WO2002036493A1 - Method of separating red mud containing goethite - Google Patents

Method of separating red mud containing goethite Download PDF

Info

Publication number
WO2002036493A1
WO2002036493A1 PCT/JP2001/009376 JP0109376W WO0236493A1 WO 2002036493 A1 WO2002036493 A1 WO 2002036493A1 JP 0109376 W JP0109376 W JP 0109376W WO 0236493 A1 WO0236493 A1 WO 0236493A1
Authority
WO
WIPO (PCT)
Prior art keywords
red mud
alumina
salt
goethite
copolymer
Prior art date
Application number
PCT/JP2001/009376
Other languages
French (fr)
Japanese (ja)
Inventor
Isao Ishikawa
Haruo Washikita
Yasuo Kawai
Koyuki Mesuda
Original Assignee
Showa Denko K. K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K. K. filed Critical Showa Denko K. K.
Publication of WO2002036493A1 publication Critical patent/WO2002036493A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/06Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process
    • C01F7/0646Separation of the insoluble residue, e.g. of red mud
    • C01F7/0653Separation of the insoluble residue, e.g. of red mud characterised by the flocculant added to the slurry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0015Obtaining aluminium by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/12Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for separating an extraction residue (red mud) of an alumina-containing ore containing a gay site. More specifically, red mud in a sodium aluminate solution obtained by treating an alumina-containing ore containing an iron component as a goethite with an alkaline solution is used as a sedimentation agent consisting of a specific water-soluble polymer copolymer.
  • the present invention relates to a method for separation using the method. Background art
  • the Bayer method As a method for extracting alumina from alumina-containing ore, the Bayer method is generally employed.
  • bauxite which is usually derived from the place name of the place of origin as an alumina-containing ore, is mixed with an alkaline solution, wet-milled to form a slurry, and then the slurry is extracted to extract the alumina contained in the poxite. Is treated at a high temperature to extract the alumina content, and then the undissolved pauxite residue (extraction residue; usually called red mud because it contains iron hydroxide and has a red color) is solid-liquid separated.
  • Aluminum hydroxide is precipitated from the alumina extract (aqueous sodium aluminate solution) from which red mud has been removed, and the aluminum hydroxide is calcined to obtain alumina.
  • Separation of the residue is performed by cooling the extracted slurry heated at high temperature to around 100 ° C under atmospheric pressure.
  • a separator a thickener with a mud collector is usually used, but solid-liquid separation takes a long time because the particle size of the residual liquid is very small at 10 m or less. Therefore, in order to promote the sedimentation of the poxite residue, conventionally, a water-soluble polymer flocculant has been used. It is used.
  • sodium acrylate sodium acrylate, a copolymer of sodium acrylate and acrylamide, and the like are used.
  • sedimentation aids such as slaked lime and starch are also used to improve the sedimentation rate of the residue and to improve the solid concentration of the lower solution of the thickener and the clarity of the upper solution.
  • poxite residue mainly contains components such as iron, silica, aluminum, titanium, and soda, but the crystal form and the like containing these components vary depending on the type of poxite. This is due to the influence on sedimentation speed, solid concentrating property, clarity, etc.
  • sedimentation rate is good compositions, for example, to hematite (F e 2 ⁇ 3) Ana evening - peptidase (T I_ ⁇ 2), base one mite ( ⁇ - AIO OH) and the like, whereas good sedimentation rate
  • non-compositions such as goethite (F e ⁇ (OH)), sodalite (Na 4 C 1 S i 3 A 13 3 ⁇ 12 ), rutile (T i 0 2 ), gibbsite (A 1 (OH ) 3 ) ( ⁇ ⁇ Yamada, etc., Light Metals, 1980, pp39-pp50).
  • Alumina-bearing ore represented by Bintan ore in Indonesia is imported in large quantities into Japan. It contains the alumina component as trihydrate (gibbsite) and the iron component as FeO (OH) (goethite), but when processed by the usual Plier method, the sedimentation rate in the extraction residue (red mud) It is difficult to settle and separate using a conventional flocculant because of the presence of a slow-growing site. Therefore, in order to improve the sedimentation of such porksite-extracted residues with a high content of goethite, Various proposals have been made.
  • Japanese Patent Publication No. 54-3838 and Japanese Patent Publication No. 58-42131 describe a method in which a substance having good sedimentation properties is used in combination.
  • a substance containing a composition having a good sedimentation property is added and mixed, and a composition ratio in a residue is changed to thereby satisfactorily separate a substance having a poor sedimentation property.
  • Japanese Patent Application Laid-Open No. 56-92116 proposes to use a quaternary ammonium-type cationized starch as a sedimentation aid.
  • the use of this sedimentation aid for red mud separation of alumina-containing ores containing goethite slightly improves the sedimentation, but is not sufficient for industrial treatment.
  • the present inventors have conducted intensive studies in view of the above problems, and as a result, have found that a vinyl hydroxamic acid compound or a salt thereof having an average molecular weight of 2,000 or more is contained as a flocculant (precipitation aid).
  • a flocculant precipitation aid
  • a water-soluble polymer containing a copolymer as an active ingredient, it was found that separation of red mud during treatment of an alumina-containing ore containing an iron component as a goethite was performed very quickly, and the present invention was completed.
  • the water-soluble polymer compound containing a vinylhydroxamic acid group or a salt thereof as a monomer component used in the present invention can be used as a precipitation aid in the treatment of an ore-containing ore (US Pat. No. 4,767). No. 540), but there is no description that it is effective in separating red mud when treating an alumina-containing ore containing an iron component as a goethite. Therefore, it is difficult for a person skilled in the art to easily come up with the present invention relating to the separation of red mud containing goethite based on the description in U.S. Pat. No. 4,767,540.
  • the present invention relates to a method for separating red mud including the following goethite.
  • a copolymer having an average molecular weight of 2,000 or more comprises (A) a vinyl hydroxamic acid compound or a salt thereof, (B) (meth) acrylic acid or a salt thereof, (C) (meth) acrylamide and (D) 2.
  • a copolymer having an average molecular weight of 2,000 or more comprises (A) a vinylhydroxamic acid compound or a salt thereof, (B) (meth) acrylic acid or a salt thereof, and (C) (meth) acrylamide as monomer components. Described in 1 above, which is a copolymer containing Separation method of red mud including the above mentioned game site
  • the water-soluble polymer sedimentation aid contains, as a monomer component, (A) a copolymer containing the bierhydroxamic acid compound or a salt thereof in an amount of 20% by mass or more. Separation method.
  • the water-soluble polymer compound is added in an amount of 0.003 to 0.05% by mass, based on the total mass of the monomer components (A), (B), (C) and (D), based on the red mud. 3.
  • the method of separating red mud during the treatment of an alumina-containing ore comprises a main part of an iron component as a gay site, which is difficult to separate by a method using a conventional sedimentation aid, and an alumina component of alumina 3
  • an iron component as a gay site
  • alumina component of alumina 3 This is intended for ores containing alumina mainly containing hydrates (gibbsite).
  • alumina trihydrate contains 70% by mass or more of alumina
  • goethite contains iron components (in terms of iron oxide). It is effective for those with 60% by mass or more.
  • a typical alumina-bearing ore having such a composition is a poxite from Southeast Asia, for example, Indonesia.
  • the alumina-containing ore to which the present invention can be applied is limited to Indonesian ore.
  • the amount of gibbsite and the amount of iron contained in the goethite are not limited to those described above.
  • the amount of gibbsite is less than 70% by mass, and 80% by mass of the iron component contained in goethite (in terms of iron oxide). Less than one is also effective.
  • an alkali solution used in the Bayer method can be used.
  • a sodium aluminate solution is preferable.
  • the sodium aluminate solution those having an alkali concentration (in terms of NaOH) of 100 to 400 gZL, preferably 120 to 220 g / L can be used.
  • the flocculant (precipitation aid) used in the present invention is a water-soluble high-molecular-weight copolymer containing, as an active ingredient, a copolymer having an average molecular weight of 2,000 or more and containing (A) a vinylhydroxamic acid compound or a salt thereof as a monomer component. It is a molecular compound.
  • R 1 represents a hydrogen atom or a methyl group
  • M 1 represents a hydrogen atom or an alkali metal atom.
  • the monomer shown by these is mentioned.
  • Specific examples include vinyl hydroxamic acid, isoprobenyl hydroxamic acid and their alkali metal salts (sodium salt, potassium salt, etc.), and vinyl hydroxamic acid or its sodium salt is preferred.
  • the monomer to be copolymerized with the monomer component (A) includes at least one selected from (B) (meth) acrylic acid or a salt thereof, (C) (meth) acrylamide and (D) an N-vinylcarboxylic acid amide compound. Types of monomers.
  • R 2 represents a hydrogen atom or a methyl group
  • M 2 represents a hydrogen atom or an alkali metal atom.
  • the monomer shown by these is mentioned.
  • Specific examples include acrylic acid, methacrylic acid and their alkali metal salts (sodium salt, potassium salt, etc.), and acrylic acid or its sodium salt is preferred.
  • R 3 represents a hydrogen atom or a methyl group.
  • the monomer shown by these is mentioned. Specific examples include acrylamide and methyl acrylamide, with acrylamide being preferred.
  • N-vinylcarboxylic acid amide compound (D) the compound represented by the general formula (4)
  • R 4 and R 5 may be the same or different and each represents a hydrogen atom or a methyl group.
  • the monomer shown by these is mentioned.
  • Specific examples include N-vinylformamide, N-bieracetamide, N-methyl-N-vinylformamide, N-methyl N-vinylacetamide, and N-vinylacetamide is preferred.
  • an acrylic acid derivative or a vinyl alcohol derivative (E) represented by the following general formula (5) can be contained as a copolymer component.
  • R 6 represents a hydrogen atom or a methyl group
  • X represents one CN, one CO ⁇ R 7 , one CONH 2 , one CONHR 8 , —COR 9 , one OCOR 10 or one OR 11
  • R 7 represents an alkyl group having 1 to 4 carbon atoms
  • One hydrogen atom of the group can be replaced by 1 OH or 1 NR 12 R 13
  • R 8 represents an alkyl group having 1 to 4 carbon atoms
  • one hydrogen atom of the alkyl group can be replaced by 1 OH or 1 NR 12 R 13
  • R 9 , R 1Q , R 11 , R 12 and R 13 represent an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group having 1 to 4 carbon atoms means methyl, ethyl, propyl, ethyl or an isomer thereof.
  • Specific examples of the compound represented by the general formula (5) include methyl acrylate, ethyl acrylate, propyl acrylate, 2-hydroxyethyl acrylate, N, N-dimethylaminoethyl acrylate, N, N-dimethylaminopropyl acrylamide, acrylonitrile, methyl vinyl ketone, ethyl vinyl ketone, propyl vinyl ketone, vinyl acetate, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, methyl methyl acrylate, ethyl methacrylate, propyl methacrylate, 2-hydroxy Shetyl methacrylate, 2-hydroxypropyl methacrylate, N, N-dimethylaminoethyl methacrylate, methacrylamide, N-isopropylacrylamide, N, N-dimethylaminopropyl Examples thereof include compounds such as methylacrylamide, N, N-dimethylacrylamide, and
  • the copolymer used in the present invention contains (A) a vinylhydroxamic acid compound or a salt thereof as an essential component as a monomer component, and further comprises at least (B) (meth) acrylic acid or a salt thereof and (C) (meth) It preferably contains acrylamide.
  • the water-soluble polymer precipitation aid preferably contains the copolymer as an active ingredient in an amount of 20% by mass or more, more preferably 25% by mass or more.
  • the ratio of the vinyl hydroxamic acid compound or the salt of the monomer component (A) to all the monomer components is 5 mol% or more. And more preferably 10 to 30 mol%. If the amount of the monomer component (A) is small, the coagulation effect of red mud (residue) is reduced, and a sufficient sedimentation speed cannot be obtained. Even when the monomer component (C) is contained, its proportion in the copolymer is preferably at least 5 mol%, more preferably 10 to 30 mol%.
  • the amount of the water-soluble polymer precipitating agent added to the extract containing red mud is 0.1% based on the total mass of the monomer components (A), (B), (C) and (D). It is preferably from 003 to 0.05 mass%, more preferably from 0.007 to 0.04 mass%.
  • the average molecular weight of the water-soluble polymer compound is 2,000 or more, preferably 10,000 or more. If the average molecular weight is less than 2,000, the coagulation effect of red mud (residue) is reduced and a sufficient sedimentation speed cannot be obtained.
  • the residue can be quickly separated only by adding the above water-soluble polymer compound to red mud without using a sedimentation aid such as slaked lime or starch.
  • the alumina-containing ore which is a raw material, is pulverized to a size of 12 mesh or less while mixing with an Alri solution using a pulverizer or the like, and an alumina component is extracted. It is sent to the extraction device.
  • the extraction device a closed tubular reactor or a container type reactor is generally used.
  • the extraction temperature and the extraction time cannot be specified unconditionally because they vary depending on the ground particle size of bauxite, the type of alkaline solution, the concentration thereof, etc., but it is sufficient to set the conditions for economically extracting alumina including the equipment conditions.
  • the extraction temperature is 110 ° C. (: up to 160 ° C., preferably 115 ° C. to 150 ° C.) and the extraction time is within 5 hours, preferably several minutes to 2 hours.
  • the slurry containing the poxite residue (red mud) after the extraction treatment is cooled to about 100 ° C. under normal pressure, immediately sent to a solid-liquid separation device, and used as the sedimentation aid according to the present invention.
  • Add compound and stir After stirring uniformly, the extract (sodium aluminate solution) and the extraction residue are separated by a separator.
  • a separator As a solid-liquid separator, a thickener with a mud collector is generally used.
  • the mechanism by which the water-soluble polymer compound works well as a sedimentation aid is not necessarily clear. This is thought to be due to the fact that chemical trapping power is added to the original physical trapping power of the molecular coagulant, and that the flocculation reaction with ionic substances on the residue surface is promoted.
  • the alumina-containing ore (bauxite) used as a raw material in the examples below is an iron component Indonesian porksites, including goethite, and Australian porksites, which consist of hematite in the iron component.
  • Table 1 shows the results of the analysis of each poxite analyzed according to JIS standard M8361-19668.
  • the crystal forms of goethite and hematite in the raw material poxite were identified by diffraction X-ray analysis under the following conditions. As a result, it was confirmed that 70% of the iron component in Indonesian bauxite was Gesite and 90% of the iron component in Australian Poxite was hematite.
  • Diffraction X-ray device RAD_2RV, manufactured by Rigaku Denki Co., Ltd.
  • Tube Cu
  • the alumina extraction treatment was performed according to the following procedure under the conditions of 140 and 60 minutes at 120 ° C and 15 minutes for the alumina component extraction temperature and extraction time of the raw material poxite.
  • the required amount of ground poison was added and the mixture was dispersed and mixed so that the mass ratio of the concentration of / NaOH was 0.88, and the mixture was transferred to a cylindrical pressure vessel (60 mm in diameter, 200 mm in height) and sealed.
  • the sealed pressure vessel was placed in an oil bath preheated to the extraction temperature, and the alumina was extracted by inverting and stirring the closed vessel for a required extraction time.
  • the mixed solution obtained by the above treatment was transferred to a 250 ml heat-resistant glass sedimentation tube (inner diameter: 30 mm, height: 25 Omm), and kept in a thermostat controlled at a constant temperature of 98 ° C.
  • the necessary sedimentation aid was added to the sedimentation tube containing the mixture according to the conditions of Examples and Comparative Examples, and the mixture was stirred uniformly under the same conditions, and the height of the sedimentation interface was measured every minute. Assuming that the height of the interface of the mixed solution in the settling tube at the start of the settling was 100%, the height of the interface containing the solids over time was calculated as a percentage. Examples 1-4
  • Examples 1 and 2 were extracted at 140 ° C for 60 minutes, and Examples 3 and 4 were extracted at 120 ° C for 15 minutes to obtain a residue (red mud).
  • the composition ratio (mol%) of the repeating units derived from sodium acrylate, acrylamide, and sodium vinyloxamidate was 71:16:13, and the solid content concentration was 29, as the polymer flocculant.
  • composition ratio of the polymer flocculant was measured by a nuclear magnetic resonance analyzer (AMX-400 manufactured by Bruker), and the molecular weight was determined by gel permeation chromatography (CLAS SLC-10 manufactured by Shimadzu, column Shodex) OHpakSB-806MHQ> using pullulan as a standard).
  • AMX-400 nuclear magnetic resonance analyzer
  • CLAS SLC-10 gel permeation chromatography
  • OHpakSB-806MHQ> using pullulan as a standard.
  • Comparative Example 1 was performed in the same manner as in Example 1 except that sodium polyacrylate having an average molecular weight of 10,000,000 or more (manufactured by Nippon Kayaku Co., Ltd., trade name: Panakayak CSG-K) was used as a polymer flocculant in an amount of 0.01% based on the residual solid mass. The treatment was performed in the same manner as described above, and the sedimentation property was measured. Comparative Example 2 was treated in the same manner as in Example 1 except that 0.08% of slaked lime and 1.0% of starch (both based on the residual solid mass) were used instead of the polymer flocculant, and the sedimentability was measured. . In Comparative Example 3, the sedimentation property was measured under the same conditions as in Comparative Example 1 except that the extraction conditions were set to 120 ° C. and 15 minutes.
  • Comparative Example 4 was the same as Example 1, Comparative Example 5 was Example 4, Comparative Example 6 was Comparative Example 1, and Comparative Example 7 was Comparative Example 3, except that the ore was replaced with Australian porkite. The sedimentability was measured with. The results are shown in Table 3. Table 3 Extraction conditions and sedimentation of residue liquid Example No.Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Comparative Example 7 Bauxite Indonesian Indonesian Australian

Abstract

A method of separating a red mud containing goethite which comprises: treating an alumina-containing ore containing an iron ingredient as goethite with an alkali solution with heating at 110 to 160°C to extract the alumina; subsequently adding to the extract a water-soluble polymer precipitant comprising as the active ingredient a copolymer having an average molecular weight of 12,000,000 or higher and containing monomer units derived from (A) a vinylhydroxamic acid compound or salt thereof to thereby cause a red mud to settle; and then separating the red mud. By the method, a red mud can be efficiently separated in the extraction of alumina from an alumina-containing ore containing an iron ingredient as goethite.

Description

ゲーサイトを含む赤泥の分離方法 技術分野 Method for separating red mud containing goethite
本発明は、 ゲ一サイトを含むアルミナ含有鉱石の抽出残渣 (赤泥) の分離 方法に関する。 さらに詳しく言えば、 鉄成分をゲーサイトとして含むアルミ ナ含有鉱石をアルカリ溶液で処理して得られるアルミン酸ソ一ダ溶液中の赤 泥を、 特定の水溶性高分子共重合体からなる沈降剤を用いて分離する方法に 関する。 背景技術  The present invention relates to a method for separating an extraction residue (red mud) of an alumina-containing ore containing a gay site. More specifically, red mud in a sodium aluminate solution obtained by treating an alumina-containing ore containing an iron component as a goethite with an alkaline solution is used as a sedimentation agent consisting of a specific water-soluble polymer copolymer. The present invention relates to a method for separation using the method. Background art
アルミナ含有鉱石からアルミナを抽出する方法としては、 一般的にバイャ 一法が採用されている。 バイヤー法では、 通常アルミナ含有鉱石として原産 地の地名に由来して呼ばれるボーキサイトとアルカリ溶液とを混合したのち 湿式粉碎してスラリーとし、 その後ポ一キサイトに含まれるアルミナ分を抽 出するためにスラリーを高温で処理してアルミナ分を抽出後、 未溶解分であ るポーキサイト残渣 (抽出残渣;水酸化鉄成分を含み赤色を呈することから、 通常赤泥と呼ばれる。 ) を固液分離する。 赤泥が除去されたアルミナ抽出液 (アルミン酸ソ一ダ水溶液) から水酸化アルミニウムを析出させ、 この水酸 化アルミニウムを焼成してアルミナが得られる。  As a method for extracting alumina from alumina-containing ore, the Bayer method is generally employed. In the Bayer method, bauxite, which is usually derived from the place name of the place of origin as an alumina-containing ore, is mixed with an alkaline solution, wet-milled to form a slurry, and then the slurry is extracted to extract the alumina contained in the poxite. Is treated at a high temperature to extract the alumina content, and then the undissolved pauxite residue (extraction residue; usually called red mud because it contains iron hydroxide and has a red color) is solid-liquid separated. Aluminum hydroxide is precipitated from the alumina extract (aqueous sodium aluminate solution) from which red mud has been removed, and the aluminum hydroxide is calcined to obtain alumina.
ボーキサイトの未溶解成分である残渣 (赤泥) の分離は、 高温で加熱処理 された抽出スラリーを大気圧下、 1 0 0 °C前後に冷却して行なわれる。 分離 装置としては、 通常、 集泥装置付のシックナ一が使用されるが、 残澄の粒子 径が 1 0 m以下と非常に小さいため固液分離には長時間を要する。 そこで ポーキサイト残渣の沈降を促進するために、 従来、 水溶性の高分子凝集剤が 使用されている。 Separation of the residue (red mud), which is an undissolved component of bauxite, is performed by cooling the extracted slurry heated at high temperature to around 100 ° C under atmospheric pressure. As a separator, a thickener with a mud collector is usually used, but solid-liquid separation takes a long time because the particle size of the residual liquid is very small at 10 m or less. Therefore, in order to promote the sedimentation of the poxite residue, conventionally, a water-soluble polymer flocculant has been used. It is used.
高分子凝集剤としては、 アクリル酸ソ一ダ、 アクリル酸ソーダとアクリル 酸アミドの共重合体等が用いられている。 また、 残渣の沈降速度を改善し、 かつシックナ一の下液の固体濃縮と上液の清澄性を向上させるために、 消石 灰や澱粉等の沈降補助剤も使用されている。  As the polymer coagulant, sodium acrylate, a copolymer of sodium acrylate and acrylamide, and the like are used. In addition, sedimentation aids such as slaked lime and starch are also used to improve the sedimentation rate of the residue and to improve the solid concentration of the lower solution of the thickener and the clarity of the upper solution.
しかし、 これらの高分子凝集剤、 消石灰、 澱粉などは、 全てのアルミナ含 有鉱石からの抽出残渣の分離に有効というわけにはいかない。 例えば、 ォー ストラリァゴープ鉱産のポ一キサイトの赤泥の沈降促進には有効であっても、 東南アジア特にインドネシア産のポ一キサイトの赤泥には有効でないことが 判っている。  However, these polymeric flocculants, slaked lime, starch, etc., are not effective in separating extraction residues from all alumina-bearing ores. For example, it has been found that it is effective for accelerating red mud settling of poxite from Australia gore ore, but not for pond red mud from Southeast Asia, especially Indonesia.
これは、 ポ一キサイト残渣には、 主として鉄、 シリカ、 アルミニウム、 チ タンやソ一ダ等の成分が含まれているが、 ポーキサイ卜の種類によってそれ ら成分が含まれる結晶形態等が異なり、 沈降速度、 固体濃縮性、 清澄性等に 影響があらわれることによる。  This is because poxite residue mainly contains components such as iron, silica, aluminum, titanium, and soda, but the crystal form and the like containing these components vary depending on the type of poxite. This is due to the influence on sedimentation speed, solid concentrating property, clarity, etc.
沈降速度が良好な組成物として、 例えばへマタイト (F e 23) 、 アナ夕 —ゼ (T i〇2) 、 ベ一マイト (ァ— A I O OH) 等が挙げられ、 一方沈降 速度が良好でない組成物としてゲーサイト (F e〇 (OH) ) 、 ソ一ダライ ト (N a 4 C 1 S i 3 A 1 31 2) 、 ルチル (T i 02) 、 ギブサイト (A 1 (OH) 3) 等が挙げられている (Κ· Yamada, etc. , Light Metals, 1980, pp39-pp50) 。 As sedimentation rate is good compositions, for example, to hematite (F e 23) Ana evening - peptidase (T I_〇 2), base one mite (§ - AIO OH) and the like, whereas good sedimentation rate As non-compositions such as goethite (F e〇 (OH)), sodalite (Na 4 C 1 S i 3 A 13 312 ), rutile (T i 0 2 ), gibbsite (A 1 (OH ) 3 ) (Κ · Yamada, etc., Light Metals, 1980, pp39-pp50).
インドネシアのビンタン鉱に代表されるアルミナ含有鉱石は日本国に多量 に輸入されている。 これはアルミナ成分を 3水和物 (ギブサイト) として含 み、 鉄成分を F e O (OH) (ゲーサイト) として含むが、 通常のパイヤー 法で処理すると、 抽出残渣 (赤泥) に沈降速度の遅いゲ一サイトが含まれる ために、 通常の凝集剤を用いたのでは沈降分離が困難である。 そこで、 この ようなゲーサイト含量の多いポーキサイト抽出残渣の沈降性を改善するため 種々の提案がなされている。 Alumina-bearing ore represented by Bintan ore in Indonesia is imported in large quantities into Japan. It contains the alumina component as trihydrate (gibbsite) and the iron component as FeO (OH) (goethite), but when processed by the usual Plier method, the sedimentation rate in the extraction residue (red mud) It is difficult to settle and separate using a conventional flocculant because of the presence of a slow-growing site. Therefore, in order to improve the sedimentation of such porksite-extracted residues with a high content of goethite, Various proposals have been made.
特開昭 5 0 - 1 5 9 4 9 7号公報 (英国特許第 144070号) には、 ポーキサ ィトに含まれるゲーサイトを、 アルミナ抽出温度を上げてマグネタイト ( F e 304) に転化させる方法が記載されている。 これは、 アルミナ抽出条 件として、 還元性有機物の存在下、 抽出温度 2 7 0 °C以上とすることにより、 ゲ一サイトが沈降性の良好なマグネタイトに転化し、 沈降性が改善されると いうものである。 この方法はエネルギー消費量や高価な装置材料を必要とし 経済的でないという問題を有する。 JP 5 0 - 1 5 9 4 9 7 No. (British Patent No. 144,070), the conversion of goethite contained in Pokisa I bets, raising the alumina extraction temperature magnetite (F e 3 0 4) A method for causing this is described. This is because, as an alumina extraction condition, by setting the extraction temperature to 270 ° C or more in the presence of a reducing organic substance, the gaseous site is converted into magnetite with good sedimentation and sedimentation is improved. It is said. This method has a problem that it requires energy consumption and expensive equipment materials and is not economical.
特公昭 5 4— 3 8 3 8号公報及び特公昭 5 8— 4 2 1 3 1号公報には、 沈 降性が良好な物質を併用する方法が記載されている。 その方法は、 沈降性の 良好な組成物を含む物質を添加、 混合し、 残渣中の組成比を変更することに より沈降性の不良な物質を良好に分離するものである。 しかし、 この方法で は、 常時沈降性が良好な組成物を準備しておく必要があり、 プロセスが複雑 となり経済的でない。  Japanese Patent Publication No. 54-3838 and Japanese Patent Publication No. 58-42131 describe a method in which a substance having good sedimentation properties is used in combination. In this method, a substance containing a composition having a good sedimentation property is added and mixed, and a composition ratio in a residue is changed to thereby satisfactorily separate a substance having a poor sedimentation property. However, in this method, it is necessary to prepare a composition having good sedimentation at all times, which makes the process complicated and is not economical.
また、 特開昭 5 6 - 9 2 1 1 6号公報には沈降助剤として第 4級アンモニ ゥム型にカチオン化した澱粉を用いることが提案されている。 この沈降助剤 をゲ一サイトを含むアルミナ含有鉱石の赤泥分離に用いることにより、 沈降 性は若干改善されるが、 工業的処理には充分といえるものではない。  Japanese Patent Application Laid-Open No. 56-92116 proposes to use a quaternary ammonium-type cationized starch as a sedimentation aid. The use of this sedimentation aid for red mud separation of alumina-containing ores containing goethite slightly improves the sedimentation, but is not sufficient for industrial treatment.
以上のように、 日本国に多量に輸入されている、 特にインドネシア産のゲ 一サイトを含むアルミナ含有鉱石の赤泥分離処理において、 沈降分離性及び 経済性を兼ね備え、 単独使用して実用上満足し得る性能を有する沈降助剤は これまで知られていなかった。 発明の開示  As described above, in the red mud separation treatment of alumina-containing ore containing a large amount of Indonesian gesite, which is imported in large quantities into Japan, it has both sedimentation separation and economic efficiency, and is practically satisfactory when used alone. No sedimentation aid with a possible performance has hitherto been known. Disclosure of the invention
本発明者らは、 上記課題に鑑み鋭意検討した結果、 凝集剤 (沈降助剤) と してビニルヒドロキサム酸ィヒ合物またはその塩を含む平均分子量 2000以上の 共重合体を有効成分とする水溶性高分子を用いることにより、 鉄成分をゲー サイトとして含むアルミナ含有鉱石処理時の赤泥の分離が極めて迅速に行わ れることを見出し、 本発明を完成した。 The present inventors have conducted intensive studies in view of the above problems, and as a result, have found that a vinyl hydroxamic acid compound or a salt thereof having an average molecular weight of 2,000 or more is contained as a flocculant (precipitation aid). By using a water-soluble polymer containing a copolymer as an active ingredient, it was found that separation of red mud during treatment of an alumina-containing ore containing an iron component as a goethite was performed very quickly, and the present invention was completed.
なお、 本発明で使用するビニルヒドロキサム酸基またはその塩を繰り返し モノマー成分として含む水溶性高分子化合物はアルミナ含有鉱石処理の沈殿 助剤として利用できることが開示されているが (米国特許第 4, 767, 540号) 、 鉄成分をゲーサイトとして含むアルミナ含有鉱石処理時の赤泥の分離に有効 である旨の記載は全くない。 したがって、 米国特許第 4, 767, 540号の記載に 基いて、 ゲーサイトを含む赤泥の分離に関する本発明を当業者が容易に想到 することは困難なことである。  It is disclosed that the water-soluble polymer compound containing a vinylhydroxamic acid group or a salt thereof as a monomer component used in the present invention can be used as a precipitation aid in the treatment of an ore-containing ore (US Pat. No. 4,767). No. 540), but there is no description that it is effective in separating red mud when treating an alumina-containing ore containing an iron component as a goethite. Therefore, it is difficult for a person skilled in the art to easily come up with the present invention relating to the separation of red mud containing goethite based on the description in U.S. Pat. No. 4,767,540.
すなわち、 本発明は以下のゲーサイトを含む赤泥の分離方法に関するもの である。  That is, the present invention relates to a method for separating red mud including the following goethite.
1 ) 鉄成分をゲ一サイトとして含むアルミナ含有鉱石をアルカリ溶液で 1 1 0〜1 6 の温度で加熱処理して得られるアルミン酸ソ一ダ溶液中の赤 泥の分離方法において、 モノマー成分として (A) ビニルヒドロキサム酸ィ匕 合物またはその塩を含む平均分子量 2000以上の共重合体を有効成分とする水 溶性高分子沈降助剤を添加して赤泥を沈降させ分離することを特徴とするゲ 一サイトを含む赤泥の分離方法。  1) In a method for separating red mud in a sodium aluminate solution obtained by heat-treating an alumina-containing ore containing an iron component as a gay site with an alkaline solution at a temperature of 110 to 16; (A) adding a water-soluble polymer sedimentation aid containing a copolymer having an average molecular weight of 2,000 or more containing a vinylhydroxamic acid conjugate or a salt thereof as an active ingredient to precipitate and separate red mud; A method of separating red mud containing a single site.
2 ) 平均分子量 2000以上の共重合体が、 モノマー成分として (A) ビニル ヒドロキサム酸化合物またはその塩と、 (B) (メタ) アクリル酸またはそ の塩、 (C) (メタ) アクリルアミド及び (D) N—ビニルカルボン酸アミ ド化合物から選択される少なくとも 1種類のモノマーを含む共重合体である 前記 1に記載のゲーサイトを含む赤泥の分離方法。  2) A copolymer having an average molecular weight of 2,000 or more comprises (A) a vinyl hydroxamic acid compound or a salt thereof, (B) (meth) acrylic acid or a salt thereof, (C) (meth) acrylamide and (D) 2. The method for separating red mud containing goethite according to the above item 1, which is a copolymer containing at least one kind of monomer selected from N-vinyl carboxylic acid amide compounds.
3 ) 平均分子量 2000以上の共重合体が、 モノマー成分として、 (A) ビニ ルヒドロキサム酸化合物またはその塩と、 (B ) (メタ) アクリル酸または その塩と、 (C) (メタ) アクリルアミドを含む共重合体である前記 1に記 載のゲーサイトを含む赤泥の分離方法。 3) A copolymer having an average molecular weight of 2,000 or more comprises (A) a vinylhydroxamic acid compound or a salt thereof, (B) (meth) acrylic acid or a salt thereof, and (C) (meth) acrylamide as monomer components. Described in 1 above, which is a copolymer containing Separation method of red mud including the above mentioned game site
4 ) 鉄成分の 6 0質量%以上がゲーサイトであり、 アルミナ分の 7 0 %以 上がギブサイトであるアルミナ含有鉱石原料を用いる前記 1に記載のゲーサ ィトを含む赤泥の分離方法。  4) The method for separating red mud containing goethite according to 1 above, wherein an alumina-containing ore raw material in which 60% by mass or more of the iron component is goethite and 70% or more of alumina is gibbsite is used.
5 ) 水溶性高分子沈降助剤が、 モノマ一成分として (A) ビエルヒドロキ サム酸化合物またはその塩を含む共重合体を 2 0質量%以上含む前記 1に記 載のゲーサイトを含む赤泥の分離方法。  5) The water-soluble polymer sedimentation aid contains, as a monomer component, (A) a copolymer containing the bierhydroxamic acid compound or a salt thereof in an amount of 20% by mass or more. Separation method.
6 ) 全モノマ一成分に対するモノマー成分 (A) のビニルヒドロキサム酸 化合物またはその塩の割合が、 5モル%以上である前記 2に記載のゲーサイ トを含む赤泥の分離方法。  6) The method for separating red mud containing goethite as described in 2 above, wherein the ratio of the vinyl hydroxamic acid compound or the salt of the monomer component (A) to one monomer component is 5 mol% or more.
7 ) 水溶性高分子化合物を、 モノマ一成分 (A) 、 ( B ) 、 ( C ) 及び (D) の合計質量換算で、 赤泥に対して 0. 003〜0. 05質量%添加する前記 2 に記載のゲーサイトを含む赤泥の分離方法。 発明の詳細な説明  7) The water-soluble polymer compound is added in an amount of 0.003 to 0.05% by mass, based on the total mass of the monomer components (A), (B), (C) and (D), based on the red mud. 3. The method for separating red mud containing the goethite according to 2. Detailed description of the invention
以下、 本発明を更に詳細に説明する。  Hereinafter, the present invention will be described in more detail.
( 1 ) アルミナ含有鉱石  (1) Ore containing alumina
本発明によるアルミナ含有鉱石処理時の赤泥の分離方法は、 従来の沈降助 剤を用いる方法では分離が困難であった、 鉄成分の主要部をゲ一サイトとし て含み、 アルミナ成分をアルミナ 3水和物 (ギブサイト) を主体として含む アルミナ含有鉱石を対象とするものであり、 特にアルミナ 3水和物が含有ァ ルミナの 7 0質量%以上、 ゲーサイトが含有鉄成分 (酸化鉄換算) の 6 0質 量%以上であるものに有効である。  The method of separating red mud during the treatment of an alumina-containing ore according to the present invention comprises a main part of an iron component as a gay site, which is difficult to separate by a method using a conventional sedimentation aid, and an alumina component of alumina 3 This is intended for ores containing alumina mainly containing hydrates (gibbsite). In particular, alumina trihydrate contains 70% by mass or more of alumina, and goethite contains iron components (in terms of iron oxide). It is effective for those with 60% by mass or more.
このような組成の代表的なアルミナ含有鉱石としては、 東南アジア産、 例 えばィンドネシァ産のポーキサイトが挙げられる。  A typical alumina-bearing ore having such a composition is a poxite from Southeast Asia, for example, Indonesia.
なお、 本発明が適用できるアルミナ含有鉱石はィンドネシァ産に限られる ものではなく、 またギブサイトの量及びゲーサイ卜の含有鉄成分の量は上記 のものに限られず、 ギブサイトの量が 70質量%未満で、 ゲーサイトが含有 鉄成分 (酸化鉄換算) の 80質量%未満のものについても有効である。 The alumina-containing ore to which the present invention can be applied is limited to Indonesian ore. The amount of gibbsite and the amount of iron contained in the goethite are not limited to those described above. The amount of gibbsite is less than 70% by mass, and 80% by mass of the iron component contained in goethite (in terms of iron oxide). Less than one is also effective.
(2) アルカリ溶液  (2) Alkaline solution
本発明で用いるアルカリ溶液としては、 バイヤー法で使用されているアル カリ溶液が使用できる。 中でもアルミン酸ソーダ溶液が好ましい。 アルミン 酸ソーダ溶液は、 アルカリ濃度 (NaOH換算) として 100〜 400 gZ L、 好ましくは 120〜220 g/Lのものが使用できる。  As the alkali solution used in the present invention, an alkali solution used in the Bayer method can be used. Among them, a sodium aluminate solution is preferable. As the sodium aluminate solution, those having an alkali concentration (in terms of NaOH) of 100 to 400 gZL, preferably 120 to 220 g / L can be used.
(3) 凝集剤 (沈降助剤)  (3) Flocculant (settling aid)
本発明で使用する凝集剤 (沈降助剤) は、 モノマー成分として (A) ビニ ルヒドロキサム酸ィヒ合物またはその塩を含む、 平均分子量 2000以上の共重合 体を有効成分とする水溶性高分子化合物である。  The flocculant (precipitation aid) used in the present invention is a water-soluble high-molecular-weight copolymer containing, as an active ingredient, a copolymer having an average molecular weight of 2,000 or more and containing (A) a vinylhydroxamic acid compound or a salt thereof as a monomer component. It is a molecular compound.
ピニルヒドロキサム酸化合物またはその塩 (A) としては、 下記一般式 (1)  As the pinyl hydroxamic acid compound or a salt thereof (A), the following general formula (1)
CH2 = C (R1) CONHOM1 (1) CH 2 = C (R 1 ) CONHOM 1 (1)
(式中、 R1は水素原子またはメチル基を表わし、 M1は水素原子またはアル カリ金属原子を表わす。 ) (In the formula, R 1 represents a hydrogen atom or a methyl group, and M 1 represents a hydrogen atom or an alkali metal atom.)
で示されるモノマーが挙げられる。 具体的には、 ビニルヒドロキサム酸、 ィ ソプロべニルヒドロキサム酸及びそれらのアルカリ金属塩 (ナトリウム塩、 カリウム塩等) が挙げられ、 ビニルヒドロキサム酸またはそのナトリウム塩 が好ましい。 The monomer shown by these is mentioned. Specific examples include vinyl hydroxamic acid, isoprobenyl hydroxamic acid and their alkali metal salts (sodium salt, potassium salt, etc.), and vinyl hydroxamic acid or its sodium salt is preferred.
モノマー成分 (A) に共重合させるモノマーとしては、 (B) (メタ) ァ クリル酸またはその塩、 (C) (メタ) アクリルアミド及び (D) N—ビニ ルカルボン酸アミド化合物から選択される少なくとも 1種類のモノマーが挙 げられる。  The monomer to be copolymerized with the monomer component (A) includes at least one selected from (B) (meth) acrylic acid or a salt thereof, (C) (meth) acrylamide and (D) an N-vinylcarboxylic acid amide compound. Types of monomers.
(メタ) アクリル酸またはその塩 (B) としては、 下記一般式 (2) CH2 = C ( 2) C〇〇M2 (2) As the (meth) acrylic acid or its salt (B), the following general formula (2) CH 2 = C ( 2 ) C〇〇M 2 (2)
(式中、 R2は水素原子またはメチル基を表わし、 M2は水素原子またはアル カリ金属原子を表わす。 ) (In the formula, R 2 represents a hydrogen atom or a methyl group, and M 2 represents a hydrogen atom or an alkali metal atom.)
で示されるモノマーが挙げられる。 具体的には、 アクリル酸、 メ夕クリル酸 及びそれらのアルカリ金属塩 (ナトリウム塩、 カリウム塩等) が挙げられ、 ァクリル酸またはそのナトリゥム塩が好ましい。 The monomer shown by these is mentioned. Specific examples include acrylic acid, methacrylic acid and their alkali metal salts (sodium salt, potassium salt, etc.), and acrylic acid or its sodium salt is preferred.
(メタ) アクリルアミド (C) としては、 下記一般式 (3)  As the (meth) acrylamide (C), the following general formula (3)
CH2 = C (R3) CONH2 (3) CH 2 = C (R 3 ) CONH 2 (3)
(式中、 R3は水素原子またはメチル基を表わす。 ) (In the formula, R 3 represents a hydrogen atom or a methyl group.)
で示されるモノマーが挙げられる。 具体的には、 アクリルアミド及ぴメ夕ク リルアミドが挙げられ、 アクリルアミドが好ましい。 The monomer shown by these is mentioned. Specific examples include acrylamide and methyl acrylamide, with acrylamide being preferred.
N—ビニルカルボン酸アミド化合物 (D) としては、 一般式 (4)  As the N-vinylcarboxylic acid amide compound (D), the compound represented by the general formula (4)
CH2 = CHNR4COR5 (4) CH 2 = CHNR 4 COR 5 (4)
(式中、 R4及び R5は、 同一でも異なってもよく、 各々水素原子またはメチ ル基を表わす。 ) (In the formula, R 4 and R 5 may be the same or different and each represents a hydrogen atom or a methyl group.)
で示されるモノマーが挙げられる。 具体的には、 N—ビニルホルムアミド、 N—ビエルァセトアミド、 N—メチルー N—ビニルホルムアミド、 N—メチ ルー N—ビニルァセトアミドが挙げられ、 N—ビニルァセトアミドが好まし い。 The monomer shown by these is mentioned. Specific examples include N-vinylformamide, N-bieracetamide, N-methyl-N-vinylformamide, N-methyl N-vinylacetamide, and N-vinylacetamide is preferred.
上記モノマー (B) 、 (C) 及び (D) 以外に、 下記一般式 (5) で示さ れるアクリル酸誘導体やビニルアルコール誘導体 (E) を共重合成分として 含むことができる。  In addition to the monomers (B), (C) and (D), an acrylic acid derivative or a vinyl alcohol derivative (E) represented by the following general formula (5) can be contained as a copolymer component.
CH2=CR6X (5) CH 2 = CR 6 X (5)
(式中、 R 6は水素原子またはメチル基を表わし、 Xは一 CN、 一 CO〇R7、 一 CONH2、 一 CONHR8、 -COR9, 一 OCOR10または一 OR11を 表わす。 ただし、 R7は炭素数 1〜4のアルキル基を表わし、 そのアルキル 基の 1個の水素原子は一 OHまたは一 NR12R 13で置き換えることができ る。 また、 R 8は炭素数 1〜4のアルキル基を表わし、 そのアルキル基の 1 個の水素原子は一 OHまたは一 NR12R 13で置き換えることができ、 R9、 R1Q、 R11, R12及び R13は炭素数 1〜4のアルキル基を表わす。 ) ここで、 炭素数 1〜4のアルキル基とはメチル、 ェチル、 プロピル、 プチ ルまたはその異性体基を表わす。 (Wherein, R 6 represents a hydrogen atom or a methyl group, X represents one CN, one CO〇R 7 , one CONH 2 , one CONHR 8 , —COR 9 , one OCOR 10 or one OR 11 ; R 7 represents an alkyl group having 1 to 4 carbon atoms; One hydrogen atom of the group can be replaced by 1 OH or 1 NR 12 R 13 . R 8 represents an alkyl group having 1 to 4 carbon atoms, and one hydrogen atom of the alkyl group can be replaced by 1 OH or 1 NR 12 R 13 , and R 9 , R 1Q , R 11 , R 12 and R 13 represent an alkyl group having 1 to 4 carbon atoms. Here, the alkyl group having 1 to 4 carbon atoms means methyl, ethyl, propyl, ethyl or an isomer thereof.
一般式 (5) で示される化合物としては、 具体的には、 メチルァクリレー 卜、 ェチルァクリレー卜、 プロピルァクリレート、 2—ヒドロキシェチルァ クリレー卜、 N, N—ジメチルアミノエチルァクリレート、 N, N—ジメチ ルァミノプロピルアクリルアミド、 アクリロニトリル、 メチルビ二ルケトン、 ェチルビ二ルケトン、 プロピルビニルケトン、 ビニルアセテート、 メチルビ ニルエーテル、 ェチルビニルエーテル、 プロピルビニルエーテル、 メチルメ 夕クリレート、 ェチルメタクリレート、 プロピルメタクリレート、 2—ヒド ロキシェチルメタクリレート、 2—ヒドロキシプロピルメタクリレー卜、 N, N—ジメチルアミノエチルメタクリレート、 メタクリルアミド、 N—ィ ソプロピルアクリルアミド、 N, N—ジメチルァミノプロピルメ夕クリルァ ミド、 N, N—ジメチルアクリルアミド、 N, N—ジェチルァクリルアミド 等の化合物を挙げることができる。  Specific examples of the compound represented by the general formula (5) include methyl acrylate, ethyl acrylate, propyl acrylate, 2-hydroxyethyl acrylate, N, N-dimethylaminoethyl acrylate, N, N-dimethylaminopropyl acrylamide, acrylonitrile, methyl vinyl ketone, ethyl vinyl ketone, propyl vinyl ketone, vinyl acetate, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, methyl methyl acrylate, ethyl methacrylate, propyl methacrylate, 2-hydroxy Shetyl methacrylate, 2-hydroxypropyl methacrylate, N, N-dimethylaminoethyl methacrylate, methacrylamide, N-isopropylacrylamide, N, N-dimethylaminopropyl Examples thereof include compounds such as methylacrylamide, N, N-dimethylacrylamide, and N, N-getylacrylamide.
本発明で用いる共重合体は、 モノマー成分として、 (A) ビニルヒドロキ サム酸化合物またはその塩を必須成分として含み、 さらに少なくとも (B) (メタ) アクリル酸またはその塩及び (C) (メタ) アクリルアミドを含む ことが好ましい。  The copolymer used in the present invention contains (A) a vinylhydroxamic acid compound or a salt thereof as an essential component as a monomer component, and further comprises at least (B) (meth) acrylic acid or a salt thereof and (C) (meth) It preferably contains acrylamide.
水溶性高分子沈降助剤は、 有効成分としての前記共重合体を 20質量%以 上含むことが好ましく、 25質量%以上含むことがさらに好ましい。  The water-soluble polymer precipitation aid preferably contains the copolymer as an active ingredient in an amount of 20% by mass or more, more preferably 25% by mass or more.
また、 前記共重合体中、 全モノマー成分に対するモノマ一成分 (A) のビ ニルヒドロキサム酸化合物またはその塩の割合が、 5モル%以上であること が好ましく、 さらに好ましくは 1 0〜3 0モル%である。 モノマー成分 (A) の量が少ないと、 赤泥 (残渣) の凝集効果が低下し充分な沈降速度が 得られない。 モノマー成分 (C ) を含む場合にも、 その割合は共重合体中、 5モル%以上であることが好ましく、 さらに好ましくは 1 0〜3 0モル%で ある。 Further, in the copolymer, the ratio of the vinyl hydroxamic acid compound or the salt of the monomer component (A) to all the monomer components is 5 mol% or more. And more preferably 10 to 30 mol%. If the amount of the monomer component (A) is small, the coagulation effect of red mud (residue) is reduced, and a sufficient sedimentation speed cannot be obtained. Even when the monomer component (C) is contained, its proportion in the copolymer is preferably at least 5 mol%, more preferably 10 to 30 mol%.
赤泥を含む抽出液への水溶性高分子沈殿助剤の添加量は、 モノマー成分 (A) 、 ( B ) 、 ( C) 及び (D) の合計質量換算で、 赤泥に対して 0. 003 〜0. 05質量%が好ましく、 さらに好ましくは 0. 007〜0. 04質量%である。 水溶性高分子化合物の平均分子量は 2000以上であり、 好ましくは 1万以上 である。 平均分子量が 2000未満であると赤泥 (残渣) の凝集効果が低下し充 分な沈降速度が得られない。  The amount of the water-soluble polymer precipitating agent added to the extract containing red mud is 0.1% based on the total mass of the monomer components (A), (B), (C) and (D). It is preferably from 003 to 0.05 mass%, more preferably from 0.007 to 0.04 mass%. The average molecular weight of the water-soluble polymer compound is 2,000 or more, preferably 10,000 or more. If the average molecular weight is less than 2,000, the coagulation effect of red mud (residue) is reduced and a sufficient sedimentation speed cannot be obtained.
本発明の方法においては、 消石灰や澱粉などの沈降補助剤を併用すること なく上記の水溶性高分子化合物を赤泥に添加することのみにより、 残渣を迅 速に分離することができる。  In the method of the present invention, the residue can be quickly separated only by adding the above water-soluble polymer compound to red mud without using a sedimentation aid such as slaked lime or starch.
( 4 ) 赤泥の分離方法  (4) Separation method of red mud
本発明の分離方法の実施に際し、 原料であるアルミナ含有鉱石はポールミ ル等の粉砕機でアル力リ溶液と混合しつつ、 その粒径を 1 2メッシュ以下に 粉碎した後、 アルミナ分を抽出する抽出装置へ送られる。 抽出装置としては、 密閉式の管状反応器や容器型反応器が一般的に使用される。  In carrying out the separation method of the present invention, the alumina-containing ore, which is a raw material, is pulverized to a size of 12 mesh or less while mixing with an Alri solution using a pulverizer or the like, and an alumina component is extracted. It is sent to the extraction device. As the extraction device, a closed tubular reactor or a container type reactor is generally used.
抽出温度と抽出時間は、 ボーキサイトの粉砕粒度、 アルカリ溶液の種類、 その濃度等により異なるので一概に規定できないが、 装置条件を含め経済的 にアルミナを抽出する条件を設定すればよい。 通常、 抽出温度は 1 1 0 ° (:〜 1 6 0 °C, 好ましくは 1 1 5 °C〜1 5 0 °Cであり、 抽出時間は 5時間以内、 好ましくは数分から 2時間である。 アル力リ溶液としてアルミン酸ソーダ溶 液を使用する場合には、 抽出後の液中のアルミナ (A 1 20 3) とソーダ (N a O H) の濃度比を考慮し、 その濃度比がアルミナノソーダ (質量比) =0. 7〜L 0となるように、 溶液のソーダ濃度、 アルミナ濃度及び使用量を設定す る。 The extraction temperature and the extraction time cannot be specified unconditionally because they vary depending on the ground particle size of bauxite, the type of alkaline solution, the concentration thereof, etc., but it is sufficient to set the conditions for economically extracting alumina including the equipment conditions. Usually, the extraction temperature is 110 ° C. (: up to 160 ° C., preferably 115 ° C. to 150 ° C.) and the extraction time is within 5 hours, preferably several minutes to 2 hours. when using sodium aluminate solvent solution as Al force Li solution, the alumina in the solution after the extraction with (a 1 2 0 3) considering concentration ratio of soda (N a OH), the concentration ratio of aluminum Nano soda (mass ratio) = 0. Set the soda concentration, the alumina concentration, and the amount of the solution so as to be 7 to L0.
抽出処理後のポーキサイト残渣 (赤泥) を含むスラリーは、 常圧下 1 0 0 °C前後に冷却され、 直ちに固液分離装置に送られ、 沈降助剤として本発明に 係る前記の水溶性高分子化合物を添加し、 撹拌される。 均一に撹拌した後、 分離装置により抽出液 (アルミン酸ソーダ溶液) と抽出残渣とを分離する。 固液分離装置としては、 集泥装置付きのシックナ一が一般的に使用される。 ゲーサイトを含むアルミナ含有鉱石の抽出残渣の分離において、 前記水溶 性高分子化合物が沈降助剤として良好に作用する機構は必ずしも明かではな いが、 構成単位としてヒドロキサム酸化合物が加わることにより、 高分子凝 集剤の本来の物理的捕捉力に化学的捕捉力が付与され、 残渣表面のイオン性 物質と凝集反応が促進されることによると考えられる。 産業上の利用可能性  The slurry containing the poxite residue (red mud) after the extraction treatment is cooled to about 100 ° C. under normal pressure, immediately sent to a solid-liquid separation device, and used as the sedimentation aid according to the present invention. Add compound and stir. After stirring uniformly, the extract (sodium aluminate solution) and the extraction residue are separated by a separator. As a solid-liquid separator, a thickener with a mud collector is generally used. In the separation of the extraction residue of alumina-containing ore containing goethite, the mechanism by which the water-soluble polymer compound works well as a sedimentation aid is not necessarily clear. This is thought to be due to the fact that chemical trapping power is added to the original physical trapping power of the molecular coagulant, and that the flocculation reaction with ionic substances on the residue surface is promoted. Industrial applicability
ゲ一サイトを含むアルミナ含有鉱石のアルミナ抽出時の赤泥の分離は、 従 来では特殊な操作を必要とし、 その結果経済性に劣るものであつたが、 本発 明の方法によれば簡便な処理操作で迅速に分離できる。 すなわち、 本発明の 方法は分離性及び経済性を兼ね備えた方法であり、 その工業的価値は極めて 大きい。 発明を実施するための最良の形態  Separation of red mud during alumina extraction of alumina-containing ores containing gausite conventionally required special operations and was inferior in economic efficiency, but according to the method of the present invention, Separation can be performed quickly with simple processing operations. That is, the method of the present invention is a method having both separability and economy, and its industrial value is extremely large. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明による赤泥分離方法を実施例及び比較例を挙げて説明するが、 本発明は下記の記載に限定されるものではない。 ポーキサイト  Hereinafter, the red mud separation method according to the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to the following description. Pork site
下記の例で使用した原料のアルミナ含有鉱石 (ボーキサイト) は、 鉄成分 としてゲーサイトを含むインドネシア産ポーキサイト、 及び鉄成分がへマ夕 ィトからなるオーストラリア産ポーキサイトである。 J I S規格 M 8 3 6 1 - 1 9 6 8により分析した各ポーキサイトの分析結果を表 1に示す。 また、 原料ポーキサイト中の、 ゲーサイト及びへマタイトの結晶形態を以下の条件 で回折 X線解析を行ない同定した。 その結果、 インドネシア産ボーキサイト では鉄成分の 7 0 %がゲ一サイトであり、 オーストラリァ産ポ一キサイトで は鉄成分の 9 0 %がへマタイトであることが確認された。 The alumina-containing ore (bauxite) used as a raw material in the examples below is an iron component Indonesian porksites, including goethite, and Australian porksites, which consist of hematite in the iron component. Table 1 shows the results of the analysis of each poxite analyzed according to JIS standard M8361-19668. In addition, the crystal forms of goethite and hematite in the raw material poxite were identified by diffraction X-ray analysis under the following conditions. As a result, it was confirmed that 70% of the iron component in Indonesian bauxite was Gesite and 90% of the iron component in Australian Poxite was hematite.
回折 X線装置:理学電機 (株) 社製 R AD _ 2 R V、  Diffraction X-ray device: RAD_2RV, manufactured by Rigaku Denki Co., Ltd.
測定条件 :管球 : C u、  Measurement conditions: Tube: Cu,
加速電圧 : 4 0 k V、  Acceleration voltage: 40 kV,
加速電流 : 3 0 mA、  Acceleration current: 30 mA,
スキャン速度: 1 ° Z分、  Scan speed: 1 ° Z min,
受光スリット: 1 ° 表 1 各ポーキサイトの分析結果  Receiving slit: 1 ° Table 1 Results of analysis of each poxite
Figure imgf000012_0001
Figure imgf000012_0001
G/ : ゲー 抽出処理 G /: Game Extraction processing
上記原料ポーキサイトのアルミナ成分抽出温度及び抽出時間を 140 , 60分、 120°C, 15分の条件として、 以下の手順によりアルミナの抽出 処理を行なった。  The alumina extraction treatment was performed according to the following procedure under the conditions of 140 and 60 minutes at 120 ° C and 15 minutes for the alumina component extraction temperature and extraction time of the raw material poxite.
まず、 各ポーキサイトを 150 m以下に粉砕し、 NaOH濃度l 60 g ZL及び A 123濃度 76 g/Lからなるアルミン酸ソーダ溶液 1リットル に、 抽出終了後の溶液の A 1203/N a OHの濃度の質量比が 0.88となるよ うに必要量粉碎ポ一キサイトを加え分散混合し、 円筒圧力容器 (直径 60m m、 高さ 200mm) に移し密閉した。 この密閉した圧力容器を予め抽出温 度に加熱したオイルバスの中に入れ、 必要な抽出時間の間、 密閉容器を転倒 撹拌させアルミナの抽出を行なった。 その後、 素早くオイルバスより圧力容 器を取り出し、 100°Cまで急速冷却を行い容器から混合液を取り出した。 また、 この混合液を一部取り出し、 赤泥の組成と固体濃度を測定した。 赤 泥の成分分析は J I S規格 M8361 - 1968に従って行なった。 結果を 表 2に示す。 First, each Pokisaito pulverized to at most 0.99 m, NaOH concentration l 60 g ZL and A 1 23 concentration 76 g / L sodium aluminate solution 1 liter consisting of extraction after the completion of solution A 1 2 0 3 The required amount of ground poison was added and the mixture was dispersed and mixed so that the mass ratio of the concentration of / NaOH was 0.88, and the mixture was transferred to a cylindrical pressure vessel (60 mm in diameter, 200 mm in height) and sealed. The sealed pressure vessel was placed in an oil bath preheated to the extraction temperature, and the alumina was extracted by inverting and stirring the closed vessel for a required extraction time. Thereafter, the pressure vessel was quickly taken out of the oil bath, rapidly cooled to 100 ° C, and the mixture was taken out of the vessel. A part of the mixed solution was taken out and the composition and solid concentration of the red mud were measured. The component analysis of red mud was performed according to JIS standard M8361-1968. Table 2 shows the results.
表 2 ポーキサイト残渣の分析結果 Table 2 Results of analysis of pork site residues
Figure imgf000014_0001
Figure imgf000014_0001
沈降性の評価 Evaluation of sedimentation
上記処理により得られた混合液を 250mlの耐熱性ガラス製沈降管 (内 径 30mm、 高さ 25 Omm) に移し、 98 °Cに恒温制御された恒温槽に保 持した。 混合液が入った沈降管に、 実施例及び比較例の条件に従い必要な沈 降助剤を添加し、 同一条件で均一に撹拌した後、 沈降界面の高さを 1分毎に 測定した。 沈降開始時の沈降管内の混合液界面の高さを 100 %として、 経 時毎の固形物を含む界面の高さを百分率で求めた。 実施例 1〜 4  The mixed solution obtained by the above treatment was transferred to a 250 ml heat-resistant glass sedimentation tube (inner diameter: 30 mm, height: 25 Omm), and kept in a thermostat controlled at a constant temperature of 98 ° C. The necessary sedimentation aid was added to the sedimentation tube containing the mixture according to the conditions of Examples and Comparative Examples, and the mixture was stirred uniformly under the same conditions, and the height of the sedimentation interface was measured every minute. Assuming that the height of the interface of the mixed solution in the settling tube at the start of the settling was 100%, the height of the interface containing the solids over time was calculated as a percentage. Examples 1-4
インドネシア産ポーキサイトを使用し、 抽出条件として実施例 1と 2は 1 40°C, 60分で、 実施例 3と 4は 120°C, 15分で抽出し残渣 (赤泥) を得た。 実施例 1と 3は、 高分子凝集剤として、 アクリル酸ソーダ、 ァク リルアミド、 ビニルォキサミド酸ソ一ダ由来の繰り返し単位の組成比 (モル %) が、 71 : 16 : 13、 固形分濃度が 29%、 平均分子量が 2000以上の 高分子凝集剤 (サイテック社製商品名 H X— 2 0 0 ) を用い、 実施例 2と 4 は、 高分子凝集剤として、 アクリル酸ソーダ、 アクリルアミド、 ビニルォキ サミド酸ソーダ由来の繰り返し単位の組成比 (モル%) が、 6 5 : 1 6 : 2 0、 固形分濃度が 3 0 %、 平均分子量が 2000以上の高分子凝集剤 (サイテツ ク社製商品名 H X—4 0 0 ) を用い、 それぞれ残渣固体質量基準で 1 0 0 p p m添加して、 上記方法により沈降性を測定した。 結果を表 3に示す。 Using Indonesian porksite, extraction conditions were as follows: Examples 1 and 2 were extracted at 140 ° C for 60 minutes, and Examples 3 and 4 were extracted at 120 ° C for 15 minutes to obtain a residue (red mud). In Examples 1 and 3, the composition ratio (mol%) of the repeating units derived from sodium acrylate, acrylamide, and sodium vinyloxamidate was 71:16:13, and the solid content concentration was 29, as the polymer flocculant. %, Average molecular weight of 2000 or more In Examples 2 and 4, using a polymer flocculant (trade name: HX-200 manufactured by Scitech), the composition ratio of repeating units derived from sodium acrylate, acrylamide, and sodium vinyloxamate as the polymer flocculant ( (Mol%) was 65:16:20, the solid content concentration was 30%, and the average molecular weight was 2,000 or more. Using a polymer flocculant (trade name: HX-400, manufactured by Cytec), each residue was used. 100 ppm was added based on the mass of the solid, and the sedimentation was measured by the above method. Table 3 shows the results.
なお、 高分子凝集剤の組成比は、 核磁気共鳴分析装置 (Bruker社製 AMX - 40 0) で測定し、 分子量は、 ゲル浸透クロマ卜グラフ分析装置 (島津社製 CLAS SLC- 10、 カラム Shodex OHpakSB-806MHQ> 標準物質としてプルランを使用) を使用して測定した。 比較例 1〜 3  The composition ratio of the polymer flocculant was measured by a nuclear magnetic resonance analyzer (AMX-400 manufactured by Bruker), and the molecular weight was determined by gel permeation chromatography (CLAS SLC-10 manufactured by Shimadzu, column Shodex) OHpakSB-806MHQ> using pullulan as a standard). Comparative Examples 1-3
比較例 1は高分子凝集剤として平均分子量が 1000万以上のポリアクリル酸 ソーダ (日本化薬製, 商品名パナカャック C S G— K) を残渣固体質量基準 で 0. 01 %用いた以外は実施例 1と同様に処理して沈降性を測定した。 比較例 2は高分子凝集剤の代わりに消石灰 0. 08%及び澱粉 1. 0 % (いずれも残渣固 体質量基準) を用いた以外は実施例 1と同様に処理して沈降性を測定した。 また、 比較例 3は抽出条件を 1 2 0 °C, 1 5分とした以外は、 比較例 1と 同じ条件で沈降性を測定した。  Comparative Example 1 was performed in the same manner as in Example 1 except that sodium polyacrylate having an average molecular weight of 10,000,000 or more (manufactured by Nippon Kayaku Co., Ltd., trade name: Panakayak CSG-K) was used as a polymer flocculant in an amount of 0.01% based on the residual solid mass. The treatment was performed in the same manner as described above, and the sedimentation property was measured. Comparative Example 2 was treated in the same manner as in Example 1 except that 0.08% of slaked lime and 1.0% of starch (both based on the residual solid mass) were used instead of the polymer flocculant, and the sedimentability was measured. . In Comparative Example 3, the sedimentation property was measured under the same conditions as in Comparative Example 1 except that the extraction conditions were set to 120 ° C. and 15 minutes.
結果を表 3に示す。 比較例 4〜 7  Table 3 shows the results. Comparative Examples 4 to 7
鉱石をオーストラリア産ポーキサイトに代えた以外は、 比較例 4は実施例 1 と、 比較例 5は実施例 4と、 比較例 6は比較例 1と、 比較例 7は比較例 3と- それぞれ同じ条件で沈降性を測定した。 その結果を表 3に示す。 表 3 残渣液の抽出条件と沈降性 例番号 実施例 1 実施例 2 実施例 3 実施例 4 比較例 1 比較例 2 比較例 3 比較例 4 比較例 5 比較例 6 比較例 7 ボーキサイト インドネシア産 インドネシア産 オーストラリア産 Comparative Example 4 was the same as Example 1, Comparative Example 5 was Example 4, Comparative Example 6 was Comparative Example 1, and Comparative Example 7 was Comparative Example 3, except that the ore was replaced with Australian porkite. The sedimentability was measured with. The results are shown in Table 3. Table 3 Extraction conditions and sedimentation of residue liquid Example No.Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Comparative Example 7 Bauxite Indonesian Indonesian Australian
抽出温度 14Uし 14Uし 1 Uし Ι Όし 14U 14Uし 丄 し 丄 41)し Uし 丄 4Uし 1 Uし  Extraction temperature 14U then 14U then 1U Ι Ό 14U 14U 丄 し 41) then U 丄 4U then 1U
r- r-
60分 15分 15分 60分 15分八 15分 60分 15分60 minutes 15 minutes 15 minutes 60 minutes 15 minutes eight 15 minutes 60 minutes 15 minutes
ΗΧ-200 ΗΧ-200 HA-4UU Φ /クヅル 、リ /クリル酸 hiX - OU ΗΧ-40ϋ 本リ クリル酸 ホリアクリル酸 高分子凝集剤 lOOppm lOOppm lOOppm lOOppm lOOppm 0 lOOppm lOOppm lOOppm lOOppm lOOppm ΗΧ-200 ΗΧ-200 HA-4UU Φ / Cool, Li / acrylic acid hiX-OU ΗΧ-40ϋ Lilycrylic acid Polyacrylic acid Polymer flocculant lOOppm lOOppm lOOppm lOOppm lOOppm 0 lOOppm lOOppm lOOppm lOOppm lOOppm
添加量  Amount added
殿粉添カロ直 0 0 0 0 0 1. 0% 0 0 0 0 0  0 0 0 0 0 1.0% 0 0 0 0 0
I I
CO CO
消 ί灰 」口 ¾ 0 0 0 0 0 0. 08% 0 0 0 0 0 Ash 口 mouth 0 0 0 0 0 0.08% 0 0 0 0 0
沈降日寺間 界面 iti 界囬咼 界面咼 界面高さ 界面咼 e 界面! ¾ 5 界囬咼さ 界 [B t¾ 0 界囬咼さ 界面咼 界面! ¾≤· min % % % % % % % % % % %  Settlement day interface iti interface interface interface interface interface interface interface interface interface interface interface interface interface interface interface interface interface interface interface interface interface interface interface interface interface interface 5 interface interface interface interface interface interface interface interface interface interface interface %%%
0 100 100 100 100 100 100 100 100 100 100 100 0 100 100 100 100 100 100 100 100 100 100 100
5 34 35 35 36 95 75 94 95 94 35 37 5 34 35 35 36 95 75 94 95 94 35 37
10 25 26 27 28 88 55 87 89 88 25 27  10 25 26 27 28 88 55 87 89 88 25 27
20 22 24 23 25 70 40 72 75 74 22 23  20 22 24 23 25 70 40 72 75 74 22 23
30 21 23 21 23 55 30 59 60 62 21 22  30 21 23 21 23 55 30 59 60 62 21 22
60 20 21 20 22 50 29 50 49 48 19 20 60 20 21 20 22 50 29 50 49 48 19 20
表 3より明らかなように、 鉄成分がへマタイトからなるオーストラリア産 ポーキサイトの抽出残渣分離において、 凝集剤として従来より用いられてい るポリアクリル酸を用いた場合は良好な沈降性を示すが (比較例 6〜 7 ) 、 鉄成分がゲーサイ卜からなるインドネシア産ポ一キサイトにその凝集剤を適 用した場合には著しく沈降性が悪化する (比較例 1、 比較例 3 ) 。 また凝集 剤として澱粉と消石灰を用いた場合も沈降性は良好とは言えない (比較例 2 ) 。 これらに対して、 本発明の分離方法によれば優れた沈降性を示すこと がわかる (実施例;!〜 4 ) 。 As is evident from Table 3, when polyacrylic acid, which has been conventionally used as a flocculant, is used in the extraction residue separation of Australian poxite consisting of hematite as an iron component, it shows good sedimentation. Examples 6 to 7), when the flocculant is applied to Indonesian poxite whose iron component is made of goethite, the sedimentation property is remarkably deteriorated (Comparative Examples 1 and 3). Also, when starch and slaked lime were used as flocculants, the sedimentation was not good (Comparative Example 2). On the other hand, according to the separation method of the present invention, it can be seen that excellent sedimentation is exhibited (Examples;! To 4).
また、 本発明の分離方法をオーストラリア産ポーキサイトの抽出残渣に適 用した場合には沈降性が良好ではなく (比較例 4〜5 ) 、 本発明の方法は鉄 成分がゲーサイトからなるポ一キサイトに対して特異な効果を示すことがわ かる。  Further, when the separation method of the present invention was applied to the extraction residue of Australian porkite, the sedimentation was not good (Comparative Examples 4 to 5). It shows a unique effect on

Claims

請求の範囲 The scope of the claims
1 . 鉄成分をゲ一サイトとして含むアルミナ含有鉱石をアルカリ溶液で 1 1 0〜1 6 0 °Cの温度で加熱処理して得られるアルミン酸ソーダ溶液中の赤泥 の分離方法において、 モノマー成分として (A) ビニルヒドロキサム酸化合 物またはその塩を含む平均分子量 2000以上の共重合体を有効成分とする水溶 性高分子沈降助剤を添加して赤泥を沈降させ分離することを特徴とするゲー サイトを含む赤泥の分離方法。 1. A method for separating red mud in a sodium aluminate solution obtained by heat-treating an alumina-containing ore containing an iron component as a site at a temperature of 110 to 160 ° C with an alkaline solution, comprising: (A) A sedimentation and separation of red mud by adding a water-soluble polymer sedimentation aid containing as an active ingredient a copolymer having an average molecular weight of 2,000 or more, including a vinylhydroxam oxide compound or a salt thereof. Separation method of red mud including game site.
2 . 平均分子量 2000以上の共重合体が、 モノマー成分として (A) ビニルヒ ドロキサム酸化合物またはその塩と、 (B ) (メタ) アクリル酸またはその 塩、 (C) (メタ) アクリルアミド及ぴ (D) N—ビエルカルボン酸アミド 化合物から選択される少なくとも 1種類のモノマーを含む共重合体である請 求の範囲 1に記載のゲーサイトを含む赤泥の分離方法。 2. The copolymer having an average molecular weight of 2,000 or more is composed of (A) a vinylhydroxamic acid compound or a salt thereof, (B) (meth) acrylic acid or a salt thereof, (C) (meth) acrylamide and (D) as monomer components. 4. The method for separating goethite-containing red mud according to claim 1, wherein the method is a copolymer containing at least one monomer selected from N-biercarboxylic acid amide compounds.
3 . 平均分子量 2000以上の共重合体が、 モノマ一成分として、 (A) ビニル ヒドロキサム酸化合物またはその塩と、 (B ) (メタ) アクリル酸またはそ の塩と、 (C) (メタ) アクリルアミドを含む共重合体である請求の範囲 1 に記載のゲーサイトを含む赤泥の分離方法。 3. A copolymer having an average molecular weight of 2,000 or more is composed of (A) a vinyl hydroxamic acid compound or a salt thereof, (B) (meth) acrylic acid or a salt thereof, and (C) (meth) acrylamide as monomer components. The method for separating red mud containing goethite according to claim 1, which is a copolymer containing:
4. 鉄成分の 6 0質量%以上がゲーサイトであり、 アルミナ分の 7 0 %以上 がギブサイトであるアルミナ含有鉱石原料を用いる請求の範囲 1に記載のゲ 一サイトを含む赤泥の分離方法。 4. The method for separating red mud containing gaysite according to claim 1, wherein an alumina-containing ore raw material in which 60% by mass or more of the iron component is goethite and 70% or more of the alumina content is gibbsite is used. .
5 . 水溶性高分子沈降助剤が、 モノマー成分として (A) ビニルヒドロキサ ム酸化合物またはその塩を含む共重合体を 2 0質量%以上含む請求の範囲 1 に記載のゲーサイトを含む赤泥の分離方法。 5. The water-soluble polymer sedimentation aid contains 20% by mass or more of a copolymer containing (A) a vinylhydroxamic acid compound or a salt thereof as a monomer component. 4. A method for separating red mud comprising the game site according to the above.
6. 全モノマー成分に対するモノマー成分 (A) のビエルヒドロキサム酸化 合物またはその塩の割合が、 5モル%以上である請求の範囲 2に記載のゲ一 サイトを含む赤泥の分離方法。 6. The method for separating red mud containing a gay site according to claim 2, wherein the ratio of the Bierhydroxam oxide compound of the monomer component (A) or a salt thereof to all the monomer components is 5 mol% or more.
7. 水溶性高分子化合物を、 モノマー成分 (A) 、 (B) 、 (C) 及び (D) の合計質量換算で、 赤泥に対して 0.003〜0.05質量%添加する請求の 範囲 2に記載のゲーサイトを含む赤泥の分離方法。 7. Claim 2 wherein the water-soluble polymer compound is added in an amount of 0.003 to 0.05% by mass, based on the total mass of the monomer components (A), (B), (C) and (D), based on the red mud. Separation method of red mud including gecite.
PCT/JP2001/009376 2000-10-30 2001-10-25 Method of separating red mud containing goethite WO2002036493A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000330037A JP2002137919A (en) 2000-10-30 2000-10-30 Separation method for red mud containing geothite
JP2000-330037 2000-10-30

Publications (1)

Publication Number Publication Date
WO2002036493A1 true WO2002036493A1 (en) 2002-05-10

Family

ID=18806619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009376 WO2002036493A1 (en) 2000-10-30 2001-10-25 Method of separating red mud containing goethite

Country Status (2)

Country Link
JP (1) JP2002137919A (en)
WO (1) WO2002036493A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115744948A (en) * 2022-09-08 2023-03-07 广西田东锦鑫化工有限公司 Fe-containing alloy 2+ Method for dissolving chlorite type sedimentary bauxite

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080257827A1 (en) * 2007-04-20 2008-10-23 Qi Dai Use of silicon-containing polymers to improve red mud flocculation in the bayer process
AU2013231168B2 (en) * 2012-04-26 2015-05-14 Showa Denko K.K. Washing method of goethite-containing red mud

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767540A (en) * 1987-02-11 1988-08-30 American Cyanamid Company Polymers containing hydroxamic acid groups for reduction of suspended solids in bayer process streams
JPH0596460A (en) * 1991-04-03 1993-04-20 Minnesota Mining & Mfg Co <3M> Polishing method and contact wheel for polishing belt
EP0686599A1 (en) * 1994-06-06 1995-12-13 Cytec Technology Corp. Process for improving the settling rate and/or clarity of feeds in the bayer process
US5847056A (en) * 1996-04-01 1998-12-08 Cytec Technology Corp. Method of making polymers containing hydroxamate functional groups
US5853677A (en) * 1996-04-26 1998-12-29 Cytec Technology Corp. Concentration of solids by flocculating in the Bayer process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767540A (en) * 1987-02-11 1988-08-30 American Cyanamid Company Polymers containing hydroxamic acid groups for reduction of suspended solids in bayer process streams
JPH0596460A (en) * 1991-04-03 1993-04-20 Minnesota Mining & Mfg Co <3M> Polishing method and contact wheel for polishing belt
EP0686599A1 (en) * 1994-06-06 1995-12-13 Cytec Technology Corp. Process for improving the settling rate and/or clarity of feeds in the bayer process
US5847056A (en) * 1996-04-01 1998-12-08 Cytec Technology Corp. Method of making polymers containing hydroxamate functional groups
US5853677A (en) * 1996-04-26 1998-12-29 Cytec Technology Corp. Concentration of solids by flocculating in the Bayer process

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D.P. SPITZER, et al, "DEVELOPMENT OF NEW BAYER PROCESS FLOCCULANTS", Light Metals, 1991, P. 167-171 *
S.E. SANKEY, et al, "THE USE OF SYNTHETIC FLOCCULANT POLYMERS IN SETTLING RED MUDS DERIVED FROM HIGH GOETHITE BAUXITE ORES," Light metals, 1984, p.1653-1667 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115744948A (en) * 2022-09-08 2023-03-07 广西田东锦鑫化工有限公司 Fe-containing alloy 2+ Method for dissolving chlorite type sedimentary bauxite
CN115744948B (en) * 2022-09-08 2023-12-15 广西田东锦鑫化工有限公司 Fe-containing material 2+ Dissolution method of chlorite type deposited bauxite

Also Published As

Publication number Publication date
JP2002137919A (en) 2002-05-14

Similar Documents

Publication Publication Date Title
JP2584469B2 (en) Method for removing suspended solids from Bayer-Alumina circulation
JP5358040B1 (en) Cleaning method of red mud containing goethite
EP2139812B1 (en) Use of silicon-containing polymers to improve red mud flocculation in the bayer process
EP1850938B1 (en) Water-in-oil-in water emulsions of hydroxamated polymers and methods for using the same
SA109300605B1 (en) Use of Silicon-Containing Polymers for Improved Flocculation of Solids in Processes for the Production of Alumina from Bauxite
RU2247788C1 (en) Method for preparation of scandium oxide from red mud
US20190241693A1 (en) Silicon containing polymer flocculants
EP1363716B1 (en) Method of clarifying bayer process liquors using salicylic acid containing polymers
CA2366450C (en) Process for purifying bayer process streams
AU699929B2 (en) Removing suspended solids by addition of hydroxamated polymers in the Bayer Process
RU2294390C2 (en) Method of removal of the water non-soluble substances from the solutions containing the metals chemically transformed into the water-soluble form
WO2002036493A1 (en) Method of separating red mud containing goethite
WO2006010218A1 (en) Method of catalytic wet oxidation of organic contaminants of alkaline solutions
US6669852B2 (en) Separation method of goethite-containing red mud
JP4184634B2 (en) Method for producing aluminum hydroxide
CA1277479C (en) Process for purifying alumina
JP5813782B2 (en) Fine dispersions of hydroxamated polymers and methods for their production and use
EP3463609B1 (en) Silicon containing polymer flocculants
JP3316863B2 (en) Red mud separation method
JP2008036470A (en) Thallium-containing iron/arsenic compound and its production method, and treatment method of aqueous arsenic/thallium-containing solution
JP2005144336A (en) Method for removing fluorine in wastewater and precipitate reducing method
CN109154033B (en) Method for separating mercury from ore leaching solution
CA3101319A1 (en) Selective extraction of metals from complex inorganic sources
JPH03150321A (en) Method for recovering thallium
JP2003231928A (en) Method for pretreating nickel ore