized through controlled free radical polymerization
US20070181302A1 (en) 2004-12-30 2007-08-09 Sun Drilling Products Corporation Method for the fracture stimulation of a subterranean formation having a wellbore by using thermoset polymer nanocomposite particles as proppants, where said particles are prepared by using formulations containing reactive ingredients obtained or derived from renewable feedstocks
US20090270558A1 (en) * 2004-12-31 2009-10-29 Michelin Recherche Et Technique S.A. Functionalized Polyvinylaromatic Nanoparticles
US7820771B2 (en) 2004-12-31 2010-10-26 Michelin Recherche Et Technique S. A. Elastomeric composition reinforced with a functionalized polyvinylaromatic filler
WO2006069793A1 (en) 2004-12-31 2006-07-06 Societe De Technologie Michelin Elastomer composition which is reinforced with a functionalised polyvinylaromatic filler
US7659342B2 (en) 2005-02-03 2010-02-09 Bridgestone Corporation Polymer nano-particle with polar core and method for manufacturing same
US20060173130A1 (en) 2005-02-03 2006-08-03 Bridgestone Corporation Polymer nano-particle with polar core and method for manufacturing same
KR20080057319A (en) 2005-09-30 2008-06-24 일립사, 인코포레이티드 Methods for preparing core-shell composites having cross-linked shells and core-shell composites resulting therefrom
US20070081830A1 (en) 2005-10-11 2007-04-12 Xerox Corporation Aromatic disiloxane compositions
EP1783168A3 (en) 2005-11-02 2007-06-06 Fujifilm Corporation Fluorescent polymer fine particle
US20090306246A1 (en) 2005-12-07 2009-12-10 Laurent Gervat Crosslinked composition comprising a core/shell copolymer, method of obtaining same and uses thereof
US20070135579A1 (en) 2005-12-14 2007-06-14 Lanxess Deutschland Gmbh Microgel-containing vulcanizable composition based on hydrogenated nitrile rubber
US20070142550A1 (en) 2005-12-16 2007-06-21 Bridgestone Corporation Combined use of liquid polymer and polymeric nanoparticles for rubber applications
US20070142559A1 (en) 2005-12-16 2007-06-21 Bridgestone Corporation Nanoparticles with controlled architecture and method thereof
US7538159B2 (en) 2005-12-16 2009-05-26 Bridgestone Corporation Nanoparticles with controlled architecture and method thereof
US9061900B2 (en) 2005-12-16 2015-06-23 Bridgestone Corporation Combined use of liquid polymer and polymeric nanoparticles for rubber applications
US7884160B2 (en) 2005-12-19 2011-02-08 Bridgestone Corporation Non-spherical nanoparticles made from living triblock polymer chains
US20070149649A1 (en) 2005-12-19 2007-06-28 Xiaorong Wang Non-spherical nanoparticles made from living triblock polymer chains
US8957154B2 (en) 2005-12-19 2015-02-17 Bridgestone Corporation Disk-like nanoparticles
US20070196653A1 (en) 2005-12-20 2007-08-23 Hall James E Vulcanizable nanoparticles having a core with a high glass transition temperature
US20080286374A1 (en) 2005-12-20 2008-11-20 Xiaorong Wang Hollow nano-particles and method thereof
US7560510B2 (en) 2005-12-20 2009-07-14 Bridgestone Corporation Nano-sized inorganic metal particles, preparation thereof, and application thereof in improving rubber properties
US8697775B2 (en) 2005-12-20 2014-04-15 Bridgestone Corporation Vulcanizable nanoparticles having a core with a high glass transition temperature
US8877250B2 (en) 2005-12-20 2014-11-04 Bridgestone Corporation Hollow nano-particles and method thereof
US20150045463A1 (en) 2005-12-20 2015-02-12 Bridgestone Corporation Hollow Nano-Particles and Method Thereof
US20070161754A1 (en) 2005-12-20 2007-07-12 Xiaorong Wang Nano-sized inorganic metal particles, preparation thereof, and application thereof in improving rubber properties
US20070149652A1 (en) 2005-12-28 2007-06-28 Eastman Kodak Company Suspension polymerization process
JP2007304409A (en) 2006-05-12 2007-11-22 Bridgestone Corp Particle for display medium, and panel for information display
US20080001116A1 (en) 2006-06-12 2008-01-03 Fredrickson Glenn H Method for producing bi-continuous and high internal phase nanostructures
US20110021702A1 (en) 2006-07-06 2011-01-27 Michelin Recherche Et Technique S.A. Functionalized vinyl polymer nanoparticles
US8541503B2 (en) 2006-07-28 2013-09-24 Bridgestone Corporation Polymeric core-shell nanoparticles with interphase region
US20100004398A1 (en) 2006-07-28 2010-01-07 Xiaorong Wang Polymeric core-shell nanoparticles with interphase region
WO2008014464A2 (en) 2006-07-28 2008-01-31 Bridgestone Corporation Polymeric core-shell nanoparticles with interphase region
JP2008069346A (en) 2006-08-18 2008-03-27 Kaneka Corp Crosslinked polymer particle and process for producing the same
US20090209707A1 (en) 2006-08-29 2009-08-20 Mitsubishi Rayon Co., Ltd. Impact resistance improver, thermoplastic resin composition, shaped article and method for producing graft copolymer
US20100016512A1 (en) 2006-12-19 2010-01-21 Xiaorong Wang Fluorescent Nanoparticles
US7597959B2 (en) 2006-12-19 2009-10-06 Bridgestone Corporation Core-shell fluorescent nanoparticles
US8410225B2 (en) 2006-12-19 2013-04-02 Bridgestone Corporation Fluorescent nanoparticles
WO2008079276A1 (en) 2006-12-19 2008-07-03 Bridgestone Corporation Fluorescent nanoparticles
US20080145660A1 (en) 2006-12-19 2008-06-19 Xiaorong Wang Fluorescent Nanoparticles
US20080149238A1 (en) 2006-12-20 2008-06-26 Kleckner James P Rubber composition containing a polymer nanoparticle
WO2008079807A1 (en) 2006-12-20 2008-07-03 Bridgestone Corporation Rubber composition containing a polymer nanoparticle
US7649049B2 (en) 2006-12-20 2010-01-19 Bridgestone Corporation Rubber composition containing a polymer nanoparticle
US20080188579A1 (en) 2006-12-28 2008-08-07 Xiaorong Wang Nanoporous polymeric material and preparation method
US20080171272A1 (en) 2007-01-15 2008-07-17 Fujifilm Corporation Curable composition, color filter using the same and manufactuirng method therefor, and solid image pickup element
JP2008239769A (en) 2007-03-27 2008-10-09 Mitsubishi Rayon Co Ltd Graft copolymer and resin composition
JP2008274006A (en) 2007-04-25 2008-11-13 Nof Corp Manufacturing method of core-shell fine particle and manufacturing method of intermediate thereof
US20100324167A1 (en) 2007-06-29 2010-12-23 Sandra Warren One-pot synthesis of nanoparticles and liquid polymer for rubber applications
WO2009006434A1 (en) 2007-06-29 2009-01-08 Bridgestone Corporation One-pot synthesis of nanoparticles and liquid polymer for rubber applications
US20090005491A1 (en) 2007-06-29 2009-01-01 Sandra Warren One-Pot Synthesis Of Nanoparticles And Liquid Polymer For Rubber Applications
KR101586096B1 (en) 2007-06-29 2016-01-15 가부시키가이샤 브리지스톤 One-pot synthesis of nanoparticles and liquid polymer for rubber applications
US7829624B2 (en) 2007-06-29 2010-11-09 Bridgestone Corporation One-pot synthesis of nanoparticles and liquid polymer for rubber applications
US20100247845A1 (en) 2007-09-25 2010-09-30 Toyo Boseki Kabushiki Kaisha Process for production of heat-shrinkable polyester film, heat-shrinkable polyester film and packages
US20110008607A1 (en) 2008-02-27 2011-01-13 Toyo Boseki Kabushiki Kaisha Heat-shrinkable white polyester film, process for producing heat-shrinkable white polyester film, label, and package
US20100004365A1 (en) 2008-07-02 2010-01-07 E. I. Du Pont De Nemours And Company High film build coating composition containing polytrimethylene ether diol
US20120108724A1 (en) 2008-11-13 2012-05-03 Lanxess Deutschland Gmbh Storage-stable, hydroxy-modified microgel latices
US8846819B2 (en) 2008-12-31 2014-09-30 Bridgestone Corporation Core-first nanoparticle formation process, nanoparticle, and composition
US20150017446A1 (en) 2008-12-31 2015-01-15 Bridgestone Corporation Core-first nanoparticle formation process, nanoparticle, and composition
US20120132346A1 (en) 2008-12-31 2012-05-31 Yaohong Chen Core-First Nanoparticle Formation Process, Nanoparticle, And Composition
US20110213066A1 (en) 2009-04-03 2011-09-01 Xiaorong Wang Hairy Polymeric Nanoparticles With First And Second Shell Block Polymer Arms
US9062144B2 (en) 2009-04-03 2015-06-23 Bridgestone Corporation Hairy polymeric nanoparticles with first and second shell block polymer arms
US20150291719A1 (en) 2009-04-03 2015-10-15 Bridgestone Corporation Hairy polymeric nanoparticles with first and second shell block polymer arms
US20110236686A1 (en) 2009-12-29 2011-09-29 Hideki Kitano Well Defined, Highly Crosslinked Nanoparticles And Method For Making Same
US9115222B2 (en) 2009-12-29 2015-08-25 Bridgestone Corporation Well defined, highly crosslinked nanoparticles and method for making same
US20110172364A1 (en) 2009-12-29 2011-07-14 Chen Yaohong Charged Nanoparticles And Method Of Controlling Charge
US20160039964A1 (en) 2009-12-29 2016-02-11 Bridgestone Corporation Well defined, highly crosslinked nanoparticles and method for making same

Non-Patent Citations (370)

* Cited by examiner, † Cited by third party
Title
Adams, Donald E. et al., Jun. 18, 2012 Decision on Appeal from U.S Appl. No. 11/818,023 (13 pp.).
Akashi, Mitsuru et al., "Synthesis and Polymerization of a Styryl Terminated Oligovinylpyrrolidone Macromonomer, Die Angewandte Makromolekulare Chemie", 132, pp. 81-89 (1985).
Alexandridis, Paschalis et al., "Amphiphilic Block Copolymers: Self-Assembly and Applications", Elsevier Science B.V., pp. 1-435 (2000).
Allgaier, Jurgen et al., "Synthesis and Micellar Properties of PS-PI Block Copolymers of Different Architecture", ACS Polym. Prepr. (Div Polym. Chem.), vol. 37, No. 2, pp. 670-671 (1996).
Antonietti, Markus et al., "Determination of the Micelle Architecture of Polystyrene/Poly(4-vinylpyridine) Block Copolymers in Dilute Solution", Macromolecules, 27, pp. 3276-3281 (1994).
Antonietti, Markus et al., "Novel Amphiphilic Block Copolymers by Polymer Reactions and Their Use for Solubilization of Metal Salts and Metal Colloids", Macromolecules, 29, pp. 3800-3806 (1996).
Asinovsky, Olga, Aug. 16, 2007 Advisory Action from U.S Appl. No. 10/791,049 (2 pp.).
Asinovsky, Olga, Dec. 22, 2006 Office Action from U.S. Appl. No. 10/791,049 (11 pp.).
Asinovsky, Olga, Jul. 29, 2008 Advisory Action from U.S. Appl. No. 10/791,049 (3 pp.).
Asinovsky, Olga, Jun. 20, 2006 Office Action from U.S. Appl. No. 10/791,049 (11 pp.).
Asinovsky, Olga, Jun. 7, 2007 Office Action from U.S. Appl. No. 10/791,049 (11 pp.).
Asinovsky, Olga, May 21, 2008 Office Action from U.S. Appl. No. 10/791,049 (11 pp.).
Asinovsky, Olga, Nov. 28, 2007 Office Action from U.S. Appl. No. 10/791,049 (9 pp.).
Asinovsky, Olga, Sep. 11, 2008 Office Action from U.S. Appl. No. 101791,049 (12 pp.).
Awan, M.A. et al., "Anionic Dispersion Polymerization of Styrene. I. Investigation of Parameters for Preparation of Uniform Micron-Size Polystyrene Particles with Narrow Molecular Weight Distribution," Journal of Polymer Science: Part A: Polymer Chemistry, vol. 34, pp. 2633-2649 (1996).
Bahadur, Pratap, "Block copolymers-Their microdomain formation (in solid state) and surfactant behaviour (in solution)", Current Science, vol. 80, No. 8, pp. 1002-1007 (Apr. 25, 2001).
Batzilla, Thomas et al., "Formation of intra- and intermolecular crosslinks in the radical crosslinking of poly(4- vinylstyrene)", Makromol. Chem., Rapid Commun. 8, pp. 261-268 (1987).
Bauer, B.J. et al., "Synthesis and Dilute-Solution Behavior of Model Star-Branched Polymers", Rubber Chemistry and Technology, vol. 51, pp. 406-436 (1978).
Berger, G. et al., "Mutual Termination of Anionic and Cationic 'Living' Polymers", Polymer Letters, vol. 4, pp. 183-186 (1966).
Berger, Sebastian et al., "Stimuli-Responsive Bicomponent Polymer Janus Particles by 'Grafting from'/ 'Grafting to' Approaches," Macromolecules, 41, pp. 9669-9676 (2008).
Bohm, Georg et al., "Emerging materials: technology for new tires and other rubber products", Tire Technology International, 2006 (4 pp.).
Borukhov, Itamar et al., "Enthalpic Stabilization of Brush-Coated Particles in a Polymer Melt", Macromolecules, vol. 35, pp. 5171-5182 (2002).
Bradley, John S., "The Chemistry of Transition Metal Colloids", Clusters and Colloids: From Theory to Applications, Chapter 6, Weinheim, VCH, pp. 459-544 (1994).
Bradley, Melanie et al., "Poly(vinylpyridine) Core/Poly(N-isoproplacrylamide) Shell Microgel Particles: Their Characterization and the Uptake and Release of an Anionic Surfactant", Langmuir, vol. 24, pp. 2421-2425 (Mar. 14, 2008).
Braun, Hartmut et al., "Enthalpic interaction of diblock copolymers with immiscible polymer blend components", Polymer Bulletin, vol. 32, pp. 241-248 (1994).
Bridgestone Americas 2006 Presentation (14 pp.).
Bronstein, Lyudmila M. et al., "Synthesis of Pd-, Pt-, and Rh-containing polymers derived from polystyrene-polybutadiene block copolymers; micellization of diblock copolymers due to complexation", Macromol. Chem. Phys., 199, pp. 1357-1363 (1998).
Brovkina, T.A., English translation of May 4, 2011 Office Action from Russian Application No. 2009107218 (7 pp.).
Brovkina, T.A., Oct. 12, 2011 Office Action with English translation from Russian Application No. 2009107218 (8 pp.).
Brown, H.R. et al., "Communications to the Editor: Enthalpy-Driven Swelling of a Polymer Brush", Macromolecules, vol. 23, pp. 3383-3385 (1990).
Cahn, John W., "Phase Separation by Spinodal Decomposition in Isotropic Systems", The Journal of Chemical Physics, vol. 42, No. 1, pp. 93-99 (Jan. 1, 1965).
Cain, Edward J., Dec. 9, 2008 Final Office Action from U.S. Appl. No. 11/642,795 (6 pp.).
Cain, Edward J., Feb. 23, 2009 Notice of Allowance from U.S Appl. No. 11/642,795 (5 pp.).
Calderara, Frederic et al., "Synthesis of chromophore-labelled polystyrene/poly(ethylene oxide) diblock copolymers", Makromol. Chem., 194, pp. 1411-1420 (1993).
Canham et al., "Formation of Worm-like Micelles from a Polystyrene-Polybutadiene-Polystyrene Block Copolymer in Ethyl Acetate", J.C.S. Faraday I, 76, 1857-1867 (1980).
Chen, Jizhuang, Dec. 21, 2007 Office Action from Chinese Application No. 02819527.2 (12 pp.).
Chen, Jizhuang, Dec. 30, 2005 Office Action from Chinese Application No. 02819527.2 (9 pp.).
Chen, Jizhuang, Sep. 26, 2008 Office Action from Chinese Application No. 02819527.2 (4 pp.).
Chen, Ming-Qing et al., "Graft Copolymers Having Hydrophobic Backbone and Hydrophilic Branches. XXIII. Particle Size Control of Poly(ethylene glycol)- Coated Polystyrene Nanoparticles Prepared by Macromonomer Method", Journal of Polymer Science: Part A: Polymer Chemistry, vol. 37, pp. 2155-2166 (1999).
Chen, Ming-Qing et al., "Nanosphere Formation in Copolymerization of Methyl Methacrylate with Poly(ethylene glycol) Macromonomers", Journal of Polymer Science: Part A: Polymer Chemistry, vol. 38, pp. 1811-1817 (2000).
Chen, Wei et al., "Ultrahydrophobic and Ultrayophobic Surfaces: Some Comments and Examples", The ACS Journal of Surfaces and Colloids, vol. 15, No. 10, pp. 3395-3399 (May 11, 1999).
Cheng, Lin et al., "Efficient Synthesis of Unimolecular Polymeric Janus Nanoparticles and Their Unique Self-Assembly Behavior in a Common Solvent," Macromolecules, 41, pp. 8159-8166 (2008).
Chevalier, Alicia Ann, Jan. 4, 2007 Office Action from U.S. Appl. No. 10/886,283 (8 pp.).
Chevalier, Alicia Ann, Jan. 4, 2008 Office Action from U.S. Appl. No. 10/886,283 (8 pp.).
Chevalier, Alicia Ann, Jul. 2, 2007 Office Action from U.S. Appl. No. 10/886,283 (8 pp.).
Chevalier, Alicia Ann, Jul. 8, 2010 Advisory Action from U.S. Appl. No. 10/886,283 (3 pp.).
Chevalier, Alicia Ann, May 3, 2010 Final Office Action from U.S. Appl. No. 10/886,283 (8 pp.).
Chevalier, Alicia Ann, Nov. 23, 2010 Office Action from U.S. Appl. No. 10/886,283 (6 pp.).
Chevalier, Alicia Ann, Nov. 25, 2009 Office Action from U.S. Appl. No. 10/886,283 (7 pp.).
Chevalier, Alicia Ann, Sep. 6, 2006 Office Action from U.S. Appl. No. 10/886,283 (5 pp.).
Chinese Patent Office, Dec. 4, 2013 Office Action from Chinese Application No. 200980157756.4 (8 pp.).
Chinese Patent Office, Jun. 28, 2013 Office Action with English translation from Chinese Application No. 200980157756.4 (13 pp.).
Chinese Patent Office, May 6, 2015 Office Action from 200780036040.X (9 pp.).
Chinese Patent Office, Nov. 3, 2011 Office Action with English translation from Chinese Application No. 200780036040.X (12 pp.).
Chinese Patent Office, Oct. 8, 2014 Notice of Reexamination from Chinese Application No. 200780036040.X (32 pp.).
Chinese Patent Office, Sep. 4, 2013 Office Action with English translation from Chinese Application No. 200780036040.X (18 pp.).
Choi, Ling Siu, Mar. 24, 2006 Office Action from U.S. Appl. No. 10/755,648 (11 pp.).
Coleman, Jr. Lester E. et al., "Reaction of Primary Aliphatic Amines with Maleic Anhydride", J. Org,. Chem., 24, 185, pp. 135-136 (1959).
Cosgrove, Terence et al., "Adsorbed Block Copolymer of Poly(2-vinylpyridine) and Polystyrene Studied by Neutron Reflectivity and Surface Force Techniques", Macromolecules, 26, pp. 4363-4367 (1993).
Coulson, S.R. et al., "Super-Repellent Composite Fluoropolymer Surfaces", The Journal of Physical Chemistry B, vol. 104, No. 37, pp. 8836-8840 (Sep. 21, 2000).
Cui, Honggang et al., "Block Copolymer Assembly via Kinetic Control", Science, vol. 317, pp. 647-650 (Aug. 3, 2007).
Cussac, Yolaine, Jun. 24, 2009 International Preliminary Report on Patentability from PCT Application No. PCT/US2007/026031 (7 pp.).
Dendukuri, Dhananjay et al., "Synthesis and Self-Assembly of Amphiphilic Polymeric Microparticles," Langmuir, 23, pp. 4669-4674 (2007).
Dieterich, W. et al., "Non-Debye Relaxations in Disordered Ionic Solids", Chem. Chys., 284, pp. 439-467 (2002).
Ducheneaux, Frank D., Apr. 4, 2011 Advisory Action from U.S. Appl. No. 10/817,995 (6 pp.).
Ducheneaux, Frank D., Dec. 28, 2010 Final Office Action from U.S. Appl. No. 10/817,995 (24 pp.).
Ducheneaux, Frank D., Jun. 8, 2010 Office Action from U.S. Appl. No. 10/817,995 (19 pp.).
Edmonds, William F. et al., "Disk Micelles from Nonionic Coil-Coil Diblock Copolymers", Macromolecules, vol. 39, pp. 1526-4530 (May 28, 2006).
Ege, Seyhan, Organic Chemistry Structure and Reactivity, 3rd Edition, p. 959 (1994).
Egwim, Kelechi Chidi, Jun. 13, 2011 Advisory Action from U.S. Appl. No. 12/047,896 (2 pp.).
Egwim, Kelechi Chidi, Mar. 21, 2011 Final Office Action from U.S. Appl. No. 12/047,896 (6 pp.).
Egwim, Kelechi Chidi, Sep. 30, 2010 Office Action from U.S. Appl. No. 12/047,896 (6 pp.).
Eisenberg, Adi, "Thermodynamics, Kinetics, and Mechanisms of the Formation of Multiple Block Copolymer Morphologies", Polymer Preprints, vol. 41, No. 2, pp. 1515-1516 (2000).
Erbil, H. Yildirim et al., "Transformation of a Simple Plastic into a Superhydrophobic Surface", Science, vol. 299, pp. 1377-1380 (Feb. 28, 2003).
Erhardt, Rainer et al., "Janus Micelles", Macromolecules, vol. 34, No. 4, pp. 1069-1075 (2001).
Eschwey, Helmut et al., "Preparation and Some Properties of Star-Shaped Polymers with more than Hundred Side Chains", Die Makromolekulare Chemie 173, pp. 235-239 (1973).
Eschwey, Helmut et al., "Star polymers from styrene and divinylbenzene", Polymer, vol. 16, pp. 180-184 (Mar. 1975).
Fendler, Janos H., "Nanoparticles and Nanostructured Films: Preparation, Characterization and Applications", Wiley-VCH, pp. 1-468 (1998).
Ferreira, Paula G. et al., "Scaling Law for Entropic Effects at Interfaces between Grafted Layers and Polymer Melts", Macromolecules, vol. 31, pp. 3994-4003 (1998).
Fink, Brieann R., Apr. 23, 2014 Office Action from U.S. Appl. No. 12/754,367 (30 pp.).
Fink, Brieann R., Dec. 1, 2011 Office Action from U.S. Appl. No. 12/754,367 (15 pp.).
Fink, Brieann R., Jun. 6, 2012 Final Office Action from U.S. Appl. No. 12/754,367 (13 pp.).
Fink, Brieann R., Oct. 23, 2014 Office Action from U.S. Appl. No. 12/754,367 (21 pp.).
Fink, Brieann R., Sep. 30, 2013 Office Action from U.S. Appl. No. 12/754,367 (14 pp.).
Fink, Brieann R., Sep. 30, 2015 Office Action from U.S. Appl. No. 14/746,142 (10 pp.).
Garcia, Carlos B. et al., "Self-Assembly Approach toward Magnetic Silica-Type Nanoparticles of Different Shapes from Reverse Block Copolymer Mesophases", J. Am. Chem. Soc. vol. 125, pp. 13310-13311 (2003).
Gay, C., "Wetting of a Polymer Brush by a Chemically Identical Polymer Melt", Macromolecules, vol. 30, pp. 5939-5943 (1997).
Giannelis, E.P. "Polymer Layered Silicate Nanocomposites", Advanced Materials, vol. 8, No. 1, pp. 29-35 (Jan. 1, 1996).
Giesemann, Gerhard, Apr. 8, 2013 Office Action from European Application No. 08772275.7 (4 pp.).
Gilman, Jeffrey W. et al., "Recent Advances in Flame Retardant Polymer Nanocomposites," Fire and Materials 2001, 7th International Conference and Exhibition. Proceedings, Interscience Communications Limited, San Antonio, TX, pp. 273-283, Jan. 22-24, 2001).
Greenwood, N.N. et al., Chemistry of the Elements, Pergaroen Press, New York, pp. 1126-1127 (1984).
Guo, Andrew et al., "Star Polymers and Nanospheres from Cross-Linkable Diblock Copolymers", Macromolecules, vol. 29, pp. 2487-2493 (Jan. 17, 1996).
Haeussler, L. et al., "Simultaneous TA and MS Analysis of Alternating Styrene-Malei Anhydride and Styrene-Maleimide Copolymers", Thermochim. Acta, 277, 14 (1996).
Haider, Saira Bano, Dec. 2, 2008 Office Action from U.S. Appl. No. 11/104,759 (10 pp.).
Haider, Saira Bano, Dec. 22, 2006 Advisory Action from U.S. Appl. No. 11/104,759 (3 pp.).
Haider, Saira Bano, Feb. 9, 2011 Decision on Appeal from U.S Appl. No. 11/104,759 (4 pp.).
Haider, Saira Bano, Mar. 19, 2008 Advisory Action from U.S. Appl. No. 11/104,759 (3 pp.).
Haider, Saira Bano, Mar. 3, 2009 Advisory Action from U.S. Appl. No. 11/104,759 (3 pp.).
Haider, Saira Bano, Sep. 11, 2009 Examiner's Answer from U.S. Appl. No. 11/104,759 (9 pp.).
Halperin, A., "Polymeric Micelles: A Star Model", Macromolecules, vol. 20, pp. 2943-2946 (1987).
Hamley, Ian W., "The Physics of Block Copolymers", Oxford Science Publication: Oxford, Chapters 3 and 4, pp. 131-265, (1998).
Hammon, Andrew, Aug. 25, 2008 International Search Report from PCT Application No. PCT/US2008/068838 (4 pp.).
Hardacre, Christopher et al., "Structure of molten 1,3-dimethylimidazolium chloride using neutron diffraction", Journal of Chemical Physics, vol. 118, No. 1, pp. 273-278 (2003).
Harlan, Robert D., Apr. 30, 2009 Office Action from U.S. Appl. No. 11/117,981 (7 pp.).
Harlan, Robert D., Dec. 10, 2008 Final Office Action from U.S Appl. No. 10/791,177 (8 pp.).
Harlan, Robert D., Dec. 28, 2009 Office Action from U.S. Appl. No. 12/504,255 (6 pp.).
Harlan, Robert D., Jan. 2, 2008 Office Action from U.S. Appl. No. 11/117,981 (6 pp.).
Harlan, Robert D., Jan. 26, 2007 Office Action from U.S. Appl. No. 11/117,981 (8 pp.).
Harlan, Robert D., Jan. 9, 2008 Advisory Action from U.S. Appl. No. 10/791,177 (3 pp.).
Harlan, Robert D., Jan. 9, 2009 Office Action from U.S. Appl. No. 11/117,981 (6 pp.).
Harlan, Robert D., Jul. 12, 2007 Office Action from U.S. Appl. No. 11/117,981 (6 pp.).
Harlan, Robert D., Jul. 20, 2006 Office Action from U.S. Appl. No. 11/117,981 (6 pp.).
Harlan, Robert D., Jul. 25, 2008 Office Action from U.S. Appl. No. 11/117,981 (8 pp.).
Harlan, Robert D., Jun. 22, 2004 Office Action from U.S. Appl. No. 10/223,393 (6 pp.).
Harlan, Robert D., Jun. 9, 2010 Office Action from U.S. Appl. No. 12/504,255 (6 pp.).
Harlan, Robert D., Mar. 11, 2009 Notice of Allowance from U.S. Appl. No. 10/791,177 (8 pp.).
Harlan, Robert D., Mar. 17, 2004 Restriction/Election Office Action from U.S. Appl. No. 10/223,393 (6 pp.).
Harlan, Robert D., Mar. 7, 2008 Advisory Action from U.S. Appl. No. 10/791,177 (3 pp.).
Harlan, Robert D., May 13, 2010 Final Office Action from U.S. Appl. No. 12/504,255 (7 pp.).
Harlan, Robert D., May 28, 2008 Office Action from U.S. Appl. No. 10/791,177 (8 pp.).
Harlan, Robert D., May 3, 2007 Office Action from U.S. Appl. No. 10/791,177 (6 pp.).
Harlan, Robert D., Nov. 7, 2005 Office Action from U.S. Appl. No. 11/117,981 (7 pp.).
Harlan, Robert D., Oct. 18, 2007 Office Action from U.S. Appl. No. 10/791,177 (6 pp.).
Harlan, Robert D., Sep. 29, 2009 Final Office Action from U.S. Appl. No. 11/117,981 (6 pp.).
Hasegawa, Ryuichi et al., "Optimum Graft Density for Dispersing Particles in Polymer Melts", Macromolecules, vol. 29, pp. 6656-6662 (1996).
Hay, J.N. et al., "A Review of Nanocomposites," 15 pp. (2000).
Hofler, Thomas, May 22, 2012 Supplementary European Search Report with Search Opinion from European Application No. 09837105.7 (5 pp.).
Inoue, M., Jun. 4, 2013 Office Action with English translation from Japanese Application No. 2009-543130 (6 pp.).
Iraegui Retolaza, E., Jul. 9, 2004 International Search Report from PCT Application No. PCT/US2004/001000 (3 pp.).
Iraegui Retolaza, E., May 30, 2008 International Search Report from PCT Application No. PCT/US2007/026031 (4 pp.).
Ishizu, Koji et al., "Core-Shell Type Polymer Microspheres Prepared by Domain Fixing of Block Copolymer Films", Journal of Polymer Science: Part A: Polymer Chemistry, vol. 27, pp. 3721-3731 (1989).
Ishizu, Koji et al., "Core-Shell Type Polymer Microspheres Prepared from Block Copolymers", Journal of Polymer Science: Part C: Polymer Letters, vol. 26, pp. 281-286 (1988).
Ishizu, Koji et al., "Preparation of core-shell type polymer microspheres from anionic block copolymers", Polymer, vol. 34, No. 18, pp. 3929-3933 (1993).
Ishizu, Koji et al., "Synthesis of Star Polymer with Nucleus of Microgel", Polymer Journal, vol. 12, No. 6, pp. 399-404 (1980).
Ishizu, Koji, "Star Polymers by Immobilizing Functional Block Copolymers", Star and Hyperbranched Polymers, ISBN 0-8247, pp. 135-178 (1999).
Ishizu, Koji, "Structural Ordering of Core Crosslinked Nanoparticles and Architecture of Polymeric Superstructures", ACS Polym. Prepr. (Div Polym Chem) vol. 40, No. 1, pp. 456-457 (1999).
Ishizu, Koji, "Synthesis and Structural Ordering of Core-Shell Polymer Microspheres", Prog. Polym. Sci., vol. 23, pp. 1383-1408 (1998).
Jensen, M. et al., "EXAFS Investigations of the Mechanism of Facilitated Ion Transfer into a Room-Temperature Ionic Liquid", J. Am. Chem. Soc., 124, pp. 10664-10665 (2002).
Johnson, Edward M., Dec. 12, 2008 International Search Report from PCT Application No. PCT/US2007/074611 (5 pp.).
Kaucher, Mark S., Apr. 28, 2015 Office Action from U.S. Appl. No. 14/499,895 (14 pp.).
Kaucher, Mark S., Dec. 18, 2012 Office Action from U.S. Appl. No. 13/142,770 (19 pp.).
Kaucher, Mark S., Jan. 31, 2014 Final Office Action from U.S. Appl. No. 13/142,770 (8 pp.).
Kaucher, Mark S., May 19, 2014 Notice of Allowance from U.S. Appl. No. 13/142,770 (4 pp.).
Kaucher, Mark S., Non-Final Office Action for U.S. Appl. No. 14/499,895, Mailed Date: Mar. 10, 2016, 18 pages.
Kaucher, Mark S., Nov. 5, 2012 Office Action from U.S. Appl. No. 12/979,732 (24 pp.).
Kaucher, Mark S., Oct. 16, 2015 Final Office Action from U.S. Appl. No. 14/499,895 (17 pp.).
Kawaguchi, Haruma, "Functional Polymer Microspheres", In Prog. Polym. Sci., vol. 25, Elsevier Science Ltd., Jun. 30, 2000, pp. 1171-1210.
Kiliman, Leszak B., May 15, 2007 Advisory Action from U.S. Appl. No. 10/817,995 (2 pp.).
Kiliman, Leszek B., Dec. 13, 2006 Office Action from U.S. Appl. No. 10/817,995 (6 pp.).
Kiliman, Leszek B., Feb. 13, 2003 Office Action from U.S. Appl. No. 10/038,748 (3 pp.).
Kiliman, Leszek B., Mar. 19, 2009 Office Action from U.S. Appl. No. 10/817,995 (5 pp.).
Kiliman, Leszek B., Mar. 23, 2006 Office Action from U.S. Appl. No. 10/817,995 (7 pp.).
Kiliman, Leszek B., Nov. 13, 2009 Office Action from U.S. Appl. No. 10/817,995 (6 pp.).
Kiliman, Leszek B., Sep. 5, 2008 Office Action from U.S. Appl. No. 10/817,995 (5 pp.).
Kiliman, Leszek B., Sep. 9, 2005 Office Action from U.S. Appl. No. 10/817,995 (7 pp.).
Kim, Woo-Sik et al., "Synthesis and Photocrosslinking of Maleimide-Type Polymers", Macromol. Rapid Commun., 17, 835, pp. 835-841 (1996).
KIPO, Jul. 30, 2015 Office Action with English translation from Korean Application No. 10-2011-7017864 (6 pp.).
Korean Patent Office, Feb. 27, 2014 Office Action with English translation from Korean Application No. 10-2009-7014949 (10 pp.).
Korean Patent Office, Jan. 14, 2015 Office Action with English translation from Korean Application No. 10-2010-7001987 (5 pp.).
Korean Patent Office, Nov. 28, 2013 Office Action from Korean Application No. 10-2009-7004191 (7 pp.).
Kotani et al. "Characterization of Carbon Filler Distribution Ratio in Polyisoprene/Polybutadiene Rubber Blends by High-Resolution Solid State C13 NMR", Macromolecules, 2007, 40, 9451-9454. *
Kralik, M. et al., "Catalysis by metal nanoparticles supported on functional organic polymers", Journal of Molecular Catalysis A: Chemical, vol. 177, pp. 113-138 [2001].
Kraus, Gerard, "Mechanical Losses in Carbon-Black-Filled Rubbers", Journal of Applied Polymer Science: Applied Jolymer Symposium, vol. 39, pp. 75-92 (1984).
Krishnamoorti, Ramanan et al., "Rheology of End-Tethered Polymer Layered Silicate Nanocomposites", Macromolecules, 30, pp. 4097-4102 (1997).
Lagaly, Gehard, "Kink-Block and Gauche-Block Structures of Bimolecular Films", Chem. Int. Ed. Engl., vol. 15, No. 10, pp. 575-586 (1976).
Lawson, David F. et al., "Preparation and Characterization of Heterophase Blends of Polycaprolactam and Hydrogenated Polydienes", Central Research Journal of Applied Polymer Science, vol. 39, pp. 2331-2351 (1990).
Le, Hoa T., Dec. 14, 2004 Office Action from U.S. Appl. No. 10/791,491 (5 pp.).
Le, Hoa T., Jul. 5, 2005 Office Action from U.S. Appl. No. 10/791,491 (9 pp.).
Le, Hoa T., Sep. 25, 2008 Office Action from U.S. Appl. No. 11/612,554 (8 pp.).
Lee, Wen-Fu et al., "Polysulfobetaines and Corresponding Cationic Polymers. IV. Synthesis and Aqueous Solution Properties of Cationic Poly (MIQSDMAPM)", J. Appl. Pol. Sci., vol. 59, pp. 599-608 (1996).
Ligoure, Christian, "Adhesion between a Polymer Brush and an Elastomer: A Self-Consistent Mean Field Model", Macromolecules, vol. 29, pp. 5459-5468 (1996).
Lipman, Bernard, Jan. 27, 2009 Notice of Allowance from U.S. Appl. No. 11/764,607 (4 pp.).
Lipman, Bernard, Jan. 28, 2009 Notice of Allowance from U.S. Appl. No. 11/305,281 (5 pp.).
Lipman, Bernard, Mar. 20, 2008 Office Action from U.S. Appl. No. 11/764,607 (4 pp.).
Lipman, Bernard, Mar. 24, 2004 Restriction/Election Office Action from U.S. Appl. No. 10/345,498 (5 pp.).
Lipman, Bernard, Mar. 25, 2004 Restriction/Election Office Action from U.S. Appl. No. 10/331,841 (6 pp.).
Lipman, Bernard, Sep. 14, 2006 Office Action from U.S. Appl. No. 11/168,297 (4 pp.).
Lipman, Bernard., Sep. 29, 2006 Office Action from U.S. Appl. No. 11/058,156 (5 pp.).
Liu, Guojun et al., "Diblock Copolymer Nanofibers", Macromolecules, 29, pp. 5508-5510 (1996).
Liu, T. et al., "Formation of Amphiphilic Block Copolymer Micelles in Nonaqueous Solution", Amphiphilic Block Copolymers: Self-Assembly and Applications, Elsevier Science B.V., pp. 115-149 (2000).
Ma, Hongyang et al., "Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate in Room-Temperature Ionic Liquids", Journal of Polymer Science: Part A: Polymer Chemistry, 41, pp. 143-151 (2003).
Ma, Qinggao et al., "Entirely Hydrophilic Shell Cross-Linked Knedel-Like (SCK) Nanoparticles", Polymer Preprints, vol. 41, No. 2, pp. 1571-1572 (2000).
Maksymonko, John M., Aug. 6, 2008 Office Action from U.S. Appl. No. 11/305,279 (11 pp.).
Maksymonko, John M., Feb. 20, 2008 Office Action from U.S. Appl. No. 11/305,279 (14 pp.).
Maksymonko, John M., Jul. 17, 2008 Office Action from U.S. Appl. No. 11/305,281 (13 pp.).
Maksymonko, John M., Jun. 11, 2008 Office Action from U.S. Appl. No. 11/642,124 (16 pp.).
Maksymonko, John M., Jun. 13, 2008 Office Action from U.S. Appl. No. 11/641,514 (7 pp.).
Maksymonko, John M., May 28, 2008 Office Action from U.S. Appl. No. 11/642,802 (10 pp.).
Maksymonko, John M., May 30, 2008 Office Action from U.S. Appl. No. 11/642,795 (12 pp.).
Malashkova, E.S., Jun. 1, 2012 Office Action with English translation from Russian Application No. 2010102943 (10 pp.).
Mandema et al., "Association of Block Copolymers in Selective Solvents, 1 Measurements on Hydrogenated Poly (styrene-isoprene) in Decane and in trans-Decalin", Makromol. Chem. 180, pp. 1521-1538 (1979).
Matsen, M.W., "Phase Behavior of Block Copolymer/Homopolymer Blends", Macromolecules, vol. 28, pp. 5765-5773 (1995).
Matsumoto, Akikazu et al., "Synthesis, Thermal Properties and Gas Permeability of Poly (N-n-alkylmaleimide)s", Polymer Journal, vol. 23, No. 3, pp. 201-209 (1991).
Mayer, A.B.R. et al., "Transition metal nanoparticles protected by amphiphilic block copolymers as tailored catalyst systems", Colloid Polym. Sci., 275, pp. 333-340 (1997).
Mendizabal, E. et al., "Functionalized Core-Shell Polymers Prepared by Microemulsion Polymerization", ANTEC 1997 Plastics: Plastics Saving Planet Earth, vol. 2: Materials Conference Proceedings, pp. 1733-1737.
Mensah, Laure, Sep. 20, 2010 Office Action from European Application No. 07813483.0 (4 pp.).
Mettler, Rolf-Martin, Communication Pursuant to Article 94(3) EPC for European Patent Application No. 07865780.6, Mailed Date: Dec. 17, 2015, 4 pages.
Mettler, Rolf-Martin, May 27, 2008 International Search Report from PCT Application No. PCT/US2007/087869 (2 pp.).
Mi, Yongli et al., "Glass transition of nano-sized single chain globules", Polymer 43, Elsevier Science Ltd., pp. 6701-6705 (2002).
Milner, S.T. et al., "End-Confined Polymers: Corrections to the Newtonian Limit", Macromolecules, vol. 22, pp. 489-490 (1989).
Milner, S.T. et al., "Theory of the Grafted Polymer Brush", Macromolecules, vol. 21, pp. 2610-2619 (1988).
Min, Ke et al., "Atom Transfer Radical Dispersion Polymerization of Styrene in Ethanol," Macromolecules, vol. 40, pp. 7217-7222 (2007).
Moller, Martin et al., "Mineralization of Gold in Block Copolymer Micelles", Macromol. Symp., 117, pp. 207-218 (1997).
Mossmer, Stefan et al., "Solution Behavior of Poly(styrene)-block-poly(2-vinylpyridine) Micelles Containing Gold Nanoparticles", Macromolecules, 33, pp. 4791-4798 (2000).
Mulcahy, Peter D., Dec. 11, 2008 Restriction/Election Office Action from U.S. Appl. No. 11/642,802 (7 pp.).
Mulcahy, Peter D., Dec. 6, 2012 Final Office Action from U.S. Appl. No. 11/642,802 (8 pp.).
Mulcahy, Peter D., May 13, 2009 Office Action from U.S. Appl. No. 11/642,802 (7 pp.).
Mulcahy, Peter D., Nov. 9, 2009 Final Office Action from U.S. Appl. No. 11/642,802 (6 pp.).
Mulcahy, Peter D., Nov. 9, 2011 Office Action from U.S. Appl. No. 11/642,802 (6 pp.).
Mullis, Jeffrey C., Apr. 30, 2009 Final Office Action from U.S. Appl. No. 11/641,514 (11 pp.).
Mullis, Jeffrey C., Aug. 12, 2010 Advisory Action from U.S. Appl. No. 11/641,514 (4 pp.).
Mullis, Jeffrey C., Aug. 21, 2008 Office Action from U.S. Appl. No. 11/050,115 (7 pp.).
Mullis, Jeffrey C., Feb. 1, 2012 Office Action from U.S Appl. No. 12/374,883 (9 pp.).
Mullis, Jeffrey C., Feb. 25, 2009 Office Action from U.S. Appl. No. 11/050,115 (8 pp.).
Mullis, Jeffrey C., Feb. 9, 2011 Restriction/Election Office Action from U.S. Appl. No. 12/288,174 (8 pp.).
Mullis, Jeffrey C., Jul. 15, 2009 Advisory Action from U.S. Appl. No. 11/641,514 (4 pp.).
Mullis, Jeffrey C., Jul. 27, 2011 Office Action from U.S. Appl. No. 12/374,883 (13 pp.).
Mullis, Jeffrey C., Jun. 3, 2011 Restriction/Election Office Action from U.S. Appl. No. 12/374,883 (7 pp.).
Mullis, Jeffrey C., Mar. 11, 2009 Office Action from U.S. Appl. No. 10/791,049 (9 pp.).
Mullis, Jeffrey C., Mar. 24, 2008 Office Action from U.S. Appl. No. 11/050,115 (10 pp.).
Mullis, Jeffrey C., Mar. 3, 2010 Restriction/Election Office Action from U.S. Appl. No. 11/771,659 (7 pp.).
Mullis, Jeffrey C., Mar. 30, 2011 Decision on Appeal from U.S. Appl. No. 10/791,049 (7 pp.).
Mullis, Jeffrey C., May 19, 2009 Advisory Action from U.S. Appl. No. 10/791,049 (5 pp.).
Mullis, Jeffrey C., May 23, 2011 Office Action from U.S. Appl. No. 12/288,174 (6 pp.).
Mullis, Jeffrey C., May 26, 2010 Final Office Action from U.S. Appl. No. 11/641,514 (8 pp.).
Mullis, Jeffrey C., Nov. 5, 2008 Advisory Action from U.S. Appl. No. 11/050,115 (4 pp.).
Mullis, Jeffrey C., Nov. 9, 2009 Office Action from U.S. Appl. No. 11/641,514 (9 pp.).
Mullis, Jeffrey C., Oct. 31, 2006 Office Action from U.S. Appl. No. 11/050,115 (6 pp.).
Mullis, Jeffrey C., Oct. 31, 2008 Office Action from U.S. Appl. No. 11/641,514 (10 pp.).
Nace, Vaughn M., "Nonionic Surfactants: Polyoxyalkylene Block Copolymers", Surfactant Science Series, vol. 60, pp. 1-266 (1996).
Nakamura, E., Dec. 2, 2014 Office Action with English translation from Japanese Application No. 2009-522021 (6 pp.).
Nakamura, E., May 19, 2015 Pre-appeal Examination Report with English translation from Japanese Application No. 2009-522021 (2 pp.).
Nakamura, Eiji, Feb. 12, 2014 Office Action with English translation from Japanese Application No. 2009-522021 (11 pp.).
Nakamura, Eiji, Mar. 26, 2013 Office Action with English translation from Japanese Application No. 2009-522021 (9 pp.).
Newkome George R. et al., "Dendrimers and Dendrons: Concept, Synthesis, Application", WILEY-VCH Verlag GmbH, pp. 45, 191-310 (2001).
Nijmans, C.M. et al., "Effect of Free Polymer on the Structure of a Polymer Brush and Interaction between Two Polymer Brushes", Macromolecules, vol. 27, pp. 3238-3248 (1994).
Noolandi, Jaan et al., "Theory of Block Copolymer Micelles in Solution", Macromolecules, vol. 16, pp. 1443-1448 (1983).
Okay, Oguz et al., "Anionic Dispersion Polymerization of 1,4-Divinylbenzene", Macromolecules, 23, pp. 2623-2628 (1990).
Okay, Oguz et al., "Steric stabilization of reactive microgels from 1,4-divinylbenzene", Makromol. Chem., Rapid Commun., vol. 11, pp. 583-587 (1990).
Okazaki, Tadashi, Aug. 18, 2015 Office Action with English translation from Japanese Application No. 2014-189797 (11 pp).
Okazaki, Tadashi, May 20, 2014 Office Action with English translation from Japanese Application No. 2011-544583 (9 pp.).
Okazaki, Tadashi,Nov. 10, 2015 Office Action with English translation from Japanese Application No. 2014-189797 (6 pp.).
Oranli, Levent et al., "Hydrodynamic studies on micellar solutions of styrene-butadiene block copolymers in selective solvents", Can. J. Chem., vol. 63, pp. 2691-2696 (1985).
O'Reilly, Rachel K. et al., "Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility", Chem. Soc. Rev., vol. 35, pp. 1068-1083 (Oct. 2, 2006).
O'Reilly, Rachel K. et al., "Functionalization of Micelles and Shell Cross-linked Nanoparticles Using Click Chemistry", Chem. Mater., vol. 17, No. 24, pp. 5976-5988 (Nov. 24, 2005).
Pak, Hannah J., Apr. 2, 2009 Office Action from U.S Appl. No. 11/941,128 (9 pp.).
Pak, Hannah J., Jan. 6, 2010 Final Office Action from U.S. Appl. No. 11/941,128 (10 pp.).
Papadopoulos, P. et al., "Origin of Glass Transition of Poly(2-vinylpyridine). A Temperature- and Pressure-Dependent Dielectric Spectroscopy Study," Macromolecules, vol. 37, pp. 8116-8122 (2004).
Park, Jong Chul, Aug. 3, 2010 International Search Report from PCT Application No. PCT/US2009/069680 (3 pp.).
Peets, Monique R., Apr. 11, 2013 Office Action from U.S. Appl. No. 12/979,719 (6 pp.).
Peets, Monique R., Jan. 5, 2010 Final Office Action from U.S. Appl. No. 11/697,801 (9 pp.).
Peets, Monique R., Jul. 10, 2014 Office Action from U.S. Appl. No. 12/979,719 (7 pp.).
Peets, Monique R., Jul. 20, 2009 Office Action from U.S. Appl. No. 11/697,801 (9 pp.).
Peets, Monique R., Mar. 11, 2014 Final Office Action from U.S. Appl. No. 12/979,719 (9 pp.).
Peets, Monique R., May 11, 2009 Restriction/Election Office Action from U.S. Appl. No. 11/697,801 (6 pp.).
Peets, Monique R., Nov. 5, 2013 Final Office Action from U.S. Appl. No. 12/979,719 (9 pp.).
Piirma, Irja, "Polymeric Surfactants", Surfactant Science Series, vol. 42, pp. 1-289 (1992).
Pispas, S. et al., "Effect of Architecture on the Micellization Properties of Block Copolymers: A2B Miktoarm Stars vs AB Diblocks", Macromolecules, vol. 33, pp. 1741-1746 (Feb. 17, 2000).
Pitt Quantum Repository, "Maleimide", Retrieved At: <<http://pqr.pitt.edu/mol/PEEHTFAAVSWFBL-UHFFFAOYSA-N/, Retrieved Date: Sep. 24, 2015, 2 pages.
Powers, P.O., "Solubility of Polystyrene Fractions in Hydrocarbons", Industrial and Engineering Chemistry, vol. 42, No. 12, pp. 2558-2562 [Dec. 1950].
Pre-print article, Wang, Xiaorong et al., "PMSE 392-Manufacture and Commercial Uses of Polymeric Nanoparticles", Division of Polymeric Materials: Science and Engineering (Mar. 2006).
Price, Colin, "Colloidal Properties of Block Copolymers", Applied Science Publishers Ltd., Chapter 2, pp. 39-80 (1982).
Quirk, Roderic P. et al., "Controlled Anionic Synthesis of Polyisoprene-Poly(2-vinylpyridine) Diblock Copolymers in Hydrocarbon Solution", Macromolecules, 34, pp. 1192-1197 (2001).
Rager, Timo et al., "Micelle formation of poly(acrylic acid)-block-poly(methyl methacrylate) block copolymers in mixtures of water with organic solvents", Macromol. Chem. Phys., 200, No. 7, pp. 1672-1680 (1999).
Raider, Saira Bano, Jun. 12, 2008 Office Action from U.S. Appl. No. 11/104,759 (10 pp.).
Raider, Saira Bano, May 16, 2007 Office Action from U.S. Appl. No. 11/104,759 (9 pp.).
Raider, Saira Bano, Oct. 30, 2007 Office Action from U.S. Appl. No. 11/104,759 (9 pp.).
Raza, Saira B., Aug. 21, 2006 Office Action from U.S. Appl. No. 11/104,759 (6 pp.).
Raza, Saira B., Oct. 20, 2005 Office Action from U.S. Appl. No. 11/104,759 (10 pp.).
Rein, David H. et al., "Kinetics of arm-first star polymers formation in a non-polar solvent", Macromol. Chem. Phys., vol. 199, pp. 569-574 (1998).
Rempp, Paul et al., "Grafting and Branching of Polymers", Pure Appl. Chem., vol. 30, pp. 229-238 (1972).
Ren, Jiaxiang et al., "Linear Viscoelasticity of Disordered Polystyrene-Polyisoprene Block Copolymer Based Layered-Silicate Nanocomposites", Macromolecules, 33, pp. 3739-3746 (2000).
Riess, Gerard et al., "Block Copolymers", Encyclopedia of Polymer Science and Engineering, vol. 2, pp. 324-434 (1985).
Riess, Gerard, "Micellization of block copolymers", Progress in Polymer Science, vol. 28, pp. 1107-1170 (Jan. 16, 2003).
Robertson, C.G. et al., "Effect of structural arrest on Poisson's ratio in nanoreinforced elastomers," Physical Review E, vol. 75, pp. 051403-1-051403-7 (2007).
Ronesi, Vickey M., Jan. 8, 2007 Office Action from U.S. Appl. No. 10/791,177 (5 pp.).
Russell, G., Aug. 1, 2005 International Search Report from PCT Application No. PCT/US2005/010352 (3 pp.).
Russell, Graham, Nov. 4, 2008 Office Action from European Application No. 05742316.2 (2 pp.).
Russian Patent Office, Nov. 6, 2013 Office Action from Russian Application No. 2011126888 (9 pp.).
Saito, Reiko et al., "Arm-number effect of core-shell type polymer microsphere: 1. Control of arm-number of microsphere", Polymer, vol. 35, No. 4, pp. 866-871 (1994).
Saito, Reiko et al., "Core-Shell Type Polymer Microspheres Prepared From Poly(Styrene-b-Methacrylic Acid)-1. Synthesis of Microgel ", Eur. Polym. J., vol. 27, No. 10, pp. 1153-1159 (1991).
Saito, Reiko et al., "Synthesis of microspheres with 'hairy-ball' structures from poly (styrene-b-2-vinyl pyridine) diblock copolymers", Polymer, vol. 33, No. 5, pp. 1073-1077 (1992).
Saito, Reiko et al., "Synthesis of Microspheres with Microphase-Separated Shells", Journal of Polymer Science: Part A: Polymer Chemistry, vol. 38, pp. 2091-2097 (2000).
Sakurai, Ryo et al., "68.2: Color and Flexible Electronic Paper Display using QR-LPD Technology", SID 06 Digest, pp. 1922-1925 (2006).
Sardjoe, Irene, Sep. 4, 2014 Oral Proceedings Minutes from EP Application No. 07813483.0 (6 pp.).
Schacher, Felix et al., "Multicompartment Core Micelles of Triblock Terpolymers in Organic Media," Macromolecules, 12, pp. 3540-3548 (2009).
Schulte, M., Aug. 8, 2006 Office Action from European Application No. 02807196.7 (5 pp.).
Schulte, Maya, Sep. 3, 2007 Office Action from European Application No. 02807196.7 (2 pp.).
Schutte, M., May 28, 2004 International Search Report from PCT Application No. PCT/US03/40375 (3 pp.).
Schutte, M., Nov. 13, 2003 International Search Report from PCT Application No. PCT/US02/31817 (3 pp.).
Schwab, F.C. et al., "Anionic Dispersion Polymerization of Styrene," Advances in Polymer Synthesis, vol. 31, pp. 381-404 (1985).
Semenov, A.N., "Phase Equilibria in Block Copolymer-Homopolymer Mixtures", Macromolecules, vol. 26, pp. 2273-2281 (1993).
Semenov, A.N., "Theory of Diblock-Copolymer Segregation to the Interface and Free Surface of a Homopolymer Layer", Macromolecules, vol. 25, pp. 4967-4977 (1992).
Serizawa, Takeshi et al., "Transmission Electron Microscopic Study of Cross-Sectional Morphologies of Core-Corona Polymeric Nanospheres", Macromolecules, 33, pp. 1759-1764 (2000).
Shull, Kenneth R., "End-Adsorbed Polymer Brushes in High- and Low-Molecular-Weight Matrices", Macromolecules, vol. 29, pp. 2659-2666 (1996).
Simmons, Blake et al., "Templating Nanostructure trhough the Self-Assembly of Surfactants", Synthesis, Functionalization and Surface Treatment of Nanoparticles, ASP (Am.Sci.Pub.), pp. 51-52, 174-208 (2003).
Skes, Altrev C., Jun. 20, 2014 Office Action from U.S. Appl. No. 11/818,023 (21 pp.).
Stepanek, Miroslav et al. "Time-Dependent Behavior of Block Polyelectrolyte Micelles in Aqueous Media Studied by Potentiometric Titrations, QELS and Fluoroetry", Langmuir, vol. 16, No. 6, pp. 2502-2507 (2000).
Syes, Altrev C., Oct. 22, 2010 Advisory Action from U.S. Appl. No. 11/818,023 (2 pp.).
Sykes, Altrev C., Apr. 5, 2010 Final Office Action from U.S. Appl. No. 11/818,023 (24 pp.).
Sykes, Altrev C., Dec. 19, 2014 Final Office Action from U.S Appl. No. 11/818,023 (14 pp.).
Sykes, Altrev C., Feb. 14, 2014 Final Office Action from U.S. Appl. No. 11/818,023 (26 pp.).
Sykes, Altrev C., Mar. 20, 2009 Office Action from U.S. Appl. No. 11/818,023 (27 pp.).
Sykes, Altrev C., Nov. 8, 2012 Final Office Action from U.S. Appl. No. 11/818,023 (20 pp.).
Sykes, Altrev C., Oct. 16, 2009 Office Action from U.S. Appl. No. 11/818,023 (20 pp.).
Sykes, Altrev C., Oct. 29, 2010 Examiner's Answer from U.S. Appl. No. 11/818,023 (25 pp.).
Sykes, Altrev C., Sep. 5, 2013 Office Action from U.S. Appl. No. 11/818,023 (22 pp.).
The Dow Chemical Company, "DVB Cross-link a variety of materials for improved thermal, physical, and chemical properties," 44 pp. (Jan. 2003).
Thurmond II, K. Bruce et al., "The Study of Shell Cross-Linked Knedels (SCK), Formation and Application", ACS Polym. Prepr. (Div Polym. Chem.), vol. 38, No. 1, pp. 62-63 (1997).
Thurmond II, K. Bruce et al., "Water-Soluble Knedel-like Structures: The Preparation of Shell-Cross-Linked Small Particles", J. Am. Chem. Soc., vol. 118, pp. 7239-7240 (1996).
Thurmond, K. Bruce et al., "Shell cross-linked polymer micelles: stabilized assemblies with great versatility and potential", Colloids and Surfaces B: Biointerfaces, vol. 16, pp. 45-54 (1999).
Tiyapiboonchaiya, Churat et al., "Polymer-m-Ionic-Liquid Electrolytes", Macromol. Chem. Phys., 203, pp. 1906-1911 (2002).
Tomalia, Donald A. et al., "Dendritic Macromolecules: Synthesis of Starburst Dendrimers", Macromolecules vol. 19, No. 9, pp. 2466-2468 (1986).
Tsitsilianis, Constantinos et al., "Synthesis and characterization of hetero-arm star copolymers", Makromol. Chem. 191, pp. 2319-2328 (1990).
Tsitsilianis, Constantinos, "Phase Behavior of Heteroarm Star Copolymers by Differential Scanning Calorimetry," Macromolecules, 26, pp. 2977-2980 (1993).
Tuzar et al., "Anomalous Behaviour of Solutions of Styrene-Butadiene Block Copolymers in Some Solvents", Makromol. Chem. 178, 22743-2746 (1977).
Tuzar, Zdenek et al., "Micelles of Block and Graft Copolymers in Solutions", Surface and Colloid Science, vol. 15, chapter 1, pp. 1-83 (1993).
Uchida, Y., Apr. 15, 2014 Office Action with English translation from Japanese Application No. 2010-515229 (6 pp.).
Uchida, Y., Oct. 1, 2013 Office Action with English translation from Japanese Application No. 2010-515229 (9 pp.).
Utiyama et al., "Light-Scattering Studies of a Polystyrene-Poly(methyl methacrylate) Two-Blcok Copolymer in Mixed Solvents", Macromolecules, vol. 7, No. 4, (Jul.-Aug. 1974).
Vamvakaki, M. et al., "Synthesis of novel block and statistical methacrylate-based ionomers containing acidic, basic or betaine residues", Polymer, vol. 39, No. 11, pp. 2331-2337 (1998).
van der Maarel, J.R.C. et al., "Salt-Induced Contraction of Polyelectrolyte Diblock Copolymer Micelles", Langmuir, vol. 16, No. 19, pp. 7510-7519 (2000).
Vermeesch, I. et al., "Chemical Modification of Poly (styrene-co-maleic anhydride) with Primary N-Alkylamines by Reactive Extrusion", J. Applied Polym. Sci., vol. 53, pp. 1365-1373 (1994).
Vulcanization Agents and Auxiliary Materials, Rubber Compounding, Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd Ed., Wiley Interscience, NY, vol. 20. pp. 390-402 (1982).
Walther, Andreas et al., "Engineering Nanostructured Polymer Blends with Controlled Nanoparticle Location using Janus Particles," ACS Nano., 2(6), pp. 1167-1178 (2008).
Walther, Andreas et al., "Janus Particles," Soft Matter, 4, pp. 663-668 (2008).
Wang, Chun Cheng, May 4, 2012 Office Action from U.S. Appl. No. 12/555,183 (9 pp.).
Wang, Xiaorong et al., "Chain conformation in two-dimensional dense state, Journal of Chemical Physics", vol. 121, No. 16, pp. 8158-8162 (Oct. 22, 2004).
Wang, Xiaorong et al., "Dispersing hairy nanoparticles in polymer melts", Polmer, vol. 49, pp. 5683-5691 (Nov. 1, 2008).
Wang, Xiaorong et al., "Heterogeneity of structural relaxation in a particle-suspension system", EPL, 79, 18001, pp. 1-5, (Jul. 2007).
Wang, Xiaorong et al., "Manufacture and Commercial Uses of Polymeric Nanoparticles", Polymeric Materials: Science and Engineering, vol. 94, p. 659 (2006).
Wang, Xiaorong et al., "Strain-induced nonlinearity of filled rubbers", Physical Review E 72, 031406, pp. 1-9 (Sep. 20, 2005).
Wang, Xiaorong et al., "Synthesis, Characterization, and Application of Novel Polymeric Nanoparticles", Macromolecules, 40, pp. 499-508 (2007).
Wang, Xiaorong et al., "Under microscopes the poly(styrene/butadiene) nanoparticles", Journal of Electron Microscopy, vol. 56, No. 6, pp. 209-216 (2007).
Wang, Xiaorong et al., U.S. Appl. No. 12/184,895, filed Aug. 1, 2008 entitled "Disk-Like Nanoparticles".
Wang, Xr. et al., "Fluctuations and critical phenomena of a filled elastomer under deformation", Europhysics Letters, vol. 75, No. 4, pp. 590-596 (Aug. 15, 2006).
Wang, Y. et al., "Janus-Like Polymer Particles Prepared Via Internal Phase Separation from Emulsified Polymer/Oil Droplets," Polymer, vol. 50, No. 14, pp. 3361-3369 (2009).
Watanabe, Y., Jul. 29, 2008 Office Action from Japanese Application No. 582224/2003 (17 pp.).
Watanabe, Y., May 7, 2008 Office Action from Japanese Application No. 582224/2003 (5 pp.).
Watanabe, Yoko, May 22, 2012 Office Action with English translation from Japanese Application No. 2008-248866 (5 pp.).
Webber, Stephen E. et al., "Solvents and Self-Organization of Polymers", NATO ASI Series, Series E: Applied Sciences, vol. 327, pp. 1-509 (1996).
Wheeler, Thurman Michael, Feb. 8, 2010 Office Action from U.S. Appl. No. 11/642,796 (13 pp.).
Wheeler, Thurman Michael, Jul. 30, 2010 Final Office Action from U.S. Appl. No. 11/642,796 (15 pp.).
Wheeler, Thurman Michael, Jul. 5, 2013 Final Office Action from U.S. Appl. No. 11/642,796 (10 pp.).
Wheeler, Thurman Michael, May 31, 2011 Office Action from U.S. Appl. No. 11/642,796 (12 pp.).
Wheeler, Thurman Michael, Nov. 6, 2012 Office Action from U.S. Appl. No. 11/642,796 (14 pp.).
Whitmore, Mark Douglas et al., "Theory of Micelle Formation in Block Copolymer-Homopolymer Blends", Macromolecules, vol. 18, pp. 657-665 (1985).
Wiley, John, "Quatemary Ammonium Compounds", Encyclopedia of Chem Tech., 4th Ed. vol. 20, pp. 739-767 (1996).
Wilson, D.J. et al., "Photochemical Stabilization of Block Copolymer Micelles", Eur. Polym. J., vol. 24, No. 7, pp. 517-621 (1988).
Witten, T.A. et al., "Stress Relaxation in the Lamellar Copolymer Mesophase", Macromolecules, vol. 23, pp. 824-829 (1990).
Wooley, Karen L, "From Dendrimers to Knedel-like Structures", Chem. Eur. J., 3, No. 9, pp. 1397-1399 (1997).
Wooley, Karen L, "Shell Crosslinked Polymer Assemblies: Nanoscale Constructs Inspired from Biological Systems", Journal of Polymer Science: Part A: Polymer Chemistry, vol. 38, pp. 1397-1407 (2000).
Worsfold, Denis J. et al., "Preparation et caracterisation de polymeres-modele a structure en etoile, par copolymerisation sequencee anionique", Canadian Journal of Chemistry, vol. 47, pp. 3379-3385 (Mar. 20, 1969).
Worsfold, Denis J., "Anionic Copolymerization of Styrene with p-Divinylbenzene", Macromolecules, vol. 3, No. 5, pp. 514-517 (Sep.-Oct. 1970).
Wyrozebski Lee, Katarzyna I., Dec. 19, 2006 Office Action from U.S Appl. No. 10/872,731 (6 pp.).
Wyrozebski Lee, Katarzyna I., Mar. 7, 2007 Office Action from U.S. Appl. No. 10/872,731 (13 pp.).
Wyrozebski Lee, Katarzyna I., Sep. 14, 2007 Office Action from U.S. Appl. No. 10/872,731 (9 pp.).
Xia, Lanying, Jul. 6, 2011 Office Action with English translation from Chinese Application No. 200780047895.2 (8 pp.).
Zemel, Irina Sophia, Jan. 3, 2014 Advisory Action from U.S. Appl. No. 11/305,279 (3 pp.).
Zemel, Irina Sophia, Sep. 30, 2013 Final Office Action from U.S. Appl. No. 11/305,279 (7 pp.).
Zemel, Irina Sopja, Apr. 30, 2012 Decision on Appeal from U.S. Appl. No. 11/305,279 (12 pp.).
Zemel, Irina Sopja, Dec. 3, 2009 Final Office Action from U.S. Appl. No. 11/305,279 (10 pp.).
Zemel, Irina Sopja, Jan. 22, 2009 Advisory Action from U.S. Appl. No. 11/305,279 (2 pp.).
Zemel, Irina Sopja, May 28, 2009 Office Action from U.S. Appl. No. 11/305,279 (7 pp.).
Zemel, Irina Sopja, Oct. 30, 2014 Final Office Action from U.S. Appl. No. 11/305,279 (7 pp.).
Zemel, Irina Sopjia, Jun. 6, 2014 Office Action from U.S. Appl. No. 11/305,279 (10 pp.).
Zhang, Jian et al., "Bioconjugated Janus Particles Prepared by in Situ Click Chemistry," Chemistry of Materials, 21, pp. 4012-4018 (2009).
Zhao, Bin et al., "Mixed Polymer Brush-Grafted Particles: A New Class of Environmentally Responsive Nanostructured Materials," Macromolecules, 42, pp. 9369-9383 (2009).
Zheng, Lei et al., "Polystyrene Nanoparticles with Anionically Polymerized Polybutadiene Brushes", Macromolecules, 37, pp. 9954-9962 (2004).
Zilliox, Jean-Georges et al., "Preparation de Macromolecules a Structure en Etoile, par Copolymerisation Anionique", J. Polymer Sci.: Part C, No. 22, pp. 145-156 (1968).

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10407522B1 (en) 2011-12-30 2019-09-10 Bridgestone Corporation Nanoparticle fillers and methods of mixing into elastomers
US11505635B2 (en) 2011-12-30 2022-11-22 Bridgestone Corporation Nanoparticle fillers and methods of mixing into elastomers

Also Published As

Publication number Publication date
US11505635B2 (en) 2022-11-22
US10407522B1 (en) 2019-09-10
US20190389992A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
US10519299B2 (en) Elastomer composition having a very good dispersion of the charge in the elastomer matrix
US9611380B2 (en) Elastomeric composition exhibiting good dispersion of the filler in the elastomeric matrix
AU2011344438B2 (en) Elastomeric composition exhibiting very good dispersion of the filler in the elastomeric matrix
US20170306109A1 (en) Elastomeric composition having a very good dispersion of the filler in the elastomeric matrix
EP3237515B1 (en) Reactive silica in epoxidized polybutadiene
US20170204257A1 (en) Tire with low rolling resistance
US7122586B2 (en) Preparation of silica-rich rubber composition by sequential mixing with maximum mixing temperature limitations
JP2010526185A (en) Method for preparing a rubber blend composition
US20170158782A1 (en) Rubber composition
EP1748056B1 (en) Tire tread containing core-shell particles
US11505635B2 (en) Nanoparticle fillers and methods of mixing into elastomers
US20160319112A1 (en) Elastomeric composition having an improved filler dispersion
CN109476178B (en) Rubber composition comprising a diene elastomer containing carbonate functions
CN108602963B (en) Process for preparing a masterbatch comprising a diene elastomer, an organic reinforcing filler and optionally an antioxidant
CN110023097A (en) The tyre surface of tire
US10961374B2 (en) Rubber composition with a good dispersion of large amounts of reinforcing inorganic filler
US20180282531A1 (en) Rubber composition
CN108602917A (en) The method of polybutadiene isomerized in situ
CN108602962B (en) For preparing a composition comprising a diene elastomer method for masterbatch of organic reinforcing filler and antioxidant

Legal Events

Date Code Title Description
AS Assignment

Owner name: BRIDGESTONE CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HERGENROTHER, WILLIAM L.;KIRIDENA, WARUNA C.B.;PAWLOW, JAMES H.;AND OTHERS;SIGNING DATES FROM 20130211 TO 20130213;REEL/FRAME:030592/0526

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8