WO2008092391A1 - Procédé, système et entité de localisation - Google Patents

Procédé, système et entité de localisation Download PDF

Info

Publication number
WO2008092391A1
WO2008092391A1 PCT/CN2008/070019 CN2008070019W WO2008092391A1 WO 2008092391 A1 WO2008092391 A1 WO 2008092391A1 CN 2008070019 W CN2008070019 W CN 2008070019W WO 2008092391 A1 WO2008092391 A1 WO 2008092391A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
entity
information
base station
data measurement
Prior art date
Application number
PCT/CN2008/070019
Other languages
English (en)
French (fr)
Inventor
Yong Xie
Wenliang Liang
Hong Li
Jianyong Li
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2008092391A1 publication Critical patent/WO2008092391A1/zh
Priority to US12/508,658 priority Critical patent/US20090285162A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present invention relates to positioning techniques, and more particularly to a method, system and entity for implementing positioning in a global interworking network for microwave access.
  • WiMAX Worldwide Interoperability for Microwave Access
  • IEEE 802.16 d/e The IEEE 802.16d (802.16-2004) standard is mainly used for non-line-of-sight point-to-multipoint technology in metropolitan area networks. Its standard operating frequency band is 2GHz to 11GHz, which is an authorized and unlicensed hybrid frequency band. To prevent multipath fading, the transmission rate can approach 75 Mbps in the case of optimal channel fading, and the technology supporting simple mobile communication will be added to IEEE 802.16 e currently under discussion.
  • FIG 1 is a schematic diagram of the structure of a WiMAX network.
  • the network is mainly composed of a mobile terminal (MS/SS), an access service network (ASN), and a connection service network (CSN).
  • the ASN includes a base station (BS) and an access service network gateway (ASN-GW);
  • the CSN includes a prepaid server (PPS) and a logical entity such as an authentication, authorization, and accounting server (AAA Server).
  • the MS/SS is the WiMAX terminal, which is responsible for connecting users to the WiMAX network.
  • ASN a collection of network functions that can provide wireless access services for WiMAX terminals, mainly includes the following aspects: Ensuring the establishment of Layer 2 connections between WiMAX terminals and WiMAX base stations, radio resource management, network discovery, and WiMAX user network services.
  • the ASN includes a BS and an ASN-GW, where the BS is mainly used to provide an L2 connection with the MS/SS and implements radio resource management; the ASN-GW is mainly used to provide a client for authentication, authorization, and charging of the MS/SS, MS/SS provides L3 information delay (Relay), such as IP address allocation and ASN incision.
  • Relay L3 information delay
  • CSN used to assign IP addresses, provide Internet access, and act as authentication for WiMAX user sessions
  • Authorized charging proxy server or authentication and authorization accounting server, policy and access control based on user subscription data support for establishing tunnel between ASN and CSN, support generation of WiMAX subscriber bills, and settlement of WiMAX services across carriers, supporting CSN
  • the establishment of roaming tunnels support mobility between ASNs, support multiple WiMAX services, such as location-based services (LBS), end-to-end services, multimedia broadcasts, and multicast services.
  • LBS location-based services
  • end-to-end services multimedia broadcasts, and multicast services.
  • the LBS refers to a value-added service that provides location services for users by using mobile networks to obtain location information of mobile terminal users, such as latitude and longitude coordinates, and with the support of electronic maps.
  • various mobile terminals such as mobile phones, have become an indispensable part of people's lives, and accordingly, the importance of LBS has gradually become prominent.
  • After the user opens the LBS they can easily know where they are, and can query the various places in the vicinity through the mobile terminal, such as: Where am I, where is the nearest hospital, where are the banks around me, from Here is how to go to a certain place, where is my good friend?
  • LBS can also be used for emergency assistance, elderly tracking and fleet management.
  • the role of LBS is that it can send the right location information to the right person at the right time and in the right place.
  • the WiMAX network which is a mobile broadband metropolitan area network technology, should also provide corresponding support for users in positioning technology. Since it is fixed, it will involve the accuracy of positioning, that is, the quality of service (QoS) of the location service, including the following aspects:
  • Horizontal accuracy Hor izonta l Accuracy , generally using latitude and longitude and corresponding error representation; vertical accuracy (Ver t ica l Accuracy ), expressed in height, divided into absolute height and relative height;
  • Vel loc i ty and Di rect ion used to indicate the moving speed and direction of the target being positioned
  • Response Time is used to specify the time for the system to locate the response.
  • the positioning method of a general wireless cellular system is divided into a positioning method based on an external signal and a positioning method based on a signal of the wireless system itself: such as a Global Positioning System (GPS), It belongs to the positioning method based on external signals.
  • GPS Global Positioning System
  • the network can assist in transmitting some GPS satellite information to speed up the positioning speed and improve the positioning accuracy.
  • the base station identification code (BSID) / wireless signal loopback delay (RTD) positioning method It belongs to the method of positioning based on the signal of the wireless system itself.
  • BSID base station identification code
  • RTD wireless signal loopback delay
  • the main purpose of the embodiments of the present invention is to provide a method for implementing positioning, which can provide positioning services for users in a WiMAX network.
  • Another object of embodiments of the present invention is to provide a system for implementing positioning that can provide location services for users in a WiMAX network.
  • a third object of embodiments of the present invention is to provide a positioning data measurement entity capable of providing location services for users in a WiMAX network.
  • a fourth object of the embodiments of the present invention is to provide a positioning control function entity capable of providing location services for users in a WiMAX network.
  • a fifth object of embodiments of the present invention is to provide a computing entity capable of providing location services for users in a WiMAX network.
  • a method of implementing positioning comprising the following steps:
  • the positioning control function entity initiates a positioning request, obtains a positioning data measurement result, and sends the positioning data measurement result to an entity having a positioning information calculation function;
  • the entity having the positioning information calculation function calculates the positioning information according to the positioning data measurement result.
  • a system for implementing positioning comprising a positioning control function entity, a positioning data measuring entity, and a computing entity;
  • the positioning control function entity is configured to send positioning measurement information to the positioning data measurement entity
  • the positioning data measurement entity is configured to receive a positioning request from the positioning control function entity, perform positioning data measurement according to the positioning request, and send the obtained positioning data measurement result to the computing entity;
  • the computing entity is configured to receive a positioning data measurement result from the positioning data measurement entity, calculate positioning information according to the positioning data measurement result, and send the positioning information to the positioning control function entity.
  • a positioning data measuring entity is configured to receive a positioning request from a positioning control function entity, perform positioning data measurement according to the positioning request, and send the obtained positioning data measurement result to the computing entity.
  • a positioning control function entity configured to send positioning measurement information to a positioning data measurement entity, receive positioning information from a computing entity, and output the positioning information;
  • the positioning control function entity is configured to send the positioning measurement information to the positioning data measurement entity, calculate the positioning information according to the positioning data measurement result returned by the positioning data measurement entity, and output the positioning information.
  • a computing entity configured to receive positioning data measurement results from the positioning data measurement entity, calculate positioning information according to the positioning data measurement result, and send the positioning information to the positioning control function entity.
  • a positioning mechanism is introduced in the WiMAX network, so that the WIMAX terminal performs corresponding positioning data measurement according to the positioning request from the serving access service network gateway (Serving ASN-GW), and performs the corresponding positioning data to the network.
  • the entity with the positioning information calculation function returns the positioning data measurement result, and the entity with the positioning information calculation function can obtain the position information of the WIMAX terminal by calculating the positioning data measurement result, and the method is simple and responsive, and ensures the same. The accuracy and accuracy of positioning.
  • FIG. 1 is a schematic structural diagram of a WiMAX network in the prior art
  • FIG. 2 is a general flowchart of a method for implementing positioning according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of positioning a WIMAX terminal position by using multiple BSIDs in a method for implementing positioning according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of positioning a WIMAX terminal position by using multiple BSIDs in a method for implementing positioning according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of positioning a WIMAX terminal by RTD of multiple BSs according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a first preferred embodiment of a method for implementing positioning according to an embodiment of the present invention
  • FIG. 7 is a flowchart of a second preferred embodiment of a method for implementing positioning according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a first preferred embodiment of a system for implementing positioning according to an embodiment of the present invention
  • FIG. 10 is a schematic diagram of an embodiment of the present invention
  • the positioning control function entity initiates a positioning request, obtains a positioning data measurement result, and sends the positioning data measurement result to an entity having a positioning information calculation function;
  • the entity with the positioning information calculation function calculates positioning information according to the positioning data measurement result.
  • the process of the location control function entity initiating a location request may include: the service access service network gateway sends the location measurement information to the microwave access global interworking network terminal.
  • serving access service network gateway serving base station sends the positioning measurement information, and then the serving base station sends the positioning measurement information to the microwave access global interworking network terminal.
  • the step of obtaining the measurement result of the positioning data that is, the process of performing positioning data measurement for the WIMAX terminal, will be specifically described in the following embodiments. The following describes the first in conjunction with the corresponding drawings. The specific implementation process of the present invention.
  • FIG. 2 is a flow chart of a method according to the present invention. As shown in FIG. 2, the method includes the following steps:
  • Step 201 The positioning control function entity sends a positioning request to the WiMAX terminal.
  • the positioning request indicates the data that needs to be measured by the positioning service.
  • the data should include but not be limited to the following: Wireless Loopback Delay RTD, Relative Delay RD, Serving BSID, Neighbor BSID, CINR (Carrier to Interference Ratio), RSS I (received signal strength indication), neighbor BS radio signal measurement results, etc.
  • CINR Carrier to Interference Ratio
  • RSSI Receiveived Signal Strength Indication
  • the method for the positioning control function entity to send the positioning measurement information to the WIMAX terminal may be:
  • the positioning measurement information is sent by the Serving ASN-GW to the WIMAX terminal;
  • the Serving ASN-GW sends positioning measurement information to the S-BS (serving base station), and the S-BS sends the positioning measurement information to the WIMAX terminal.
  • the positioning control function entity sends a positioning request to the Serving ASN-GW, and the Serving ASN-GW sends the positioning measurement information to the WIMAX terminal.
  • the positioning control function entity sends a positioning request to the Serving ASN-GW, the Serving ASN-GW sends the positioning measurement information to the S-BS (the serving base station), and the S-BS sends the positioning measurement information to the WIMAX terminal.
  • Step 202 The WIMAX terminal performs positioning data measurement, and sends the positioning data measurement result to the entity having the positioning information calculation function.
  • the WIMAX terminal performs different methods for positioning data measurement, including the following three cases:
  • the WIMAX terminal measures the signal strength of the N-BS (neighborhood base station) if the signal strength reaches the preset
  • the predetermined threshold is used to send back the BSID of the N-BS to the Serving ASN-GW.
  • the BS ID is the positioning data measurement result, and the threshold may be a preset empirical value.
  • FIG. 3 is a schematic diagram of locating the location of the WIMAX terminal by using multiple BSIDs. As shown in FIG. 3, where BS1 is S-BS, BS2 and BS3 are two N-BSs, the intersection of the three positioning areas is WIMAX. The location area of the terminal.
  • CINR Carrier to Interference Ratio
  • RSSI Received Signal Strength Indication
  • the WIMAX terminal scans the S-BS and the N-BS to obtain the RTD value between the WIMAX terminal and the S-BS and the N-BS.
  • the RTD value is the measurement result of the positioning data.
  • the RTD indicates the time it takes for the signal to travel back and forth between the WIMAX terminal and the BS. It can be measured by the WIMAX terminal. It is performed during the synchronization of the BS and the WIMAX terminal. The measurement result can be scanned by the WIMAX terminal.
  • MOB-SCN-REP is given to BS.
  • the influence of the length of the BS feeder is taken into account; at the same time, the WIMAX terminal and the BS perform certain processing on the signal when transmitting and receiving signals, such as modulation and demodulation of the signal, etc. It takes a certain amount of time. During this period, it can be measured on the WIMAX terminal and the BS side respectively, or compensated by prior knowledge to minimize the measurement error.
  • the specific implementation is as follows:
  • TOA ⁇ RTD - T a - T MS - T BS
  • the multiple BSs in the neighboring area can be referenced to measure the corresponding RTDs, and then the WIMAX terminals are located through the intersection positions of the N-BS measurement areas.
  • 4 is a schematic diagram of positioning a WIMAX terminal through an RTD of a plurality of BSs. As shown in FIG.
  • BS1 is an S-BS
  • BS2 and BS3 are N-BSs
  • each BS is centered on itself
  • the corresponding RTD is The radii form a positioning area
  • the intersection of the three positioning areas is the WIMAX terminal positioning position.
  • the RTD between the N-BS and the WIMAX terminal can be obtained by calculating the RD of the N-BS relative to the S-BS, and the RD is included in the MOB-SCN-REP message:
  • the resulting intersection may not be a point, but an area.
  • a suitable one may be used.
  • the area is the result of the positioning of the WIMAX terminal.
  • CINR Carrier to Interference Ratio
  • RSSI Received Signal Strength Indication
  • the WIMAX terminal scans the S-BS and two or more N-BSs to obtain the downlink signal transmission time difference (RD) value between the S-BS and the N-BS.
  • RD downlink signal transmission time difference
  • the WIMAX terminal further The S-BS and two or more N-BSs may be further scanned to obtain the RTD value between the WIMAX terminal and the S-BS and the N-BS, and the RD and RTD values are the positioning data measurement results.
  • the principle of hyperbolic positioning is: Select two BSs in the system, the distance between the WIMAX terminal and the two BSs A hyperbola at each point where the dispersion is a certain value, and a hyperbola is formed by the same method. The intersection of the two hyperbolas is the positioning position.
  • Figure 5 is a schematic diagram of positioning the WIMAX terminal position by hyperbola. As shown in Figure 5, two hyperbolic curves are obtained by using BS (a) and BS (b) and BS (a) and BS (c), and the intersection is The location of the WIMAX terminal. On this basis, in order to improve the accuracy of positioning, the RTD between the WIMAX terminal and the BS can also be measured to use more information to estimate the position of the mobile station.
  • CI NR Carrier to Interference Ratio
  • RSSI Received Signal Strength Indication
  • the WIMAX terminal when the WIMAX terminal scans the N-BS, if the positioning measurement information carries the positioning s canning indication, the WIMAX terminal scans the designated N-BS according to the requirement in the positioning s canning indication; otherwise, The WIMAX terminal performs scanning according to the received N-BS signal strength and strength selection N-BS whose signal strength reaches a preset threshold. In addition, before the WIMAX terminal scans the N-BS, the step of performing an as soc ia t ion process between the N-BSs may be further included.
  • Step 203 The entity having the positioning information calculation function calculates the positioning information according to the positioning data measurement result.
  • the methods for calculating the positioning information by the entity having the positioning information calculation function are:
  • an entity having a positioning information calculation function calculates an intersection of each BS coverage area information, and the intersection is positioning information, that is, a positioning position.
  • the entity having the positioning information calculation function calculates the intersection of the positioning areas determined according to the respective RTD values, and the intersection is the positioning information.
  • the entity calculation with the positioning information calculation function determines the intersection of the hyperbola based on the respective RD values, and the intersection is the positioning information.
  • the above entity having the positioning information calculation function may be a Serving ASN-GW or a WIMAX terminal. Or S-BS or other network entity with computing capabilities.
  • the implementation process of the method of the present invention is basically the same, and the only difference is which entity performs the positioning information calculation function.
  • the method further includes: the Serving ASN-GW receiving a positioning request message from a CSN or a location service server (LCS Server), where the positioning request message should include but is not limited to the following:
  • the Serving ASN-GW After receiving the location request message, if the WIMAX terminal is in the idle or sleep state, the Serving ASN-GW first performs a state transition process with the WIMAX terminal, and sends a state transition message to the WIMAX terminal, the WIMAX terminal. In response to the state transition message, the idle or s leep state is converted to an active state.
  • the method of the present invention can directly return the BSID to the CSN or LCS Server by the Serving ASN-GW, and the process ends.
  • the BSID positioning method mentioned here is a positioning method for determining the location of the user according to the BS currently serving the WIMAX terminal, that is, the BSID of the S-BS, and each BSID uniquely identifies a BS, and after obtaining the BSID, the query is performed.
  • the area corresponding to the BS can be obtained by means of a geographical location information database or the like.
  • the entity having the positioning information calculation function is Serving ASN-GW. Since the BSID positioning method is relatively simple, it will not be described here.
  • FIG. 6 is a flowchart of a first preferred embodiment of the method of the present invention.
  • a WiMAX terminal is assumed to be an MS and is in an idle state, and the MS is located by using an RTD method of multiple BSs, including the following steps:
  • Step 601 The Serving ASN-GW receives the already authenticated positioning request message for a certain MS from the CSN or the LCS Server.
  • the location request message should include but is not limited to the following:
  • Step 602 The Serving ASN-GW sends a state transition message to the MS in the idle state, and the MS responds to the message.
  • the state transition message is a paging command, and the MS converts from the idle state to the active state after receiving the paging command, so as to assist the BS in performing the measurement of the positioning data required for the positioning calculation in the subsequent process.
  • Step 603 The Serving ASN-GW determines, according to the request of the positioning request and the positioning capability of the current network and the MS, a positioning method using multiple RTDs, and sends a measurement request message to the S-BS, where the measurement request message indicates that the positioning service needs to be measured.
  • Data the data should include but not limited to the following: Wireless Loopback Delay RTD, Relative Delay RD, Serving BS ID, Neighbor BSID, CINR (Carrier 4 Duo), RSSI (Received Signal Strength Indicator), Neighbor Area BS wireless signal measurement results and other content.
  • the S-BS is notified to send a Mobile Scan Reply (M0B-SCN-RSP) message to the MS.
  • M0B-SCN-RSP Mobile Scan Reply
  • the RTD measurement request message may further carry an N-BS list of the S-BS specified by the Serving ASN-GW.
  • Step 604 The S-BS sends a M0B_SCN-RSP message to the MS, and requests the MS to scam ing the BS in the neighboring cell.
  • Step 605 The MS scans the S-BS and the N-BS to obtain an RTD between the MS and the S-BS and the N-BS.
  • Step 606 After the s canning is completed, the MS sends a M0B_SCN-REP message to the S-BS, and reports the measurement result to the S-BS.
  • Step 607 S-BS transmits to the RTD measurement response Serving ASN-GW, the measurement results for further 4 Gen Serving ASN-GW 0
  • Step 608 The Serving ASN-GW calculates the location information of the MS according to the QoS requirements and the measurement result carried in the positioning measurement information, and calculates the result on the i CSN or the LCS Server.
  • FIG ⁇ is a flowchart of a second preferred embodiment of the method of the present invention.
  • This embodiment describes a process for performing MS positioning by using a hyperbolic positioning method, which is compared with the multi-BS RTD method introduced in the first embodiment.
  • the process is basically the same.
  • MS and S-BS and N-BS are also required for scanning. However, at least two N-BSs are required to perform scanning. As shown in Figure 7, the following steps are included:
  • Step 701 The Serving ASN-GW receives a location request message from the LCS Server.
  • the location request message should include but is not limited to the following:
  • the Serving ASN-GW determines to use the hyperbolic positioning method to send a positioning data measurement request to the S-BS, where the positioning data measurement request indicates the data that the positioning service needs to measure.
  • the data should include but is not limited to the following: Wireless Loopback Delay RTD, Relative Delay RD, Serving BSID, Neighbor BS ID, CINR (Carrier to Interference Ratio), RSSI (Received Signal Strength Indicator), Neighbor BS Wireless Signal measurement results and other content.
  • the Serving ASN-GW may specify the N-BS list of the S-BS in the request.
  • Step 702 The S-BS sends a M0B-SCN-RSP message to the MS, and triggers the MS to perform downlink data synchronization and detection of the N-BS.
  • the M0B-SCN-RSP message may carry the LCS positioning scanning indication; before the scann i ng, the as soc ia t i on process may be further included according to the actual situation.
  • Step 703 The MS scans the S-BS and the at least two N-BSs to obtain values of the RD and the RTD. If the M0B_SCN-RSP message carries the LCS location indication, the MS may scan according to the N-BS recommended in the received M0B_SCN-RSP message; otherwise, select the N-BS to scan according to its own situation, but ensure that at least two scans are performed. N-BS.
  • Step 704 The MS sends an M0B_SCN-REP message to the S-BS, and reports the measurement result to the S-BS by using the MOB_SCN-REP message.
  • Step 705 After receiving the measurement result, the S-BS sends a positioning response to the Serving ASN-GW, and further adds the measurement result to the ⁇ i Serving ASN-GW 0.
  • the interaction information between entities is encrypted if needed.
  • Step 706 The Serving ASN-GW calculates the positioning information according to the measurement result, and sends the calculated positioning information to the LCS Server.
  • FIG. 8 is a flowchart of a third preferred embodiment of the method according to the present invention.
  • the process described in this embodiment is the same as the process of implementing the MS positioning by using the hyperbolic positioning method.
  • the difference between the method and the second embodiment is mainly that the positioning request is initiated.
  • An L3 message is added between the Serving ASN-GW and the MS. As shown in Figure 8, the following steps are included:
  • Step 801 The Serving ASN-GW receives a location request message from the LCS Server.
  • the location request message should include but is not limited to the following:
  • the Serving ASN-GW selects to use the hyperbolic method to locate according to the QoS information of the positioning request, and initiates a positioning request to the MS through the ISF message.
  • the Serving ASN-GW sends a positioning request message to the MS through the ISF service flow, where the positioning request message indicates the data that the positioning service needs to measure, and the data should include but not be limited to the following content: Wireless loopback delay RTD, relative time Delay RD, Serving BSID, neighbor BSID, CINR (Carrier to Interference Ratio), RSSI (Received Signal Strength Indicator), neighbor BS radio signal measurement results, etc.
  • the message may carry an N-BS list of the S-BS specified by the Serving ASN-GW.
  • Step 802 If the network is required to perform a certain cooperation, the MS needs to send a mobile scan request (M0B_SCN-REQ) message to the S-BS, where the message may carry an LCS positioning scanning indication.
  • M0B_SCN-REQ mobile scan request
  • Step 803 The S-BS sends a M0B-SCN-RSP message to the MS, and triggers the MS to perform synchronization and detection of the downlink data of the N-BS.
  • the message may carry an indication of LCS positioning scanning.
  • Step 80 4 MS and S-BS on the at least two N-BS for scanning, to obtain the value RD and the RTD. If the M0B_SCN-RSP message carries the LCS location indication, the MS may scan according to the N-BS recommended in the received M0B-SCN-RSP message. Otherwise, the N-BS is selected for scanning according to its own situation, but at least to ensure at least Scan two N-BSs.
  • Step 805 The MS sends a M0B-SCN-REP message to the S-BS, and the measurement result is sent to the i S-BS by using the M0B-SCN-REP message. This step can be omitted.
  • Step 806 MS in response to the transmitted positioning Serving ASN-GW, in response to the measurement result reported to the further Serving ASN-GW 0
  • the location response message can be transmitted through the ISF service, and if necessary, the message interaction between the entities is encrypted.
  • Step 807 The Serving ASN-GW calculates the positioning information according to the measurement result, and sends the calculated positioning information to the LCS Server.
  • the positioning data measurement entity is configured to receive a positioning request from the LCF, perform positioning data measurement according to the positioning request, and send the obtained positioning data measurement result to the computing entity.
  • a positioning control function entity is configured to send positioning measurement information to a positioning data measurement entity, and receive positioning information from a computing entity and output the data; or, the positioning control function entity is configured to send a positioning to the positioning data measurement entity.
  • the measurement information is calculated according to the positioning data measurement result returned by the positioning data measurement entity and output.
  • the positioning control function entity is located in the Serving ASN-GW or as a separate functional entity.
  • a computing entity is configured to receive a positioning data measurement result from a positioning data measurement entity, calculate positioning information according to the positioning data measurement result, and send the positioning information.
  • the computing entity is located in the LCF of the Serving ASN-GW, in the S-BS, or in the WIMAX terminal.
  • the system of the present invention includes an LCF, a positioning data measurement entity, and a computing entity: LCF, configured to send positioning measurement information to the positioning data measurement entity, receive positioning information from the computing entity, and output the positioning information;
  • a positioning data measurement entity configured to receive a positioning request from the LCF, perform positioning data measurement according to the positioning request, and send the obtained positioning data measurement result to the computing entity;
  • the computing entity is configured to receive the positioning data measurement result from the positioning data measuring entity, calculate the positioning information according to the positioning data measurement result, and send the positioning information to the LCF.
  • the system further includes S-BS and N-BS:
  • the N-BS is configured to perform information interaction with the positioning data measuring entity during the positioning data measurement process of the positioning data measuring entity, and provide positioning data information for the positioning data measuring entity.
  • the S-BS is configured to perform information interaction with the positioning data measurement entity during the positioning data measurement entity, and provide positioning data information for the positioning data measurement entity; and is used for the information interaction process between the positioning data measurement entity and the LCF. Forward the message.
  • the LCF is located in the Serving ASN-GW or is a separate functional entity; the positioning data measurement entity is located in the WiMAX terminal; and the computing entity is located in the LCF, WiMAX terminal or S-BS of the Serving ASN-GW.
  • the role of the LCF in the system changes accordingly: sending positioning measurement information to the positioning data measuring entity, and calculating positioning information according to the positioning data measurement result returned by the positioning data measuring entity and outputting.
  • LCF it is inherently computational.
  • the above calculation module is located in the LCF. That is to say, the calculation function in the system is completed by the LCF, but even if the calculation function of the system is from other devices, such as WiMAX terminals. Completion, LCF's calculation function also exists, but in this case, the calculation function of LCF is not practical, and other devices in the system have the calculation function because they have joined the calculation entity.
  • the Serving ASN-GW further includes a state transition instruction generation module
  • the WiMAX terminal further includes a state transition module: a state transition instruction generating module, configured to send a state transition message to the state transition module; a state transition module, configured to receive a state transition message from the state transition instruction generating module, and according to the state transition message, the state of the state is determined by an idle or sleep state Convert to active state.
  • FIG. 9 is a schematic structural diagram of a system according to a first preferred embodiment of the present invention.
  • the WiMAX terminal in this embodiment is an MS.
  • the system includes a Serving ASN-GW 902 and an MS 901.
  • the Serving ASN-GW 902 includes positioning.
  • the control function entity LCF9021 and the state transition instruction generating module 9022, the MS 901 includes a positioning data measuring entity 9011 and a state transition module 9012.
  • the LCF9021 is configured to send positioning measurement information to the positioning data measuring entity 9011, calculate positioning information according to the positioning data measurement result returned by the positioning data measuring entity 9011, and output the positioning information;
  • a positioning data measuring entity 9011 configured to receive a positioning request from the LCF 9021, perform positioning data measurement according to the positioning request, and send back a positioning data measurement result to the LCF9021;
  • the state transition instruction generating module 9022 is configured to send a state transition message to the state transition module 9012.
  • the state transition module 9012 is configured to receive a state migration message from the state transition instruction generation module 9022, and convert the state of the state from the idle or sleep state to the active state according to the state transition message.
  • the system further includes S-BS 903 and N-BS 904:
  • the N-BS 904 is configured to perform information interaction with the positioning data measuring entity 9011 during the positioning data measurement entity 9011, and provide positioning data information for the positioning data measuring entity 9011.
  • S-BS903 is used for positioning data measurement.
  • the entity 9011 performs information interaction with the positioning data measurement entity 9011 to provide positioning data information for the positioning data measurement entity 9011; and is used to forward information during the information interaction between the positioning data measurement entity 9011 and the LCF9021:
  • the positioning request of the LCF 9021 sends a positioning request to the positioning data measuring entity 9011.
  • the positioning data measurement result from the positioning data measuring entity 9011 is received and sent to the LCF 9021.
  • the positioning data measuring entity 9011 is specifically configured to receive the positioning request from the LCF9021, and measure the signal strength of the N-BS 904 according to the positioning request. If the signal strength reaches a preset threshold, the LCF9021 is sent to the LCF9021. Returning the BSID of the N-BS 904; the LCF 9021 is configured to send the positioning measurement information to the positioning data measuring entity 9011, and obtain the coverage area information of each BS according to each BSID returned by the positioning data measuring entity 9011, and calculate the intersection of each BS coverage area information. And output.
  • the positioning data measuring entity 9011 is specifically configured to receive the positioning request from the LCF9021, and then scan the S-BS 903 and the N-BS 904 according to the positioning request to obtain the RTD value; LCF9021, specifically used for The positioning measurement information is transmitted to the positioning data measuring entity 9011, and the intersection of the positioning areas determined by the respective RTD values is calculated according to the RTD value returned by the positioning data measuring entity 9011.
  • the positioning data measuring entity 9011 is specifically configured to receive the positioning request from the LCF9021, and scan the S-BS 903 and the two or more N-BSs 904 according to the positioning request to obtain the RD value;
  • the LCF 9021 is specifically configured to send the positioning measurement information to the positioning data measuring entity 9011, calculate the intersection of the hyperbola determined by each RD value according to the RD value returned by the positioning data measuring entity 9011, and the intersection is the positioning information to be obtained.
  • the location information is the location.
  • the system includes a Serving ASN-GW 102 and an MS 101.
  • the Serving ASN-GW 102 includes an LCF 1021 and a state transition instruction generating module 1022.
  • the MS 101 includes a positioning data measuring entity 1011, a state transition module 1012, and a computing entity 1013.
  • the 1021LCF is configured to send positioning measurement information to the positioning data measuring entity 1011, receive positioning information from the computing entity 1013, and output the positioning information.
  • a positioning data measuring entity 1011 configured to receive a positioning request from the LCF 1021, according to the positioning Requesting to perform positioning data measurement, and sending the obtained positioning data measurement result to the computing entity 1013;
  • the computing entity 1013 configured to receive the positioning data measurement result from the positioning data measuring entity 1011, calculate positioning information according to the positioning data measurement result, and The location information is sent to the LCF 1021;
  • the state transition instruction generating module 1022 is configured to send a state transition message to the state transition module 1012.
  • the state transition module 1012 is configured to receive a state migration message from the state transition instruction generation module 1022, and convert the state of the state from the idle or s leep state to the active state according to the state transition message.
  • the system further includes S-BS103 and N-BS104:
  • the N-BS 104 is configured to perform information interaction with the positioning data measuring entity 1011 during the positioning data measurement entity 1011 to perform positioning data measurement, and provide positioning data information for the positioning data measuring entity 1011; S-BS103, used for positioning data measurement
  • the entity 1011 performs information interaction with the positioning data measuring entity 1011 to provide positioning data information for the positioning data measuring entity 1011; and is used to forward information during the information interaction between the positioning data measuring entity 1011 and the LCF 1021: receiving from the information The positioning request of the LCF 1021 is forwarded to the positioning data measuring entity 1011.
  • the positioning data measuring entity 1011 is configured to receive a positioning request from the LCF 1021, and measure a signal strength of the N-BS 104 according to the positioning request, if the signal strength reaches a preset threshold, if the positioning mode of the multiple BSID is used,
  • the BSID of the N-BS 104 is sent to the computing entity 1013.
  • the computing entity 1013 is configured to receive the BSID from the positioning data measuring entity 1011, obtain coverage area information of each BS according to each BSID, and calculate an intersection of each BS coverage area information. Output to LCF102L
  • the positioning data measuring entity 1011 is specifically configured to receive a positioning request from the LCF 1021, scan the S-BS 103 and the N-BS 104 according to the positioning request to obtain an RTD value, and calculate an entity 1013, specifically for The RTD value from the positioning data measuring entity 1011 is received, and the intersection of the positioning areas determined according to the respective RTD values is calculated and output to the LCF 1021.
  • the positioning data measuring entity 1011 is specifically configured to receive from The positioning request of the LCF 1021, the S-BS 103 and the two or more N-BSs 104 are scanned according to the positioning request to obtain the RD value; the computing entity 1013 is specifically configured to receive the RD value from the positioning data measuring entity 1011, and calculate the basis The intersection of the hyperbola determined by each RD value is output to the LCF 1021.

Description

实现定位的方法、 系统及实体 技术领域
本发明涉及定位技术, 特别涉及在微波接入全球互通网络中实现定位的 方法、 系统及实体。
背景技术
微波接入全球互通(WiMAX ),是一种基于美国电机电子工程师协会( IEEE ) 802. 16 d/e标准的无线城域网技术。 IEEE 802. 16 d ( 802. 16-2004 )标准主 要用于城域网中的非视距点对多点技术, 其标准工作频段为 2GHz到 11GHz , 是授权和非授权的混合频段, 能有效的防止多径衰落, 在最佳信道衰落情况 下, 传输速率可以逼近 75Mbps , 目前正在讨论中的 IEEE 802. 16 e中会加入 支持简单移动通信的技术。
图 1为 WiMAX网络组成结构示意图, 如图 1所示, 该网络主要由移动终 端 (MS/SS )、 接入业务网 (ASN ) 以及连接业务网 (CSN )三部分组成。 其中, ASN包括基站(BS )和接入业务网网关(ASN-GW ); CSN包括预付费服务器( PPS ) 和认证、 授权以及计费服务器(AAA Server )等逻辑实体。
MS/SS即 WiMAX终端, 负责将用户接入 WiMAX网络。
ASN, 为能够为 WiMAX终端提供无线接入服务的网络功能的集合, 其作用 主要包括以下方面: 确保 WiMAX终端与 WiMAX基站之间二层连接的建立、 无 线资源管理、 网络发现以及 WiMAX用户网络业务供应商的最优选择、 在代理 移动 IP模式下, 充当代理服务器控制 WiMAX用户的认证、 授权以及计费消息 以及为 WiMAX终端三层应用连接的建立提供中继。
ASN包括 BS和 ASN-GW, 其中, BS主要用于提供与 MS/SS的 L2连接以及 实现无线资源管理; ASN-GW主要用于为 MS/SS的认证、 授权和计费提供客户 端, 为 MS/SS提供 L3信息的延时( Re lay ), 如 IP地址分配以及 ASN内切等。
CSN, 用于为 WiMAX用户会话分配 IP地址、 提供互联网接入、 充当认证 授权计费代理服务器或者认证授权计费服务器、 基于用户签约数据进行策略 和访问控制、 支持 ASN与 CSN之间隧道的建立、 支持 WiMAX用户话单的生成 以及跨运营商的 WiMAX业务结算、 支持 CSN之间漫游隧道的建立、 支持 ASN 之间的移动性, 支持多种 WiMAX业务, 例如基于位置的业务(LBS )、 端到端 业务、 多媒体广播以及多播业务等等。
其中, LBS是指通过移动网络获取移动终端用户的位置信息, 如经纬度坐 标等, 并在电子地图的支持下, 为用户提供位置服务的一种增值业务。 当前, 各种移动终端, 如移动电话已经成为人们生活中不可或缺的一部分, 相应地, LBS的重要性也随之逐渐凸显。 用户开通 LBS之后, 就可以方便地知道自身所 处的位置, 并可以通过移动终端查询附近的各种场所信息, 如: 我在哪里、 离我最近的医院在哪里、 我周围有哪些银行、 从这里到某地怎么走、 我好朋 友所在的位置在哪, 此外, LBS还可以用于紧急救助、 老人跟踪以及车队管理 等等。 概括而言, LBS的作用在于它能够在正确的时间和正确的地点, 把正确 的位置信息发送给正确的人。
正因为 LBS 具有上述一系列的功能, 所以, 作为一种移动宽带城域网技 术的 WiMAX 网络, 也应该在定位技术方面为用户提供相应地支持。 既然是定 位, 就会涉及到定位的准确度问题, 也就是位置业务的服务质量(QoS )问题, 包括以下几个方面:
水平精度 ( Hor izonta l Accuracy ), 一般使用经纬度及相应的误差表示; 垂直精度 ( Ver t ica l Accuracy ) , 用高度表示, 分为绝对高度与相对高 度;
速度和方向 (Ve loc i ty and Di rect ion ) , 用于表示被定位目标的移动 速度和方向;
响应时间 (Response Time ) , 用于规定系统定位响应的时间。
在 LBS技术实现上, 一般的无线蜂窝系统的定位方法分为基于外部信号的 定位方法以及基于无线系统本身的信号的定位方法: 如全球定位系统(GPS ) , 属于基于外部信号的定位方法, 网络可以辅助的发送一些 GPS卫星信息, 以加 快定位速度和提高定位精度; 而如基站识别码(BSID ) /无线信号环回时延 ( RTD )的定位方法,就属于基于无线系统本身的信号进行定位的方法。 当然, 除了这里提到的方法以外, 在实际应用中, 还有^ ί艮多不同的定位方式。 但现 有技术中还没有就如何在 WiMAX网络中实现定位给出明确的解决方案。
发明内容
有鉴于此, 本发明实施例的主要目的在于提供一种实现定位的方法, 能 够为 WiMAX网络中的用户提供定位服务。
本发明实施例的另一个目的在于提供一种实现定位的系统, 能够为 WiMAX 网络中的用户提供定位服务。
本发明实施例的第三个目的在于提供一种定位数据测量实体, 能够为 WiMAX网络中的用户提供定位服务。
本发明实施例的第四个目的在于提供一种定位控制功能实体, 能够为 WiMAX网络中的用户提供定位服务。
本发明实施例的第五个目的在于提供一种计算实体, 能够为 WiMAX网络中 的用户提供定位服务。
为达到上述目的, 本发明实施例的技术方案是这样实现的:
一种实现定位的方法, 该方法包括以下步骤:
定位控制功能实体发起定位请求, 获取定位数据测量结果, 并将所述定 位数据测量结果发送给具备定位信息计算功能的实体;
所述具备定位信息计算功能的实体, 根据所述定位数据测量结果计算定 位信息。
一种实现定位的系统, 该系统包括定位控制功能实体、 定位数据测量实 体以及计算实体;
所述定位控制功能实体, 用于向定位数据测量实体发送定位测量信息, 所述定位数据测量实体, 用于接收来自所述定位控制功能实体的定位请 求, 根据所述定位请求进行定位数据测量, 并将得到的定位数据测量结果发 送给计算实体;
所述计算实体, 用于接收来自定位数据测量实体的定位数据测量结果, 根据所述定位数据测量结果计算定位信息, 并将所述定位信息发送给定位控 制功能实体。
一种定位数据测量实体, 所述定位数据测量实体用于, 接收来自定位控 制功能实体的定位请求, 根据所述定位请求进行定位数据测量, 并将得到的 定位数据测量结果发送给计算实体。
一种定位控制功能实体, 所述定位控制功能实体用于, 向定位数据测量 实体发送定位测量信息, 接收来自计算实体的定位信息并输出;
或者, 所述定位控制功能实体用于, 向定位数据测量实体发送定位测量 信息, 根据所述定位数据测量实体返回的定位数据测量结果计算定位信息并 输出。
一种计算实体, 所述计算实体用于, 接收来自定位数据测量实体的定位 数据测量结果, 根据所述定位数据测量结果计算定位信息, 并将所述定位信 息发送给定位控制功能实体。
可见, 釆用本发明的技术方案, 在 WiMAX网络中引入了定位机制, 这样, WIMAX终端根据来自服务接入业务网网关(Serving ASN-GW )的定位请求进行 相应的定位数据测量, 并向网络中的具备定位信息计算功能的实体返回定位 数据测量结果, 具备定位信息计算功能的实体通过对定位数据测量结果进行 计算即可获得 WIMAX终端的位置信息, 该方法实现简单且响应迅速, 同时保 证了定位的精度和准确度。
附图说明
图 1为现有技术中 WiMAX网络组成结构示意图;
图 2 为本发明实施例实现定位的方法总体流程图; 图 3为本发明实施例实现定位的方法中通过多个 BSID定位 WIMAX终端位 置的示意图;
图 4为本发明实施例实现定位的方法通过多个 BS的 RTD定位 WIMAX终端 位置的示意图; 示意图;
图 6为本发明实施例实现定位的方法的第一个较佳实施例的结构示意图; 图 7为本发明实施例实现定位的方法的第二个较佳实施例的流程图; 图 8为本发明实施例实现定位的方法的第三个较佳实施例的流程图; 图 9为本发明实施例实现定位的系统的第一个较佳实施例的结构示意图; 图 10 为本发明实施例实现定位的系统的第二个较佳实施例的结构示意 图。
具体实施方式
为使本发明的目的、 技术方案及优点更加清楚明白, 以下参照附图并举 实施例, 对本发明作进一步地详细说明。
本发明的实施例实现定位的方法包括如下步骤:
101、 定位控制功能实体发起定位请求, 获取定位数据测量结果, 并将所 述定位数据测量结果发送给具备定位信息计算功能的实体;
102、 所述具备定位信息计算功能的实体, 根据所述定位数据测量结果计 算定位信息。
其中, 所述定位控制功能实体发起定位请求的过程可以包括: 服务接入 业务网网关向所述微波接入全球互通网络终端发送定位测量信息。
或者服务接入业务网网关服务基站发送定位测量信息, 再由服务基站向 所述微波接入全球互通网络终端发送所述的定位测量信息。
而所述获取定位数据测量结果的步骤, 即为 WIMAX终端进行定位数据测 量的过程, 将在下面的实施例中具体描述。 下面分别结合相应附图, 描述一 下本发明的具体实施过程。
图 2为本发明方法流程图, 如图 2所示, 包括以下步骤:
步骤 201 : 定位控制功能实体向 WiMAX终端发送定位请求。 该定位请请求 中指明定位业务需要测量的数据, 该数据应该包含但不限于以下内容: 无线 环回时延 RTD、 相对时延 RD、 Serving BSID, 邻区 BSID、 CINR (载波干扰比)、 RSS I (接收信号强度指示)、 邻区 BS无线信号测量结果等内容。
CINR (载波干扰比)、 RSSI (接收信号强度指示)等用于辅助对测量信号的 分析, 当存在多个邻区 BS信号时, 可以增强定位测量结果的计算精度;
本步骤中, 定位控制功能实体向 WIMAX终端发送定位测量信息的方法可 以为:
当定位控制功能实体位于 ASN-GW中时:
由 Serving ASN-GW向 WIMAX终端发送定位测量信息;
或者, Serving ASN-GW向 S-BS (服务基站)发送定位测量信息,再由 S-BS 向 WIMAX终端发送定位测量信息。
当定位控制功能实体独立于 ASN-GW实现时:
由定位控制功能实体向 Serving ASN-GW发送定位请求, Serving ASN-GW 再向 WIMAX终端发送定位测量信息;
或者, 由定位控制功能实体向 Serving ASN-GW发送定位请求, Serving ASN-GW向 S-BS (服务基站)发送定位测量信息, 再由 S-BS向 WIMAX终端发 送定位测量信息。
步骤 202: WIMAX终端进行定位数据测量, 并向具备定位信息计算功能的 实体发送定位数据测量结果。
本步骤中,根据所选用的定位方法的不同, WIMAX终端进行定位数据测量 的方法也不同, 分别包括以下三种情况:
( 1 )釆用多 BSID定位方式。
WIMAX终端测量 N-BS (邻区基站) 的信号强度, 若信号强度达到预先设 定的阈值, 则向 Serving ASN-GW回送该 N-BS的 BSID, BS ID即为定位数据测 量结果, 所述阈值可以为预先设定的经验值。
由于釆用 S-BS的 BSID进行定位的方法精确度不高, 所以在实际应用中 一般都釆用多个 BSID对 WIMAX终端进行定位, 即如果 WIMAX终端可以检测到 N-BS的信号, 且信号强度达到预先设定的阈值, 则记录该 N-BS的 BSID, 利 用各 BS ID获得各 BS的覆盖区域信息, 并进一步求取各 BS覆盖区域的交集, 该交集即为定位信息。 图 3为通过多个 BSID定位 WIMAX终端位置的示意图, 如图 3所示, ^叚设 BS1为 S-BS , BS2和 BS3为两个 N-BS , 则三个定位区域的 交集部分即为 WIMAX终端的位置区域。
当测量到多个 BSID时, 也可以利用 CINR (载波干扰比)、 RSSI (接收信号 强度指示)等信息辅助分析定位测量结果, 增强定位测量结果的计算精度; ( 2 )釆用 RTD方法。
WIMAX终端对 S-BS以及 N-BS进行扫描 ( scanning ), 获取 WIMAX终端与 S-BS以及 N-BS之间的 RTD值, RTD值即为定位数据测量结果。
RTD表示的是信号在 WIMAX终端与 BS之间往返传播一次所用的时间, 可 以由 WIMAX终端测量得到, 在 BS与 WIMAX终端同步的过程中进行, 测量结果 可以由 WIMAX终端通过移动扫描 ^艮告( MOB-SCN-REP )上 ^艮给 BS。
在进行 RTD计算时, 会将 BS馈线长度的影响考虑进去; 同时, WIMAX终 端和 BS在收发信号时,会对信号进行一定的处理,如对信号的调制和解调等, 这些处理过程也会占用一定的时间, 这段时间可以分别在 WIMAX终端和 BS侧 进行测量, 或利用先验知识对此进行补偿, 以最大的减小测量误差, 具体实 现如下:
假设 WIMAX终端和 BS对信号进行处理的时间分别为 7^和7 ^ , 信号在 BS馈 线上的传播时间为 Τα , 则 Τ0Α (到达时间)的计算公式为:
TOA = ^RTD - Ta - TMS - TBS
- 1 - 进一步求得 WIMAX终端到 BS的距离为: r = c-(^RTD-T -TMS-TBS) , 其中 C为光速常数。 为了更精确的定位 WIMAX终端, 可以参考邻区的多个 BS, 测量各自对应的 RTD, 进而通过各 N-BS测量区域的交叉位置来定位 WIMAX终端。 图 4为通过多个 BS的 RTD定位 WIMAX终端位置的示意图,如图 4所示, ^叚设 BS1为 S-BS, BS2和 BS3 为 N-BS, 各 BS以自身为中心, 对应的 RTD为半径分别形成一个定位区域, 三个 定位区域的交集位置即为 WIMAX终端定位位置。
其中, N-BS与 WIMAX终端之间的 RTD可以通过计算 N-BS相对于 S-BS的 RD得 到, 而 RD是包含在 MOB-SCN-REP消息之中的:
假设 S-BS为 BS1 881与¥ 终端之间的 RTD为 RTD1 其邻区 BS1^BS^々RD 为 RDn, 则有:
(RTDn-RTD1)/2=RDn , 即, !^。^ !^^!^。^
需要说明的是, 当利用多 BS进行 RTD测量时, 由于测量误差的存在, 所得 到的交集可能不是一个点, 而是一个区域, 此时在对 WIMAX终端进行定位的时 候, 可以用一个合适的区域作为 WIMAX终端的定位结果。
当测量到和多个 BS之间的 RTD结果时, 也可以利用 CINR (载波干扰比)、 RSSI (接收信号强度指示)等信息辅助分析定位测量结果, 增强定位测量结果 的计算精度。
( 3)釆用双曲线定位方法。
WIMAX终端对 S-BS以及两个或两个以上的 N-BS进行 scanning,获取 S-BS 与 N-BS之间的下行信号传输时间差 (RD)值; 为了进一步提高定位准确度, WIMAX终端还可以进一步对 S-BS以及两个或两个以上的 N-BS进行 scanning, 获取 WIMAX终端与 S-BS以及 N-BS之间的 RTD值, RD和 RTD值即为定位数据 测量结果。
双曲线定位的原理为: 在系统中选定两个 BS, WIMAX终端与这两个 BS的距 离差为一定值的各点一条双曲线, 用同样方法再形成一条双曲线, 两个双曲 线的交集即为定位位置。 图 5为通过双曲线定位 WIMAX终端位置的示意图, 如 图 5所示, 利用 BS ( a )和 BS ( b ) 以及 BS ( a )和 BS ( c )得到两条双曲线, 其 交叉点即为 WIMAX终端的位置。 在此基础上, 为了提高定位的精度, 还可以测 量 WIMAX终端与 BS间的 RTD, 以便利用更多信息来估计移动台的位置。 当测量 到和多个 BS之间的 RTD结果时, 也可以利用 C I NR (载波干扰比)、 RSSI (接收信 号强度指示)等信息辅助分析定位测量结果, 增强定位测量结果的计算精度 容易看出, 双曲线定位方法要求 WIMAX终端必须能够测量并同步到至少 三个基站的信号。
双曲线定位方法中 WIMAX终端在对 N-BS进行 scanning时, 若定位测量 信息中携带有定位 s canning指示, 则 WIMAX终端按照定位 s canning指示中 的要求对指定的 N-BS进行 scanning; 否则, WIMAX终端根据接收到的各 N-BS 信号强弱选择信号强度达到预先设定的阈值的 N-BS进行 scanning。 另外, 在 WIMAX终端对 N-BS进行 scanning之前, 还可进一步包括各 N-BS之间执行关 联 ( as soc ia t ion )过程的步骤。
步骤 203:具备定位信息计算功能的实体根据定位数据测量结果计算定位 信息。
本步骤中, 根据所釆用的定位方式的不同, 具备定位信息计算功能的实 体计算定位信息的方法分别为:
当釆用多 BSID的方法时, 具备定位信息计算功能的实体计算各 BS覆盖 区域信息的交集, 所述交集即为定位信息, 即定位位置。
当釆用 RTD方法时, 具备定位信息计算功能的实体计算根据各 RTD值所 确定的定位区域的交集, 所述交集即为定位信息。
当釆用双曲线方法时, 具备定位信息计算功能的实体计算根据各 RD值确 定双曲线的交集, 所述交集即为定位信息。
上述具备定位信息计算功能的实体可以为 Serving ASN-GW或 WIMAX终端 或 S-BS或其它具备计算功能的网络实体。 对于不同的具备定位信息计算功能 的实体, 本发明方法的实现流程基本相同, 区别仅在于由哪个实体来完成定 位信息计算功能。
该方法之前, 进一步包括: Serv ing ASN-GW接收来自 CSN或位置业务服 务器(LCS Server ) 的定位请求消息, 该定位请求消息中应该包含但不限于 以下内容:
定位请求发起者的标识、 被定位终端的标识、 定位类型、 定位请求发起 的时间、 定位方法、 请求定位业务 QoS 参数(如定位精度、 响应时间、 请求 的定位 QoS等级等)、 定位结果上报方式、 周期定位信息(周期频率和次数或 总时间等, 用于周期定位的场景)等内容。
在接收到定位请求消息后, 如果此时 WIMAX终端处于空闲 (idle )或休 眠(s leep )状态, Serving ASN-GW会首先与 WIMAX终端进行状态转换过程, 向 WIMAX终端发送状态迁移消息, WIMAX终端响应该状态迁移消息, 由 idle 或 s leep状态转换为活跃 ( act ive )状态。
若釆用根据服务 BS ( S-BS )的 BSID进行定位的方法时, 则本发明方法可 直接由 Serving ASN-GW将 BSID返回给 CSN或 LCS Server , 并结束流程。
这里提到的 BSID定位方法,是一种根据当前为 WIMAX终端提供服务的 BS , 即 S-BS的 BSID来确定用户位置的定位方式, 每个 BSID唯一的标识一个 BS , 在得到 BSID后通过查询地理位置信息数据库等方式即可获得 BS对应的区域。
以下就具备定位信息计算功能的实体为 Serving ASN-GW时的情况举实施 例进行详细说明, 由于 BSID定位方法比较简单, 此处不再介绍。
图 6为本发明方法的第一个较佳实施例流程图, 本实施例中,假设 WiMAX 终端为 MS且处于 idle状态, 釆用多 BS的 RTD方法对该 MS进行定位, 包括 以下步骤:
步骤 601 : Serving ASN-GW接收来自 CSN或 LCS Server的已经经过认证 的对某个 MS的定位请求消息。 该定位请求消息中应该包含但不限于以下内容:
定位请求发起者的标识、 被定位终端的标识、 定位类型、 定位请求发起 的时间、 定位方法、 请求定位业务 QoS 参数(如定位精度、 响应时间、 请求 的定位 QoS等级等)、 定位结果上报方式、 周期定位信息(周期频率和次数或 总时间等, 用于周期定位的场景)等内容。
步骤 602: Serving ASN-GW向处于 idle状态的 MS发送状态迁移消息, MS对该消息进行响应。
该状态迁移消息为一个寻呼指令, MS在接收到该寻呼指令后, 由 idle状 态转换为 act ive状态, 以便在随后过程中协助 BS完成定位计算所需的定位 数据的测量。
步骤 603: Serving ASN-GW根据定位请求的要求以及当前网络和 MS的定 位能力, 决定釆用多 RTD的定位方法, 向 S-BS发送测量请求消息, 该测量请 求消息中指明定位业务需要测量的数据, 该数据应该包含但不限于以下内容: 无线环回时延 RTD、 相对时延 RD、 Serving BS ID, 邻区 BSID、 CINR (载波干 4尤 比)、 RSSI (接收信号强度指示)、邻区 BS无线信号测量结果等内容。通知 S-BS 向 MS发送移动扫描应答 ( M0B-SCN-RSP ) 消息。
本步骤中, RTD测量请求消息中还可以进一步携带 Serving ASN-GW指定 的 S-BS的 N-BS列表。
步骤 604: S-BS向 MS发送 M0B_SCN-RSP消息, 要求 MS对邻区的 BS进行 scam ing。
步骤 605: MS对 S-BS以及 N-BS进行 scanning ,获得 MS与 S-BS以及 N-BS 之间的 RTD。
步骤 606: 完成 s canning后, MS向 S-BS发送 M0B—SCN-REP消息, 将测 量结果上报给 S-BS。
步骤 607: S-BS向 Serving ASN-GW发送 RTD测量应答, 将测量结果进一 步上 4艮给 Serving ASN-GW0 步骤 608: Serving ASN-GW根据定位测量信息中所携带的 QoS要求以及 测量结果, 计算 MS的位置信息,并将计算结果上 i CSN或 LCS Server。
图 Ί 为本发明方法第二个较佳实施例的流程图, 本实施例介绍的是釆用 双曲线定位方法进行 MS定位的流程, 与实施例一所介绍的多 BS的 RTD方法 相比, 流程基本相同, 也需要 MS和 S-BS以及 N-BS进行 scanning , 但是要求 至少要和两个 N-BS进行 scanning , 如图 7所示, 包括以下步骤:
步骤 701 : Serving ASN-GW接收来自 LCS Server的定位请求消息。
该定位请求消息中应该包含但不限于以下内容:
定位请求发起者的标识、 被定位终端的标识、 定位类型、 定位请求发起 的时间、 定位方法、 请求定位业务 QoS 参数(如定位精度、 响应时间、 请求 的定位 QoS等级等)、 定位结果上报方式、 周期定位信息(周期频率和次数或 总时间等, 用于周期定位的场景)等内容。
Serving ASN-GW根据定位请求的 QoS要求以及当前网络和 MS的定位能力, 决定釆用双曲线定位方法, 向 S-BS发送定位数据测量请求, 该定位数据测量 请求中指明定位业务需要测量的数据, 该数据应该包含但不限于以下内容: 无线环回时延 RTD、 相对时延 RD、 Serving BSID、 邻区 BS ID、 CINR (载波干扰 比)、 RSSI (接收信号强度指示)、 邻区 BS无线信号测量结果等内容。 Serving ASN-GW可以在该请求中指定 S-BS的 N-BS列表。
步骤 702: S-BS向 MS发送 M0B—SCN-RSP消息, 触发 MS进行 N-BS的下行数据 同步和检测。
该 M0B-SCN-RSP消息中可以携带有 LCS定位 scanning指示; 在进行 scann i ng之前 , 根据实际情况还可以进一步包括 as soc ia t i on过程。
步骤 703: MS对 S-BS以及至少两个 N-BS进行 scanning , 获得 RD和 RTD的值。 如果 M0B_SCN-RSP消息中携带有 LCS定位指示, 则 MS可以按照接收到的 M0B_SCN-RSP消息中建议的 N-BS进行扫描; 否则, 根据自身情况选择 N-BS进行 scanning , 但要保证至少扫描两个 N-BS。 步骤 704: MS向 S-BS发送 M0B_SCN-REP消息, 通过 MOB_SCN-REP消息将测量 结果上报给 S-BS。
步骤 705: S-BS接收到测量结果后, 向 Serving ASN-GW发送定位响应, 将 测量结果进一步上 ^i Serving ASN-GW0
如果需要, 实体之间的交互信息要进行加密保护。
步骤 706: Serving ASN-GW根据测量结果计算定位信息, 并将计算出的定 位信息上 4艮给 LCS Server。
图 8为本发明方法第三个较佳实施例的流程图, 本实施例介绍的同样是釆 用双曲线定位方法实现 MS定位的流程, 与实施例二相比区别主要在于, 定位 请求的发起是在 Serving ASN-GW和 MS之间增加了一条 L3消息, 如图 8所示, 包 括以下步骤:
步骤 801 : Serving ASN-GW接收来自 LCS Server的定位请求消息。
该定位请求消息中应该包含但不限于以下内容:
定位请求发起者的标识、 被定位终端的标识、 定位类型、 定位请求发起 的时间、 定位方法、 请求定位业务 QoS 参数(如定位精度、 响应时间、 请求 的定位 QoS等级等)、 定位结果上报方式、 周期定位信息(周期频率和次数或 总时间等, 用于周期定位的场景)等内容。
Serving ASN-GW根据定位请求的 QoS等信息选择使用双曲线方法进行定 位, 并通过 ISF消息向 MS发起定位请求。
本步骤中, Serving ASN-GW通过 ISF服务流向 MS发送定位请求消息, 该定 位请求消息中指明定位业务需要测量的数据, 该数据应该包含但不限于以下 内容: 无线环回时延 RTD、 相对时延 RD、 Serving BSID、 邻区 BSID、 CINR (载 波干扰比)、 RSSI (接收信号强度指示)、 邻区 BS无线信号测量结果等内容。 该 消息中可以携带有 Serving ASN-GW指定的 S-BS的 N-BS列表。
步骤 802: 如果希望网络进行一定的配合, MS需要向 S-BS发送移动扫描请 求(M0B_SCN-REQ ) 消息, 该消息中可以携带有 LCS定位 scanning指示, 该本 步骤为可选步骤。
步骤 803: S-BS向 MS发送 M0B—SCN-RSP消息, 触发 MS进行 N-BS的下行数据 的同步以及检测。
该消息中可以携带有 LCS定位 scanning的指示。
步骤 804: MS对 S-BS以及至少两个 N-BS进行 scanning , 获得 RD和 RTD的值。 如果 M0B_SCN-RSP消息中携带有 LCS定位指示, 则 MS可以按照接收到的 M0B-SCN-RSP消息中建议的 N-BS进行扫描, 否则, 根据自身情况选择 N-BS进行 scanning , 但要保证至少扫描两个 N-BS。
步骤 805: MS向 S-BS发送 M0B-SCN-REP消息, 通过 M0B-SCN-REP消息将测量 结果上 i S-BS , 该步骤可省略。
步骤 806: MS向 Serving ASN-GW发送定位响应, 响应将测量结果进一步上 报给 Serving ASN-GW0
该定位响应消息可以通过 ISF服务流传送, 如果需要, 实体之间的消息交 互要进行加密保护。
步骤 807: Serving ASN-GW根据测量结果计算定位信息, 并将计算出的定 位信息上 4艮给 LCS Server。
基于上述方法, 本发明实施例一种定位数据测量实体用于,接收来自 LCF 的定位请求, 根据定位请求进行定位数据测量, 并将得到的定位数据测量结 果发送给计算实体。
本发明实施例一种定位控制功能实体用于, 向定位数据测量实体发送定 位测量信息, 接收来自计算实体的定位信息并输出; 或者, 该定位控制功能 实体用于, 向定位数据测量实体发送定位测量信息, 根据定位数据测量实体 返回的定位数据测量结果计算定位信息并输出。 该定位控制功能实体位于 Serving ASN-GW中, 或者作为一个单独的功能实体出现。
本发明实施例一种计算实体用于, 接收来自定位数据测量实体的定位数 据测量结果, 根据定位数据测量结果计算定位信息, 并将所述定位信息发送 给 LCF。 该计算实体位于 Serving ASN-GW的 LCF中、 S-BS中或 WIMAX终端中。 基于上述实体,本发明的系统包括 LCF、定位数据测量实体以及计算实体: LCF, 用于向定位数据测量实体发送定位测量信息, 接收来自计算实体的 定位信息并输出;
定位数据测量实体, 用于接收来自 LCF 的定位请求, 根据定位请求进行 定位数据测量, 并将得到的定位数据测量结果发送给计算实体;
计算实体, 用于接收来自定位数据测量实体的定位数据测量结果, 根据 定位数据测量结果计算定位信息, 并将定位信息发送给 LCF。
该系统进一步包括 S-BS和 N-BS:
N-BS , 用于在定位数据测量实体进行定位数据测量过程中, 与定位数据 测量实体进行信息交互, 为定位数据测量实体提供定位数据信息。
S-BS , 用于在定位数据测量实体进行定位数据测量过程中, 与定位数据 测量实体进行信息交互, 为定位数据测量实体提供定位数据信息; 并用于在 定位数据测量实体与 LCF的信息交互过程中转发消息。
上述 LCF位于 Serving ASN-GW中或是一个单独的功能实体; 定位数据测 量实体位于 WiMAX终端中; 计算实体位于 Serving ASN-GW的 LCF、 WiMAX终 端或 S-BS中。 当计算实体位于 LCF中时, LCF在系统中的作用相应地变为: 向定位数据测量实体发送定位测量信息, 根据定位数据测量实体返回的定位 数据测量结果计算定位信息并输出。
其实对于 LCF来说, 其本身就是具备计算功能的, 上述计算模块位于 LCF 的情况也就是说由 LCF来完成系统中的计算功能, 但是, 即使系统的计算功 能是由其它设备, 比如 WiMAX终端来完成, LCF的计算功能也是存在的, 只是 这种情况下 LCF 的计算功能没有实际应用, 而系统中的其它设备因为加入了 计算实体而具备并完成了计算功能而已。
Serving ASN-GW进一步包括状态迁移指令生成模块, WiMAX终端进一步 包括状态迁移模块: 状态迁移指令生成模块, 用于向状态迁移模块发送状态迁移消息; 状态迁移模块, 用于接收来自状态迁移指令生成模块的状态迁移消息, 根据所述状态迁移消息将自身的状态由 idle或 sleep状态转换为 active状 态。
图 9为本发明系统第一个较佳实施例结构示意图, 本实施例中的 WiMAX终 端为 MS, 如图 9所示, 该系统包括 Serving ASN-GW902和 MS901, 其中, Serving ASN-GW902包括定位控制功能实体 LCF9021和状态迁移指令生成模块 9022 , MS901包括定位数据测量实体 9011和状态迁移模块 9012。
LCF9021, 用于向定位数据测量实体 9011 发送定位测量信息, 根据定位 数据测量实体 9011返回的定位数据测量结果计算定位信息并输出;
定位数据测量实体 9011, 用于接收来自 LCF9021的定位请求, 根据所述 定位请求进行定位数据测量, 并向 LCF9021回送定位数据测量结果;
状态迁移指令生成模块 9022,用于向状态迁移模块 9012发送状态迁移消 息;
状态迁移模块 9012,用于接收来自状态迁移指令生成模块 9022的状态迁 移消息,根据状态迁移消息将自身的状态由 idle或 sleep状态转换为 active 状态。
该系统进一步包括 S-BS903和 N-BS904:
N-BS904, 用于在定位数据测量实体 9011 进行定位数据测量过程中, 与 定位数据测量实体 9011进行信息交互, 为定位数据测量实体 9011提供定位 数据信息; S-BS903, 用于在定位数据测量实体 9011 进行定位数据测量过程 中, 与定位数据测量实体 9011进行信息交互, 为定位数据测量实体 9011提 供定位数据信息; 并用于在定位数据测量实体 9011与 LCF9021的信息交互过 程中转发信息: 接收来自 LCF9021的定位请求, 并向定位数据测量实体 9011 发送定位请求;在回送定位数据测量结果时,接收来自定位数据测量实体 9011 的定位数据测量结果并发送给 LCF 9021。 当釆用多 BSID的定位方式时, 定位数据测量实体 9011, 具体用于接收来 自 LCF9021的定位请求, 根据定位请求测量 N-BS904的信号强度, 若信号强 度达到预先设定的阈值, 则向 LCF9021回送该 N-BS904的 BSID; LCF9021, 具 体用于向定位数据测量实体 9011发送定位测量信息, 根据定位数据测量实体 9011返回的各 BSID获知各 BS的覆盖区域信息,计算各 BS覆盖区域信息的交 集并输出。
当釆用 RTD的定位方式时, 定位数据测量实体 9011, 具体用于接收来自 LCF9021的定位请求, 才艮据定位请求对 S-BS903以及 N-BS904进行 scanning 以获取 RTD值; LCF9021, 具体用于向定位数据测量实体 9011发送定位测量 信息, 根据定位数据测量实体 9011返回的 RTD值计算各 RTD值所确定的定位 区域的交集。
当釆用双曲线定位方式时, 定位数据测量实体 9011, 具体用于接收来自 LCF9021 的定位请求, 根据定位请求对 S-BS903 以及两个或两个以上的 N-BS904进行 scanning以获取 RD值; LCF9021, 具体用于向定位数据测量实 体 9011发送定位测量信息, 根据定位数据测量实体 9011返回的 RD值计算各 RD值所确定的双曲线的交集, 交集即为要得到的定位信息, 本发明中的定位 信息即为定位位置。
图 10为本发明系统第二个较佳实施例的结构示意图 ,本实施例中的 WiMAX 终端同样为 MS, 与系统实施例一相比, 本实施例的区别仅在于由位于 MS中的 计算实体来完成计算功能, 而不是实施例一中的 LCF。 如图 10所示, 该系统 包括 Serving ASN-GW102和 MS101 , 其中, Serving ASN-GW102包括 LCF1021 以及状态迁移指令生成模块 1022, MS101包括定位数据测量实体 1011、 状态 迁移模块 1012以及计算实体 1013。
1021LCF, 用于向定位数据测量实体 1011 发送定位测量信息, 接收来自 计算实体 1013的定位信息并输出;
定位数据测量实体 1011, 用于接收来自 LCF1021的定位请求, 根据定位 请求进行定位数据测量,并将得到的定位数据测量结果发送给计算实体 1013; 计算实体 1013 ,用于接收来自定位数据测量实体 1011的定位数据测量结 果, 根据定位数据测量结果计算定位信息, 并将定位信息发送给 LCF1021 ; 状态迁移指令生成模块 1022 ,用于向状态迁移模块 1012发送状态迁移消 息;
状态迁移模块 1012 ,用于接收来自状态迁移指令生成模块 1022的状态迁 移消息,根据状态迁移消息将自身的状态由 idle或 s leep状态转换为 act ive 状态。
该系统还进一步包括 S-BS103和 N-BS104:
N-BS104 , 用于在定位数据测量实体 1011 进行定位数据测量过程中, 与 定位数据测量实体 1011进行信息交互, 为定位数据测量实体 1011提供定位 数据信息; S-BS103 , 用于在定位数据测量实体 1011 进行定位数据测量过程 中, 与定位数据测量实体 1011进行信息交互, 为定位数据测量实体 1011提 供定位数据信息; 并用于在定位数据测量实体 1011与 LCF1021的信息交互过 程中转发信息:接收来自 LCF1021的定位请求转发给定位数据测量实体 1011。
其中, 当釆用多 BSID的定位方式时, 定位数据测量实体 1011 , 具体用于 接收来自 LCF1021 的定位请求, 根据定位请求测量 N-BS104的信号强度, 若 信号强度达到预先设定的阈值,则将该 N-BS104的 BSID发送给计算实体 1013; 计算实体 1013 , 具体用于接收来自定位数据测量实体 1011 的 BSID,根据各 BSID获得各 BS 的覆盖区域信息, 计算各 BS覆盖区域信息的交集并输出给 LCF102L
当釆用 RTD的定位方式时, 定位数据测量实体 1011 , 具体用于接收来自 LCF1021的定位请求, 根据定位请求对 S-BS103以及 N-BS104进行 scanning 以获取 RTD值; 计算实体 1013 , 具体用于接收来自定位数据测量实体 1011的 RTD值, 计算根据各 RTD值所确定的定位区域的交集并输出给 LCF1021。
当釆用双曲线定位方式时, 定位数据测量实体 1011 , 具体用于接收来自 LCF1021 的定位请求, 根据定位请求对 S-BS103 以及两个或两个以上的 N-BS104进行 scanning以获取 RD值; 计算实体 1013 , 具体用于接收来自定 位数据测量实体 1011的 RD值, 计算根据各 RD值所确定的双曲线的交集并输 出给 LCF1021。
可见, 釆用本发明的技术方案, 实现了在 WiMAX网络中为 WiMAX终端提供 定位服务的功能, 且本发明技术方案的实现比较简单, 响应迅速, 同时又保 证了定位的精度和准确度。
综上所述, 以上仅为本发明的较佳实施例而已, 并非用于限定本发明的 保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改 进等, 均应包含在本发明的保护范围之内。

Claims

权利 要 求 书
1、 一种实现定位的方法, 其特征在于, 该方法包括以下步骤:
定位控制功能实体发起定位请求, 获取定位数据测量结果, 并将所述定位 数据测量结果发送给具备定位信息计算功能的实体;
所述具备定位信息计算功能的实体, 根据所述定位数据测量结果计算定位 信息。
2、 根据权利要求 1所述的实现定位的方法, 其特征在于, 当定位控制功能 实体位于服务接入网关中时, 所述定位控制功能实体发起请求的步骤为:
服务接入业务网网关向所述微波接入全球互通网络终端发送定位测量信 息; 或
服务接入业务网网关服务基站发送定位测量信息, 再由服务基站向所述微 波接入全球互通网络终端发送所述的定位测量信息。
3、 根据权利要求 1所述的实现定位的方法, 其特征在于, 当所述定位控制 功能实体独立于服务接入网关时, 所述定位控制功能实体发起请求的步骤为: 由定位控制功能实体向服务接入网关发送定位测量信息, 服务接入业务网 网关向所述微波接入全球互通网络终端转发所述定位测量信息;
或者, 由定位控制功能实体向服务接入网关发送定位测量信息, 服务接入 网关向服务基站发送定位测量信息, 再由服务基站向微波接入全球互通网络终 端转发所述定位测量信息。
4、 根据权利要求 2或 3所述的实现定位的方法, 其特征在于, 所述定位测 量信息中包括无线环回时延、 相对时延、 服务基站识别码、 邻区基站识别码、 载波干扰比、 接收信号强度指示、 邻区基站无线信号测量结果中的至少一种。
5、 根据权利要求 2或 3所述的实现定位的方法, 其特征在于, 所述服务接 入业务网网关向啟波接入全球互通网络终端定位测量信息之前, 该方法进一步 包括: 所述服务接入业务网网关接收来自连接业务网或位置业务服务器的定位请 求消息;
若所述微波接入全球互通网络终端为空闲或休眠状态, 则所述服务接入业 务网网关向微波接入全球互通网络终端发送状态迁移消息, 所述微波接入全球 互通网络终端响应该状态迁移消息, 由空闲或休眠状态转换为活跃状态;
或在服务接入业务网网关服务基站发送定位测量信息之前, 该方法进一步 包括:
所述服务接入业务网网关接收来自连接业务网或位置业务服务器的定位请 求消息;
若所述微波接入全球互通网络终端为空闲或休眠状态, 则所述服务接入业 务网网关向微波接入全球互通网络终端发送状态迁移消息, 所述微波接入全球 互通网络终端响应该状态迁移消息, 由空闲或休眠状态转换为活跃状态。
6、 根据权利要求 5所述的实现定位的方法, 其特征在于, 所述的定位请求 消息中包括: 定位请求发起者的标识、 被定位终端的标识、 定位类型、 定位请 求发起的时间、 定位方法、 请求定位业务 QoS 参数、 定位结果上报方式、 周期 定位信息中的至少一种。
7、 根据权利要求 2或 3所述的实现定位的方法, 其特征在于, 所述的定位 控制功能实体获取定位数据测量结果的步骤为:
所述微波接入全球互通网络终端测量一个以上邻区基站的信号强度, 若信 号强度达到预先设定的阈值, 则向具备定位信息计算功能的实体发送所述邻区 基站的基站识别码;
所述具备定位信息计算功能的实体根据所述定位数据测量结果计算定位信 息的步骤为: 所述具备定位信息计算功能的实体根据所述基站识别码获得各基 站覆盖区域信息, 并计算所述各基站覆盖区域信息的交集。
8、 根据权利要求 2或 3所述的实现定位的方法, 其特征在于, 所述的定位 控制功能实体获取定位数据测量结果的步骤为: 所述微波接入全球互通网络终端对服务基站, 或者, 服务基站和邻区基站 进行扫描, 获取所述微波接入全球互通网络终端与服务基站以及邻区基站之间 的无线信号环回时延值;
所述具备定位信息计算功能的实体根据所述定位数据测量结果计算定位信 息具体为: 所述具备定位信息计算功能的实体根据所述服务基站的无线信号环 回时延值确定定位区域或定位区域的交集。
9、 根据权利要求 2或 3所述的实现定位的方法, 其特征在于, 所述的定位 控制功能实体获取定位数据测量结果的步骤为:
所述微波接入全球互通网络终端对服务基站以及两个或两个以上的邻区基 站进行扫描, 获取所述服务基站与所述邻区基站之间的下行信号传输时间差值; 所述具备定位信息计算功能的实体根据所述定位数据测量结果计算定位信 息包括: 所述具备定位信息计算功能的实体根据所述下行信号传输时间差值确 定双曲线的交集。
10、 根据权利要求 9 所述的实现定位的方法, 其特征在于, 所述的定位控 制功能实体获取定位数据测量结果进一步包括:
所述微波接入全球互通网络终端对服务基站以及两个或两个以上的邻区基 站进行扫描, 获取微波接入全球互通网络终端与所述服务基站以及所述邻区基 站之间的无线信号环回时延值;
所述具备定位信息计算功能的实体根据所述定位数据测量结果计算定位信 息进一步包括: 所述具备定位信息计算功能的实体根据所述下行信号传输时间 差值与所述无线信号环回时延值确定双曲线的交集。
11、 根据权利要求 1 0所述的实现定位的方法, 其特征在于, 所述微波接入 全球互通网络终端对邻区基站进行扫描时, 若定位测量信息中携带有定位扫描 指示, 则所述微波接入全球互通网络终端按照所述定位扫描指示中的要求对指 定的邻区基站进行扫描。
12、 根据权利要求 2或 3所述的实现定位的方法, 其特征在于, 所述定位控制功能实体向具备定位信息计算功能的实体发送定位数据测量 结果具体为: 所述微波接入全球互通网络终端直接向具备定位信息计算功能的 实体发送定位数据测量结果; 或
所述微波接入全球互通网络终端向服务基站发送定位数据测量结果, 再由 所述服务基站向具备定位信息计算功能的实体转发所述定位数据测量结果。
1 3、 根据权利要求 1 所述的实现定位的方法, 其特征在于, 所述具备定位 信息计算功能的实体为微波接入全球互通网络终端或服务接入业务网网关或服 务基站。
14、 一种实现定位的系统, 其特征在于, 该系统包括定位控制功能实体、 定位数据测量实体以及计算实体;
所述定位控制功能实体, 用于向定位数据测量实体发送定位测量信息, 接 收来自计算实体的定位信息并输出;
所述定位数据测量实体, 用于接收来自所述定位控制功能实体的定位请求, 根据所述定位请求进行定位数据测量, 并将得到的定位数据测量结果发送给计 算实体;
所述计算实体, 用于接收来自定位数据测量实体的定位数据测量结果, 根 据所述定位数据测量结果计算定位信息, 并将所述定位信息发送给定位控制功 能实体。
15、 根据权利要求 14所述的实现定位的系统, 其特征在于, 该系统进一步 包括服务基站和邻区基站;
所述邻区基站, 用于在定位数据测量实体进行定位数据测量过程中, 与定 位数据测量实体进行信息交互以为定位数据测量实体提供定位数据信息;
所述服务基站, 用于在定位数据测量实体进行定位数据测量过程中, 与定 位数据测量实体进行信息交互以为定位数据测量实体提供定位数据信息; 和 /或 用于在定位数据测量实体与定位控制功能实体的信息交互过程中转发消息。
16、 根据权利要求 15所述的实现定位的系统, 其特征在于, 所述定位数据测量实体具体用于, 接收来自定位控制功能实体的定位请求, 根据所述定位请求测量邻区基站的信号强度, 若信号强度达到预先设定的阈值, 则将所述邻区基站的基站识别码发送给计算实体;
所述计算实体具体用于, 接收来自定位数据测量实体的基站识别码,根据各 基站识别码获得各基站的覆盖区域信息, 计算所述各基站覆盖区域信息的交集 并输出给定位控制功能实体;
或者,
所述定位数据测量实体具体用于, 接收来自定位控制功能实体的定位请求, 根据所述定位请求对服务基站以及邻区基站进行扫描以获取无线信号环回时延 值;
所述计算实体具体用于, 接收来自定位数据测量实体的无线信号环回时延 值, 根据各无线信号环回时延值确定定位区域的交集并输出给定位控制功能实 体;
或者,
所述定位数据测量实体具体用于, 接收来自定位控制功能实体的定位请求, 根据所述定位请求对服务基站以及两个或两个以上的邻区基站进行扫描以获取 下行信号传输时间差值;
所述计算实体具体用于, 接收来自定位数据测量实体的下行信号传输时间 差值, 计算根据各下行信号传输时间差值所确定的双曲线的交集并输出给定位 控制功能实体。
17、 根据权利要求 14所述的实现定位的系统, 其特征在于, 所述定位控制 功能实体位于服务接入业务网网关中或者是一个单独的功能实体。
18、 根据权利要求 14所述的实现定位的系统, 其特征在于, 所述定位数据 测量实体位于微波接入全球互通网络终端中。
19、 根据权利要求 14所述的实现定位的系统, 其特征在于, 所述计算实体 位于微波接入全球互通网络终端中、 服务基站中或定位控制功能实体中。
20、 一种定位数据测量实体, 其特征在于, 所述定位数据测量实体用于, 接收来自定位控制功能实体的定位请求, 根据所述定位请求进行定位数据测量, 并将得到的定位数据测量结果发送给计算实体。
21、 一种定位控制功能实体, 其特征在于, 所述定位控制功能实体用于, 向定位数据测量实体发送定位测量信息, 接收来自计算实体的定位信息并输出; 或者, 所述定位控制功能实体用于, 向定位数据测量实体发送定位测量信 息, 根据所述定位数据测量实体返回的定位数据测量结果计算定位信息并输出。
22、 根据权利要求 21所述的定位控制功能实体, 其特征在于, 所述定位控 制功能实体位于服务接入业务网网关中或者是一个单独的功能实体。
23、 一种计算实体, 其特征在于, 所述计算实体用于, 接收来自定位数据 测量实体的定位数据测量结果, 根据所述定位数据测量结果计算定位信息, 并 将所述定位信息发送给定位控制功能实体。
24、 根据权利要求 23所述的计算实体, 其特征在于, 所述计算实体位于服 务接入业务网网关的定位控制功能实体中、 服务基站中或微波接入全球互通网 络终端中。
PCT/CN2008/070019 2007-01-26 2008-01-04 Procédé, système et entité de localisation WO2008092391A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/508,658 US20090285162A1 (en) 2007-01-26 2009-07-24 Method, system and terminal for locating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2007100730663A CN101232708A (zh) 2007-01-26 2007-01-26 实现定位的方法、系统及实体
CN200710073066.3 2007-01-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/508,658 Continuation US20090285162A1 (en) 2007-01-26 2009-07-24 Method, system and terminal for locating

Publications (1)

Publication Number Publication Date
WO2008092391A1 true WO2008092391A1 (fr) 2008-08-07

Family

ID=39673666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/070019 WO2008092391A1 (fr) 2007-01-26 2008-01-04 Procédé, système et entité de localisation

Country Status (3)

Country Link
US (1) US20090285162A1 (zh)
CN (1) CN101232708A (zh)
WO (1) WO2008092391A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102958123A (zh) * 2011-08-30 2013-03-06 阿尔卡特朗讯公司 将移动终端切换到目标小区的方法、无线通信系统和设备

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101325796B (zh) * 2007-06-12 2012-11-07 北京三星通信技术研究有限公司 Wimax网络中实现定位业务的处理方法
CN101415187B (zh) * 2007-10-19 2011-12-28 华为技术有限公司 位置业务实现方法、基站地理位置信息广播方法及其装置
US9781197B2 (en) * 2009-11-30 2017-10-03 Samsung Electronics Co., Ltd. Methods and apparatus for selection of content delivery network (CDN) based on user location
CN102082996A (zh) * 2009-12-01 2011-06-01 北京邮电大学 自主定位移动终端及方法
JP2013015418A (ja) * 2011-07-04 2013-01-24 Kddi R & D Laboratories Inc 位置推定サーバ、位置推定方法および位置推定プログラム
US9538494B2 (en) 2013-11-26 2017-01-03 At&T Intellectual Property I, L.P. Time distance of arrival based mobile device location detection with disturbance scrutiny
CN105578404B (zh) * 2014-10-17 2021-05-11 中兴通讯股份有限公司 一种定位方法及相应的终端、系统
CN104883662A (zh) * 2015-04-17 2015-09-02 深圳市金立通信设备有限公司 一种终端定位方法
CN104965214B (zh) * 2015-05-25 2017-04-26 北京科技大学 一种外罚法与最速下降法结合的车联网定位方法及系统
CN105898778B (zh) * 2016-04-25 2019-07-05 中国联合网络通信集团有限公司 一种通信盲区确认方法、通信盲区确认装置
CN109951867B (zh) * 2019-03-29 2020-09-08 腾讯科技(深圳)有限公司 一种事件处理方法和设备以及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1384690A (zh) * 2001-04-28 2002-12-11 华为技术有限公司 一种移动通信系统中移动台的定位方法
US20050192029A1 (en) * 2004-02-26 2005-09-01 Siemens Aktiengesellschaft Method and device for determining the position of terminal in a cellular mobile radio network
CN1780460A (zh) * 2004-11-24 2006-05-31 中兴通讯股份有限公司 一种个人手持系统对终端进行定位的方法
CN1812623A (zh) * 2005-01-27 2006-08-02 中兴通讯股份有限公司 一种对移动台进行定位的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI513489B (zh) * 2004-02-26 2015-12-21 Semiconductor Energy Lab 半導體裝置
US7319878B2 (en) * 2004-06-18 2008-01-15 Qualcomm Incorporated Method and apparatus for determining location of a base station using a plurality of mobile stations in a wireless mobile network
US8150421B2 (en) * 2005-12-30 2012-04-03 Trueposition, Inc. User plane uplink time difference of arrival (U-TDOA)
US8391894B2 (en) * 2006-06-26 2013-03-05 Intel Corporation Methods and apparatus for location based services in wireless networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1384690A (zh) * 2001-04-28 2002-12-11 华为技术有限公司 一种移动通信系统中移动台的定位方法
US20050192029A1 (en) * 2004-02-26 2005-09-01 Siemens Aktiengesellschaft Method and device for determining the position of terminal in a cellular mobile radio network
CN1780460A (zh) * 2004-11-24 2006-05-31 中兴通讯股份有限公司 一种个人手持系统对终端进行定位的方法
CN1812623A (zh) * 2005-01-27 2006-08-02 中兴通讯股份有限公司 一种对移动台进行定位的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102958123A (zh) * 2011-08-30 2013-03-06 阿尔卡特朗讯公司 将移动终端切换到目标小区的方法、无线通信系统和设备

Also Published As

Publication number Publication date
US20090285162A1 (en) 2009-11-19
CN101232708A (zh) 2008-07-30

Similar Documents

Publication Publication Date Title
WO2008092391A1 (fr) Procédé, système et entité de localisation
JP5461434B2 (ja) 移動デバイスを位置特定するための方法、および移動デバイスを位置特定するための装置
KR101359207B1 (ko) 위치 판정에 사용하기 위한 위치 기준 신호들의 수신을 관리하는 무선 단말 및 방법
AU2021325422A1 (en) Sidelink angular-based and SL RRM-based positioning
EP2763478B1 (en) Method and device using observed time difference of arrival for positioning mobile station
US20090143065A1 (en) Radio cell performance monitoring and/or control based on user equipment positioning data and radio quality parameters
US9026142B2 (en) Apparatus and method for reporting location information of terminal
WO2013078888A1 (zh) 对用户设备进行定位的方法和装置
WO2002085057A1 (en) Location method and system
CN101232702A (zh) 一种定位流程中的处理方法、系统、基站及终端
KR20020073167A (ko) 원격 통신 시스템에서 이동국의 위치 결정
WO2013123874A1 (zh) 一种网络定位方法和相关设备
WO2018090697A1 (zh) Lmu设备融合的方法、装置和系统
JP6033920B2 (ja) セキュアユーザプレーンロケーション(supl)転送および発見されたslpへのモバイルロケーションプロトコル(mlp)トンネリング
WO2008092395A1 (fr) Procédé, système et dispositif de négociation de capacité de localisation dans un réseau wimax
KR20140086321A (ko) 애드혹 망을 이용한 위치 추적 장치 및 방법과 그를 위한 이동통신 시스템
KR101238634B1 (ko) 이동통신 단말기를 이용한 음영지역에서의 위치 정보 수집방법 및 시스템
KR102294832B1 (ko) 5g nr 기반의 위치 측위 정확도 향상 방법 및 시스템
KR101700612B1 (ko) 단말의 위치를 측정하는 방법 및 이를 지원하는 장치
WO2015100578A1 (zh) 基于小基站的定位用户终端的方法和小基站控制器
WO2023062547A1 (en) Sidelink cooperative positioning in nlos scenario
WO2024047582A1 (en) Sensing architecture and procedure in 3gpp-based cellular networks
CN116490792A (zh) 一种用户设备的定位方法及装置
WO2024075088A1 (en) Combined one-to-many and many-to-one sidelink positioning
CN116132911A (zh) 用于定位的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08700045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08700045

Country of ref document: EP

Kind code of ref document: A1