WO2011010508A1 - アルミニウム製絞りしごき缶及びその製造方法 - Google Patents

アルミニウム製絞りしごき缶及びその製造方法 Download PDF

Info

Publication number
WO2011010508A1
WO2011010508A1 PCT/JP2010/059358 JP2010059358W WO2011010508A1 WO 2011010508 A1 WO2011010508 A1 WO 2011010508A1 JP 2010059358 W JP2010059358 W JP 2010059358W WO 2011010508 A1 WO2011010508 A1 WO 2011010508A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
aluminum
coating
mol
polyester resin
Prior art date
Application number
PCT/JP2010/059358
Other languages
English (en)
French (fr)
Inventor
清太郎 金澤
成也 高橋
雅志 池渕
知子 原口
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Priority to EP10802129.6A priority Critical patent/EP2457840B1/en
Priority to US13/320,577 priority patent/US8647729B2/en
Priority to CN201080031480.8A priority patent/CN102470952B/zh
Publication of WO2011010508A1 publication Critical patent/WO2011010508A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/66Cans, tins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1355Elemental metal containing [e.g., substrate, foil, film, coating, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1355Elemental metal containing [e.g., substrate, foil, film, coating, etc.]
    • Y10T428/1359Three or more layers [continuous layer]

Definitions

  • the present invention relates to an aluminum squeezed iron can and a method for producing the same, and more particularly to an aluminum squeezed iron can having excellent puncture resistance, corrosion resistance, resin adhesion and productivity, and a method for producing the same.
  • aluminum squeezed iron cans widely used for beverage cans, etc. are squeezed under dry conditions that do not use water-based lubricants or coolants by using a resin-coated aluminum plate that is pre-coated with a metal material. It can be ironed.
  • a resin-coated metal plate used for such an aluminum squeezed iron can a laminate of polyethylene terephthalate or polyethylene terephthalate / isophthalate film is used. For example, 3 to 13 mol% of isophthalic acid is used as an upper layer.
  • Patent Document 1 A two-layered resin-coated one comprising polyethylene terephthalate / isophthalate contained and polyethylene terephthalate / isophthalate containing 8 to 25 mol% of isophthalic acid as a lower layer has been proposed (Patent Document 1).
  • the above seamless can is satisfactory in terms of flange puncture resistance as well as excellent puncture resistance, but is still not fully satisfactory in terms of productivity. That is, when the resin-coated metal plate is subjected to squeezing and ironing, there is a high probability of forming defects such as metal exposure due to the generation of metal powder and heat generation during processing, which may cause problems such as poor product yield. Therefore, it has not been fully satisfied yet in terms of productivity and economy. Further, such a poorly formed can also has a risk of corrosion starting from the exposed metal portion.
  • the object of the present invention is to provide an aluminum seamless material that does not cause metal exposure, has excellent corrosion resistance, improves puncture resistance even when the resin coating is thin, has excellent resin adhesion, and is economical. Is to provide a can.
  • Another object of the present invention is to use a general-purpose polyester resin, and using a resin-coated aluminum plate with a resin coating that can be thinned, can effectively reduce the occurrence of metal exposure, Moreover, it is to provide a production method capable of providing a seamless can with good environmental performance under dry conditions and with good economic efficiency.
  • an aluminum drawn and ironed can having a resin coating on at least the inner surface side of the can, wherein the tensile strength of the coating resin on the inner surface side of the can is 270 to 420 MPa.
  • the resin coating on the inner surface of the can has a two-layer structure of a surface layer made of a highly crystalline polyester resin and a lower layer made of a low crystalline polyester resin, and the thickness ratio of the surface layer to the lower layer is 1: 5 to 9: 1. , 2.
  • the highly crystalline polyester resin is an ethylene terephthalate polyester resin having an isophthalic acid copolymerization amount of 0 mol% or more and less than 3 mol%, and the low crystalline polyester resin has an isophthalic acid copolymerization amount of 10 to 18 mol%.
  • a method for producing an aluminum drawn iron can obtained by drawing and ironing at least a resin-coated aluminum plate having a resin coating on the inner surface side of the can, wherein the drawing ratio is 1.1 to 2.
  • a method for producing an aluminum drawn iron can characterized by using a punch having a range of 6 and an ironing ratio of 50 to 80% and a temperature controlled at 20 to 50 ° C.
  • the resin-coated aluminum plate is composed of a surface layer made of a highly crystalline polyester resin and a low crystalline polyester resin on an aluminum plate that has been subjected to chromium phosphate treatment, and It is preferable to apply a resin coating having a two-layer structure in which the thickness ratio of the surface layer and the lower layer is in the range of 1: 5 to 9: 1.
  • the tensile strength of the coating resin on the inner surface side of the can is in the range of 270 to 420 MPa, and the strength and hardness of the coating resin are high, so that the metal exposure associated with the molding process is effectively reduced. It has excellent barrier properties against corrosive components and excellent can body corrosion resistance. Further, the aluminum drawn iron can of the present invention is excellent in the processing adhesion of the resin coating, and even when the processed container is filled with the contents and aged over time, the coating adhesion and coverage are complete. And is excellent in corrosion resistance of the winding part.
  • the aluminum squeezed iron can of the present invention has excellent puncture resistance, and even when the can body is dented, it can effectively prevent side wall damage and effectively suppress the occurrence of broken bodies during distribution. In addition, it is effectively prevented that the contents are ejected.
  • the puncture strength measured in the examples described later has a correlation with the state of occurrence of broken case during distribution, and if the puncture strength is 95N or higher, the occurrence of broken case is suppressed, and if it is 98N or higher, It is also possible to effectively suppress the occurrence of micro cracks that are the starting point of the cylinder.
  • the thickness of the coating resin should be made thinner than before. In combination with an improvement in productivity due to a reduction in the rate of metal exposure, it is also economical.
  • the aluminum squeezed iron can of the present invention has obtained results that satisfy all of the metal exposure, the corrosion resistance of the can body, the piercing strength, and the adhesion of the resin film (Examples 1 to 10).
  • the resin coating on the inner surface side of the aluminum squeezed iron can of the present invention may be a single layer in addition to the above-described two-layer configuration, but the single-layer configuration resin coating may be the above-described two-layer configuration resin coating. It is clear that the resin adhesion is inferior to that of the two-layer structure (Example 10).
  • An aluminum squeezed iron can having such characteristics is obtained by adjusting the temperature of a resin-coated aluminum plate to 20 to 50 ° C. with a squeeze ratio of 1.1 to 2.6 and a squeezing rate of 50 to 80%.
  • a squeezing and ironing can in which the tensile strength of the coating resin on the inner surface side of the can is in the above range can be obtained with high productivity without causing metal exposure. That is, according to the method for manufacturing a drawn iron can according to the present invention, by reducing the drawing ratio and increasing the amount of ironing, the occurrence of large drawn wrinkles due to drawing is suppressed, and the occurrence of metal exposure due to the drawn wrinkles is generated.
  • the surface that should be the inner surface is formed with a high-strength resin coating, which reduces the occurrence of metal exposure without using aqueous lubricants and coolants. Efficient drawing and ironing can be performed.
  • any conventionally known aluminum plate or aluminum alloy plate can be used, but preferably an aluminum alloy plate containing Mn, Mg, Cu, Si, Fe. (Hereinafter, it may be simply referred to as “aluminum plate” including the aluminum alloy plate). That is, Mn increases the recrystallization temperature of aluminum and changes the crystallization state by using Fe in aluminum as a compound to improve the corrosion resistance of the can body, so 0.1 to 1.5% (% is based on weight) The same applies hereinafter). If the amount of Mn added is less than 0.1%, the corrosion resistance of the can cannot be sufficiently obtained.
  • Mg is preferably added in an amount of 0.8 to 5.0% because it improves the strength, formability, corrosion resistance, etc. of the can body. If the added amount of Mg is less than 0.8%, sufficient strength of the can body cannot be obtained. On the other hand, if the added amount of Mg exceeds 5.0%, the formability deteriorates and cracks, wrinkles, etc. occur. It becomes easy to do.
  • Cu improves the strength of the can body, so 0.01 to 0.8% is preferable. If the added amount of Cu is less than 0.01%, the corrosion resistance of the aluminum can cannot be sufficiently obtained. On the other hand, if the added amount of Cu exceeds 0.8%, the formability deteriorates.
  • Si is preferably added in an amount of 0.03 to 0.6% because the strength and wear resistance of the can body are improved by precipitation of the Mg 2 Si intermediate layer. If the addition amount of Si is less than 0.03%, the strength of the aluminum can body cannot be sufficiently obtained. On the other hand, if the addition amount of Si exceeds 0.6%, the formability at the time of drawing and ironing is lowered.
  • Fe is preferably added in an amount of 0.05 to 0.8% because Mn in the aluminum alloy plate is used as a compound to change the crystallization state and improve the corrosion resistance of the can. If the added amount of Fe is less than 0.05%, sufficient strength of the can body cannot be obtained. On the other hand, if the added amount of Fe exceeds 0.8%, the moldability deteriorates. Specifically, aluminum alloys in the 3000s, 5000s, and 6000s in “JIS H 4000” can be suitably used.
  • the thickness of the aluminum plate should generally be in the range of 0.1 to 1.00 mm from the viewpoint of the strength of the can body and formability.
  • the thickness of the can barrel side wall after molding (resin on the can barrel side wall) The minimum aluminum plate thickness excluding the coating is preferably 0.110 mm or less. If the minimum aluminum plate thickness of the side wall of the can body exceeds 0.110 mm, it is not possible to save resources by reducing the side wall of the can body, which is the purpose of a squeezed iron can, and the cost of the can body cannot be reduced.
  • the aluminum plate As the aluminum plate, it is desirable to use an aluminum plate whose surface is subjected to surface treatment in order to improve the processing adhesion with the coating resin.
  • the conventional treatment of aluminum plate such as phosphoric acid chromate treatment and other organic / inorganic surface treatments is carried out by immersing, spraying or applying to cold-rolled aluminum plate. Although it can be applied, it is preferable that the phosphoric acid chromate treatment is preferably performed.
  • the chromium amount is preferably 5 to 40 mg / m 2 , preferably 15 to 30 mg / m 2 in terms of total chromium from the viewpoint of processing adhesion of the laminated resin film.
  • the range of is more preferable.
  • the total chromium amount is less than the above range, the effect of the surface treatment is insufficient, and there is a risk that the processing adhesion of the resin coating may be reduced as compared with the case where it is in the above range.
  • the amount of chromium is large, it is inferior in economic efficiency, and the cohesive failure occurs, so that the adhesion may be lowered.
  • the resin coating applied to the surface to be the inner surface of the surface-treated aluminum plate is optional as long as the tensile strength of the resin coating after canning is 270 to 420 MPa, particularly 300 to 390 MPa.
  • a polyester resin can be used, a polyester resin can be particularly preferably used.
  • the resin coating may be composed of a single layer of polyester resin, but in the present invention, at least the surface to be the inner surface side of the can is a surface layer composed of a high crystalline polyester and a lower layer composed of a low crystalline polyester resin.
  • a highly crystalline polyester resin means a resin having a minimum half crystallization time measured by the following measurement method in the range of 10 to 100 seconds, and a low crystalline polyester resin has a minimum half crystallization time of 300 to 300 seconds. Means a resin in the range of ⁇ 1100 seconds, both of which are crystalline resins.
  • the measuring method of the minimum half crystallization time is as follows.
  • the resin pellet is brought to 30 ° C., heated to 290 ° C. with a differential scanning calorimeter (DSC) at a heating rate of 100 ° C./min, held at 290 ° C. for 3 minutes, and then rapidly cooled to 0 ° C. at a cooling rate of 100 ° C./min. To do. Thereafter, the temperature is increased to a predetermined temperature at a temperature increase rate of 100 ° C./min, and the temperature is set to a constant temperature to obtain an “endothermic amount-maintenance time curve”.
  • DSC differential scanning calorimeter
  • half-crystallization time The time when the endothermic amount in the “endothermic amount-maintenance time curve” reaches a peak is defined as “half-crystallization time”. This is measured at a temperature between 100 ° C. and 200 ° C., and the smallest value of “half-crystallization time” is defined as “minimum half-crystallization time”.
  • the highly crystalline polyester constituting the surface of the resin coating on the surface to be the inner surface of the can is a resin having the above-mentioned minimum semi-crystallization time in the range of 10 to 100 seconds, and in particular, isophthalic acid co-polymer as the dicarboxylic acid component.
  • An ethylene terephthalate polyester resin having a polymerization amount of 0 mol% or more and less than 3 mol% is preferable.
  • the ethylene terephthalate polyester resin contains terephthalic acid as a carboxylic acid component in an amount of 50 mol% or more, particularly 70 mol% or more, and an ethylene glycol component as an alcohol component in an amount of 50 mol% or more, particularly 70 mol. % Means more than%.
  • the ethylene terephthalate-based polyester resin may contain a small amount of other copolymer components, and the carboxylic acid components other than isophthalic acid and terephthalic acid components are not limited thereto.
  • alcohol components other than ethylene glycol propylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexylene glycol, diethylene glycol, triethylene glycol, cyclohexanedimethanol, bisphenol A ethylene oxide adduct
  • examples include alcohol components such as glycerol, trimethylolpropane, pentaerythritol, dipentaerythritol, and sorbitan.
  • the highly crystalline polyester resin should have a molecular weight in the film forming range, and the intrinsic viscosity (IV) measured using a phenol / tetrachloroethane mixed solvent as a solvent is 0.55 dL / g or more, particularly 0.6 to 1 It may be in the range of 0.0 dL / g in terms of barrier properties against corrosion components and mechanical properties.
  • the polyester resin constituting the surface layer of the resin coating polyethylene terephthalate containing homopolyethylene terephthalate or isophthalic acid in an amount of less than 3 mol%, particularly 2 mol% or less can be suitably used.
  • a film compounding agent known per se for example, an antiblocking material such as amorphous silica, a pigment such as titanium dioxide, an antistatic agent, an antioxidant, a lubricant Etc. can be blended by a known formulation.
  • the low crystalline polyester resin constituting the lower layer of the resin coating on the surface to be the inner surface side of the can is a polyester resin having a minimum half crystallization time in the range of 300 to 1100 seconds as described above, and in particular, a dicarboxylic acid component.
  • An ethylene terephthalate-based polyester resin having an isophthalic acid copolymerization amount of 10 to 18 mol%, particularly 13 to 17 mol% is preferable.
  • the resin adhesion to the processed metal may be insufficient, while if the amount of isophthalic acid is more than the above range, the resin coating Insufficient strength can be imparted to the metal, and the resistance to metal exposure may be reduced, resulting in poor corrosion resistance of the can body.
  • other copolymerization components that can be used may be the same as those described above for the high crystalline polyester resin.
  • the low crystalline polyester resin should have a molecular weight in the film forming range, and the intrinsic viscosity (IV) measured using a phenol / tetrachloroethane mixed solvent as a solvent is 0.55 dL / g or more, particularly 0.6 to 1 It is preferably in the range of 0.0 dL / g.
  • the resin coating can be a single-layer structure, but in this case, the single-layer polyester resin needs to have both the resin strength after processing and the resin adhesion. Therefore, it is desirable to use an ethylene terephthalate polyester resin containing isophthalic acid in a range of 7 to 12 mol%. Needless to say, a small amount of a copolymer component can be blended in the same manner as the two-layered resin coating described above.
  • the thickness ratio of the surface layer to the lower layer is 1: 5 to 9: 1, In particular, it is preferably in the range of 1: 3 to 4: 1. If the thickness of the surface layer is thicker than the above range, the resin strength will be too high, resulting in inferior resin adhesion after processing in strong processed parts such as flanges, etc. There is. On the other hand, when the thickness of the surface layer is thinner than the above range, the resin strength is low, and metal exposure is likely to occur due to drawing and ironing, resulting in poor corrosion resistance of the can body.
  • the thickness of the resin coating is preferably in the range of 10 to 40 ⁇ m, particularly 14 to 35 ⁇ m in both cases of the two-layer configuration and the single layer.
  • the thickness of the resin coating is preferably in the range of 10 to 40 ⁇ m, particularly 14 to 35 ⁇ m in both cases of the two-layer configuration and the single layer.
  • the surface of the aluminum plate to be the inner surface side of the can is coated with the above-described two-layer structure or single-layer resin, but the surface of the aluminum plate can be coated by a known lamination method. It is particularly preferable from the viewpoint of workability that it is formed in an unstretched and unoriented state by lamination of a multilayer cast film or coextrusion coating. Lamination of the multilayer cast film is achieved by placing polyester resin, such as PET / IA chips, constituting the surface layer and lower layer into separate extruders, heating and melting, extruding into a sheet form from a die, and cooling and solidifying on a casting drum. It is formed. On the other hand, the coextrusion coat is formed by using two extruders and supplying and extruding the surface layer and the lower layer PET / IA resin to a die.
  • polyester resin such as PET / IA chips
  • a laminated film can be formed by lamination or coextrusion coating of a multi-layer cast film, thereby making it possible to firmly bond an interlayer without using an adhesive and improve workability.
  • an adhesive is not limited, and a conventionally known adhesion primer can be used for adhesion to an aluminum plate.
  • This adhesion primer shows excellent adhesion to both metal materials and films, for example, phenol epoxy series consisting of resol type phenol aldehyde resin derived from various phenols and formaldehyde and bisphenol type epoxy resin It is a paint, particularly a paint containing a phenol resin and an epoxy resin in a weight ratio of 50:50 to 1:99, particularly 40:60 to 5:95.
  • the adhesive primer layer is generally preferably provided with a thickness of 0.01 to 10 ⁇ m.
  • the adhesion primer layer may be provided on the surface-treated aluminum plate in advance, or may be provided on the polyester film.
  • the resin coating can be performed by lamination of a cast film and an extrusion coating method.
  • a normal can paint or a resin film coating conventionally used for a resin-coated metal plate can be used.
  • the resin film coating may be a single layer, but it may be composed of two layers, and the surface layer may use polyethylene terephthalate / isophthalate having an isophthalic acid content of 7 to 14 mol% from the viewpoints of printing ink adhesion and resin strength.
  • polyethylene terephthalate / isophthalate having an isophthalic acid content of 10 to 18 mol% is preferably used for the lower layer from the viewpoint of resin adhesion after processing.
  • pigments such as titanium dioxide
  • a layer containing a large amount of titanium dioxide may be provided between the surface layer and the lower layer in a three-layer structure.
  • a squeezed iron can is formed by subjecting the above-mentioned resin-coated aluminum plate to conventionally known squeezing and ironing. Prior to squeezing and ironing, the surface of the resin-coated aluminum plate has no problem in food hygiene, and can be easily volatilized and removed by heating at about 200 ° C.
  • Wax-based lubricants such as glamor wax, liquid paraffin, synthetic paraffin It is preferable to apply white petrolatum, palm oil, various natural waxes, polyethylene wax, and the like, which enables efficient squeezing and ironing under dry conditions.
  • a blank is punched out of a resin-coated aluminum plate coated with a wax-based lubricant with a cupping press, and a drawn cup is formed by a drawing method.
  • the aperture ratio RD defined by the following formula (1) is in a total range of 1.1 to 2.6, particularly in a range of 2.0 to 2.6. If the drawing ratio is larger than the above range, the drawing wrinkles become large, and there is a risk that the resin coating will crack and cause metal exposure.
  • R D D / d (1)
  • D represents the blank diameter
  • d represents the can body diameter.
  • the temperature of the forming punch is preferably adjusted to 20 to 50 ° C.
  • the punch temperature is lower than the above range, the wax-based lubricant applied to the resin-coated aluminum plate cannot exhibit sufficient lubricity, and cracks occur in the resin coating due to defective removal from the seamless can of the punch, May cause metal exposure.
  • the punch temperature is higher than the above range, it approximates to the glass transition temperature of the polyester resin, the resin sticks to the punch, may cause molding failure (destructive), and the resin becomes rough due to molding. There is a risk of metal exposure due to the increase.
  • the ironing rate R represented by the following formula (2) is preferably in the range of 50 to 80%. If the ironing rate is lower than the above range, it cannot be sufficiently thinned, and it is not satisfactory in terms of economy, while if the ironing rate is higher than the above range, the metal exposure at the resin molding limit is not achieved. In addition, there is a risk of metal exposure in the winding process.
  • R (tb ⁇ tw) / tb (2)
  • tb represents the thickness of the metal base plate of the surface-treated aluminum plate
  • tw represents the thickness of the metal portion excluding the resin coating of the drawn iron can.
  • the obtained squeezed iron can is domed at the bottom and trimmed at the opening edge in accordance with conventional methods. If necessary, after heat treatment to remove the residual strain of the resin coating, the outer surface of the can body is baked with printing ink and finish varnish, and neck processing and flange processing are performed. A squeezed iron can (seamless can) is completed.
  • the measurement condition of the enamellator was a voltage value of 6 V, and the current value 4 seconds after the start of voltage application was taken as the measurement value.
  • the electrolytic solution was a solution obtained by adding 0.02% by weight of a surfactant to a 1% by weight aqueous sodium chloride solution. The score was based on the following criteria. ⁇ and ⁇ are acceptable ranges. ⁇ : Occupancy rate is 1% or less ⁇ : Occupancy rate exceeds 1%, 3% or less ⁇ : Occupancy rate exceeds 3%
  • ⁇ Puncture strength evaluation> After filling the obtained seamless can with water, an internal pressure of 190 kPa was applied by air from the can opening. Next, a puncture needle was attached to the compression tester, and water was filled so that the puncture needle was in the thinnest position (position 60 mm from the bottom of the can body) in the can height direction. A seamless can was set, and the puncture strength of the side wall of the can body was measured. The radius of the tip of the puncture needle was 2.25 mm, and the descending speed of the puncture needle was 200 mm / min. For each of the examples and comparative examples, 5 cans were performed, the average value was calculated, and evaluated according to the following criteria. ⁇ and ⁇ are acceptable ranges. ⁇ : Puncture strength is 98N or more ⁇ : Puncture strength is less than 98N and 95N or more ⁇ : Puncture strength is less than 95N
  • ⁇ Comprehensive evaluation> Based on each evaluation of metal exposure can incidence, can body corrosion resistance, piercing strength, and resin adhesion, comprehensive evaluation was performed according to the following criteria. ⁇ and ⁇ are acceptable ranges. ⁇ : All evaluations are “ ⁇ ” ⁇ : At least one evaluation has “ ⁇ ” and all evaluations have no “ ⁇ ” ⁇ : Any evaluation has “ ⁇ ”
  • Example 1 [Production of resin-coated steel sheet]
  • the surface-treated aluminum alloy plate as a substrate was subjected to a chromium phosphate surface treatment on both sides of a JIS 3104 aluminum alloy plate having a thickness of 0.28 mm, and the amount of chromium was 20 mg / m 2 .
  • An unstretched film (overall film) having a surface layer of a polyethylene terephthalate / isophthalate (PET / IA) copolymer resin having an isophthalic acid amount of 2 mol% and a PET / IA copolymer resin having an isophthalic acid amount of 15 mol% as a lower layer is formed on this substrate.
  • PET / IA polyethylene terephthalate / isophthalate
  • a thickness of 16 ⁇ m is the surface corresponding to the inner surface of the can, and a non-stretched film made of PET / IA copolymer resin having a thickness of 10 mol% of isophthalic acid with a thickness of 16 ⁇ m is used as the surface corresponding to the outer surface of the can.
  • the inner and outer surfaces were heat laminated at the same time, and a wax-based lubricant was applied to prepare a resin-coated aluminum alloy plate.
  • a copolymer resin pellet having an isophthalic acid amount of 2 mol% is supplied to the hopper of an extruder to form a surface layer resin, and a copolymer resin having an isophthalic acid amount of 15 mol% is used in another extruder.
  • a non-stretched, non-oriented, non-crystalline two layer with a resin thickness of 16 ⁇ m and a surface layer thickness ratio of 0.50 A resin film was prepared.
  • a non-stretched and non-oriented film was formed in the same manner as the resin on the inner surface of the can except that the resin was a single layer of PET / IA copolymer resin having an isophthalic acid content of 10 mol% and the thickness was 16 ⁇ m. -An amorphous single layer resin film was prepared.
  • Example 2 A resin-coated seamless can is produced in the same manner as in Example 1 except that the inner surface resin is a PET / IA copolymer resin with an isophthalic acid amount of 2.5 mol% and the surface layer thickness ratio in the inner surface resin is 0.25. Then, evaluation was performed in the same manner as in Example 1. Table 1 shows the inner surface resin specifications, molding conditions, and evaluation results of the obtained seamless can.
  • Example 3 A resin-coated seamless can was produced in the same manner as in Example 1 except that the surface layer thickness ratio in the inner surface resin was 0.80, and evaluation was performed in the same manner as in Example 1. Table 1 shows the inner surface resin specifications, molding conditions, and evaluation results of the obtained seamless can.
  • Example 4 A resin-coated seamless can was produced in the same manner as in Example 1 except that the inner surface resin was homo-PET and the surface layer thickness ratio in the inner surface resin was 0.25, and evaluation was performed in the same manner as in Example 1. .
  • Table 1 shows the inner surface resin specifications, molding conditions, and evaluation results of the obtained seamless can.
  • the inner surface resin is a PET / IA copolymer resin with an isophthalic acid amount of 2.5 mol%
  • the inner lower layer resin is a copolymer resin with an isophthalic acid amount of 10 mol%
  • the surface layer thickness ratio in the inner surface resin is 0.50.
  • a resin-coated seamless can was produced in the same manner as in Example 1 and evaluated in the same manner as in Example 1.
  • Table 1 shows the inner surface resin specifications, molding conditions, and evaluation results of the obtained seamless can.
  • Example 6 A resin-coated seamless can was prepared in the same manner as in Example 1 except that the inner surface lower layer resin was a PET / IA copolymer resin having an isophthalic acid amount of 18 mol% and the surface layer thickness ratio in the inner surface resin was 0.50. Evaluation was performed in the same manner as in Example 1. Table 1 shows the inner surface resin specifications, molding conditions, and evaluation results of the obtained seamless can.
  • Example 7 A resin-coated seamless can was produced in the same manner as in Example 1 except that the surface layer thickness ratio in the inner surface resin was 0.25 and the punching temperature during ironing was 20 ° C. Evaluation was performed in the same manner as in Example 1. Went. Table 1 shows the inner surface resin specifications, molding conditions, and evaluation results of the obtained seamless can.
  • Example 8 A resin-coated seamless can was produced in the same manner as in Example 1 except that the surface layer thickness ratio in the inner surface resin was 0.25 and the punching temperature during ironing was 50 ° C., and evaluated in the same manner as in Example 1. Went. Table 1 shows the inner surface resin specifications, molding conditions, and evaluation results of the obtained seamless can.
  • Example 9 A resin-coated seamless can was produced in the same manner as in Example 1 except that the drawing ratio was 2.6, the ironing ratio was 63%, and the resin-coated seamless can with a can diameter of 53 mm, a can height of 133 mm, and an internal volume of 250 ml was obtained. This was prepared and evaluated in the same manner as in Example 1. Table 1 shows the inner surface resin specifications, molding conditions, and evaluation results of the obtained seamless can.
  • Example 10 A resin-coated seamless can was prepared in the same manner as in Example 1 except that the inner surface resin was a PET / IA copolymer resin single layer having an isophthalic acid amount of 8 mol%, and evaluation was performed in the same manner as in Example 1.
  • Table 1 shows the inner surface resin specifications, molding conditions, and evaluation results of the obtained seamless can.
  • Example 1 A resin-coated seamless can was prepared in the same manner as in Example 1 except that the inner surface resin was a PET / IA copolymer resin having an isophthalic acid amount of 5 mol% and the surface layer thickness ratio in the inner surface resin was 0.25. Evaluation was performed in the same manner as in Example 1. Table 1 shows the inner surface resin specifications, molding conditions, and evaluation results of the obtained seamless can.
  • Example 2 A resin-coated seamless can was prepared in the same manner as in Example 1 except that the inner surface lower layer resin was a PET / IA copolymer resin having an isophthalic acid amount of 10 mol% and the surface layer thickness ratio in the inner surface resin was 0.80. Evaluation was performed in the same manner as in Example 1. Table 1 shows the inner surface resin specifications, molding conditions, and evaluation results of the obtained seamless can.
  • the aluminum squeezed iron can of the present invention has no metal exposure and is excellent in can body corrosion resistance, is excellent in resin adhesion after processing, and is excellent in corrosion resistance of a wound portion. Moreover, since the squeezing and ironing can made of aluminum of the present invention has improved puncture resistance even if the thickness of the resin coating is reduced, it is excellent in economic efficiency. Furthermore, the manufacturing method of the aluminum squeezed iron can according to the present invention can produce the above-mentioned aluminum squeezed iron can while suppressing the occurrence rate of exposed metal cans, and manufactures with good environmental performance, productivity and economy. It is possible. For this reason, the aluminum squeezed iron can of the present invention can be suitably used not only for beverage cans and the like that are mass-produced, but also for cans used for filling corrosive contents.

Abstract

【課題】樹脂被覆アルミニウム板から、耐突き刺し性、耐食性及び生産性に顕著に優れたアルミニウム製シームレス缶を提供することである。 【解決手段】少なくとも缶内面側に樹脂被覆が施されたアルミニウム製絞りしごき缶において、缶内面側の被覆樹脂の引張強度が270乃至420MPaである。

Description

アルミニウム製絞りしごき缶及びその製造方法
 本発明は、アルミニウム製絞りしごき缶及びその製造方法に関するものであり、より詳細には、耐突き刺し性、耐食性、樹脂密着性及び生産性に優れたアルミニウム製絞りしごき缶及びその製造方法に関する。
 従来より、飲料缶等に広く用いられているアルミニウム製絞りしごき缶は、予め金属素材に有機被覆を施した樹脂被覆アルミニウム板を用いることにより、水系潤滑剤やクーラントを使用しないドライ条件下で絞りしごき成形することが可能である。
 このようなアルミニウム製絞りしごき缶に用いられる樹脂被覆金属板としては、ポリエチレンテレフタレートやポリエチレンテレフタレート/イソフタレートのフィルムを積層したものが使用されており、例えば、上層としてイソフタル酸を3乃至13モル%含有するポリエチレンテレフタレート/イソフタレート及び下層としてイソフタル酸を8乃至25モル%含有するポリエチレンテレフタレート/イソフタレートから成る二層構成樹脂被覆のものが提案されている(特許文献1)。
 近年、缶体の製造コストを削減するために、缶体に使用する素材量を低減すべく缶体の薄肉化が進められており、このような薄肉化されたアルミニウム製絞りしごき缶に内容物を充填した飲料缶においては、缶胴側壁部が極度に薄肉化されているため、流通過程において、例えば缶胴にデンティングを受けた場合、側壁のアルミニウム板が裂けて、内容物が噴出するおそれがあった。
 本発明者等は、このような問題を解決するために、突き刺し強度が改良されたアルミニウム製シームレス缶を提案した(特許文献2)。
特開2001-246695号公報 国際公開2004/113181号
 上記シームレス缶は、優れた耐突き刺し性と共にフランジクラック耐性の点においても満足するものであるが、生産性の点で未だ十分満足するものではなかった。
 すなわち、樹脂被覆金属板を絞りしごき加工に賦すると、加工の際に金属粉の発生や発熱により、金属露出等の成形不良が生じる確率が高く、製品歩留まりが悪い等の問題を生じることがあるため、生産性及び経済性の点で未だ十分満足するものではなかった。またこのような成形不良の缶では、金属露出部を起点にした腐食が発生する危険性もあった。
 従って本発明の目的は、金属露出を生じることがなく、耐食性に優れ、また樹脂被覆の厚みを薄くしても耐突き刺し性が向上され、樹脂密着性に優れ、経済性に優れたアルミニウム製シームレス缶を提供することである。
 本発明の他の目的は、汎用ポリエステル樹脂を用いることができると共に、薄肉化も可能な樹脂被覆が施された樹脂被覆アルミニウム板を用いて、金属露出の発生を有効に低減することができ、しかもドライ条件で環境性よく、シームレス缶を経済性よく提供可能な製造方法を提供することである。
 本発明によれば、少なくとも缶内面側に樹脂被覆が施されたアルミニウム製絞りしごき缶において、缶内面側の被覆樹脂の引張強度が270乃至420MPaであることを特徴とするアルミニウム製絞りしごき缶が提供される。
 本発明のアルミニウム製絞りしごき缶においては、
1.缶内面側の樹脂被覆が、高結晶性ポリエステル樹脂から成る表層と低結晶性ポリエステル樹脂から成る下層の二層構成であり、表層と下層の厚み比が、1:5乃至9:1であること、
2.高結晶性ポリエステル樹脂が、イソフタル酸共重合量が0モル%以上3モル%未満のエチレンテレフタレート系ポリエステル樹脂であり、前記低結晶性ポリエステル樹脂が、イソフタル酸共重合量が10乃至18モル%のエチレンテレフタレート系ポリエステル樹脂であること、
が好適である。
 本発明によればまた、少なくとも缶内面側に樹脂被覆が施された樹脂被覆アルミニウム板を絞りしごき加工してなるアルミニウム製絞りしごき缶の製造方法であって、絞り比が1.1乃至2.6の範囲及びしごき率が50乃至80%の範囲であると共に、20乃至50℃に温調されたパンチを用いることを特徴とするアルミニウム製絞りしごき缶の製造方法が提供される。
 本発明のアルミニウム製絞りしごき缶の製造方法においては、樹脂被覆アルミニウム板が、リン酸クロム処理が施されたアルミニウム板に、高結晶性ポリエステル樹脂から成る表層と低結晶性ポリエステル樹脂から成り、且つ表層と下層の厚み比が1:5乃至9:1の範囲である二層構成の樹脂被覆を施したものであること、が好適である。
 本発明のアルミニウム製絞りしごき缶においては、缶内面側の被覆樹脂の引張強度が270乃至420MPaの範囲にあり、被覆樹脂の強度及び硬度が高いため、成形加工に伴う金属露出が有効に低減されており、腐食性成分に対するバリア性に優れ、優れた缶胴耐食性を有している。
 また本発明のアルミニウム製絞りしごき缶においては、樹脂被覆の加工密着性も優れていると共に、加工後の容器に内容物を充填し、経時させた場合にも、被覆の密着性やカバレージが完全に保たれており、巻締部耐食性にも優れている。
 本発明のアルミニウム製絞りしごき缶は、耐突き刺し性にも優れており、缶胴にデンティングを受けた場合でも、側壁部の損傷を有効に防止でき、流通時の破胴発生を有効に抑制し、内容物が噴出してしまうということが有効に防止されている。尚、後述する実施例で測定した突刺強度は、流通時の破胴発生状況と相関性があり、突刺強度が95N以上であれば破胴の発生は抑制され、また98N以上であれば、破胴の起点となる微小クラックの発生をも有効に抑制することが可能となる。
 更に本発明のアルミニウム製絞りしごき缶においては、缶内面側の被覆樹脂の引張強度が上記範囲にあり、被覆樹脂の強度が高められているため、被覆樹脂の厚みを従来よりも薄肉化することが可能となり、金属露出の発生率の低減による生産性の向上と相俟って、経済性にも優れている。
 本発明のこのような効果は後述する実施例の結果からも明らかである。
 すなわち、缶内面側の被覆樹脂の引張強度が270MPa未満となるような樹脂被覆アルミニウム板を絞りしごき成形した場合には、得られるアルミニウム製絞りしごき缶は、金属露出が生じやすく、生産性に劣っていると共に、缶胴耐食性及び耐突き刺し強度の点でも十分満足するものではない(比較例1)。一方缶内面側の被覆樹脂の引張強度が420MPaを上回る場合には、樹脂密着性に劣っている(比較例2)。また実施例1と同様の樹脂被覆アルミニウム板を用いてストレッチドロー成形により成形した場合には、金属露出が生じやすく、缶胴耐食性にも劣っている(比較例3)。
 これに対して本発明のアルミニウム製絞りしごき缶は、金属露出、缶胴耐食性、突刺し強度、樹脂被膜の密着性の全てが満足する結果が得られている(実施例1~10)。
 また本発明のアルミニウム製絞りしごき缶の缶内面側の樹脂被覆は上述した二層構成以外にも単層であってもよいが、単層構成の樹脂被覆は上述した二層構成の樹脂被覆に比して樹脂密着性が劣っており、二層構成のものがより優れていることが明らかである(実施例10)。
 このような特徴を有するアルミニウム製絞りしごき缶は、樹脂被覆アルミニウム板を、絞り比が1.1乃至2.6の範囲及びしごき率が50乃至80%の範囲で、20乃至50℃に温調されたパンチを用いて絞りしごき成形を行うことにより、缶の内面側の被覆樹脂の引張強度が上記範囲にある絞りしごき缶を、金属露出を生じることなく生産性よく得ることができる。
 すなわち、本発明の絞りしごき缶の製造方法によれば、絞り比を小さく、しごき量を大きくすることによって、絞り加工による大きな絞りしわの発生を抑制し、この絞りしわに起因する金属露出の発生を有効に抑制することが可能となる。また温調されたパンチを用いると共に、内面側となるべき面には強度の大きい樹脂被覆が形成されていることにより、水性潤滑剤及びクーラントを使用することなく、金属露出の発生を低減して効率よく絞りしごき加工を行うことが可能になる。
(アルミニウム板)
 本発明において、樹脂被覆を施すアルミニウム板としては、従来公知のアルミニウム板又はアルミニウム合金板等全て使用することができるが、好適には、Mn,Mg,Cu,Si,Feを含有するアルミニウム合金板(以下、アルミニウム合金板を含めて単に「アルミニウム板」ということがある)であることが特に望ましい。
 すなわち、Mnはアルミニウムの再結晶温度を高め、アルミニウム中のFeを化合物として晶出状態を変化させて缶体の耐食性などを向上させることから、0.1~1.5%(%は重量基準、以下同様)添加することが好ましい。Mnの添加量が0.1%未満であると缶体の耐食性が十分に得られず、一方、Mnの添加量が1.5%を超えると成形性が低下する。
 Mgは缶体の強度、成形性、耐食性などを向上させることから、0.8~5.0%添加することが好ましい。Mgの添加量が0.8%未満であると缶体の強度が十分に得られず、一方、Mgの添加量が5.0%を超えると成形性が低下し、割れ、しわなどが発生しやすくなる。
 Cuは缶体の強度を向上させることから、0.01~0.8%することが好ましい。Cuの添加量が0.01%未満であるとアルミニウム缶体の耐食性が十分に得られず、一方、Cuの添加量が0.8%を超えると成形性が低下する。
 Siは、MgSi中間層の析出により、缶体の強度、耐摩耗性などを向上させることから、0.03~0.6%添加することが好ましい。Siの添加量が0.03%未満であるとアルミニウム缶体の強度が十分に得られず、一方、Siの添加量が0.6%を超えると絞りしごき加工時の成形性が低下する。
 Feはアルミニウム合金板中のMnを化合物として晶出状態を変化させて缶体の耐食性などを向上させることから、0.05~0.8%添加することが好ましい。Feの添加量が0.05%未満であると缶体の強度が十分に得られず、一方、Feの添加量が0.8%を超えると成形性が低下する。
 具体的には、「JIS H 4000」における3000番台、5000番台、6000番台のアルミニウム合金を好適に使用することができる。
 アルミニウム板の厚みは、缶体強度、成形性の観点から一般に0.1~1.00mmの範囲内にあるのがよいが、成形後の缶胴側壁部の板厚(缶胴側壁部の樹脂被覆を除いたアルミニウム最小板厚)は0.110mm以下であることが好ましい。缶胴側壁部のアルミニウム最小板厚が0.110mmを超えると絞りしごき缶の目的である、缶胴側壁を減らしての省資源化が図れず、缶体のコスト削減を図ることができない。
(アルミニウム板の表面処理)
 アルミニウム板としては、被覆樹脂との加工密着性を高めるため、その表面に表面処理が施されたものを用いることが望ましい。
 表面処理としては、リン酸クロメート処理、その他の有機・無機系の表面処理等の従来アルミニウム板に行われていた処理を、冷間圧延されたアルミニウム板に浸漬、スプレー処理、或いは塗布することにより施すことができるが、好適にはリン酸クロメート処理が施されていることが望ましい。
 アルミニウム板にリン酸クロメート処理により処理皮膜を形成させる場合、積層される樹脂フィルムの加工密着性の観点から、クロム量は、トータルクロムとして5~40mg/mが好ましく、15~30mg/mの範囲がより好ましい。上記範囲よりもトータルクロム量が少ない場合には、表面処理による効果が不十分となり、上記範囲にある場合に比して樹脂被覆の加工密着性が低下するおそれがあり、一方上記範囲よりもトータルクロム量が多い場合には、経済性に劣ると共に、凝集破壊が発生することにより却って密着性が低下するおそれがある。
(樹脂被覆)
 上記表面処理アルミニウム板の缶内面となるべき面に施される樹脂被覆としては、製缶後の樹脂被覆の引張強度が270乃至420MPa、特に300乃至390MPaの範囲になる熱可塑性樹脂であれば任意のものを使用し得るが、特にポリエステル樹脂を好適に使用することができる。
 樹脂被覆は、ポリエステル樹脂の単層から成るものであってもよいが、本発明においては、少なくとも缶内面側となるべき面が、高結晶性ポリエステルから成る表層と低結晶性ポリエステル樹脂から成る下層の二層構成であることが特に好ましく、これにより成形による配向結晶を樹脂被覆に付与することができ、その結果、シームレス缶の缶内面側の樹脂被覆が高い強度及び硬度を有することが可能になる。
 本発明において、高結晶性ポリエステル樹脂は、下記測定法で測定した最小半結晶化時間が10~100秒の範囲にある樹脂を意味し、低結晶性ポリエステル樹脂は、最小半結晶化時間が300~1100秒の範囲にある樹脂を意味し、これらはいずれも結晶性の樹脂である。
 尚、最小半結晶化時間の測定方法は、以下の通りである。 
 樹脂ペレットを30℃にし、示差走査熱量計(DSC)で昇温速度100℃/minで290℃まで昇温し、290℃に3分間保持した後、冷却速度100℃/minで0℃まで急冷する。その後、昇温速度100℃/minで所定温度まで昇温し、その温度で恒温に設定して、「吸熱量-維持時間曲線」を得る。「吸熱量-維持時間曲線」の吸熱量がピークになるときの時間を「半結晶化時間」と定義する。これを100℃~200℃の間の温度で測定し、最も「半結晶化時間」の小さな値を「最小半結晶化時間」とする。
[表層]
 缶内面側となるべき面の樹脂被覆の表層を構成する高結晶性ポリエステルとしては、上述した最小半結晶化時間が10~100秒の範囲にある樹脂であり、特にジカルボン酸成分としてイソフタル酸共重合量が0モル%以上3モル%未満のエチレンテレフタレート系ポリエステル樹脂であることが好適である。上記範囲よりもイソフタル酸量が多い場合には、樹脂被覆に十分な強度を付与できず、耐突き刺し性、耐金属露出性及び缶胴耐食性が低下するおそれがあると共に、内容物中の香味成分の吸着に対して、十分なバリア効果を付与することが困難になるおそれがある。
 尚、本発明においてエチレンテレフタレート系ポリエステル樹脂とは、カルボン酸成分としてテレフタル酸を50モル%以上、特に70モル%以上の量含有し、アルコール成分としてエチレングリコール成分を50モル%以上、特に70モル%以上の量含有するものを意味する。
 また上記組成を満足する限り、エチレンテレフタレート系ポリエステル樹脂には、他の共重合成分を少量含有していてもよく、イソフタル酸、及びテレフタル酸成分以外のカルボン酸成分としては、これに限定されないが、ナフタレンジカルボン酸、p-β-オキシエトキシ安息香酸、ビフェニル-4,4’-ジカルボン酸、ジフェノキシエタン-4,4’-ジカルボン酸、5-ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、アジピン酸、セバシン酸、トリメリット酸、ピロメリット酸、ヘミメリット酸、1,1,2,2-エタンテトラカルボン酸、1,1,2-エタントリカルボン酸、1,3,5-ペンタントリカルボン酸、1,2,3,4-シクロペンタンテトロカルボン酸、ビフェニル-3,4,3’,4’-テトラカルボン酸、ダイマー酸等を挙げることができる。
 一方、エチレングリコール以外のアルコール成分としては、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-へキシレングリコール、ジエチレングリコール、トリエチレングリコール、シクロヘキサンジメタノール、ビスフェノールAエチレンオキサイド付加物、グリセロール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ソルビタン等のアルコール成分を挙げることができる。
 高結晶性ポリエステル樹脂は、フィルム形成範囲の分子量を有するべきであり、溶媒としてフェノール/テトラクロロエタン混合溶媒を用いて測定した固有粘度(IV)が0.55dL/g以上、特に0.6乃至1.0dL/gの範囲にあることが腐食成分に対するバリア性や機械的性質の点でよい。
 本発明において、樹脂被覆の表層を構成するポリエステル樹脂としては、ホモポリエチレンテレフタレート又はイソフタル酸を3モル%未満、特に2モル%以下の量で含有するポリエチレンテレフタレートを好適に用いることができる。
 また表層、後述する下層及び単層の何れにおいても、それ自体公知のフィルム用配合剤、例えば、非晶質シリカなどのアンチブロッキング材、二酸化チタン等の顔料、帯電防止剤、酸化防止剤、滑剤等を公知の処方によって配合することができる。
[下層]
 缶内面側となるべき面の樹脂被覆の下層を構成する低結晶性ポリエステル樹脂は、前述したように最小半結晶化時間が300~1100秒の範囲にあるポリエステル樹脂であり、特に、ジカルボン酸成分としてイソフタル酸共重合量が10乃至18モル%、特に13乃至17モル%の量で含有するエチレンテレフタレート系ポリエステル樹脂であることが好適である。上記範囲よりもイソフタル酸含有量が少ない場合には、加工後の金属(アルミニウム板)との樹脂密着性が不足するおそれがあり、一方上記範囲よりもイソフタル酸量が多い場合には、樹脂被覆に十分な強度を付与できず、耐金属露出性が低下し、缶胴耐食性が劣るおそれがある。
 低結晶性ポリエステル樹脂において、使用し得る他の共重合成分は、高結晶性ポリエステル樹脂について上述したものと同様のものを配合し得る。
 低結晶性ポリエステル樹脂は、フィルム形成範囲の分子量を有するべきであり、溶媒としてフェノール/テトラクロロエタン混合溶媒を用いて測定した固有粘度(IV)が0.55dL/g以上、特に0.6乃至1.0dL/gの範囲にあることが好ましい。
[単層]
 上述したように、本発明においては、樹脂被覆を単層構成とすることもできるが、この場合には、加工後の樹脂強度と樹脂密着性の両方を単層ポリエステル樹脂が具備する必要があることから、イソフタル酸を7乃至12モル%の範囲で含有するエチレンテレフタレート系ポリエステル樹脂を用いることが望ましい。尚、上述した二層構成の樹脂被覆と同様に少量の共重合成分を配合することも勿論できる。
[層厚み]
 本発明において、樹脂被覆を高結晶性ポリエステル樹脂から成る表層と低結晶性ポリエステル樹脂から成る下層の二層構成とする場合には、表層と下層の厚み比が、1:5乃至9:1、特に1:3乃至4:1の範囲にあることが好適である。
 上記範囲よりも表層の厚みが厚い場合には、樹脂強度が高くなりすぎて、フランジ部などの強加工部で加工後の樹脂密着性に劣るようになり、巻締部に腐食を発生するおそれがある。一方、上記範囲よりも表層の厚みが薄い場合には、樹脂強度が低くなり、絞りしごき成形により金属露出が生じやすく、缶胴耐食性に劣るようになる。
 また樹脂被覆の厚みは、二層構成及び単層の何れの場合においても10乃至40μm、特に14乃至35μmの範囲にあることが好適であり、上記範囲よりも厚い場合には、フランジ部などの強加工部で加工後の樹脂密着性に劣るようになり巻締部に腐食を発生するおそれがあり、一方上記範囲よりも薄い場合には、絞りしごき成形により金属露出が生じやすく、缶胴耐食性に劣るようになる。
[樹脂被覆アルミニウム板]
 本発明においては、アルミニウム板の缶内面側となるべき面に上述した二層構成或いは単層の樹脂被覆が施されるが、公知の積層方法によりアルミニウム板表面に被覆することができる。好適には、多層キャストフィルムのラミネーション、または共押出コートにより、未延伸未配向の状態に形成されていることが、加工性の点から特に好ましい。
 多層キャストフィルムのラミネーションは、表層及び下層を構成するポリエステル樹脂、例えばPET/IAチップをそれぞれ別の押出機に入れ、加熱溶融してダイよりシート状に押出し、キャスティングドラム上で冷却固化することにより形成される。
 一方、共押出コートは2台の押出機を使用し、表層及び下層のPET/IA樹脂をダイに供給し押出すことにより形成される。
 本発明においては、多層キャストフィルムのラミネーション又は共押出コートにより積層フィルムとされることにより、接着剤を使用することなく、強固に層間接着が可能となって、加工性を向上することができるが、勿論、接着剤を用いることを制限するものではなく、アルミニウム板との接着に従来公知の接着用プライマーを用いることもできる。
 この接着用プライマーとしては、金属素材とフィルムとの両方に優れた接着性を示す、例えば、種々のフェノールとホルムアルデヒドから誘導されるレゾール型フェノールアルデヒド樹脂と、ビスフェノール型エポキシ樹脂とから成るフェノールエポキシ系塗料であり、特にフェノール樹脂とエポキシ樹脂を50:50乃至1:99の重量比、特に40:60乃至5:95の重量比で含有する塗料である。接着プライマー層は一般に0.01乃至10μmの厚みに設けるのがよい。接着プライマー層は予め表面処理アルミニウム板上に設けてもよく、或いはポリエステルフィルムに設けてもよい。
 尚、単層の場合においても、二層構成の場合と同様に、キャストフィルムのラミネーション及び押出コート法により樹脂被覆することができる。
 アルミニウム板の缶外面側となるべき面には、通常の缶用塗料や従来樹脂被覆金属板に使用されている樹脂フィルム被覆を用いることができる。
 樹脂フィルム被覆は単層でもよいが、二層構成にして、表層にはイソフタル酸含有量が7乃至14モル%のポリエチレンテレフタレート/イソフタレートを印刷インキ密着性と樹脂強度の面から使用することが好ましく、下層にはイソフタル酸含有量が10乃至18モル%のポリエチレンテレフタレート/イソフタレートを加工後の樹脂密着性の面から使用することが好ましい。また表層と下層に加飾の面から二酸化チタンなどの顔料を添加してもよい。更に、三層構成にして表層と下層の間に例えば二酸化チタンを多く含んだ層を設けてもよい。
(絞りしごき缶の製造方法)
 本発明においては、上述した樹脂被覆アルミニウム板を従来公知の絞りしごき成形に付することにより絞りしごき缶を成形する。絞りしごき成形に先立って樹脂被覆アルミニウム板の表面には、食品衛生上問題がなく、200℃程度の加熱で容易に揮発除去可能な、ワックス系潤滑剤、例えば、グラマーワックス、流動パラフィン、合成パラフィン、白色ワセリン、パーム油、各種天然ワックス、ポリエチレンワックス等を塗布することが好ましく、これによりドライ条件下で効率よく絞りしごき加工を行うことができる。
 ワックス系潤滑剤が塗布された樹脂被覆アルミニウム板を、カッピング・プレスで、ブランクを打抜き、絞り加工法により、絞りカップを成形する。
 本発明においては、下記式(1)で定義される絞り比Rが、トータルで1.1乃至2.6の範囲、特に2.0乃至2.6の範囲にあることが望ましい。上記範囲よりも絞り比が大きいと、絞りしわが大きくなり、樹脂被覆に亀裂が発生して金属露出を発生するおそれがある。
   R=D/d ・・・(1)
 式中、Dはブランク径、dは缶胴径を表す。
 次いで、前記絞りカップを、再絞り-一段又は数段階のしごき加工を行うが、この際本発明においては、成形パンチの温度が20乃至50℃となるように温度調節されていることが好ましい。
 上記範囲よりもパンチ温度が低いと、樹脂被覆アルミニウム板に塗布したワックス系潤滑剤が十分に滑性を示すことができず、パンチのシームレス缶からの抜け不良により樹脂被覆に割れを発生し、金属露出を生ずるおそれがある。一方上記範囲よりもパンチ温度が高い場合には、ポリエステル樹脂のガラス転移温度に近似し、樹脂がパンチに粘着し、成形不良(破胴)を生じるおそれがあり、かつ成形に伴う樹脂の肌荒れが大きくなるため金属露出を生じるおそれがある。
 本発明においては、下記式(2)で表されるしごき率Rが、50乃至80%の範囲にあることが望ましい。上記範囲よりもしごき率が低いと、十分に薄肉化できず、経済性の点で十分満足するものではなく、一方上記範囲よりもしごき率が高い場合には、樹脂の成形限界での金属露出や、巻締加工での金属露出のおそれがある。
  R=(tb-tw)/tb ・・・(2)
 式中、tbは表面処理アルミニウム板の金属素板厚み、twは絞りしごき缶の樹脂被覆を除いた金属部分の厚みを表す。
 得られた絞りしごき缶を、常法に従って底部のドーミング成形及び開口端縁のトリミング加工を行う。必要に応じ、樹脂被覆の残留ひずみを除去するための熱処理を行った後、缶胴外面に印刷インキ及び仕上げニスを施して焼付けし、ネック加工及びフランジ加工を施すことにより、本発明のアルミニウム製絞りしごき缶(シームレス缶)が完成される。
<内面樹脂ペレットの最小半結晶化時間>
 実施例・比較例で使用した内面樹脂の最小半結晶化時間は次のとおりであった。
  (1)ホモPET樹脂(イソフタル酸0モル%)ペレット(表1中の
    「IA0」):38秒
  (2)イソフタル酸2モル%のPET/IA共重合樹脂ペレット(表
    1中の「IA2」):70秒
  (3)イソフタル酸2.5モル%のPET/IA共重合樹脂ペレット
    (表1中の「IA2.5」):75秒
  (4)イソフタル酸5モル%のPET/IA共重合樹脂ペレット(表
    1中の「IA5」):113秒
  (5)イソフタル酸8モル%のPET/IA共重合樹脂ペレット(表
    1中の「IA8」):230秒
  (6)イソフタル酸10モル%のPET/IA共重合樹脂ペレット
    (表1中の「IA10」):384秒
  (7)イソフタル酸15モル%のPET/IA共重合樹脂ペレット
    (表1中の「IA15」):642秒
  (8)イソフタル酸18モル%のPET/IA共重合樹脂ペレット
    (表1中の「IA18」):980秒
<缶胴側壁部のフィルム引張強度の測定>
 缶胴側壁部のフィルム引張強度を測定するために、得られたシームレス缶の側壁を塩酸に浸漬して金属部分を除去して缶胴内面側フィルムを単離し、幅5mm・長さ50mmの試験片を切り出し、引張試験片とした。引張試験片は、引張方向が缶軸方向(缶高さ方向)となるようにし、かつ缶胴側壁部フィルム厚の最も薄い位置(実施例である350ml缶では缶底から60mmの位置)が試験片中央部となるようにした。ゲージ長さは20mm、引張試験速度は10mm/minで行った。
<金属露出缶発生率評価>
 得られたシームレス缶200缶について、エナメルレーターを用いて通電することにより金属露出を測定し、0.5mA以上の電流値の缶の占有率として評価した。エナメルレーターの測定条件は、電圧6Vで電圧印加開始から4秒後の電流値を測定値とした。電解液は、1重量%塩化ナトリウム水溶液に0.02重量%の界面活性剤を添加した液であった。次の基準で評点とした。○と△が許容範囲である。
 ○:占有率が1%以下
 △:占有率が1%を上回り、3%以下
 ×:占有率が3%を上回る
<缶胴耐食性評価>
 得られたシームレス缶100缶に、「0.2重量%クエン酸+0.1重量%塩化ナトリウム」水溶液を室温で充填し、巻締めし、37℃・3ヶ月間保管した。その後、開缶し缶胴内面の腐食状態を視覚で観察した。評価は次の基準で行った。○と△が許容範囲である。
 ○:全缶に腐食点がなかった
 △:実用上問題ないレベルの腐食点が2缶にあった
 ×:明らかな腐食が4缶にあった
<突刺し強度評価>
 得られたシームレス缶に水を充填した後、缶開口部からエアーで内圧190kPaを付与した。次に、圧縮試験機に突刺し針を装着し、突刺し針が缶高さ方向で缶胴側壁部板厚の最も薄い位置(缶底から60mmの位置)となるように水が充填されたシームレス缶をセットし、缶胴側壁部の突刺強度を測定した。突刺し針の先端の半径は2.25mmとし、突刺し針の下降速度は200mm/minとした。各実施例及び比較例について5缶ずつ行い、平均値を計算し、次の基準で評価した。○と△が許容範囲である。
 ○:突刺強度が、98N以上
 △:突刺強度が、98N未満で95N以上
 ×:突刺強度が、95N未満
<樹脂密着性評価>
 得られたシームレス缶50缶について、フランジ先端の内面樹脂を視覚で観察し、樹脂と金属との密着性を評価した。評価は50缶中の最も樹脂剥離の大きい缶について以下の基準で行った。○、△が許容範囲である。
 ○:剥離なし
 △:わずかに剥離があるが許容レベルである
 ×:明らかな剥離がある
<総合評価>
 金属露出缶発生率、缶胴耐食性、突刺し強度、樹脂密着性の各評価をもとに、次の基準で総合評価を行った。○、△が許容範囲である。
 ○ :すべての評価が「○」である
 △:少なくとも一つの評価に「△」があり、且つすべての評価に「×」がない
 × :いずれかの評価に「×」がある
(実施例1)
[樹脂被覆鋼板の作製]
 基板である表面処理アルミニウム合金板は、板厚0.28mmのJIS3104アルミニウム合金板の両面にリン酸クロム系表面処理を行い、クロム量として20mg/m、とした。この基板に、イソフタル酸量2モル%のポリエチレンテレフタレート/イソフタレート(PET/IA)共重合樹脂が表層、イソフタル酸量15モル%のPET/IA共重合樹脂が下層である無延伸フィルム(全体フィルム厚み16μm)を缶内面に相当する面にして、厚み16μmのイソフタル酸量10モル%のPET/IA共重合樹脂から成る無延伸フィルムを缶外面に相当する面にして、250℃の金属板温度で内外面同時に熱ラミネートし、ワックス系潤滑剤を塗布して樹脂被覆アルミニウム合金板を作製した。
 缶内面側無延伸フィルム作製にあたっては、イソフタル酸量2モル%の共重合樹脂ペレットを押出機のホッパーに供給して表層樹脂とし、イソフタル酸量15モル%の共重合樹脂を別の押出機のホッパーに供給して下層樹脂として、Tダイで共押出しし、押出し直後に冷却ロールで冷却することにより、樹脂厚み16μmで表層厚み比率が0.50の無延伸・無配向・非結晶の二層樹脂フィルムを作製した。缶外面側無延伸フィルム作製にあたっては、樹脂をイソフタル酸量10モル%のPET/IA共重合樹脂単層にして厚みを16μmにしたこと以外は缶内面側樹脂と同様にして無延伸・無配向・非結晶の単層樹脂フィルムを作製した。
[樹脂被覆シームレス缶の作製]
 得られた樹脂被覆鋼板を円盤状に打ち抜き、その後表1に示すような加工条件(絞り比、しごき率、しごき加工時のパンチ温度)で絞りしごき成形を行い、開口端縁部をトリミングし、カップを加熱して樹脂の成形ひずみを除去したのち、印刷インキと仕上げニスを缶胴外面に塗布し、オーブンで焼付けを行った。その後、ネック加工し、フランジ加工して、缶径66mm、缶高さ122mm、内容量350mlの樹脂被覆シームレス缶を作製した。しごき加工時のパンチ温度は、パンチ内部への温調水温度で表した。
 得られたシームレス缶について、金属露出缶発生率、缶胴耐食性、突刺し強度、樹脂密着性の各評価を行った。得られたシームレス缶の内面樹脂仕様、成形条件、評価結果を表1に示す。
(実施例2)
 内面表層樹脂をイソフタル酸量2.5モル%のPET/IA共重合樹脂にし、内面樹脂中の表層厚み比率を0.25にしたこと以外は実施例1と同様にして樹脂被覆シームレス缶を作製し、実施例1と同様にして評価を行った。得られたシームレス缶の内面樹脂仕様、成形条件、評価結果を表1に示す。
(実施例3)
 内面樹脂中の表層厚み比率を0.80にしたこと以外は実施例1と同様にして樹脂被覆シームレス缶を作製し、実施例1と同様にして評価を行った。得られたシームレス缶の内面樹脂仕様、成形条件、評価結果を表1に示す。
(実施例4)
 内面表層樹脂をホモPETにし、内面樹脂中の表層厚み比率を0.25にしたこと以外は実施例1と同様にして樹脂被覆シームレス缶を作製し、実施例1と同様にして評価を行った。得られたシームレス缶の内面樹脂仕様、成形条件、評価結果を表1に示す。
(実施例5)
 内面表層樹脂をイソフタル酸量2.5モル%のPET/IA共重合樹脂にし、内面下層樹脂をイソフタル酸量10モル%の共重合樹脂にし、内面樹脂中の表層厚み比率を0.50にしたこと以外は実施例1と同様にして樹脂被覆シームレス缶を作製し、実施例1と同様にして評価を行った。得られたシームレス缶の内面樹脂仕様、成形条件、評価結果を表1に示す。
(実施例6)
 内面下層樹脂をイソフタル酸量18モル%のPET/IA共重合樹脂にし、内面樹脂中の表層厚み比率を0.50にしたこと以外は実施例1と同様にして樹脂被覆シームレス缶を作製し、実施例1と同様にして評価を行った。得られたシームレス缶の内面樹脂仕様、成形条件、評価結果を表1に示す。
(実施例7)
 内面樹脂中の表層厚み比率を0.25にし、しごき加工時のパンチ温度を20℃にしたこと以外は実施例1と同様にして樹脂被覆シームレス缶を作製し、実施例1と同様にして評価を行った。得られたシームレス缶の内面樹脂仕様、成形条件、評価結果を表1に示す。
(実施例8)
 内面樹脂中の表層厚み比率を0.25にし、しごき加工時のパンチ温度を50℃にしたこと以外は実施例1と同様にして樹脂被覆シームレス缶を作製し、実施例1と同様にして評価を行った。得られたシームレス缶の内面樹脂仕様、成形条件、評価結果を表1に示す。
(実施例9)
 絞り比を2.6にし、しごき率を63%にして、缶径53mm、缶高さ133mm、内容量250mlの樹脂被覆シームレス缶にしたこと以外は実施例1と同様にして樹脂被覆シームレス缶を作製し、実施例1と同様にして評価を行った。得られたシームレス缶の内面樹脂仕様、成形条件、評価結果を表1に示す。
(実施例10)
 内面樹脂をイソフタル酸量8モル%のPET/IA共重合樹脂単層にしたこと以外は実施例1と同様にして樹脂被覆シームレス缶を作製し、実施例1と同様にして評価を行った。得られたシームレス缶の内面樹脂仕様、成形条件、評価結果を表1に示す。
(比較例1)
 内面表層樹脂をイソフタル酸量5モル%のPET/IA共重合樹脂にし、内面樹脂中の表層厚み比率を0.25にしたこと以外は実施例1と同様にして樹脂被覆シームレス缶を作製し、実施例1と同様にして評価を行った。得られたシームレス缶の内面樹脂仕様、成形条件、評価結果を表1に示す。
(比較例2)
 内面下層樹脂をイソフタル酸量10モル%のPET/IA共重合樹脂にし、内面樹脂中の表層厚み比率を0.80にしたこと以外は実施例1と同様にして樹脂被覆シームレス缶を作製し、実施例1と同様にして評価を行った。得られたシームレス缶の内面樹脂仕様、成形条件、評価結果を表1に示す。
(比較例3)
 内面樹脂中の表層厚み比率を0.50にし、成形方法をストレッチドロー成形にし、絞り比を2.7にし、しごき率を30%にしたこと以外は実施例1と同様にして樹脂被覆シームレス缶を作製し、実施例1と同様にして評価を行った。得られたシームレス缶の内面樹脂仕様、成形条件、評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明のアルミニウム製絞りしごき缶は、金属露出がなく缶胴耐食性に優れており、しかも加工後の樹脂密着性も優れていると共に、巻締部耐食性にも優れている。また本発明のアルミニウム製絞りしごき缶は、樹脂被覆の厚みを薄くしても耐突き刺し性が向上されているため、経済性にも優れている。更に本発明のアルミニウム製絞りしごき缶の製造方法は、上記アルミニウム製絞りしごき缶を、金属露出缶発生率を抑制して生産することが可能であり、環境性、生産性、経済性よく製造することが可能である。
 このため本発明のアルミニウム製絞りしごき缶は、大量生産される飲料缶等に好適に使用できるのは勿論、腐食性の内容物を充填する用途の缶としても有効に使用することができる。

Claims (5)

  1.  少なくとも缶内面側に樹脂被覆が施されたアルミニウム製絞りしごき缶において、缶内面側の被覆樹脂の引張強度が270乃至420MPaであることを特徴とするアルミニウム製絞りしごき缶。
  2.  前記缶内面側の樹脂被覆が、高結晶性ポリエステル樹脂から成る表層と低結晶性ポリエステル樹脂から成る下層の二層構成であり、表層と下層の厚み比が、1:5乃至9:1である請求項1記載のアルミニウム製絞りしごき缶。
  3.  前記高結晶性ポリエステル樹脂が、イソフタル酸共重合量が0モル%以上3モル%未満のエチレンテレフタレート系ポリエステル樹脂であり、前記低結晶性ポリエステル樹脂が、イソフタル酸共重合量が10乃至18モル%のエチレンテレフタレート系ポリエステル樹脂である請求項2記載のアルミニウム製絞りしごき缶。
  4.  少なくとも缶内面側に樹脂被覆が施された樹脂被覆アルミニウム板を絞りしごき加工してなるアルミニウム製絞りしごき缶の製造方法であって、絞り比が1.1乃至2.6の範囲及びしごき率が50乃至80%の範囲であると共に、20乃至50℃に温調されたパンチを用いることを特徴とするアルミニウム製絞りしごき缶の製造方法。
  5.  前記樹脂被覆アルミニウム板が、リン酸クロム処理が施されたアルミニウム板に、高結晶性ポリエステル樹脂から成る表層と低結晶性ポリエステル樹脂から成り、且つ表層と下層の厚み比が1:5乃至9:1の範囲である二層構成の樹脂被覆を施したものである請求項4記載のアルミニウム製絞りしごき缶の製造方法。
PCT/JP2010/059358 2009-07-22 2010-06-02 アルミニウム製絞りしごき缶及びその製造方法 WO2011010508A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10802129.6A EP2457840B1 (en) 2009-07-22 2010-06-02 Aluminum drawn/ironed can and method for producing same
US13/320,577 US8647729B2 (en) 2009-07-22 2010-06-02 Draw-ironed aluminum can and method of producing the same
CN201080031480.8A CN102470952B (zh) 2009-07-22 2010-06-02 拉深减薄的铝罐及其生产方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009170861A JP5609036B2 (ja) 2009-07-22 2009-07-22 アルミニウム製絞りしごき缶及びその製造方法
JP2009-170861 2009-07-22

Publications (1)

Publication Number Publication Date
WO2011010508A1 true WO2011010508A1 (ja) 2011-01-27

Family

ID=43498984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059358 WO2011010508A1 (ja) 2009-07-22 2010-06-02 アルミニウム製絞りしごき缶及びその製造方法

Country Status (5)

Country Link
US (1) US8647729B2 (ja)
EP (1) EP2457840B1 (ja)
JP (1) JP5609036B2 (ja)
CN (1) CN102470952B (ja)
WO (1) WO2011010508A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5609036B2 (ja) * 2009-07-22 2014-10-22 東洋製罐株式会社 アルミニウム製絞りしごき缶及びその製造方法
EP2818540A1 (en) 2013-06-26 2014-12-31 Barokes PTY Ltd. Beverage container coated with a resveratrol layer
JP6244729B2 (ja) * 2013-08-07 2017-12-13 東洋製罐株式会社 樹脂被覆シームレスアルミニウム缶
CN104441832A (zh) * 2014-12-23 2015-03-25 常熟市东方特种金属材料厂 一种多层合金带材
PL3237295T3 (pl) 2014-12-23 2023-06-26 Intelligent Packaging Pty Ltd. Sposób wytwarzania pojemnika na towar konsumpcyjny, powlekanego warstwą zawierającą resweratrol
EP3708513A1 (en) 2014-12-23 2020-09-16 Intelligent Packaging Pty Ltd. Container for a consumable good, coated with antioxidant-containing layer
DE102016205913A1 (de) * 2016-04-08 2017-10-12 Mitsubishi Polyester Film Gmbh Biaxial orientierte Polyesterfolie für die Metalllaminierung
CN107758033A (zh) * 2016-08-15 2018-03-06 泗阳县苏盛金属容器有限公司 铝储罐
WO2018079434A1 (ja) * 2016-10-25 2018-05-03 東洋製罐株式会社 アルミニウム缶
JP7355485B2 (ja) * 2018-02-02 2023-10-03 東洋製罐株式会社 ワイン用アルミニウム製容器
JP7184196B2 (ja) * 2019-07-05 2022-12-06 日本製鉄株式会社 樹脂フィルムラミネート金属板、および、その製造方法
JP2021158014A (ja) * 2020-03-27 2021-10-07 大和製罐株式会社 電池ケースの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058087A1 (fr) * 1999-03-25 2000-10-05 Toyo Kohan Co., Ltd. Tole de metal enduite de resine de polyester, et boite de conserve utilisant cette tole
JP2001246695A (ja) 2000-03-02 2001-09-11 Toyo Seikan Kaisha Ltd 樹脂被覆シームレス缶
JP2002178048A (ja) * 2000-12-12 2002-06-25 Toyo Seikan Kaisha Ltd 樹脂被覆アルミニウム・シームレス缶体の製造方法
JP2002193255A (ja) * 2000-12-25 2002-07-10 Mitsubishi Materials Corp ラミネート缶蓋
WO2004113181A1 (ja) 2003-06-23 2004-12-29 Toyo Seikan Kaisha, Ltd. 流通時の破胴耐性およびフランジクラック耐性に優れた樹脂被覆アルミニウム・シームレス缶体
JP2005335785A (ja) * 2004-05-28 2005-12-08 Mitsubishi Materials Corp 缶蓋
JP2005342912A (ja) * 2004-05-31 2005-12-15 Jfe Steel Kk 容器用樹脂被覆金属板
JP2005342911A (ja) * 2004-05-31 2005-12-15 Jfe Steel Kk 容器用樹脂被覆金属板

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741934A (en) * 1985-04-19 1988-05-03 Nippon Steel Corporation Steel sheet for making cans, cans and a method making cans
JPS6312445A (ja) * 1986-06-24 1988-01-19 東洋製罐株式会社 イ−ジイオ−プン蓋付缶体及びその製法
JPH07106394B2 (ja) * 1989-05-17 1995-11-15 東洋製罐株式会社 絞りしごき缶の製造方法
JPH0757386B2 (ja) * 1989-10-18 1995-06-21 東洋製罐株式会社 薄肉化絞り缶の製造方法
JP3350057B2 (ja) * 1996-04-10 2002-11-25 東洋鋼鈑株式会社 絞りしごき缶用樹脂被覆アルミニウム合金板の製造方法
US6099924A (en) * 1996-07-22 2000-08-08 Toyo Seikan Daisha, Ltd. Laminate and container made of the same
WO2001040357A1 (fr) * 1999-12-03 2001-06-07 Toray Industries, Inc. Film polyester etire bi-axialement pour formage
US7068163B2 (en) * 2001-07-17 2006-06-27 Sari Philip D Method and apparatus for identifying waypoints using a handheld locator device
JP4125163B2 (ja) * 2003-03-20 2008-07-30 三菱アルミニウム株式会社 缶蓋用ポリエステル樹脂被覆アルミニウム合金板およびその製造方法
WO2005115744A1 (ja) 2004-05-31 2005-12-08 Jfe Steel Corporation 樹脂被覆金属板
EP1849813B1 (en) * 2005-02-15 2014-07-09 Toyo Seikan Kaisha, Ltd. Polyester resin for metal plate coating, resin-coated metal plate making use of the same, and metal can and lid
JP2009078303A (ja) 2009-01-21 2009-04-16 Toyo Seikan Kaisha Ltd 樹脂被覆金属シームレス缶体の製造装置
JP5609036B2 (ja) * 2009-07-22 2014-10-22 東洋製罐株式会社 アルミニウム製絞りしごき缶及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058087A1 (fr) * 1999-03-25 2000-10-05 Toyo Kohan Co., Ltd. Tole de metal enduite de resine de polyester, et boite de conserve utilisant cette tole
JP2001246695A (ja) 2000-03-02 2001-09-11 Toyo Seikan Kaisha Ltd 樹脂被覆シームレス缶
JP2002178048A (ja) * 2000-12-12 2002-06-25 Toyo Seikan Kaisha Ltd 樹脂被覆アルミニウム・シームレス缶体の製造方法
JP2002193255A (ja) * 2000-12-25 2002-07-10 Mitsubishi Materials Corp ラミネート缶蓋
WO2004113181A1 (ja) 2003-06-23 2004-12-29 Toyo Seikan Kaisha, Ltd. 流通時の破胴耐性およびフランジクラック耐性に優れた樹脂被覆アルミニウム・シームレス缶体
JP2005335785A (ja) * 2004-05-28 2005-12-08 Mitsubishi Materials Corp 缶蓋
JP2005342912A (ja) * 2004-05-31 2005-12-15 Jfe Steel Kk 容器用樹脂被覆金属板
JP2005342911A (ja) * 2004-05-31 2005-12-15 Jfe Steel Kk 容器用樹脂被覆金属板

Also Published As

Publication number Publication date
CN102470952A (zh) 2012-05-23
EP2457840B1 (en) 2018-10-17
JP5609036B2 (ja) 2014-10-22
US8647729B2 (en) 2014-02-11
US20120091150A1 (en) 2012-04-19
CN102470952B (zh) 2014-08-27
EP2457840A4 (en) 2014-04-02
EP2457840A1 (en) 2012-05-30
JP2011025935A (ja) 2011-02-10

Similar Documents

Publication Publication Date Title
JP5609036B2 (ja) アルミニウム製絞りしごき缶及びその製造方法
JP6309741B2 (ja) 樹脂被覆金属板及びシームレス缶
JP2001246695A (ja) 樹脂被覆シームレス缶
JP2017512685A (ja) 金属基材に積層するための多層構造を有するポリエステルフィルム、そのようなポリエステルフィルムを有する金属基材、およびこの金属基材から製造された構成部材を有する容器
US8465815B2 (en) Resin-coated metal sheet and seamless can made therefrom
JP5609012B2 (ja) スチール製絞りしごき缶及びその製造方法
JP2001347605A (ja) 樹脂被覆金属板、金属缶及び缶蓋
JP2001353812A (ja) 樹脂被覆シームレス缶
US9758272B2 (en) Resin-coated seamless aluminum can
JP4967208B2 (ja) 自己潤滑性を有する樹脂被覆金属板及びその製造方法、並びに金属缶及び缶蓋
JP4775532B2 (ja) 樹脂被覆シームレス缶
JP4079207B2 (ja) 樹脂被覆シームレス缶
JP3897091B2 (ja) 樹脂被覆シームレス缶
JP4654617B2 (ja) リシール缶
JP4288870B2 (ja) 樹脂被覆シームレス缶
JP2003026138A (ja) 樹脂被覆シームレス缶
JP2001353811A (ja) 樹脂被覆シームレス缶
JPH11216805A (ja) 積層体及びそれを用いた容器
JP4288869B2 (ja) 樹脂被覆シームレス缶
JP2001253032A (ja) 熱可塑性樹脂フィルム、熱可塑性樹脂フィルム被覆金属板およびそれを用いた缶
JP2003001760A (ja) 樹脂被覆シームレス缶

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080031480.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802129

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010802129

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13320577

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1201000098

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE