WO2008048809A2 - Automatic ad-hoc network creation and coalescing using wps - Google Patents

Automatic ad-hoc network creation and coalescing using wps Download PDF

Info

Publication number
WO2008048809A2
WO2008048809A2 PCT/US2007/080733 US2007080733W WO2008048809A2 WO 2008048809 A2 WO2008048809 A2 WO 2008048809A2 US 2007080733 W US2007080733 W US 2007080733W WO 2008048809 A2 WO2008048809 A2 WO 2008048809A2
Authority
WO
WIPO (PCT)
Prior art keywords
option
beacons
hoc network
user
beacon
Prior art date
Application number
PCT/US2007/080733
Other languages
French (fr)
Other versions
WO2008048809A3 (en
Inventor
Milind Kopikare
Rahul Kopikare
Kapil Chhabra
Original Assignee
Marvell International Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marvell International Ltd. filed Critical Marvell International Ltd.
Priority to JP2009532521A priority Critical patent/JP5477951B2/en
Priority to CN2007800386787A priority patent/CN101601024B/en
Priority to EP07853857.6A priority patent/EP2076842B1/en
Publication of WO2008048809A2 publication Critical patent/WO2008048809A2/en
Publication of WO2008048809A3 publication Critical patent/WO2008048809A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/04Protocols specially adapted for terminals or networks with limited capabilities; specially adapted for terminal portability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to wireless communication networks, and more particularly to a protocol for establishing an ad-hoc wireless fidelity (WiFi) network.
  • WiFi wireless fidelity
  • a method of adding a first device to an ad-hoc network previously established by a second device includes, in part, placing the second device in a scanning mode during one of each N beacon transmission periods to scan for beacons transmitted by the first device, intercepting a beacon of the first device during one of the scan periods of the second device; verifying whether the intercepted beacon includes an attribute of the second device; and prompting a user with an option to allow the first device to be added to the ad-hoc network if the intercepted beacon includes the attribute.
  • the first and second devices are previously configured as registrars.
  • the method further includes, in part, performing a handshake if the user responds affirmatively to the option.
  • the device further includes, in part, means for modifying beacons of the first device to include an attribute associated with the second device if the user responds affirmatively to the option; and means for attempting to reconfigure the first device as an enrollee if the user responds affirmatively to the option.
  • the device further includes, in part, means for modifying its beacons if a condition is satisfied.
  • Figures IA- 1C show various logical components of a multitude of infrastructure wireless networks.
  • Figure 4 shows a pair of devices adapted to form a network after they have been configured as registrars, in accordance with one exemplary embodiment of the present invention.
  • Figure 6 is a flowchart of step carried out to enable a device configured as a registrar to join an ad-hoc network established by another registrar, in accordance with one exemplary embodiment of the present invention.
  • WPS ad-hoc WSC
  • every N beacon periods where N is configurable, one of the devices enters an enrollee scan mode to intercept the beacons transmitted by other devices. Assume in the example shown in Figure 5 than N is equal to 3. Assume further that device 60 enters an enrollee scan mode between the times T 5 and T 7 , T 12 and Ti 5 , etc., and device 80 enters an enrollee scan mode between the times T 2 and T 4 , T 8 and Tn, etc. Accordingly, between the times T 2 and T 4 , for example, device 80 remains active and does not enter the stand-by mode. Similarly, between the times T 5 and T 7 , for example, device 60 remain active and does not enter the stand-by mode.
  • the period covering two successive beacon transmissions is referred to in the following as scanning period.
  • a predefined condition establishes that the device with the later time stamp is to become an enrollee and the device with the earlier time stamp is to remain a registrar.
  • device 60 has an earlier time stamp than device 80.
  • the user of device 80 is prompted with an option to decide whether to join device 60's network. This notification may be made via a text displayed on an LCD panel disposed on device 80, or an audible beep played via a speaker disposed on device 80, etc. If the user responds affirmatively to this option, device 80's beacons are modified to include additional information elements.
  • the enrollee beacons are modified 1 10.
  • the registrar's user is presented with an option 1 14 to decide whether he/she is interested in adding the enrollee to the registrar's network. If the user responds affirmatively to this option, a handshake is performed 116 between the two devices and an attempt is made by the enrollee to join the registrar's network 118.

Abstract

A device previously configured as a registrar and that has established an independent ad-hoc network is automatically discovered by another device also previously configured as a registrar. To form an ad-hoc wireless network between these two devices, each device periodically enters a scanning mode to scan for and intercept beacons transmitted by the other device. Upon such interception, one of the devices becomes an enrollee in accordance with a predefined condition and in response to a user selected option. Subsequently, the enrollee modifies its beacons to include an attribute, such as the MAC address, associated with the other device. After intercepting the modified beacon, the remaining registrar prompts it user to decide whether to allow the enrollee to join the registrar's network. If the user responds affirmatively, a handshake is performed between the two devices and a subsequent attempt is made by the enrollee to join the registrar's network.

Description

AUTOMATIC AD-HOC NETWORK CREATION AND COALESCING
USING WPS
CROSS-REFERENCES TO RELATED APPLICATIONS
[0001] The present application claims benefit under 35 USC §1 19(e) of U.S. provisional application number 60/829,614, filed October 16, 2006, entitled "Automatic Ad-Hoc Network Creation and Coalescing Using WPS", commonly assigned, the content of which is incorporated herein by reference in its entirety.
[0002] The present application is also related to U.S. application number 11/800,166, attorney docket number MPl 229, filed May 4, 2007, entitled "Ad-Hoc Simple Configuration", commonly assigned, the content of which is incorporated herein by reference in its entirety.
[0003] The present application is also related to U.S. application number , attorney docket number MP 1382, filed concurrently herewith, entitled "Power Save Mechanisms For Dynamic Ad-Hoc Networks", commonly assigned, the content of which is incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION
[0004] The present invention relates to wireless communication networks, and more particularly to a protocol for establishing an ad-hoc wireless fidelity (WiFi) network.
[0005] WiFi networks are well known and are being increasingly used to exchange data. One known WiFi standard, commonly referred to as WiFi Protected Setup (WPS) or WiFi Simple Configuration (WSC), is a Wireless Local Area Network (WLAN) standard that defines the communication modes and the associated configuration protocols for an infrastructure WLAN.
[0006] There are three logical components in an infrastructure WSC network, namely a registrar, an access point (AP) and an enrollee. Referring to Figure IA, to establish a wireless communications link with legacy AP 10, WSC client 12 first seeks to acquire network credentials from external registrar 14 using an 802.11 ad-hoc network. Subsequently, WSC client 12 establishes a link to legacy AP 10 using the network credentials that WSC client 12 has acquired from external registrar 14.
[0007] Referring to Figure IB, AP 20 is shown as having an embedded registrar. To establish a communications link with AP 20, WSC client 22 first seeks to acquire network credentials from AP 20's embedded registrar over an 802.11 infrastructure network. Subsequently, using the acquired network credentials, WSC client 22 wirelessly connects to AP 20.
[0008] Referring to Figure 1C, to establish a communications link with WSC AP 30, WSC client 32 first seeks to acquire network credentials using an extended authentication protocol (EAP) via WSC AP 30. WSC AP 30 relays the WSC client 32's EAP message to registrar 34 using a Universal Plug and Play (UpnP) protocol. Next, using the acquired network credentials supplied by registrar 34, WSC client 32 establishes a communications link with WSC AP 30. WSC and its communication protocols are described, for example, in Wi-Fi Simple Configuration Specification, Version 1.0a, February 10, 2006, by Wi-Fi Simple Configuration Working Group in the Wi-Fi Alliance.
[0009] As electronic devices with wireless network capabilities become more pervasive, it would be desirable to enable two or more of such devices to form an ad-hoc wireless network to exchange data or interact without using an access point. Furthermore, it would be desirable to ensure that such data exchange or interaction is carried out in a user-friendly manner.
BRIEF SUMMARY OF THE INVENTION
[0010] In accordance with one embodiment of the present invention, a method of enabling a first device to join an ad-hoc network previously established by a second device includes, in part, placing the first device in a scanning mode during one of each N beacon transmission periods to scan for beacons transmitted by the second device, and prompting a user of the first device to join the ad-hoc network if the first device intercepts a beacon of the second device during the scanning mode. The first and second devices are previously configured as registrars.
[0011] The method further includes, in part, modifying beacons of the first device to include an attribute associated with the second device if the user responds affirmatively to the option; and attempting to reconfigure the first device as an enrollee if the user responds affirmatively to the option. The method further includes, in part, modifying beacons of the first device if a condition is satisfied.
[0012] In some embodiments, the condition is defined by a comparison of time stamps from ad-hoc beacons associated with the two devices. In other embodiments, the condition is defined by a comparison of media access controller (MAC) addresses of the two devices. In some embodiments, the option is presented via a text displayed on an LCD panel disposed on the first device. In another embodiment, the option is presented via an audible sound played through a speaker disposed on the first device. In some embodiments, the attribute that is included in the modified beacon is the MAC address of the second device. In one embodiment, the first device joins the ad-hoc network previously established by the second device without either of the first and second devices being first powered off.
[0013] In accordance with another embodiment of the present invention, a method of adding a first device to an ad-hoc network previously established by a second device includes, in part, placing the second device in a scanning mode during one of each N beacon transmission periods to scan for beacons transmitted by the first device, intercepting a beacon of the first device during one of the scan periods of the second device; verifying whether the intercepted beacon includes an attribute of the second device; and prompting a user with an option to allow the first device to be added to the ad-hoc network if the intercepted beacon includes the attribute. The first and second devices are previously configured as registrars. The method further includes, in part, performing a handshake if the user responds affirmatively to the option.
[0014] In one embodiment, the option is presented via a text displayed on an LCD panel disposed on the second device. In another embodiment, the option is presented via an audible sound played on a speaker disposed on the second device. In one embodiment, the attribute is the MAC address of the second device. In one embodiment, the beacons of the first device is modified to include the attribute associated with the second device. In one embodiment, the first device joins the ad-hoc network previously established by the second device without either of the first and second devices being first powered off.
[0015] A device in accordance with one embodiment of the present invention is adapted to participate in a wireless ad-hoc network session . The device is initially configured to operate as a registrar and is operative to operate in a scanning mode during one of each N beacon transmission periods to scan for beacons transmitted by a second device. The first device is further operative to prompt a user to join the ad-hoc network of the second device if the first device intercepts a beacon of the second device during the scanning mode.
[0016] In one embodiment, the first device is further operative to modify its beacons to include an attribute associated with the second device if the user responds affirmatively to the option. If the user responds affirmatively to the option, the first device become an enrollee. In one embodiment, the condition is defined by a comparison of time stamps. In another embodiment, the condition is defined by a comparison of media access controller (MAC) addresses. In one embodiment, the beacons of the first device are modified if a condition is satisfied.
[0017] In one embodiment, the first device includes an LCD panel to display the option. In another embodiment, the first device includes a speaker adapted to audibly broadcast the option. In some embodiments, the attribute is the MAC address of the second device. In one embodiment, the first device joins the ad-hoc network previously established by the second device without either of the first and second devices being first powered off.
[0018] A device in accordance with another embodiment of the present invention is adapted to be placed in a scanning mode during one of each N beacon transmission periods to scan and intercept beacons transmitted by a second device. The first device is further adapted to verify whether the intercepted beacon includes an attribute of the first device and to prompt a user with an option to allow the second device to be added to the ad-hoc network previously established by the first device. The first device is further adapted to initiate a handshake if the user responds affirmatively to the option.
[0019] In one embodiment, the first device includes an LCD panel to display the option. In another embodiment, the first device includes a speaker adapted to audibly broadcast the option. In some embodiments, the attribute is the MAC address of the first device. In one embodiment, the beacons of the first device is modified to include the attribute associated with the second device. In one embodiment, the first device joins the ad-hoc network previously established by the second device without either of the first and second devices being first powered off.
[0020] A device in accordance with one embodiment of the present invention includes, in part, means for enabling the device to join an ad-hoc network previously established by a second device, means for placing the first device in a scanning mode during one of each N beacon transmission periods to scan for beacons transmitted by the second device, and means for prompting a user of the first device to join the ad-hoc network if the first device intercepts a beacon of the second device during the scanning mode. The first and second devices are previously configured as registrars.
[0021] The device further includes, in part, means for modifying beacons of the first device to include an attribute associated with the second device if the user responds affirmatively to the option; and means for attempting to reconfigure the first device as an enrollee if the user responds affirmatively to the option. The device further includes, in part, means for modifying its beacons if a condition is satisfied.
[0022] In some embodiments, the condition is defined by a comparison of time stamps associated with the two devices. In other embodiments, the condition is defined by a comparison of media access controller (MAC) addresses of the two devices. In some embodiments, the option is presented via a text displayed on an LCD panel disposed on the first device. In another embodiment, the option is presented via an audible sound played through a speaker disposed on the first device. In some embodiments, the attribute that is included in the modified beacon is the MAC address of the second device. In one embodiment, the first device joins the ad-hoc network previously established by the second device without either of the first and second devices being first powered off.
[0023] A device in accordance with another embodiment of the present invention includes, in part, means for placing the device in a scanning mode during one of each N beacon transmission periods to scan for beacons transmitted by a second device, means for intercepting a beacon of the second device during one of the scan periods of the first device; means for verifying whether the intercepted beacon includes an attribute of the first device; and means for prompting a user with an option to allow the second device to be added to the ad-hoc network of the first device if the intercepted beacon includes the attribute. The first and second devices are previously configured as registrars. The device further includes, in part, means for performing a handshake if the user responds affirmatively to the option.
[0024] In one embodiment, the option is presented via a text displayed on an LCD panel disposed on the second device. In another embodiment, the option is presented via an audible sound played on a speaker disposed on the second device. In one embodiment, the attribute is the MAC address of the second device. In one embodiment, the beacons of the first device is modified to include the attribute associated with the second device. In one embodiment, the first device joins the ad-hoc network previously established by the second device without either of the first and second devices being first powered off.
[0025] A device in accordance with one embodiment of the present invention includes a device having disposed therein a processor and a medium for storing codes for execution by the processor, the medium including code for placing the first device in a scanning mode during one of each N beacon transmission periods to scan for beacons transmitted by the second device, and code for prompting a user of the first device to join the ad-hoc network if the first device intercepts a beacon of the second device during the scanning mode. The first and second devices are previously configured as registrars.
[0026] The medium further includes, in part, code for modifying beacons of the first device to include an attribute associated with the second device if the user responds affirmatively to the option; and code for attempting to reconfigure the first device as an enrollee if the user responds affirmatively to the option. The medium further includes, in part, code for modifying the beacons if a condition is satisfied.
[0027] In some embodiments, the condition is defined by a comparison of time stamps associated with the two devices. In other embodiments, the condition is defined by a comparison of media access controller (MAC) addresses of the two devices. In some embodiments, the option is presented via a text displayed on an LCD panel disposed on the first device. In another embodiment, the option is presented via an audible sound played through a speaker disposed on the first device. In some embodiments, the attribute that is included in the modified beacon is the MAC address of the second device. In one embodiment, the first device joins the ad-hoc network previously established by the second device without either of the first and second devices being first powered off.
[0028] A device in accordance with one embodiment of the present invention includes a device having disposed therein a processor and a medium for storing code for execution by the processor, the medium including code for placing the device in a scanning mode during one of each N beacon transmission periods to scan for beacons transmitted by a second device, code for intercepting a beacon of the second device during one of the scan periods of the first device; code for verifying whether the intercepted beacon includes an attribute of the first device; and code for prompting a user with an option to allow the second device to be added to the ad-hoc network of the first device if the intercepted beacon includes the attribute. The first and second devices are previously configured as registrars. The device further includes, in part, code for performing a handshake if the user responds affirmatively to the option.
[0029] In one embodiment, the option is presented via a text displayed on an LCD panel disposed on the second device. In another embodiment, the option is presented via an audible sound played on a speaker disposed on the second device. In one embodiment, the attribute is the MAC address of the second device. In one embodiment, the beacons of the first device is modified to include the attribute associated with the second device. In one embodiment, the first device joins the ad-hoc network previously established by the second device without either of the first and second devices being first powered off.
BRIEF DESCRIPTION OF THE DRAWINGS
[0030] Figures IA- 1C show various logical components of a multitude of infrastructure wireless networks.
[0031] Figure 2 shows a pair of wireless devices configured to establish a wireless ad-hoc network.
[0032] Figure 3 shows beacon transmission times associated with the devices shown in Figure
2.
[0033] Figure 4 shows a pair of devices adapted to form a network after they have been configured as registrars, in accordance with one exemplary embodiment of the present invention.
[0034] Figure 5 shows beacon transmission times as well scanning periods of the devices shown in Figure 4, in accordance with one exemplary embodiment of the present invention.
[0035] Figure 6 is a flowchart of step carried out to enable a device configured as a registrar to join an ad-hoc network established by another registrar, in accordance with one exemplary embodiment of the present invention. DETAILED DESCRIPTION OF THE INVENTION
[0036] A device previously configured as a registrar and that has established an independent ad-hoc network is automatically discovered by another device also previously configured as a registrar. To form an ad-hoc wireless network between these two devices, each device periodically enters a scanning mode to scan for and intercept beacons transmitted by the other device. Upon such interception, one of the devices becomes an enrollee in accordance with a predefined condition and in response to a user selected option. Subsequently, the enrollee modifies its beacons to include an attribute, such as the MAC address, associated with the other device. After intercepting the modified beacon, the remaining registrar prompts its user to decide whether to allow the enrollee to join the registrar's network. If the user responds affirmatively, a handshake is performed between the two devices and a subsequent attempt is made by the enrollee to join the registrar's network. Although the following description is made with reference to an ad-hoc WSC (WPS) network, it is understood that the present invention applies to any other ad-hoc network, WSC or otherwise.
[0037] Figure 2 shows a pair of devices 40 and 50. Each of these device is assumed to have been previously configured as a conventional registrar and to have established an independent network. Device 40 is shown as having formed network 45, and device 50 is shown as having formed network 55. Assume that their respective users are interested in enabling these two devices to exchange data or otherwise interact with one another. For example, devices 40 and 50 may be digital cameras and their users may be interested in exchanging images, or they may be game consoles and their users may be interested in playing an interactive game. Devices 40 and 50 are typically battery-powered, and therefore it is desirable to control and minimize their battery consumption.
[0038] Because devices 40 and 50 are assumed to have been previously configured as registrars, they do not perform enrollee scans to join each other's networks. Each of devices 40 and 50 may be caused to become an enrollee if is turned off and turned back on, as described in copending related U.S. application number 1 1/800,166, attorney docket number MP1229, filed May 4, 2007, entitled "Ad-Hoc Simple Configuration". Alternatively, each such device may be adapted to present its respective user with an option of selecting between adopting an enrollee or a registrar mode of operation when the two users physically acknowledge each other's presence and seek to form a network. This would require the two users to negotiate and agree on selecting one of the devices as an enrollee and the other one as a registrar. However, a typical user is unaware of what a registrar or an enrollee is, and may not appreciate choosing between these two options. In other words, the process of establishing a network between such devices would require burdensome and unfriendly user intervention and which is not automated.
[0039] Figure 3 shows beacon transmission times of devices 40 and 50. Following every beacon transmission, each of devices 40 and 50 remains active for a time period ΔT to perform a sniff operation, after which the device goes back to a stand-by mode until the next beacon transmission time arrives. As shown in Figure 3, the beacons transmission times (BTT) for devices 40 and 50 are shifted with respect to one another such that, for example, when device 40 is active, device 50 is in a stand-by mode and vice versa.
[0040] To ensure that devices previously configured as registrars can form a network without burdensome user intervention and without being turned off and on, in accordance with one embodiment of the present invention, each of these devices is modified to periodically wake up from the stand-by mode, also referred to as low-power mode, to enter an enrollee scan mode intercept beacons transmitted by other devices. Figure 4 shows a pair of devices, 60 and 80 that have been previously configured as registrars, but are adapted, in accordance with one embodiment of the present invention, to form a network 70 to exchange data or interact, as described further below.
[0041] Referring to Figure 5, device 60 is shown as transmitting beacons at periodic times Ti, T3, T5, T7, T9, Ti2, Ti5, etc, and device 80 is shown as transmitting beacons at periodic times T2, T4, T6, T8, Ti 1, Ti3, etc. It is understood that, for example, time T2 occurs between times Ti and T3, and, for example, time Ti0 occurs between times T9 and Ti i .
[0042] In accordance with the present invention, every N beacon periods, where N is configurable, one of the devices enters an enrollee scan mode to intercept the beacons transmitted by other devices. Assume in the example shown in Figure 5 than N is equal to 3. Assume further that device 60 enters an enrollee scan mode between the times T5 and T7, T12 and Ti5, etc., and device 80 enters an enrollee scan mode between the times T2 and T4, T8 and Tn, etc. Accordingly, between the times T2 and T4, for example, device 80 remains active and does not enter the stand-by mode. Similarly, between the times T5 and T7, for example, device 60 remain active and does not enter the stand-by mode. The period covering two successive beacon transmissions is referred to in the following as scanning period.
[0043] During the scanning period that starts at time T2, device 80 remains active to intercept beacons transmitted by other devices. Assume during scanning period Pi, i.e., between the times T2 and T4, no other Wi-Fi device, such as device 60, is in the vicinity of or can otherwise have its beacons intercepted by device 80. Accordingly, device 80 transmits a beacon at time T4, and shortly thereafter enters the stand-by mode. Similarly, assume during scanning period P2, i.e., between the times T5 and T7, no other Wi-Fi device, such as device 80, is in the vicinity of or can otherwise have its beacons intercepted by device 60. Accordingly, device 60 transmits a beacon at time T7, and shortly thereafter enters the stand-by mode.
[0044] Assume between the times T7 and T8, devices 60 and 80 are brought into proximity of one another such that a beacon transmitted by one of these devices can be intercepted by the other device. At time T8, device 80 wakes up, transmits a beacon and enters a scanning mode for the entire duration of period P3. At time Ti0, device 80 intercepts the beacon transmitted by device 60 at time T9 and determines that device 60 is in its vicinity. This leads to the discovery of device 60 by device 80.
[0045] Once the discovery is successful, one of the devices is selected to become an enrollee and the other device is selected to remain a registrar. Any arbitrary criteria may be used to make this selection. For example, in one embodiment, the device with the earlier time stamp becomes the registrar, while the device with the later time stamp becomes the enrollee. In another embodiment, the device with the larger Media Access Controller (MAC) address becomes the registrar.
[0046] Assume that a predefined condition establishes that the device with the later time stamp is to become an enrollee and the device with the earlier time stamp is to remain a registrar. Assume further that device 60 has an earlier time stamp than device 80. Accordingly, when device 80 intercepts the beacon transmitted by device 60 at time Ti0, the user of device 80 is prompted with an option to decide whether to join device 60's network. This notification may be made via a text displayed on an LCD panel disposed on device 80, or an audible beep played via a speaker disposed on device 80, etc. If the user responds affirmatively to this option, device 80's beacons are modified to include additional information elements. In one embodiment, device 80' s beacons are modified to include device 60' s MAC address. In other embodiments, device 80's beacons may be modified to include any other attribute associated with device 60. The beacon modification is a way of informing device 60 that device 80 is interested in joining the device 60's network.
[0047] At time Ti i device 80 transmits its modified beacon. However, because between the times T9 and Ti2 device 60 is not in a scanning mode, the beacon transmitted at time Ti 1 is not intercepted. Following transmitting its beacon at time T]2, device 60 enters into a scanning mode during period P4. At time TH device 60 intercepts the beacon transmitted by device 80 at time T13. After detecting that the intercepted beacon has device 60's own MAC address, device 60 prompts its user with an option to allow device 80 to joining device 60's network. Such a prompt may be made via a text displayed on an LCD disposed on device 60, or an audible beep played via a speaker disposed on device 80, etc. In other words, a determination by device 60 that the modified beacon transmitted by device 80 includes device 60's MAC address is used, in accordance with one exemplary embodiment, to inform device 60 that device 80 is interested in joining device 60's network.
[0048] If the user of device 60 is interested in allowing device 80 to join its network, the user selects one of the options, subsequent to which a handshake is made. After a successful handshake, the independent networks established previously by devices 60 and 80 is coalesced to from network 70 to which both devices 60 and 80 are wirelessly connected.
[0049] Figure 6 is a flowchart 100 of steps carried out by an enrollee to join a registrar's network. During each of N beacon transmission periods, one of the device enters a scanning mode 102 to intercept beacons transmitted by the other device. If a beacon from the registrar has an earlier timestamp (or higher MAC Address) and a matching criteria is detected 104, the enrollee's user is prompted with an option to decide 106 whether it is interested in joining the registrar's network. If the timestamp or MAC address check fails, the scan results are discarded, in which case, the registrar may attempt to become an enrollee and the enrollee may attempt to become a registrar.
[0050] A number of different criterion may be used to perform the match. For example, a match may occur when a camera from a vendor detects a camera from the same vendor, or detects a print service, etc. The additional criterion may be an additional Information Element in the beacon. If such as an additional Information Element is not detected, the scan results are discarded.
[0051] If the user responds affirmatively to the option, the enrollee beacons are modified 1 10. After the modified beacon of the enrollee is intercepted by the registrar 1 12 while the registrar is in the scanning mode, the registrar's user is presented with an option 1 14 to decide whether he/she is interested in adding the enrollee to the registrar's network. If the user responds affirmatively to this option, a handshake is performed 116 between the two devices and an attempt is made by the enrollee to join the registrar's network 118.
[0052] The above embodiments of the present invention are illustrative and not limiting. Various alternatives and equivalents are possible. Other additions, subtractions or modifications are obvious in view of the present disclosure and are intended to fall within the scope of the appended claims.

Claims

WHAT IS CLAIMED IS:
1. A method of enabling a first device to join an ad-hoc network previously established by a second device, the method comprising: placing the first device in a scanning mode during one of each N beacon transmission periods to scan for beacons transmitted by the second device, said first device being previously configured as a registrar; and prompting a user of the first device to join the ad-hoc network if said first device intercepts a beacon of the second device during the scanning mode.
2. The method of claim 1 further comprising: modifying beacons of the first device to include an attribute associated with the second device if the user responds affirmatively to the option; and attempting to reconfigure the first device as an enrollee if the user responds affirmatively to the option.
3. The method of claim 2 further comprising: modifying the beacons if a condition is satisfied.
4. The method of claim 3 wherein said condition is defined by a comparison of time stamps.
5. The method of claim 3 wherein said condition is defined by a comparison of media access controller (MAC) addresses.
6. The method of claim 3 wherein prompting the user comprises: presenting an option via a text displayed on an LCD panel.
7. The method of claim 3 wherein prompting the user comprises: presenting an option via an audible sound.
8. The method of claim 3 wherein modifying beacons of the first device to include an attribute associated with the second device comprises: modifying beacons of the first device to include the MAC address of the second device.
9. The method of claim 1 further comprising: enabling the first device to join the ad-hoc network previously established by the second device without requiring the first and second devices to be powered off.
10. A method of adding a first device to an ad-hoc network previously established by a second device, said first and second devices being previously configured as registrars, the method comprising: placing the second device in a scanning mode during one of each N beacon transmission periods to scan for beacons transmitted by the first device; intercepting a beacon of the first device during one of the scan periods; verifying whether the intercepted beacon includes an attribute of the second device; and prompting a user to decide whether to allow the first device to be added to the ad- hoc network if the intercepted beacon includes the attribute.
11. The method of claim 10 further comprising: performing a handshake if the user responds affirmatively to the option.
12. The method of claim 10 wherein prompting the user comprises: presenting an option via a text displayed on an LCD panel.
13. The method of claim 10 wherein prompting the user comprises: presenting an option via an audible sound.
14. The method of claim 10 wherein said attribute is the MAC address of the second device.
15. The method of claim 10 further comprising: modifying beacons of the first device to include the attribute associated with the second device.
16. The method of claim 10 further comprising: adding the first device to an ad-hoc network previously established by the second device without requiring the first and second devices to be powered off.
17. A device adapted to participate in a wireless ad-hoc network session, the device being initially configured to operate as a registrar, the device being operative to operate in a scanning mode during one of each N beacon transmission periods to scan for beacons transmitted by another device, said device being further operative to prompt a user to join the ad- hoc network of the other device if said device intercepts a beacon of the other device during the scanning mode.
18. The device of claim 17 wherein said device is further operative to modify its beacons to include an attribute associated with the other device if the user responds affirmatively to the option, said device being configured as an enrollee if the user responds affirmatively to the option.
19. The device of claim 18 wherein said device is further operative to modify the beacons if a condition is satisfied.
20. The device of claim 19 wherein said condition is defined by a comparison of time stamps.
21. The device of claim 19 wherein said condition is defined by a comparison of media access controller (MAC) addresses.
22. The device of claim 18 wherein said device comprises an LCD panel to display the option.
23. The device of claim 18 wherein said device comprises a speaker adapted to audibly broadcast the option.
24. The device of claim 18 wherein said attribute is the MAC address of the other device.
25. The device of claim 17 wherein said device is adapted to participate in the wireless ad-hoc network session without being turned off.
26. A device adapted to be placed in a scanning mode during one of each N beacon transmission periods to scan and intercept a beacon transmitted by anther device, the device further adapted to verify whether the intercepted beacon includes an attribute of the device and to prompt a user to decide whether to allow the other device to be added to the ad-hoc network previously established by the device.
27. The device of claim 26 wherein said device is further adapted to initiate a handshake if the user responds affirmatively to an option to allow the device to be added to the ad-hoc network.
28. The device of claim 26 wherein said device comprises an LCD panel to display the option.
29. The device of claim 26 wherein said device comprises a speaker adapted to audibly broadcast the option.
30. The device of claim 26 wherein said attribute is the MAC address of the device.
31. The device of claim 26 wherein said device is further operative to modify beacons thereof to include the attribute associated with the other device.
32. The device of claim 26 whether said device is further operative to allow the other device to be added to the ad-hoc network without being powered off.
PCT/US2007/080733 2006-10-16 2007-10-08 Automatic ad-hoc network creation and coalescing using wps WO2008048809A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009532521A JP5477951B2 (en) 2006-10-16 2007-10-08 Automatic ad hoc network formation and coalescence using WPS
CN2007800386787A CN101601024B (en) 2006-10-16 2007-10-08 Automatic ad-hoc network creation and coalescing using wps
EP07853857.6A EP2076842B1 (en) 2006-10-16 2007-10-08 Automatic ad-hoc network creation and coalescing using wps

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US82961406P 2006-10-16 2006-10-16
US60/829,614 2006-10-16
US11/867,661 US8732315B2 (en) 2006-10-16 2007-10-04 Automatic ad-hoc network creation and coalescing using WiFi protected setup
US11/867,661 2007-10-04

Publications (2)

Publication Number Publication Date
WO2008048809A2 true WO2008048809A2 (en) 2008-04-24
WO2008048809A3 WO2008048809A3 (en) 2008-11-06

Family

ID=39314728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/080733 WO2008048809A2 (en) 2006-10-16 2007-10-08 Automatic ad-hoc network creation and coalescing using wps

Country Status (6)

Country Link
US (2) US8732315B2 (en)
EP (1) EP2076842B1 (en)
JP (2) JP5477951B2 (en)
CN (2) CN103096426B (en)
TW (1) TWI439099B (en)
WO (1) WO2008048809A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076700A1 (en) 2008-12-30 2010-07-08 Nokia Corporation Ad hoc network initiation
JP2010239357A (en) * 2009-03-31 2010-10-21 Oki Electric Ind Co Ltd Wireless communication apparatus and communication control method
JP2013062843A (en) * 2012-10-31 2013-04-04 Canon Inc Communication device, control method therefor, computer program, and storage medium
WO2013096638A1 (en) * 2011-12-22 2013-06-27 Pink Zulu Labs, Inc. Auto configurable transfer and management system
US8509105B2 (en) 2010-06-23 2013-08-13 Nokia Corporation Method and apparatus for device-to-device network coordination
WO2013122748A1 (en) * 2012-02-16 2013-08-22 Apple Inc. Wireless scan and advertisement in electronic devices background
CN103416086A (en) * 2011-03-08 2013-11-27 高通股份有限公司 Systems and methods for implementing ad hoc wireless networking
JP2016140088A (en) * 2011-03-08 2016-08-04 ソニー株式会社 Wireless communication apparatus, wireless communication method, and wireless communication system
US9813847B2 (en) 2014-06-13 2017-11-07 Panasonic Intellectual Property Management Co., Ltd. Communication system and control apparatus
EP3229423A4 (en) * 2014-12-01 2018-09-05 Xiaomi Inc. Method and device for displaying setting interface of router
US10129740B2 (en) 2011-03-08 2018-11-13 Sony Corporation Establishing a connection based on position
WO2019080312A1 (en) * 2017-10-26 2019-05-02 上海斐讯数据通信技术有限公司 Wps-based quick connection method and wireless device

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8619623B2 (en) 2006-08-08 2013-12-31 Marvell World Trade Ltd. Ad-hoc simple configuration
US8233456B1 (en) 2006-10-16 2012-07-31 Marvell International Ltd. Power save mechanisms for dynamic ad-hoc networks
US8732315B2 (en) 2006-10-16 2014-05-20 Marvell International Ltd. Automatic ad-hoc network creation and coalescing using WiFi protected setup
US9308455B1 (en) 2006-10-25 2016-04-12 Marvell International Ltd. System and method for gaming in an ad-hoc network
JP4929040B2 (en) * 2007-05-10 2012-05-09 キヤノン株式会社 Communication apparatus and communication method
WO2009006585A1 (en) 2007-07-03 2009-01-08 Marvell Semiconductor, Inc. Location aware ad-hoc gaming
JP5270937B2 (en) 2008-03-17 2013-08-21 キヤノン株式会社 COMMUNICATION DEVICE AND ITS CONTROL METHOD
US8489399B2 (en) * 2008-06-23 2013-07-16 John Nicholas and Kristin Gross Trust System and method for verifying origin of input through spoken language analysis
JP2010068021A (en) * 2008-09-08 2010-03-25 Olympus Corp Communication terminal and communication system
TWI376122B (en) * 2008-12-15 2012-11-01 Ind Tech Res Inst Method and system for a new node to join a wireless ad-hoc network
US9301238B2 (en) * 2009-03-06 2016-03-29 Qualcomm Incorporated Methods and apparatus for automated local network formation using alternate connected interfaces
US8842605B2 (en) * 2009-12-10 2014-09-23 Nokia Corporation Network discovery in wireless communication systems
US9204478B2 (en) * 2013-05-10 2015-12-01 Elwha Llc Dynamic point to point mobile network including intermediate user interface aspects system and method
US8661515B2 (en) * 2010-05-10 2014-02-25 Intel Corporation Audible authentication for wireless network enrollment
KR101682385B1 (en) * 2010-05-14 2016-12-05 삼성전자 주식회사 METHOD AND SYSTEM FOR PROVIDING Wi-Fi SERVICE OF Wi-Fi DEVICE
KR101758854B1 (en) 2010-12-03 2017-07-17 에스프린팅솔루션 주식회사 Scanning apparatus, mobile apparatus and scan job performing method thereof
US8879471B2 (en) 2011-10-18 2014-11-04 Nokia Corporation Method, apparatus, and computer program product for filtering list in wireless request
KR101915314B1 (en) 2011-10-25 2018-11-07 삼성전자주식회사 Method and apparatus for wi-fi connecting using wi-fi protected setup in a portable terminal
US8879992B2 (en) * 2011-10-27 2014-11-04 Nokia Corporation Method, apparatus, and computer program product for discovery of wireless networks
WO2013153617A1 (en) 2012-04-10 2013-10-17 クラリオン株式会社 Wireless communication system and terminal device
US9055390B2 (en) * 2012-10-19 2015-06-09 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Apparatus, system, and method for peer group formation for mobile devices by proximity sensing
CN104010297B (en) * 2013-02-25 2018-07-03 华为终端(东莞)有限公司 Wireless terminal configuration method and device and wireless terminal
US9832728B2 (en) 2013-05-10 2017-11-28 Elwha Llc Dynamic point to point mobile network including origination user interface aspects system and method
US9787545B2 (en) 2013-05-10 2017-10-10 Elwha Llc Dynamic point to point mobile network including origination device aspects system and method
US9380467B2 (en) 2013-05-10 2016-06-28 Elwha Llc Dynamic point to point mobile network including intermediate device aspects system and method
US9559766B2 (en) 2013-05-10 2017-01-31 Elwha Llc Dynamic point to point mobile network including intermediate device aspects system and method
US9356681B2 (en) 2013-05-10 2016-05-31 Elwha Llc Dynamic point to point mobile network including destination device aspects system and method
WO2014183057A1 (en) * 2013-05-10 2014-11-13 Elwha Llc Dynamic point to point mobile network including intermediate user interface aspects system and method
US9763166B2 (en) 2013-05-10 2017-09-12 Elwha Llc Dynamic point to point mobile network including communication path monitoring and analysis aspects system and method
US9591692B2 (en) 2013-05-10 2017-03-07 Elwha Llc Dynamic point to point mobile network including destination device aspects system and method
CN103974450B (en) * 2014-03-10 2018-04-06 魅族科技(中国)有限公司 A kind of wireless communications method, relevant device and system
US9510329B2 (en) * 2014-07-25 2016-11-29 Aruba Networks, Inc. Dynamic user-configurable information element
US10863306B2 (en) * 2014-09-29 2020-12-08 Ncr Corporation Auto-configuring radio beacons
US10034286B2 (en) * 2016-09-09 2018-07-24 Alcatel-Lucent Usa Inc. Methods and systems for beam searching
US20190387462A1 (en) * 2016-12-20 2019-12-19 Huawei Technologies Co., Ltd. Method and apparatus for establishing wireless local area network connection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007543A1 (en) 2003-07-18 2005-01-27 Toyota Jidosha Kabushiki Kaisha Friction roller in conveyor
US20050177639A1 (en) 2004-02-06 2005-08-11 Jukka Reunamaki Device discovery and connection establishment for ad hoc networks
US20060221858A1 (en) 2005-04-01 2006-10-05 Microsoft Corporation User experience for collaborative ad-hoc networks

Family Cites Families (188)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959847A (en) 1989-04-05 1990-09-25 Ultratec, Inc. Telecommunications device with automatic code detection and switching
US5488693A (en) 1992-06-24 1996-01-30 At&T Corp. Protocol with control bits and bytes for controlling the order of communications between a master processor and plural slave processors
US5877701A (en) 1995-09-26 1999-03-02 Nec Corporation Radio pager reporting frequency band information
US5850592A (en) 1996-01-11 1998-12-15 Gte Internetworking Incorporated Method for self-organizing mobile wireless station network
US5738583A (en) 1996-02-02 1998-04-14 Motorola, Inc. Interactive wireless gaming system
US6272120B1 (en) 1997-01-28 2001-08-07 Cisco Technology, Inc. Multi-radio bridge
US6704866B1 (en) 1997-07-11 2004-03-09 Cisco Technology, Inc. Compression and encryption protocol for controlling data flow in a network
US6751196B1 (en) 1997-08-27 2004-06-15 Philips Electronics North America Corp. Apparatus and method for peer-to-peer link monitoring of a wireless network with centralized control
US6590928B1 (en) 1997-09-17 2003-07-08 Telefonaktiebolaget Lm Ericsson (Publ) Frequency hopping piconets in an uncoordinated wireless multi-user system
US6309301B1 (en) 1998-08-10 2001-10-30 Namco Ltd. Game communication with synchronization of soundtrack system
US7548787B2 (en) 2005-08-03 2009-06-16 Kamilo Feher Medical diagnostic and communication system
US6921337B1 (en) 1998-09-14 2005-07-26 Vegas Amusement Inc. Video gaming device and communications system
US6315668B1 (en) 1998-09-24 2001-11-13 Midway Games, Inc. System and method for networking video games
US7073129B1 (en) 1998-12-18 2006-07-04 Tangis Corporation Automated selection of appropriate information based on a computer user's context
DE69927243T2 (en) 1999-05-25 2006-06-29 Lucent Technologies Inc. Method and device for telecommunications with internet protocol
US6524189B1 (en) 1999-07-09 2003-02-25 Nokia Corporation Multi-player game system using mobile telephone and game unit
US7236772B1 (en) 1999-07-26 2007-06-26 Agere Systems Inc. Wireless call information transfer
US7260369B2 (en) 2005-08-03 2007-08-21 Kamilo Feher Location finder, tracker, communication and remote control system
FR2798810B1 (en) 1999-09-16 2002-05-31 Cit Alcatel PACKET-BASED TELECOMMUNICATION METHOD AND SYSTEM IN WHICH MULTIPLE COMMUNICATIONS ARE TRANSFERABLE FROM ONE WAY TO ANOTHER
US6554707B1 (en) 1999-09-24 2003-04-29 Nokia Corporation Interactive voice, wireless game system using predictive command input
US6600726B1 (en) 1999-09-29 2003-07-29 Mobilian Corporation Multiple wireless communication protocol methods and apparatuses
US6859460B1 (en) 1999-10-22 2005-02-22 Cisco Technology, Inc. System and method for providing multimedia jitter buffer adjustment for packet-switched networks
US6909705B1 (en) 1999-11-02 2005-06-21 Cello Partnership Integrating wireless local loop networks with cellular networks
US6453181B1 (en) 1999-11-04 2002-09-17 Qualcomm, Incorporated Method and apparatus for compensating for frequency drift in a low frequency sleep clock within a mobile station operating in a slotted paging mode
KR100677078B1 (en) * 1999-11-26 2007-02-01 삼성전자주식회사 Method for operating personal ad-hoc network between bluetooth-devices
US6975613B1 (en) * 1999-12-06 2005-12-13 Telefonaktiebolaget L M Ericsson (Publ) System and method for scheduling communication sessions in an ad-hoc network
GB0004919D0 (en) 2000-03-02 2000-04-19 Koninkl Philips Electronics Nv Ad-hoc radio communication system
US6785892B1 (en) 2000-06-23 2004-08-31 Unisys Communications between partitioned host processors and management processor
US6664891B2 (en) * 2000-06-26 2003-12-16 Koninklijke Philips Electronics N.V. Data delivery through portable devices
US6493759B1 (en) * 2000-07-24 2002-12-10 Bbnt Solutions Llc Cluster head resignation to improve routing in mobile communication systems
JP2004505508A (en) 2000-07-25 2004-02-19 シーメンス アクチエンゲゼルシヤフト Header compression method for network protocols
US20020013784A1 (en) * 2000-07-31 2002-01-31 Swanson Raymond H. Audio data transmission system and method of operation thereof
WO2002017043A2 (en) 2000-08-23 2002-02-28 Novatel Wireless, Inc. Method and apparatus for a distributed data transfer over multiple independent wireless networks
TW512640B (en) 2000-08-25 2002-12-01 Phone Inc W Mobile opinion polling system and method
US20020091790A1 (en) 2000-09-20 2002-07-11 Synchton Incorporated Internet radio and indexing system for managing audio content providers and subscribers
US7574493B2 (en) 2000-11-22 2009-08-11 Cricket Communications, Inc. Method and system for improving the efficiency of state information transfer over a wireless communications network
US6874029B2 (en) 2000-11-22 2005-03-29 Leap Wireless International, Inc. Method and system for mediating interactive services over a wireless communications network
GB2371887A (en) 2001-01-31 2002-08-07 Nokia Mobile Phones Ltd Client-server system for games playing
US6799056B2 (en) 2001-01-31 2004-09-28 Joseph Curley Computer system including multi-channel wireless communication link to a remote station
US7668958B2 (en) 2001-10-18 2010-02-23 Intel Corporation Method for discovery and routing using a priori knowledge in the form of application programme within mobile AD-HOC networks
US7190961B2 (en) 2001-10-18 2007-03-13 Intel Corporation Method for discovery and routing within mobile ad-hoc networks
US6760587B2 (en) 2001-02-23 2004-07-06 Qualcomm Incorporated Forward-link scheduling in a wireless communication system during soft and softer handoff
US7120129B2 (en) 2001-03-13 2006-10-10 Microsoft Corporation System and method for achieving zero-configuration wireless computing and computing device incorporating same
US6707801B2 (en) 2001-03-28 2004-03-16 Qualcomm Incorporated Method and apparatus for data transport in a wireless communication system
US7075910B2 (en) 2001-04-04 2006-07-11 Telcordia Technologies, Inc. Distributed smooth handoff using shadow addresses in IP-based base stations
US7340058B2 (en) 2001-04-09 2008-03-04 Lucent Technologies Inc. Low-overhead secure information processing for mobile gaming and other lightweight device applications
WO2002089935A1 (en) 2001-04-11 2002-11-14 Walker Digital, Llc Method and apparatus for remotely customizing a gaming device
US20020159401A1 (en) * 2001-04-25 2002-10-31 Brightcom Technologies Ltd. Masterless slave / master role switch in a bluetooth piconet
US6795701B1 (en) 2002-05-31 2004-09-21 Transat Technologies, Inc. Adaptable radio link for wireless communication networks
AU2002314824A1 (en) 2001-06-14 2003-01-02 Meshnetworks, Inc. Routing algorithms in a mobile ad-hoc network
US20020199124A1 (en) 2001-06-22 2002-12-26 Adkisson Richard W. System and method for synchronizing data transfer across a clock domain boundary
US6842460B1 (en) 2001-06-27 2005-01-11 Nokia Corporation Ad hoc network discovery menu
US7313628B2 (en) 2001-06-28 2007-12-25 Nokia, Inc. Protocol to determine optimal target access routers for seamless IP-level handover
JP2003037545A (en) 2001-07-23 2003-02-07 Nec Corp Mobile station with short range radio unction and reduction method for its power consumption
US7353416B2 (en) 2001-07-25 2008-04-01 Hewlett-Packard Development Company, L.P. Wireless access point seek mode for wireless access clients
US7072323B2 (en) 2001-08-15 2006-07-04 Meshnetworks, Inc. System and method for performing soft handoff in a wireless data network
US7013391B2 (en) 2001-08-15 2006-03-14 Samsung Electronics Co., Ltd. Apparatus and method for secure distribution of mobile station location information
US7245915B2 (en) 2001-09-27 2007-07-17 Ntt Docomo, Inc. Layer three quality of service aware trigger
US20030084337A1 (en) 2001-10-03 2003-05-01 Simionescu Dan C. Remotely controlled failsafe boot mechanism and manager for a network device
US7120456B1 (en) 2001-11-07 2006-10-10 Bbn Technologies Corp. Wireless terminals with multiple transceivers
US7496065B2 (en) * 2001-11-29 2009-02-24 Telcordia Technologies, Inc. Efficient piconet formation and maintenance in a Bluetooth wireless network
US6932698B2 (en) 2002-01-31 2005-08-23 Peter Sprogis Treasure hunt game utilizing wireless communications devices and location positioning technology
US6879812B2 (en) 2002-02-08 2005-04-12 Networks Associates Technology Inc. Portable computing device and associated method for analyzing a wireless local area network
US7222175B2 (en) * 2002-02-28 2007-05-22 Intel Corporation Dynamically configurable beacon intervals for wireless LAN access points
US7324444B1 (en) 2002-03-05 2008-01-29 The Board Of Trustees Of The Leland Stanford Junior University Adaptive playout scheduling for multimedia communication
JP2003289277A (en) 2002-03-28 2003-10-10 Canon Inc Radio communication apparatus, control method thereof, and program for realizing the control method
US7400722B2 (en) 2002-03-28 2008-07-15 Broadcom Corporation Methods and apparatus for performing hash operations in a cryptography accelerator
US7095732B1 (en) 2002-04-12 2006-08-22 Bbn Technologies Corp. Quality of service based media access control for mobile ad hoc networks
AU2003252901A1 (en) 2002-04-18 2003-12-11 Walker Digital, Llc Method and Apparatus for Authenticating Data Relating to Usage of a Gaming Device
US20030231189A1 (en) 2002-05-31 2003-12-18 Microsoft Corporation Altering a display on a viewing device based upon a user controlled orientation of the viewing device
US20030224855A1 (en) 2002-05-31 2003-12-04 Robert Cunningham Optimizing location-based mobile gaming applications
US8787988B2 (en) 2003-01-29 2014-07-22 Intellectual Ventures I Llc Power management for wireless direct link
US7251235B2 (en) 2002-06-12 2007-07-31 Conexant, Inc. Event-based multichannel direct link
US7408957B2 (en) 2002-06-13 2008-08-05 International Business Machines Corporation Selective header field dispatch in a network processing system
US6879574B2 (en) 2002-06-24 2005-04-12 Nokia Corporation Mobile mesh Ad-Hoc networking
US20040127289A1 (en) 2002-08-08 2004-07-01 Versaly Games, Inc. System and method for combining automatic opponent matching for computer gaming with chat room searchers
US20040139159A1 (en) 2002-08-23 2004-07-15 Aleta Ricciardi System and method for multiplayer mobile games using device surrogates
US7181544B2 (en) 2002-09-03 2007-02-20 Intel Corporation Network protocol engine
US7269141B2 (en) 2002-09-24 2007-09-11 Accton Technology Corporation Duplex aware adaptive playout method and communications device
US7257105B2 (en) * 2002-10-03 2007-08-14 Cisco Technology, Inc. L2 method for a wireless station to locate and associate with a wireless network in communication with a Mobile IP agent
JP3824568B2 (en) * 2002-10-16 2006-09-20 任天堂株式会社 Wireless communication game system
US7472135B2 (en) 2002-10-18 2008-12-30 Nokia Corporation Method and system for recalling details regarding past events
JP2004136009A (en) 2002-10-21 2004-05-13 Nintendo Co Ltd Radio communication game system
JP3830442B2 (en) 2002-10-22 2006-10-04 任天堂株式会社 Wireless communication game system, game device, information storage medium, and program
US20040082383A1 (en) 2002-10-24 2004-04-29 Motorola, Inc Methodology and wireless device for interactive gaming
US20040081110A1 (en) 2002-10-29 2004-04-29 Nokia Corporation System and method for downloading data to a limited device
US7231215B2 (en) 2002-11-07 2007-06-12 Infineon Technologies Wireless Solutions Sweden Ab Method and a central control unit for channel switching in a packet-based wireless communication network
JP3721160B2 (en) 2002-11-29 2005-11-30 Necインフロンティア株式会社 Wireless LAN system, communication terminal, LAN control device, and QoS control method
EP1569731A1 (en) 2002-12-10 2005-09-07 Nokia Corporation Method and device for continuing an electronic multi-player game, in case of an absence of a player of said game
KR100510126B1 (en) * 2002-12-23 2005-08-25 삼성전자주식회사 A handover method and mobile node handover device in wireless LAN
EP2894930B1 (en) * 2003-01-07 2018-03-14 Sony Corporation Wireless communication apparatus, wireless communication system, and wireless communication method
US6940832B2 (en) 2003-01-17 2005-09-06 The Research Foundation Of The City University Of New York Routing method for mobile infrastructureless network
WO2004077762A1 (en) 2003-02-27 2004-09-10 Koninklijke Philips Electronics N.V. Power management in an ieee 802.11 ibss wlan using an adaptive atim window
US7158798B2 (en) 2003-02-28 2007-01-02 Lucent Technologies Inc. Location-based ad-hoc game services
US7342896B2 (en) 2003-03-03 2008-03-11 Sharp Laboratories Of America, Inc. Centralized network organization and topology discover in Ad-Hoc network with central controller
US20050032577A1 (en) 2003-03-17 2005-02-10 Blackburn Christopher W. Message director service in a service-oriented gaming network environment
JP2004289226A (en) 2003-03-19 2004-10-14 Nec Corp Mobile information terminal and hand-over solving method
US7660578B2 (en) 2003-05-02 2010-02-09 Nokia Corporation Method for saving power in a wireless terminal and a terminal
US7452278B2 (en) 2003-05-09 2008-11-18 Microsoft Corporation Web access to secure data
US7097562B2 (en) 2003-06-03 2006-08-29 Wms Gaming Inc. Peer-to-peer distributed gaming application network
US7414982B2 (en) * 2003-06-24 2008-08-19 Raytheon Company Distributed dynamic channel selection in a communication network
FR2857538B1 (en) 2003-07-08 2006-10-06 At & T Corp SYSTEM AND METHOD FOR PACKET HEADER COMPRESSION BASED ON THE DYNAMIC CREATION OF A TEMPLATE
WO2005026870A2 (en) 2003-09-16 2005-03-24 Yakir Terebilo Massive role-playing games or other multiplayer games system and method using cellular phone or device
US20050073980A1 (en) 2003-09-17 2005-04-07 Trapeze Networks, Inc. Wireless LAN management
US7457271B2 (en) 2003-09-19 2008-11-25 Marvell International Ltd. Wireless local area network ad-hoc mode for reducing power consumption
JP4466296B2 (en) * 2003-10-17 2010-05-26 パナソニック株式会社 HANDOVER METHOD AND MOBILE COMMUNICATION SYSTEM
JP4396416B2 (en) * 2003-10-24 2010-01-13 ソニー株式会社 Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
JP2005142792A (en) 2003-11-06 2005-06-02 Sanyo Electric Co Ltd Connection information setting method and wireless communication terminal
US7639642B2 (en) 2003-11-07 2009-12-29 Hewlett-Packard Development Company, L.P. Wireless network monitoring methods, configuration devices, communications systems, and articles of manufacture
US8064594B2 (en) * 2003-11-13 2011-11-22 Thomson Licensing Integrated cellular/PCS-POTS communication system
WO2005053243A2 (en) 2003-11-19 2005-06-09 Honeywell International Inc. Priority based arbitration for tdma schedule enforcement in a multi-channel system in star configuration
TWI227978B (en) 2003-12-05 2005-02-11 Kye Systems Corp Transmission method of dual mode coexisted wireless local area network
JP4266165B2 (en) 2003-12-19 2009-05-20 株式会社東芝 Communication device and communication control program
US7257731B2 (en) * 2003-12-23 2007-08-14 Nokia Inc. System and method for managing protocol network failures in a cluster system
EP1639753A4 (en) 2004-01-20 2006-07-05 Lg Electronics Inc Mobile ad hoc network system and operating method thereof
SE0400140D0 (en) 2004-01-23 2004-01-23 Optimobile Ab Handover for a portable communication device between wireless local and wide area networks
JP4672674B2 (en) 2004-02-06 2011-04-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Beacon protocol for ad hoc networks
US7545784B2 (en) 2004-02-11 2009-06-09 Yahoo! Inc. System and method for wireless communication between previously known and unknown users
US7985138B2 (en) 2004-02-17 2011-07-26 International Business Machines Corporation SIP based VoIP multiplayer network games
EP1720362A4 (en) 2004-02-23 2012-07-11 Nec Corp Mobile device and radio interface arrangement method
JP4464707B2 (en) * 2004-02-24 2010-05-19 パナソニック株式会社 Communication device
US20070060358A1 (en) 2005-08-10 2007-03-15 Amaitis Lee M System and method for wireless gaming with location determination
US7637810B2 (en) 2005-08-09 2009-12-29 Cfph, Llc System and method for wireless gaming system with alerts
US7347781B2 (en) 2004-03-03 2008-03-25 Motorola, Inc. Method and system for reality gaming on wireless devices
US20060166740A1 (en) 2004-03-08 2006-07-27 Joaquin Sufuentes Method and system for identifying, matching and transacting information among portable devices within radio frequency proximity
JP4342356B2 (en) 2004-03-22 2009-10-14 任天堂株式会社 GAME SYSTEM, GAME DEVICE, AND GAME PROGRAM
US7440430B1 (en) 2004-03-30 2008-10-21 Cisco Technology, Inc. Jitter buffer management for mobile communication handoffs
US8281030B2 (en) 2004-04-07 2012-10-02 Hand Held Products, Inc. HTTP enabled computer peripheral
US20050268151A1 (en) 2004-04-28 2005-12-01 Nokia, Inc. System and method for maximizing connectivity during network failures in a cluster system
US20050250497A1 (en) 2004-05-05 2005-11-10 Amitava Ghosh Acknowledgement method for ACK/NACK signaling to facilitate UE uplink data transfer
JP4033302B2 (en) 2004-05-07 2008-01-16 株式会社ソニー・コンピュータエンタテインメント Wireless communication terminal device, wireless interface device, and wireless network participation method
US8538437B2 (en) 2004-05-14 2013-09-17 Telefonaktiebolaget L M Ericsson (Publ) Method and devices for duplicated packets identification during handover
ATE415041T1 (en) 2004-06-24 2008-12-15 Telecom Italia Spa METHOD AND SYSTEM FOR REGULATING ACCESS TO COMMUNICATION NETWORKS, THEREOF NETWORK AND COMPUTER PROGRAM THEREOF
US7505443B2 (en) 2004-06-24 2009-03-17 Kapsch Trafficcom Inc. System and method for broadcasting application-specific information in wireless local area networks
JP4421955B2 (en) 2004-06-24 2010-02-24 Okiセミコンダクタ株式会社 Wireless device
US7509131B2 (en) 2004-06-29 2009-03-24 Microsoft Corporation Proximity detection using wireless signal strengths
US7505795B1 (en) 2004-07-07 2009-03-17 Advanced Micro Devices, Inc. Power save management with customized range for user configuration and tuning value based upon recent usage
EP2081162A3 (en) 2004-07-09 2009-07-29 Jetbet OY Method for gaming and gaming system
US8926437B2 (en) 2004-07-10 2015-01-06 Nokia Corporation Device and system for playing a game and a method for controlling a game
US20060013160A1 (en) 2004-07-19 2006-01-19 Haartsen Jacobus C Peer connectivity in ad-hoc communications systems
JP4007982B2 (en) * 2004-07-30 2007-11-14 株式会社ソニー・コンピュータエンタテインメント Communication terminal device, method for establishing communication, and game device
TWI243983B (en) 2004-08-03 2005-11-21 Via Tech Inc System and method of power management
US7602748B2 (en) * 2004-08-13 2009-10-13 Verizon Business Global Llc Fixed-mobile communications with mid-session mode switching
US8589687B2 (en) 2004-08-18 2013-11-19 Broadcom Corporation Architecture for supporting secure communication network setup in a wireless local area network (WLAN)
US7987499B2 (en) * 2004-08-18 2011-07-26 Broadcom Corporation Method and system for exchanging setup configuration protocol information in beacon frames in a WLAN
CN101048813B (en) 2004-08-30 2012-08-29 高通股份有限公司 Adaptive de-jitter buffer for voice IP transmission
JP4456966B2 (en) 2004-09-17 2010-04-28 富士通株式会社 Wireless terminal
JP4517814B2 (en) * 2004-10-20 2010-08-04 ソニー株式会社 COMMUNICATION SYSTEM, COMMUNICATION DEVICE, AND COMMUNICATION METHOD
US20060095291A1 (en) 2004-11-02 2006-05-04 Global Direct Management Corp. System and method for authenticating users for secure mobile electronic transactions
US7435179B1 (en) 2004-11-15 2008-10-14 Sprint Spectrum L.P. Location-based authorization of gaming action in wireless communication gaming devices
JP3888558B2 (en) 2004-11-18 2007-03-07 任天堂株式会社 Wireless network system and wireless communication program
JP2006148488A (en) * 2004-11-18 2006-06-08 Canon Inc Setting method for radio communication network and for radio communication apparatus, and radio communication apparatus
WO2006064509A2 (en) 2004-12-17 2006-06-22 Eliezer Sheffer Security system for mobile vehicles, trucks and shipping containers
US20060135259A1 (en) 2004-12-17 2006-06-22 Nokia Corporation System, game server, terminal, and method for game event notification in a multiplayer game
WO2006071741A2 (en) 2004-12-23 2006-07-06 Conexant Systems, Inc. Systems and methods for the connection and remote configuration of wireless clients
CN100477851C (en) 2005-01-05 2009-04-08 国际商业机器公司 Method and system for carrying out switching between two communication modes of WLAN
US7802297B2 (en) 2005-02-07 2010-09-21 Broadcom Corporation Keyboard with built in display for user authentication
JP4398886B2 (en) 2005-03-07 2010-01-13 ソニー株式会社 COMMUNICATION TERMINAL DEVICE, COMMUNICATION SYSTEM, COMMUNICATION METHOD, AND PROGRAM
US7113788B1 (en) 2005-03-08 2006-09-26 Motorola, Inc. Method and apparatus for network formation
CN1842000A (en) 2005-03-29 2006-10-04 华为技术有限公司 Method for realizing access authentication of WLAN
US20060221856A1 (en) 2005-03-29 2006-10-05 Nokia Corporation System and method for managing master-slave relationships within a network
US7616588B2 (en) * 2005-03-31 2009-11-10 Microsoft Corporation Simplified creation and termination of an ad hoc wireless network with internet connection sharing
US20070190494A1 (en) 2005-04-04 2007-08-16 Outland Research, Llc Multiplayer gaming using gps-enabled portable gaming devices
JP4250611B2 (en) 2005-04-27 2009-04-08 キヤノン株式会社 Communication device, communication parameter setting method, and communication method
US20060259632A1 (en) 2005-05-13 2006-11-16 Yahoo! Inc. Redirection and invitation for accessing an online service
JP4455418B2 (en) 2005-06-13 2010-04-21 キヤノン株式会社 Communication parameter setting method and communication apparatus
JP4502393B2 (en) 2005-06-13 2010-07-14 キヤノン株式会社 Communication parameter sharing method and communication apparatus
US8241129B2 (en) 2005-06-20 2012-08-14 Microsoft Corporation Setting up on-line game sessions out of a game context
US7280810B2 (en) 2005-08-03 2007-10-09 Kamilo Feher Multimode communication system
US8150416B2 (en) * 2005-08-08 2012-04-03 Jambo Networks, Inc. System and method for providing communication services to mobile device users incorporating proximity determination
US9031071B2 (en) 2005-08-26 2015-05-12 Alcatel Lucent Header elimination for real time internet applications
US7272129B2 (en) * 2005-10-13 2007-09-18 Motorola, Inc. Method and apparatus for synchronizing a node within an ad-hoc communication system
US8180363B2 (en) 2005-11-15 2012-05-15 Sony Computer Entertainment Inc. Communication apparatus preventing communication interference
US8559350B2 (en) * 2005-12-20 2013-10-15 Microsoft Corporation Mechanism to convey discovery information in a wireless network
US20070147317A1 (en) * 2005-12-23 2007-06-28 Motorola, Inc. Method and system for providing differentiated network service in WLAN
KR100739183B1 (en) 2005-12-30 2007-07-13 엘지전자 주식회사 Mobile communications terminal and method for reducing power consumption of a first communications module according to the activation of a second communications module
US7747269B2 (en) 2006-02-27 2010-06-29 Qualcomm Incorporated System and method for providing communication resources to wireless dispatch priority users
US20070245881A1 (en) 2006-04-04 2007-10-25 Eran Egozy Method and apparatus for providing a simulated band experience including online interaction
US9338028B2 (en) 2006-06-19 2016-05-10 Nokia Technologies Oy Utilizing information of a local network for determining presence state
US20080019522A1 (en) 2006-06-21 2008-01-24 Motorola, Inc. Method For Managing A Communication Session in a Communication Network
US8619623B2 (en) 2006-08-08 2013-12-31 Marvell World Trade Ltd. Ad-hoc simple configuration
US8732315B2 (en) 2006-10-16 2014-05-20 Marvell International Ltd. Automatic ad-hoc network creation and coalescing using WiFi protected setup
JP5255196B2 (en) 2006-10-19 2013-08-07 任天堂株式会社 Game machine, wireless module, game system, and game processing method
US8616976B2 (en) 2006-11-07 2013-12-31 Core Wireless Licensing S.A.R.L. Gaming via peer-to-peer networks
US8333641B2 (en) 2006-12-14 2012-12-18 Sullivan C Bart Wireless video game system and method
US20080220878A1 (en) 2007-02-23 2008-09-11 Oliver Michaelis Method and Apparatus to Create or Join Gaming Sessions Based on Proximity
WO2009006585A1 (en) 2007-07-03 2009-01-08 Marvell Semiconductor, Inc. Location aware ad-hoc gaming
US8099497B2 (en) 2008-02-19 2012-01-17 Netapp, Inc. Utilizing removable virtual volumes for sharing data on a storage area network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007543A1 (en) 2003-07-18 2005-01-27 Toyota Jidosha Kabushiki Kaisha Friction roller in conveyor
US20050177639A1 (en) 2004-02-06 2005-08-11 Jukka Reunamaki Device discovery and connection establishment for ad hoc networks
US20060221858A1 (en) 2005-04-01 2006-10-05 Microsoft Corporation User experience for collaborative ad-hoc networks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2076842A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2371178A4 (en) * 2008-12-30 2014-08-06 Nokia Corp Ad hoc network initiation
JP2012514369A (en) * 2008-12-30 2012-06-21 ノキア コーポレイション Ad hoc network initiation method and apparatus
WO2010076700A1 (en) 2008-12-30 2010-07-08 Nokia Corporation Ad hoc network initiation
JP2010239357A (en) * 2009-03-31 2010-10-21 Oki Electric Ind Co Ltd Wireless communication apparatus and communication control method
US8509105B2 (en) 2010-06-23 2013-08-13 Nokia Corporation Method and apparatus for device-to-device network coordination
US10129740B2 (en) 2011-03-08 2018-11-13 Sony Corporation Establishing a connection based on position
JP2016140088A (en) * 2011-03-08 2016-08-04 ソニー株式会社 Wireless communication apparatus, wireless communication method, and wireless communication system
CN103416086A (en) * 2011-03-08 2013-11-27 高通股份有限公司 Systems and methods for implementing ad hoc wireless networking
WO2013096638A1 (en) * 2011-12-22 2013-06-27 Pink Zulu Labs, Inc. Auto configurable transfer and management system
US8864019B2 (en) 2011-12-22 2014-10-21 Pink Zulu Labs, Inc. Auto configurable transfer and management system
WO2013122748A1 (en) * 2012-02-16 2013-08-22 Apple Inc. Wireless scan and advertisement in electronic devices background
US9491607B2 (en) 2012-02-16 2016-11-08 Apple Inc. Wireless scan and advertisement in electronic devices
JP2013062843A (en) * 2012-10-31 2013-04-04 Canon Inc Communication device, control method therefor, computer program, and storage medium
US9813847B2 (en) 2014-06-13 2017-11-07 Panasonic Intellectual Property Management Co., Ltd. Communication system and control apparatus
EP3229423A4 (en) * 2014-12-01 2018-09-05 Xiaomi Inc. Method and device for displaying setting interface of router
WO2019080312A1 (en) * 2017-10-26 2019-05-02 上海斐讯数据通信技术有限公司 Wps-based quick connection method and wireless device

Also Published As

Publication number Publication date
CN103096426A (en) 2013-05-08
JP2010507282A (en) 2010-03-04
JP2014075830A (en) 2014-04-24
EP2076842B1 (en) 2018-05-16
US20080172491A1 (en) 2008-07-17
US20140258550A1 (en) 2014-09-11
JP5477951B2 (en) 2014-04-23
US9444874B2 (en) 2016-09-13
TW200917773A (en) 2009-04-16
JP5614564B2 (en) 2014-10-29
US8732315B2 (en) 2014-05-20
CN101601024B (en) 2013-02-13
CN103096426B (en) 2016-01-20
TWI439099B (en) 2014-05-21
CN101601024A (en) 2009-12-09
EP2076842A2 (en) 2009-07-08
WO2008048809A3 (en) 2008-11-06
EP2076842A4 (en) 2014-01-01

Similar Documents

Publication Publication Date Title
US9444874B2 (en) Automatic Ad-Hoc network creation and coalescing using WPS
US10966268B2 (en) Method for using legacy Wi-Fi and Wi-Fi P2P simultaneously
EP2064829B1 (en) Establishment of ad-hoc networks between multiple devices
US9998880B2 (en) Method and apparatus for forming Wi-Fi P2P group using Wi-Fi direct
KR101481873B1 (en) Methods and apparatus for solicited activation for protected wireless networking
EP2050010B1 (en) Ad-hoc simple configuration
JP5247694B2 (en) Method and apparatus for wireless network access monitoring
US8830866B2 (en) Methods and apparatus for solicited activation for protected wireless networking
RU2513677C1 (en) Communication device, communication method therefor and computer-readable data storage
US8806023B2 (en) Auto-connect in a peer-to-peer network
US8892722B1 (en) Peer-to-peer discovery systems and methods
US20130170482A1 (en) Wi-fi direct connection method
KR102210823B1 (en) Method and apparatus of communication for smart home devices
KR101587003B1 (en) Apparatus and method for determining validity of wifi connection in wireless communication system
US8081613B2 (en) Wireless communication system and wireless communication apparatus and control method thereof
JP2010251895A (en) Wireless communication terminal and wireless network information notification method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780038678.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07853857

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2009532521

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007853857

Country of ref document: EP