WO2011071199A1 - System and method for position-tracking - Google Patents

System and method for position-tracking Download PDF

Info

Publication number
WO2011071199A1
WO2011071199A1 PCT/KR2009/007380 KR2009007380W WO2011071199A1 WO 2011071199 A1 WO2011071199 A1 WO 2011071199A1 KR 2009007380 W KR2009007380 W KR 2009007380W WO 2011071199 A1 WO2011071199 A1 WO 2011071199A1
Authority
WO
WIPO (PCT)
Prior art keywords
overlapping area
location
step value
circles
receiving
Prior art date
Application number
PCT/KR2009/007380
Other languages
French (fr)
Korean (ko)
Inventor
박현수
Original Assignee
(주)한울옵틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)한울옵틱스 filed Critical (주)한울옵틱스
Priority to PCT/KR2009/007380 priority Critical patent/WO2011071199A1/en
Publication of WO2011071199A1 publication Critical patent/WO2011071199A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0294Trajectory determination or predictive filtering, e.g. target tracking or Kalman filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/06Systems for determining distance or velocity not using reflection or reradiation using radio waves using intensity measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present invention relates to a position tracking system and a method thereof, and more particularly, to reduce the load on the server by expanding or reducing the intuitive graphical circle without using a formula such as conventional triangulation, indoor or outdoor or
  • the present invention relates to a location tracking system and method capable of offsetting errors in radio waves due to weather and the like.
  • triangulation is a simple geometric method and is the most commonly used method for estimating the real-time position of an object moving on a two-dimensional plane in a position tracking system (RTLS).
  • RTLS position tracking system
  • At least three reference points are required to estimate the real time position of a moving object on a two-dimensional plane (hereinafter, only a two-dimensional plane is assumed). Such reference points are referred to as AP1, AP2, and AP3, and the coordinates of each AP are referred to as (x 1 , y 1 ), (x 2 , y 2 ), and (x 3 , y 3 ) as shown in FIG. 1.
  • the moving object is represented by M
  • the current position is called (x, y)
  • the distance from the moving object M to three reference points is called d 1 , d 2 , d 3 .
  • the distance between each reference point from the moving object M can be simply calculated by the Pythagorean theorem.
  • the values of d 1 , d 2 , d 3 can be obtained by various methods. For example, it may be obtained using the relationship with the received signal strength RSSI, or may be obtained by using the arrival time TOA or the arrival time difference TDOA. Therefore, it is assumed here that the values of d 1 , d 2 and d 3 are known. In addition, since the coordinate values of three reference points are also known, the value of (x, y) which is the current position of a moving object can be calculated
  • the distance is calculated in the same way, and substituted into equations (1) to (3) to obtain the coordinate values of (x, y), which are the current positions of the moving object.
  • An object of the present invention is to provide a location tracking system that can reduce the load on the server by expanding or reducing the intuitive graphical circle, the operation speed is fast, and can cancel the error of the radio wave due to the weather.
  • An object of the present invention is to provide a location tracking system that can be usefully used for shopping or tourist attractions, museums, container location tracking, construction site material management.
  • the present invention is a position tracking system including receivers receiving a radio wave of a tag distributed in a grid form of a uniform interval, receiving the position signal strength data from the receiver receiving the position signal generated by the tag through the gateway A database to store and derive a distance separated from three or more of the receivers based on the data to generate three or more circles with a radius of the derived distance, the maximum overlapping area if there is an overlapping area Or if there is no overlapping area, create a stepped circle with a radius that adds the general location step value to the derived distance until there is an overlapping area with a preset general location step value. It includes a location tracking server of your choice.
  • the location tracking server After the maximum overlap region is selected, the location tracking server generates a stepped circle having a radius of the derived distance as a precision location step value minimizing the general location step value when more precise location determination is required.
  • the location tracking server receives an area value indicating the location tracking precision from the terminal and selects a maximum overlapping area from an overlapping area corresponding to the area value.
  • the tag is preferably used attached to the mobile terminal.
  • the present invention provides a method of setting a pixel, a step value and an area value, receiving a radio wave of a tag through a receiver distributed in a uniformly spaced grid, and receiving a position signal at which the tag oscillates.
  • Receiving data and storing the data in a database receiving the data through a location tracking server, deriving a distance spaced from the receiver based on the data, and determining the derived distance through the location tracking server.
  • a stepped circle of radius is generated by adding the general position step value to the derived distance, so that the overlapped area is If reallocation comprises a step of selecting a maximum overlapping area.
  • the present invention further includes the step of generating a stepped circle having a radius of the derived distance with a precision position step value which minimizes the general position step value after the maximum overlapping area is selected, when more accurate precision positioning is required.
  • the present invention may further include receiving a region value from the terminal and selecting a maximum overlap region in the overlap region corresponding to the region value.
  • the present invention can reduce the load on the server by expanding or reducing the intuitive graphical circle without using a formula such as a conventional triangulation, fast operation speed, and has the effect of offsetting the error of the radio wave due to weather have.
  • the present invention can track the exact location in software only by the existing receiver, etc. without additional configuration, there is an effect that can be usefully used for shopping places, tourist attractions, museums, container location tracking, construction site materials management.
  • 1 is a view for explaining the triangulation according to the position tracking according to the conventional invention.
  • Figure 2 is a view showing the overall configuration around the location tracking server of the location tracking system according to the present invention and the configuration module of the location tracking server.
  • FIG. 3 is a diagram illustrating a distance according to signal strength by receiving position signal strength data centering on receivers of the position tracking system according to the present invention as a graphic circle.
  • Figure 4 shows that the position tracking system according to the present invention generates a stepped circle of radius which adds the general position step value to the derived distance until there is an overlapping area with a preset general position step value.
  • FIG. 5 shows the creation of a stepped circle of radius minus the normal position step value of FIG.
  • FIG. 6 is a diagram illustrating that a predetermined portion is overlapped and the weight is calculated in an overlapped region according to the results of FIGS. 4 and 5.
  • Figure 7 shows that the location tracking system according to the present invention selects the maximum overlapping area from the weights in the overlapping area.
  • FIG. 8 is a view showing that the position tracking system according to the present invention extends to an overlapping area corresponding to an area value and selects a center among the maximum overlapping areas;
  • FIG. 9 is a flowchart schematically showing a sequence of a location tracking method according to the present invention.
  • the present invention is a position tracking system including receivers receiving a radio wave of a tag distributed in a grid form of a uniform interval, receiving the position signal strength data from the receiver receiving the position signal generated by the tag through the gateway A database to store and derive a distance separated from three or more of the receivers based on the data to generate three or more circles with a radius of the derived distance, the maximum overlapping area if there is an overlapping area Or if there is no overlapping area, create a stepped circle with a radius that adds the general location step value to the derived distance until there is an overlapping area with a preset general location step value. It includes a location tracking server of your choice.
  • Position tracking system is a device connected to the receivers 20 for receiving the radio wave of the tag 10 is distributed in a grid form of a uniform interval, divided into a database 30 and the location tracking server 40 Lose.
  • a device that can be attached to a mobile terminal and includes a personal identification ID and sends a schedule radio wave accordingly.
  • Receiver A device that receives a radio wave of a tag by distributing it in the form of a lattice of evenly spaced pixels.
  • Pixel Location tracking information in the minimum unit determined according to the screen resolution. For example, when the screen resolution is 1024x768 pixels, the map is scaled down and the distance corresponding to one pixel is set as the minimum distance.
  • Step value This is a constant that is set in advance and stored in the server.It is a general position step value for expanding or reducing a circle with a general pixel size, and a precise position step using a minimum pixel size (depending on indoor or outdoor). It is divided into chi.
  • Area value A constant that is set in advance and stored in the server. It indicates the location tracking accuracy, and the larger the area value, the more the location can be tracked.
  • FIG. 2 is a view showing the overall configuration of the location tracking server and the configuration module of the location tracking server according to the present invention
  • Figure 3 is a location signal strength around the receiver of the location tracking system according to the present invention
  • 4 is a diagram illustrating a distance according to signal strength as a graphic circle
  • FIG. 4 illustrates a general position step at the derived distance until an overlapping region exists at a preset general position step value according to the present invention.
  • Figure 5 shows the creation of a stepped circle of the sum of the radiuses
  • Figure 5 is a view showing the creation of a stepped circle of the radius minus the normal position step value, as opposed to Figure 4
  • Figure 6 shows the results of Figures 4 and 5 Fig.
  • FIG. 7 shows the calculation of the weights in the overlapped areas by overlapping a certain portion
  • Fig. 7 shows the position tracking system according to the present invention
  • FIG. 8 is a diagram illustrating a selection of a maximum overlapping area from weights in this overlapping area
  • FIG. 8 is a diagram illustrating a position tracking system according to the present invention extending to an overlapping area corresponding to an area value and selecting a center among the maximum overlapping areas. .
  • the database 30 receives and stores received signal strength indication (RSSI) data through a gateway from receivers 20 that receive a position signal generated by the tag 10. Device. That is, as shown in FIG. 3, each position signal strength is represented in a graphic form in a display apparatus in which the position of the receiver 20 is pixelated.
  • RSSI received signal strength indication
  • the position tracking server reduces the stepwise circle of the radius obtained by adding the general position step value to the derived distance until there is an overlapping area with the preset general position step value represented in Fig. 3. Or by expanding (S1-> S2-> S3).
  • the location tracking server derives a distance spaced from three or more receivers R2, R3, and R5 among the receivers 20 based on the data, and thus the derived distance. Create three or more circles with a radius and select the maximum overlapping area if there is an overlapping area, or if the overlapping area does not exist, set the normal location at the above-derived distance until the overlapping area exists with the preset general location step value. It is a server that creates a stepped circle of the sum of the step values and selects the maximum overlap area if there is an overlap area.
  • the general position step value is generally 10 pixels or 5 pixels, that is, 23 m or 11.5 m in width.
  • the location tracking server 40 After the maximum overlap region is selected, the location tracking server 40 generates a stepped circle whose radius is the derived distance as a precision location step value which minimizes the general location step value when more accurate location determination is required.
  • each circle is reduced to the general location step until the size is large enough to correspond to the general location step value. If the overlap region is small enough to correspond to the normal position step value, the position is converted into coordinates.
  • the location tracking server 40 enlarges each circle to the general location step value until the overlapping area is created, and if the generated overlapping area is as small as the general location step value, the location coordinate is converted into location coordinates. Zoom out again to convert the position coordinates.
  • the location tracking server 40 when the location tracking server 40 receives the area value from the terminal 50 and wants to increase the processing speed, the location tracking server 40 sets a narrow area value and precisely tracks the location at the request of customers. If necessary, the maximum overlapping region is selected from the overlapping regions corresponding to the above region values as shown in FIG.
  • the tracking accuracy is 10-20m, and when the minimum pixel is about 5 pixels, the overlapped area becomes wider and the whole area is set as one location. In this case, the area value can be set wider for more precise location tracking. Let's do it.
  • the pixel, step value and area value are previously set by accessing the location tracking server through the terminal (S110 and S120).
  • the receiver receiving the position signal from which the tag is oscillated receives the position signal strength data and stores it in a database, receives the data through the position tracking server, and derives the distance from the receiver based on the data. (S130).
  • a circle having a radius as the derived distance is generated, and a point at which a plurality of circles overlap is selected (S140 and S150).
  • steps S140 and S150 generating three or more circles having a radius of the derived distance through the location tracking server, selecting a maximum overlapping area if there is an overlapping area, and the location tracking server If there is no overlapping area through, create a stepped circle with a radius that adds the general location step value to the derived distance until the overlapping area exists at a preset general position step value, and selects the maximum overlapping area if there is an overlapping area. Divided into stages.

Abstract

The present invention relates to a system and method for position-tracking, and more particularly, to a system and method for position-tracking without using a mathematical equation such as a conventional triangulation equation, but by enlarging or shrinking an intuitive graphical circle to reduce load on a server and to offset radio wave errors that occur indoors, outdoors, or due to weather conditions. The position-tracking system of the present invention comprises: receivers arranged in a regular lattice to receive tag radio waves; a database configured to store position signal intensity data received through a gateway from the receivers that receive a position signal from a tag; and a position-tracking server configured to calculate distances from three or more of the receivers on the basis of the position signal intensity data, and to generate three or more circles having the calculated distances as radii, wherein the position-tracking server selects a maximum overlapping region when an overlapping region exists among the circles, and when no overlapping region exists among the circles, the position-tracking server incrementally adds a preset general position step value to the calculated distances so as to generate circles having respective radii of the incrementally added sums, until the circles overlap one another, so as to select a maximum overlapping region among the circles.

Description

위치 추적 시스템 및 그 방법Location tracking system and method
본 발명은 위치 추적 시스템 및 그 방법에 관한 것으로서, 보다 상세하게는 종래의 삼각 측량과 같은 수식에 의하지 않고 직관적인 그래픽화된 원을 확장 또는 축소함으로서 서버의 부하를 줄일 수 있으면서도, 실내나 실외 또는 날씨 등에 따른 전파의 오류를 상쇄할 수 있는 위치 추적 시스템 및 그 방법에 대한 것이다.The present invention relates to a position tracking system and a method thereof, and more particularly, to reduce the load on the server by expanding or reducing the intuitive graphical circle without using a formula such as conventional triangulation, indoor or outdoor or The present invention relates to a location tracking system and method capable of offsetting errors in radio waves due to weather and the like.
일반적으로 삼각측량법은 간단한 기하학적인 방법으로 위치 추적 시스템(RTLS)에서는 2차원 평면상에서 이동하는 개체의 실시간 위치를 추정하는데 가장 보편적으로 사용되는 방법이다. In general, triangulation is a simple geometric method and is the most commonly used method for estimating the real-time position of an object moving on a two-dimensional plane in a position tracking system (RTLS).
2차원 평면상(이하 2차원 평면만을 가정한다)에서 이동하는 개체의 실시간 위치를 추정하기 위해서는 최소 3개 이상의 기준점이 필요하다. 이런 기준점을 AP1, AP2, AP3라고 하고, 도1에서 보는 바와 같이 각 AP의 좌표를 ( x1 , y1 ), ( x2 , y2 ), ( x3 , y3 )라고 한다.At least three reference points are required to estimate the real time position of a moving object on a two-dimensional plane (hereinafter, only a two-dimensional plane is assumed). Such reference points are referred to as AP1, AP2, and AP3, and the coordinates of each AP are referred to as (x 1 , y 1 ), (x 2 , y 2 ), and (x 3 , y 3 ) as shown in FIG. 1.
또한 이동하는 개체를 M으로 나타내고, 현재의 위치가 ( x , y )라고 하며, 이동 개체 M으로부터 세 개의 기준점까지의 거리를 d1 , d2 , d3라고 한다.In addition, the moving object is represented by M, the current position is called (x, y), and the distance from the moving object M to three reference points is called d 1 , d 2 , d 3 .
따라서 이동 개체 M으로부터 각 기준점 사이의 거리는 피타고라스 정리에 의해 간단히 계산될 수 있다. 즉,Thus, the distance between each reference point from the moving object M can be simply calculated by the Pythagorean theorem. In other words,
수학식 1
Figure PCTKR2009007380-appb-M000001
Equation 1
Figure PCTKR2009007380-appb-M000001
수학식 2
Figure PCTKR2009007380-appb-M000002
Equation 2
Figure PCTKR2009007380-appb-M000002
수학식 3
Figure PCTKR2009007380-appb-M000003
Equation 3
Figure PCTKR2009007380-appb-M000003
가 된다. 여기서, d1 , d2 , d3의 값은 다양한 방식에 의해 얻어질 수 있다. 예를 들어, 수신 신호의 세기(RSSI)와의 관계를 이용해서 구할 수도 있으며, 도착 시간(TOA) 혹은 도착 시간차(TDOA) 등을 이용해서도 구할 수 있다. 따라서, 여기에서는 d1 , d2 , d3의 값을 알고 있다고 가정한다. 또한, 세 기준점의 좌표값도 알고 있기 때문에, 이동 개체의 현재 위치인 ( x , y )의 값은 위의 식(1)~식(3)을 이용해서 구할 수 있다.Becomes Here, the values of d 1 , d 2 , d 3 can be obtained by various methods. For example, it may be obtained using the relationship with the received signal strength RSSI, or may be obtained by using the arrival time TOA or the arrival time difference TDOA. Therefore, it is assumed here that the values of d 1 , d 2 and d 3 are known. In addition, since the coordinate values of three reference points are also known, the value of (x, y) which is the current position of a moving object can be calculated | required using said Formula (1)-Formula (3).
또한 수신 신호 세기를 이용한 삼각측량법에 의한 위치 추정을 설명하면, 상술한 바와 같이 삼각 측량법의 원리는 그대로 적용되며 이동 개체로부터 세 개의 기준점 사이의 거리를 구하는 과정만이 추가로 설명될 것이다.In addition, when the position estimation by the triangulation method using the received signal strength is described, as described above, the principle of the triangulation method is applied as it is, and only a process of obtaining a distance between three reference points from the moving object will be further described.
수신 신호 세기를 이용하는 경우 이동 개체로부터 기준점 사이의 거리는 Friis의 공식Using received signal strength, the distance from the moving object to the reference point is Friis' formula
수학식 4
Figure PCTKR2009007380-appb-M000004
Equation 4
Figure PCTKR2009007380-appb-M000004
을 통해 구할 수 있다. 식(4)의 Friis의 공식은 자유 공간에서의 경로 손실을 구하는 것이며, 여기서 λ 는 전파의 파장을 나타내며 거리 d 와 동일한 단위를 사용한다. 식(4)를 두 지점 사이의 거리 d에 대해 나타내면,Obtained from Friis's formula in equation (4) is to find the path loss in free space, where λ represents the wavelength of the radio wave and uses the same units as the distance d. If equation (4) is expressed for the distance d between two points,
수학식 5
Figure PCTKR2009007380-appb-M000005
Equation 5
Figure PCTKR2009007380-appb-M000005
과 같이 된다. 여기서 c 는 전파 속도이며 f 는 주파수를 나타낸다.Becomes Where c is the speed of propagation and f is the frequency.
예를 들어, 2.4GHz 대역을 사용하는 무선랜 기반의 위치 추적 시스템에서 이동 개체가 송신한 신호의 손실이 60dB이고 공기 중 무선 신호의 전파 속도가 3×108 [m/sec]라면, 두 지점 사이의 거리 d 는For example, in a WLAN-based positioning system using the 2.4 GHz band, if the loss of the signal transmitted by the mobile object is 60 dB and the propagation speed of the wireless signal in the air is 3 × 10 8 [m / sec], two points The distance d between
수학식 6
Figure PCTKR2009007380-appb-M000006
Equation 6
Figure PCTKR2009007380-appb-M000006
가 된다.Becomes
나머지 두 기준점에 대해서도 동일한 방식으로 거리를 구하고, 식(1)~식(3)에 대입하면 이동 개체의 현재 위치인 ( x , y )의 좌표값을 구할 수 있게 된다.For the other two reference points, the distance is calculated in the same way, and substituted into equations (1) to (3) to obtain the coordinate values of (x, y), which are the current positions of the moving object.
그러나 상술한 종래의 삼각 측량 방법은 거리계산 수식을 사용하여 서버에 부하를 주고, 식(6)과 같이 개략적으로 연산이 되는 것이 반복되면 정확한 위치 추적이 어려우며, 특히 실내나 실외 또는 날씨 등에 따라 많은 편차를 보이는 실정이어서, 실제로도 사용하기 어려운 기술인 문제점이 있었다.However, in the conventional triangulation method described above, if the load is applied to the server using a distance calculation formula and the calculation is repeated roughly as shown in Eq. (6), it is difficult to accurately track the location. Since there is a situation showing a deviation, there was a problem that is a technology that is difficult to actually use.
본 발명은 직관적인 그래픽화된 원을 확장 또는 축소함으로서 서버의 부하를 줄일 수 있고, 연산 속도가 빠르며, 날씨 등에 따른 전파의 오류를 상쇄할 수 있는 위치 추적 시스템을 제공하는 데 목적이 있다.An object of the present invention is to provide a location tracking system that can reduce the load on the server by expanding or reducing the intuitive graphical circle, the operation speed is fast, and can cancel the error of the radio wave due to the weather.
본 발명은 쇼핑지나 관광지, 박물관, 컨테이터 위치추적, 건설현장 자재관리에 유용하게 사용될 수 있는 위치 추적 시스템을 제공하는 데 목적이 있다.An object of the present invention is to provide a location tracking system that can be usefully used for shopping or tourist attractions, museums, container location tracking, construction site material management.
본 발명은 균일한 간격의 격자 형태로 분포하여 태그의 전파를 수신하는 수신기들을 포함하는 위치 추적 시스템에 있어서, 태그가 발진하는 위치신호를 수신하는 수신기들에서 위치신호세기 데이터를 게이트웨이를 통해 전달받아 저장하는 데이터베이스와, 상기 데이터에 의거하여 상기 수신기들 중 3개 이상의 수신기로부터 이격된 거리를 도출하여, 상기 도출된 거리를 반경으로 하는 3개 이상의 원을 생성하며, 중첩 영역이 존재할 경우 최대 중첩 영역을 선택하거나, 중첩 영역이 존재하지 않을 경우 미리 설정된 일반위치스텝치로 중첩 영역이 존재할 때까지 상기 도출한 거리에 일반위치스텝치를 합한 반경의 단계적 원을 생성하여, 중첩 영역이 존재할 경우 최대 중첩 영역을 선택하는 위치추적서버를 포함하여 구성된다.The present invention is a position tracking system including receivers receiving a radio wave of a tag distributed in a grid form of a uniform interval, receiving the position signal strength data from the receiver receiving the position signal generated by the tag through the gateway A database to store and derive a distance separated from three or more of the receivers based on the data to generate three or more circles with a radius of the derived distance, the maximum overlapping area if there is an overlapping area Or if there is no overlapping area, create a stepped circle with a radius that adds the general location step value to the derived distance until there is an overlapping area with a preset general location step value. It includes a location tracking server of your choice.
상기 위치추적서버는 상기 최대 중첩 영역이 선택된 후, 더욱 정확한 정밀 위치 파악이 필요한 경우 상기 일반위치스텝치를 최소화한 정밀위치스텝치로 상기 도출한 거리를 반경으로 하는 단계적 원을 생성한다.After the maximum overlap region is selected, the location tracking server generates a stepped circle having a radius of the derived distance as a precision location step value minimizing the general location step value when more precise location determination is required.
상기 위치추적서버는 위치 추적 정밀도를 나타내는 영역치를 단말로부터 입력받아 상기 영역치에 해당하는 중첩영역에서, 최대 중첩 영역을 선택한다.The location tracking server receives an area value indicating the location tracking precision from the terminal and selects a maximum overlapping area from an overlapping area corresponding to the area value.
상기 태그는 이동단말에 부착되어 사용되는 것이 바람직하다.The tag is preferably used attached to the mobile terminal.
본 발명은 픽셀과 스텝치와 영역치를 설정하는 단계와, 균일한 간격의 격자 형태로 분포한 수신기를 통하여 태그의 전파를 수신하는 단계와, 태그가 발진하는 위치신호를 수신하는 수신기에서 위치신호세기 데이터를 전달받아 데이터베이스에 저장하는 단계와, 위치추적서버를 통하여 상기 데이터를 전달받아, 상기 데이터에 의거하여 상기 수신기로부터 이격된 거리를 도출하는 단계와, 상기 위치추적서버를 통하여 상기 도출된 거리를 반경으로 하는 3개 이상의 원을 생성하며, 중첩 영역이 존재할 경우 최대 중첩 영역을 선택하는 단계와, 상기 위치추적서버를 통하여 중첩 영역이 존재하지 않을 경우 미리 설정된 일반위치스텝치로 중첩 영역이 존재할 때까지 상기 도출한 거리에 일반위치스텝치를 합한 반경의 단계적 원을 생성하여, 중첩 영역이 존재할 경우 최대 중첩 영역을 선택하는 단계로 이루어진다.The present invention provides a method of setting a pixel, a step value and an area value, receiving a radio wave of a tag through a receiver distributed in a uniformly spaced grid, and receiving a position signal at which the tag oscillates. Receiving data and storing the data in a database, receiving the data through a location tracking server, deriving a distance spaced from the receiver based on the data, and determining the derived distance through the location tracking server. Creating three or more circles with a radius, selecting a maximum overlapping area if there is an overlapping area, and if there is no overlapping area through the location tracking server until the overlapping area exists with a preset general position step value A stepped circle of radius is generated by adding the general position step value to the derived distance, so that the overlapped area is If reallocation comprises a step of selecting a maximum overlapping area.
본 발명은 상기 최대 중첩 영역이 선택된 후, 더욱 정확한 정밀 위치 파악이 필요한 경우 상기 일반위치스텝치를 최소화한 정밀위치스텝치로 상기 도출한 거리를 반경으로 하는 단계적 원을 생성하는 단계를 더 포함하여 이루어진다.The present invention further includes the step of generating a stepped circle having a radius of the derived distance with a precision position step value which minimizes the general position step value after the maximum overlapping area is selected, when more accurate precision positioning is required.
본 발명은 영역치를 단말로부터 입력받아 상기 영역치에 해당하는 중첩영역에서, 최대 중첩 영역을 선택하는 단계를 더 포함하여 이루어진다.The present invention may further include receiving a region value from the terminal and selecting a maximum overlap region in the overlap region corresponding to the region value.
본 발명은 종래의 삼각 측량과 같은 수식에 의하지 않고 직관적인 그래픽화된 원을 확장 또는 축소함으로서 서버의 부하를 줄일 수 있고, 연산 속도가 빠르며, 날씨 등에 따른 전파의 오류를 상쇄할 수 있는 효과가 있다.The present invention can reduce the load on the server by expanding or reducing the intuitive graphical circle without using a formula such as a conventional triangulation, fast operation speed, and has the effect of offsetting the error of the radio wave due to weather have.
본 발명은 추가적인 구성없이 기존의 수신기 등만으로 소프트웨어적으로 정확한 위치를 추적할 수 있어, 쇼핑지나 관광지, 박물관, 컨테이터 위치추적, 건설현장 자재관리에 유용하게 사용될 수 있는 효과가 있다.The present invention can track the exact location in software only by the existing receiver, etc. without additional configuration, there is an effect that can be usefully used for shopping places, tourist attractions, museums, container location tracking, construction site materials management.
도1은 종래 발명에 따른 위치추적에 따른 삼각측량을 설명하는 도면.1 is a view for explaining the triangulation according to the position tracking according to the conventional invention.
도2는 본 발명에 따른 위치 추적 시스템의 위치추적서버를 중심으로한 전체적인 구성과 위치추적서버의 구성 모듈을 보여주는 도면.Figure 2 is a view showing the overall configuration around the location tracking server of the location tracking system according to the present invention and the configuration module of the location tracking server.
도3은 본 발명에 따른 위치 추적 시스템의 수신기들을 중심으로 위치신호세기 데이터를 전달받아 신호세기에 따른 거리를 그래픽화된 원으로 표현한 도면.3 is a diagram illustrating a distance according to signal strength by receiving position signal strength data centering on receivers of the position tracking system according to the present invention as a graphic circle.
도4는 본 발명에 따른 위치 추적 시스템이 미리 설정된 일반위치스텝치로 중첩 영역이 존재할 때까지 상기 도출한 거리에 일반위치스텝치를 합한 반경의 단계적 원을 생성하는 것을 보여주는 도면.Figure 4 shows that the position tracking system according to the present invention generates a stepped circle of radius which adds the general position step value to the derived distance until there is an overlapping area with a preset general position step value.
도5는 도4의 반대로 일반위치스텝치를 마이너스한 반경의 단계적 원을 생성하는 것을 보여주는 도면.FIG. 5 shows the creation of a stepped circle of radius minus the normal position step value of FIG.
도6은 도4와 도5의 결과에 의해 일정 부분이 중복되어 중첩 영역에 가중치를 연산한 것을 보여주는 도면.FIG. 6 is a diagram illustrating that a predetermined portion is overlapped and the weight is calculated in an overlapped region according to the results of FIGS. 4 and 5.
도7은 본 발명에 따른 위치 추적 시스템이 중첩 영역에 가중치에서 최대 중첩영역을 선택하는 것을 보여주는 도면.Figure 7 shows that the location tracking system according to the present invention selects the maximum overlapping area from the weights in the overlapping area.
도8은 본 발명에 따른 위치 추적 시스템이 영역치에 해당하는 중첩영역으로 확장하여 최대 중첩영역 중 가운데를 선택하는 것을 보여주는 도면.8 is a view showing that the position tracking system according to the present invention extends to an overlapping area corresponding to an area value and selects a center among the maximum overlapping areas;
도9는 본 발명에 따른 위치 추적 방법의 순서를 개략적으로 나타낸 순서도.9 is a flowchart schematically showing a sequence of a location tracking method according to the present invention.
** 도면의 주요부분에 대한 설명 **** Description of the main parts of the drawing **
10 : 태그 20 : 수신기10: tag 20: receiver
30 : 데이터베이스 40 : 위치추적서버30: database 40: location tracking server
50 : 단말50: terminal
본 발명은 균일한 간격의 격자 형태로 분포하여 태그의 전파를 수신하는 수신기들을 포함하는 위치 추적 시스템에 있어서, 태그가 발진하는 위치신호를 수신하는 수신기들에서 위치신호세기 데이터를 게이트웨이를 통해 전달받아 저장하는 데이터베이스와, 상기 데이터에 의거하여 상기 수신기들 중 3개 이상의 수신기로부터 이격된 거리를 도출하여, 상기 도출된 거리를 반경으로 하는 3개 이상의 원을 생성하며, 중첩 영역이 존재할 경우 최대 중첩 영역을 선택하거나, 중첩 영역이 존재하지 않을 경우 미리 설정된 일반위치스텝치로 중첩 영역이 존재할 때까지 상기 도출한 거리에 일반위치스텝치를 합한 반경의 단계적 원을 생성하여, 중첩 영역이 존재할 경우 최대 중첩 영역을 선택하는 위치추적서버를 포함하여 구성된다.The present invention is a position tracking system including receivers receiving a radio wave of a tag distributed in a grid form of a uniform interval, receiving the position signal strength data from the receiver receiving the position signal generated by the tag through the gateway A database to store and derive a distance separated from three or more of the receivers based on the data to generate three or more circles with a radius of the derived distance, the maximum overlapping area if there is an overlapping area Or if there is no overlapping area, create a stepped circle with a radius that adds the general location step value to the derived distance until there is an overlapping area with a preset general location step value. It includes a location tracking server of your choice.
이하 본 발명의 실시예를 첨부하는 도면을 참조하여 설명한다.Hereinafter, with reference to the accompanying drawings an embodiment of the present invention will be described.
본 발명에 따른 위치 추적 시스템은 균일한 간격의 격자 형태로 분포하여 태그(10)의 전파를 수신하는 수신기(20)들에 연결되는 장치로서, 데이터베이스(30)와 위치추적서버(40)로 나뉘어진다.Position tracking system according to the present invention is a device connected to the receivers 20 for receiving the radio wave of the tag 10 is distributed in a grid form of a uniform interval, divided into a database 30 and the location tracking server 40 Lose.
먼저 본 발명에서 주로 사용되는 용어를 정의한다.First, terms mainly used in the present invention are defined.
태그 : 이동단말에 부착될 수 있으며, 개별적인 확인 아이디를 포함하고 이에 따른 일정 전파를 발신하는 장치.Tag: A device that can be attached to a mobile terminal and includes a personal identification ID and sends a schedule radio wave accordingly.
수신기 : 픽셀 내에 균일한 간격의 격자 형태로 분포하여 태그의 전파를 수신하는 장치.Receiver: A device that receives a radio wave of a tag by distributing it in the form of a lattice of evenly spaced pixels.
픽셀 : 화면 해상도에 따라 정해지는 최소 단위의 위치추적정보로서, 예를 들면 화면 해상도가 1024x768 픽셀인 경우 여기에 지도를 축소하여 놓고 픽셀 하나가 해당하는 거리를 최소 거리로 설정한다. Pixel: Location tracking information in the minimum unit determined according to the screen resolution. For example, when the screen resolution is 1024x768 pixels, the map is scaled down and the distance corresponding to one pixel is set as the minimum distance.
스텝치 : 미리 설정되어 서버에 저장되는 상수로서, 일반적인 픽셀 크기로 원을 확장생성 또는 축소생성하기 위한 일반위치스텝치와, 최소화한 픽셀 크기(실내나 실외에 따라 다름)를 사용하는 정밀위치스텝치로 나뉜다.Step value: This is a constant that is set in advance and stored in the server.It is a general position step value for expanding or reducing a circle with a general pixel size, and a precise position step using a minimum pixel size (depending on indoor or outdoor). It is divided into chi.
영역치 : 미리 설정되어 서버에 저장되는 상수로서, 위치 추적 정밀도를 나타내고 영역치가 클 수록 넓은 면적에서 위치를 추적할 수 있다.Area value: A constant that is set in advance and stored in the server. It indicates the location tracking accuracy, and the larger the area value, the more the location can be tracked.
도2는 본 발명에 따른 위치 추적 시스템의 위치추적서버를 중심으로한 전체적인 구성과 위치추적서버의 구성 모듈을 보여주는 도면이고, 도3은 본 발명에 따른 위치 추적 시스템의 수신기들을 중심으로 위치신호세기 데이터를 전달받아 신호세기에 따른 거리를 그래픽화된 원으로 표현한 도면이며, 도4는 본 발명에 따른 위치 추적 시스템이 미리 설정된 일반위치스텝치로 중첩 영역이 존재할 때까지 상기 도출한 거리에 일반위치스텝치를 합한 반경의 단계적 원을 생성하는 것을 보여주는 도면이고, 도5는 도4의 반대로 일반위치스텝치를 마이너스한 반경의 단계적 원을 생성하는 것을 보여주는 도면이며, 도6은 도4와 도5의 결과에 의해 일정 부분이 중복되어 중첩 영역에 가중치를 연산한 것을 보여주는 도면이고, 도7은 본 발명에 따른 위치 추적 시스템이 중첩 영역에 가중치에서 최대 중첩영역을 선택하는 것을 보여주는 도면이며, 도8은 본 발명에 따른 위치 추적 시스템이 영역치에 해당하는 중첩영역으로 확장하여 최대 중첩영역 중 가운데를 선택하는 것을 보여주는 도면이다.2 is a view showing the overall configuration of the location tracking server and the configuration module of the location tracking server according to the present invention, Figure 3 is a location signal strength around the receiver of the location tracking system according to the present invention 4 is a diagram illustrating a distance according to signal strength as a graphic circle, and FIG. 4 illustrates a general position step at the derived distance until an overlapping region exists at a preset general position step value according to the present invention. Figure 5 shows the creation of a stepped circle of the sum of the radiuses, Figure 5 is a view showing the creation of a stepped circle of the radius minus the normal position step value, as opposed to Figure 4, Figure 6 shows the results of Figures 4 and 5 Fig. 7 shows the calculation of the weights in the overlapped areas by overlapping a certain portion, and Fig. 7 shows the position tracking system according to the present invention. FIG. 8 is a diagram illustrating a selection of a maximum overlapping area from weights in this overlapping area, and FIG. 8 is a diagram illustrating a position tracking system according to the present invention extending to an overlapping area corresponding to an area value and selecting a center among the maximum overlapping areas. .
도2에서 보는 바와 같이 상기 데이터베이스(30)는 태그(10)가 발진하는 위치신호를 수신하는 수신기(20)들에서 위치신호세기(RSSI;Received signal strength indication) 데이터를 게이트웨이를 통해 전달받아 저장하는 장치이다. 즉 도3에서 보는 바와 같이 각 위치신호세기는 상기 수신기(20)의 위치가 픽셀화된 디스플레이장치에서 그래픽화된 원형상으로 표현된다.As shown in FIG. 2, the database 30 receives and stores received signal strength indication (RSSI) data through a gateway from receivers 20 that receive a position signal generated by the tag 10. Device. That is, as shown in FIG. 3, each position signal strength is represented in a graphic form in a display apparatus in which the position of the receiver 20 is pixelated.
도4와 도5에서 보는 바와 같이 상기 위치추적서버는 도3에서 표현된 원형상을 미리 설정된 일반위치스텝치로 중첩 영역이 존재할 때까지 상기 도출한 거리에 일반위치스텝치를 합한 반경의 단계적 원을 축소 또는 확장(S1->S2->S3)하여 생성한다.As shown in Figs. 4 and 5, the position tracking server reduces the stepwise circle of the radius obtained by adding the general position step value to the derived distance until there is an overlapping area with the preset general position step value represented in Fig. 3. Or by expanding (S1-> S2-> S3).
구체적으로 살펴보면, 도6에서 보는 바와 같이 상기 위치추적서버는 상기 데이터에 의거하여 상기 수신기(20)들 중 3개 이상의 수신기(R2, R3, R5)로부터 이격된 거리를 도출하여, 상기 도출된 거리를 반경으로 하는 3개 이상의 원을 생성하며, 중첩 영역이 존재할 경우 최대 중첩 영역을 선택하거나, 중첩 영역이 존재하지 않을 경우 미리 설정된 일반위치스텝치로 중첩 영역이 존재할 때까지 상기 도출한 거리에 일반위치스텝치를 합한 반경의 단계적 원을 생성하여, 중첩 영역이 존재할 경우 최대 중첩 영역을 선택하는 서버이다.Specifically, as shown in FIG. 6, the location tracking server derives a distance spaced from three or more receivers R2, R3, and R5 among the receivers 20 based on the data, and thus the derived distance. Create three or more circles with a radius and select the maximum overlapping area if there is an overlapping area, or if the overlapping area does not exist, set the normal location at the above-derived distance until the overlapping area exists with the preset general location step value. It is a server that creates a stepped circle of the sum of the step values and selects the maximum overlap area if there is an overlap area.
여기에서 일반위치스텝치는 일반적으로 10픽셀 또는 5 픽셀 즉, 가로 23m 또는 11.5m 인 것이 바람직하다.Here, the general position step value is generally 10 pixels or 5 pixels, that is, 23 m or 11.5 m in width.
또한 상기 위치추적서버(40)는 상기 최대 중첩 영역이 선택된 후, 더욱 정확한 정밀 위치 파악이 필요한 경우 상기 일반위치스텝치를 최소화한 정밀위치스텝치로 상기 도출한 거리를 반경으로 하는 단계적 원을 생성한다.In addition, after the maximum overlap region is selected, the location tracking server 40 generates a stepped circle whose radius is the derived distance as a precision location step value which minimizes the general location step value when more accurate location determination is required.
또는 본 발명의 다른 실시예로서 상기 위치추적서버(40)는 중첩 영역이 있을 경우, 중첩 영역이 넓으면 일반위치스텝치에 해당할 정도의 사이즈가 될 때까지 일반위치스텝으로 각 원들을 축소하거나, 중첩 영역이 일반위치스텝치에 해당할 정도로 작으면 바로 그 위치를 좌표로 환산한다.Alternatively, as another embodiment of the present invention, if the location tracking server 40 has an overlapping area, if the overlapping area is wide, each circle is reduced to the general location step until the size is large enough to correspond to the general location step value. If the overlap region is small enough to correspond to the normal position step value, the position is converted into coordinates.
만일 중첩 영역이 없을 경우, 상기 위치추적서버(40)는 중첩 영역이 생성될 때까지 각 원을 일반위치스텝치로 확대하고, 생성된 중첩 영역이 일반위치스텝치만큼 작으면 위치좌표로 환산하고 아니면 다시 축소하여 위치좌표 환산한다.If there is no overlapping area, the location tracking server 40 enlarges each circle to the general location step value until the overlapping area is created, and if the generated overlapping area is as small as the general location step value, the location coordinate is converted into location coordinates. Zoom out again to convert the position coordinates.
그리고 도7과 도8에서 보는 바와 같이 상기 위치추적서버(40)는 영역치를 단말(50)로 부터 입력받아 처리속도를 빠르게 하고 싶을 경우에는 영역치를 좁게 설정하고, 고객들의 요구에 의해 정밀한 위치 추적이 필요한 경우 도8과 같은 상기 영역치에 해당하는 중첩영역에서 최대 중첩 영역을 선택한다.7 and 8, when the location tracking server 40 receives the area value from the terminal 50 and wants to increase the processing speed, the location tracking server 40 sets a narrow area value and precisely tracks the location at the request of customers. If necessary, the maximum overlapping region is selected from the overlapping regions corresponding to the above region values as shown in FIG.
즉 실외와 같은 경우 추적의 정밀도는 10~20m이고, 최소 픽셀이 5픽셀 정도 되면 중첩 영역이 넓게 보이게 되며 그 전체를 하나의 위치로 잡는데, 이러한 경우 상기 영역치를 넓게 설정하여 보다 정밀한 위치 추적이 가능하게 한다.That is, in the case of outdoor, the tracking accuracy is 10-20m, and when the minimum pixel is about 5 pixels, the overlapped area becomes wider and the whole area is set as one location. In this case, the area value can be set wider for more precise location tracking. Let's do it.
이하 도면을 참조하여 본 발명에 따른 위치 추적 방법에 대하여 자세히 설명한다.Hereinafter, a location tracking method according to the present invention will be described in detail with reference to the accompanying drawings.
도9에서 보는 바와 같이 먼저 단말을 통하여 위치추적서버에 접속하여 픽셀과 스텝치와 영역치를 미리 설정한다(S110, S120).As shown in FIG. 9, the pixel, step value and area value are previously set by accessing the location tracking server through the terminal (S110 and S120).
계속하여 태그가 발진하는 위치신호를 수신하는 수신기에서 위치신호세기 데이터를 전달받아 데이터베이스에 저장하고, 위치추적서버를 통하여 상기 데이터를 전달받아, 상기 데이터에 의거하여 상기 수신기로부터 이격된 거리를 도출한다(S130).Subsequently, the receiver receiving the position signal from which the tag is oscillated receives the position signal strength data and stores it in a database, receives the data through the position tracking server, and derives the distance from the receiver based on the data. (S130).
그리고 상기 도출된 거리를 반경으로 하는 원을 생성하고, 다수의 원이 중첩하는 지점을 선택한다(S140, S150).A circle having a radius as the derived distance is generated, and a point at which a plurality of circles overlap is selected (S140 and S150).
마지막으로 상기 최대 중첩지점을 저장하고 위치를 좌표로 환산하여 디스플레이장치를 통해 디스플레이하게 된다(S160).Finally, the maximum overlapping point is stored, and the position is converted into coordinates and displayed through the display apparatus (S160).
구체적으로 S140, S150 단계를 설명하면, 상기 위치추적서버를 통하여 상기 도출된 거리를 반경으로 하는 3개 이상의 원을 생성하며, 중첩 영역이 존재할 경우 최대 중첩 영역을 선택하는 단계와, 상기 위치추적서버를 통하여 중첩 영역이 존재하지 않을 경우 미리 설정된 일반위치스텝치로 중첩 영역이 존재할 때까지 상기 도출한 거리에 일반위치스텝치를 합한 반경의 단계적 원을 생성하여, 중첩 영역이 존재할 경우 최대 중첩 영역을 선택하는 단계로 나뉜다.In detail with reference to steps S140 and S150, generating three or more circles having a radius of the derived distance through the location tracking server, selecting a maximum overlapping area if there is an overlapping area, and the location tracking server If there is no overlapping area through, create a stepped circle with a radius that adds the general location step value to the derived distance until the overlapping area exists at a preset general position step value, and selects the maximum overlapping area if there is an overlapping area. Divided into stages.

Claims (7)

  1. 균일한 간격의 격자 형태로 분포하여 태그의 전파를 수신하는 수신기들을 포함하는 위치 추적 시스템에 있어서,A location tracking system including receivers distributed in a uniformly spaced grid to receive radio waves of a tag,
    태그가 발진하는 위치신호를 수신하는 수신기들에서 위치신호세기 데이터를 게이트웨이를 통해 전달받아 저장하는 데이터베이스와;A database for receiving and storing the location signal strength data from the receivers receiving the location signals generated by the tag through the gateway;
    상기 데이터에 의거하여 상기 수신기들 중 3개 이상의 수신기로부터 이격된 거리를 도출하여, 상기 도출된 거리를 반경으로 하는 3개 이상의 원을 생성하며, 중첩 영역이 존재할 경우 최대 중첩 영역을 선택하거나, Derive a distance separated from three or more of the receivers based on the data to generate three or more circles whose radius is the derived distance, and select a maximum overlap region if there is an overlap region;
    중첩 영역이 존재하지 않을 경우 미리 설정된 일반위치스텝치로 중첩 영역이 존재할 때까지 상기 도출한 거리에 일반위치스텝치를 합한 반경의 단계적 원을 생성하여, 중첩 영역이 존재할 경우 최대 중첩 영역을 선택하는 위치추적서버;If there is no overlapping area, create a stepped circle with a radius that adds the general location step value to the derived distance until the overlapping area exists by using the preset general location step value, and select the maximum overlapping area when the overlapping area exists. server;
    를 포함하여 구성되는 것을 특징으로 하는 위치 추적 시스템.Positioning system, characterized in that configured to include.
  2. 제1항에 있어서,The method of claim 1,
    상기 위치추적서버는,The location tracking server,
    상기 최대 중첩 영역이 선택된 후, 더욱 정확한 정밀 위치 파악이 필요한 경우 상기 일반위치스텝치를 최소화한 정밀위치스텝치로 상기 도출한 거리를 반경으로 하는 단계적 원을 생성하는 것을 특징으로 하는 위치 추적 시스템.And after the maximum overlapping area is selected, when a more precise position determination is required, a stepped circle having a radius as the derived distance is generated as a precision position step value minimizing the general position step value.
  3. 제1항에 있어서,The method of claim 1,
    상기 위치추적서버는,The location tracking server,
    위치 추적 정밀도를 나타내는 영역치를 단말로부터 입력받아 상기 영역치에 해당하는 중첩영역에서, 최대 중첩 영역을 선택하는 것을 특징으로 하는 위치 추적 시스템.And a maximum overlapping area is selected from the overlapping area corresponding to the area value by receiving an area value indicating the location tracking precision from the terminal.
  4. 제1항에 있어서,The method of claim 1,
    상기 태그는 이동단말에 부착되어 사용되는 것을 특징으로 하는 위치 추적 시스템.The tag is attached to the mobile terminal is used, the location tracking system.
  5. 픽셀과 스텝치와 영역치를 설정하는 단계와;Setting pixel, step and region values;
    균일한 간격의 격자 형태로 분포한 수신기를 통하여 태그의 전파를 수신하는 단계와;Receiving a radio wave of a tag through a receiver distributed in a grid form with uniform intervals;
    태그가 발진하는 위치신호를 수신하는 수신기에서 위치신호세기 데이터를 전달받아 데이터베이스에 저장하는 단계와;Receiving location signal strength data at a receiver for receiving a location signal generated by a tag and storing the location signal strength data in a database;
    위치추적서버를 통하여 상기 데이터를 전달받아, 상기 데이터에 의거하여 상기 수신기로부터 이격된 거리를 도출하는 단계와;Receiving the data through a location tracking server and deriving a distance from the receiver based on the data;
    상기 위치추적서버를 통하여 상기 도출된 거리를 반경으로 하는 3개 이상의 원을 생성하며, 중첩 영역이 존재할 경우 최대 중첩 영역을 선택하는 단계와;Generating three or more circles having the derived distance as a radius through the location tracking server, and selecting a maximum overlapping area if there is an overlapping area;
    상기 위치추적서버를 통하여 중첩 영역이 존재하지 않을 경우 미리 설정된 일반위치스텝치로 중첩 영역이 존재할 때까지 상기 도출한 거리에 일반위치스텝치를 합한 반경의 단계적 원을 생성하여, 중첩 영역이 존재할 경우 최대 중첩 영역을 선택하는 단계;If there is no overlapping area through the location tracking server, a stepped circle having a radius that adds the general location step value to the derived distance until the overlapping area exists at a preset general location step value is generated. Selecting an area;
    로 이루어지는 것을 특징으로 하는 위치 추적 방법.Position tracking method, characterized in that consisting of.
  6. 제5항에 있어서,The method of claim 5,
    상기 최대 중첩 영역이 선택된 후, 더욱 정확한 정밀 위치 파악이 필요한 경우 상기 일반위치스텝치를 최소화한 정밀위치스텝치로 상기 도출한 거리를 반경으로 하는 단계적 원을 생성하는 단계;Generating a stepped circle having a radius of the derived distance as a precision position step value which minimizes the general position step value after the maximum overlapping area is selected;
    를 더 포함하여 이루어지는 것을 특징으로 하는 위치 추적 방법.Position tracking method further comprises a.
  7. 제5항에 있어서,The method of claim 5,
    영역치를 단말로부터 입력받아 상기 영역치에 해당하는 중첩영역에서, 최대 중첩 영역을 선택하는 단계;Receiving an area value from a terminal and selecting a maximum overlapping area in an overlapping area corresponding to the area value;
    를 더 포함하여 이루어지는 것을 특징으로 하는 위치 추적 방법.Position tracking method further comprises a.
PCT/KR2009/007380 2009-12-10 2009-12-10 System and method for position-tracking WO2011071199A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/007380 WO2011071199A1 (en) 2009-12-10 2009-12-10 System and method for position-tracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/007380 WO2011071199A1 (en) 2009-12-10 2009-12-10 System and method for position-tracking

Publications (1)

Publication Number Publication Date
WO2011071199A1 true WO2011071199A1 (en) 2011-06-16

Family

ID=44145734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007380 WO2011071199A1 (en) 2009-12-10 2009-12-10 System and method for position-tracking

Country Status (1)

Country Link
WO (1) WO2011071199A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013148108A1 (en) * 2012-03-27 2013-10-03 Microsoft Corporation Locating a mobile device
US8983490B2 (en) 2012-03-27 2015-03-17 Microsoft Technology Licensing, Llc Locating a mobile device
US9612121B2 (en) 2012-12-06 2017-04-04 Microsoft Technology Licensing, Llc Locating position within enclosure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042391B2 (en) * 2003-12-12 2006-05-09 Xerox Corporation Mobile device and method for determining location of mobile device
JP2006127355A (en) * 2004-11-01 2006-05-18 Advanced Telecommunication Research Institute International Position estimation system for radio tag
JP2006258468A (en) * 2005-03-15 2006-09-28 Advanced Telecommunication Research Institute International Position estimation system
US20070139269A1 (en) * 2005-12-16 2007-06-21 Lucent Technologies Inc. System and method for model-free position estimation and tracking
KR100857248B1 (en) * 2006-05-12 2008-09-05 자바정보기술 주식회사 Apparatus and method for creating location and Apparatus and method recognizing location of mobile object

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042391B2 (en) * 2003-12-12 2006-05-09 Xerox Corporation Mobile device and method for determining location of mobile device
JP2006127355A (en) * 2004-11-01 2006-05-18 Advanced Telecommunication Research Institute International Position estimation system for radio tag
JP2006258468A (en) * 2005-03-15 2006-09-28 Advanced Telecommunication Research Institute International Position estimation system
US20070139269A1 (en) * 2005-12-16 2007-06-21 Lucent Technologies Inc. System and method for model-free position estimation and tracking
KR100857248B1 (en) * 2006-05-12 2008-09-05 자바정보기술 주식회사 Apparatus and method for creating location and Apparatus and method recognizing location of mobile object

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013148108A1 (en) * 2012-03-27 2013-10-03 Microsoft Corporation Locating a mobile device
US8983490B2 (en) 2012-03-27 2015-03-17 Microsoft Technology Licensing, Llc Locating a mobile device
US9279878B2 (en) 2012-03-27 2016-03-08 Microsoft Technology Licensing, Llc Locating a mobile device
US9588217B2 (en) 2012-03-27 2017-03-07 Microsoft Technology Licensing, Llc Locating a mobile device
US9869748B2 (en) 2012-03-27 2018-01-16 Microsoft Technology Licensing, Llc Locating a mobile device
US9612121B2 (en) 2012-12-06 2017-04-04 Microsoft Technology Licensing, Llc Locating position within enclosure

Similar Documents

Publication Publication Date Title
WO2018139773A1 (en) Slam method and device robust to changes in wireless environment
US7212830B2 (en) Position detection method, position detection system, and position detection server equipment
WO2017086561A1 (en) Landmark location determination
WO2014065540A1 (en) Device for estimating location and method for estimating location by using downlink access point
CN1105478C (en) Method of locating terminal, and cellular radio system
WO2015167265A1 (en) Indoor global positioning system
WO2017160026A2 (en) Location estimation method and apparatus using access point in wireless communication system
KR20020008200A (en) Improvements in radio positioning systems
WO2019212200A1 (en) Wireless positioning method and apparatus with improved position accuracy in various environments
WO2021235621A1 (en) Indoor positioning system and method using gps location information mapping
JP2013205226A (en) Position correcting system, position correcting method, position information server, and program
KR20180024684A (en) An appratus for providing safty management services based on determiing location, a method and recoding medium for operating it
CN113535865B (en) Map grid dividing method and electronic equipment
CN113194531B (en) Positioning method and communication equipment
CN114493084A (en) Park emergency linkage method and system based on BIM + GIS
WO2011071199A1 (en) System and method for position-tracking
WO2012091313A2 (en) Device and method for measuring indoor location
CN113556680B (en) Fingerprint data processing method, medium and mobile robot
CN103686998A (en) Switching position positioning method and device based on AOA
WO2017061666A1 (en) User location tracking method
US20200015190A1 (en) Positioning Cycle Adjustment Method and Apparatus
WO2016200175A1 (en) Positioning system using virtual beacon and method therefor
JP2005005962A (en) Mobile terminal position locating system using short-range radio communication, radio communication apparatus used therefor, mobile terminal, and information server
JPH11178066A (en) Navigation system and location detection method thereof
WO2018139771A2 (en) Highly accurate wireless positioning method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09852092

Country of ref document: EP

Kind code of ref document: A1