WO2011077026A1 - Procédé, programme d'ordinateur et dispositif pour l'orientation relative de terminaux mobiles sans fil - Google Patents

Procédé, programme d'ordinateur et dispositif pour l'orientation relative de terminaux mobiles sans fil Download PDF

Info

Publication number
WO2011077026A1
WO2011077026A1 PCT/FR2010/052661 FR2010052661W WO2011077026A1 WO 2011077026 A1 WO2011077026 A1 WO 2011077026A1 FR 2010052661 W FR2010052661 W FR 2010052661W WO 2011077026 A1 WO2011077026 A1 WO 2011077026A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile terminal
power
terminal
received signal
state
Prior art date
Application number
PCT/FR2010/052661
Other languages
English (en)
Inventor
Mohamed Salah Bouassida
Marcus Mohamed Shawky
Original Assignee
Universite De Technologie De Compiegne
Centre National De La Recherche Scientifique (Cnrs)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite De Technologie De Compiegne, Centre National De La Recherche Scientifique (Cnrs) filed Critical Universite De Technologie De Compiegne
Publication of WO2011077026A1 publication Critical patent/WO2011077026A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/04Systems for determining distance or velocity not using reflection or reradiation using radio waves using angle measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/06Systems for determining distance or velocity not using reflection or reradiation using radio waves using intensity measurements

Definitions

  • the present invention relates to the relative orientation of wireless mobile terminals, relative to each other, in an indoor or outdoor environment, and more particularly a method, a computer program and a device for the relative orientation of mobile terminals.
  • wireless that does not require a central server or third-party systems such as positioning systems.
  • the orientation of a mobile terminal to another or to a fixed terminal is based on an absolute location method and according to a predetermined map using electromagnetic signals.
  • a mobile terminal implementing the GPS system comprises a sensor receiving and analyzing signals sent by satellites in order to define its position in a three-dimensional space with a margin of error evaluated between 10 and 20 meters.
  • this solution is widely used, it has drawbacks, especially in terms of costs.
  • it can only be used in an external environment, that is to say an environment with a direct view of the satellites.
  • the start-up and initialization time is generally important, typically of the order of a few minutes.
  • a mobile terminal determines its position from position information received from fixed terminals. So, by For example, according to the algorithm known as Centroid, a mobile terminal evaluates an average of the received coordinates.
  • a topographic localization technique also called range based in English terminology
  • the position of a mobile terminal is estimated from physical measurements characterizing relative distances between mobile terminals and / or fixed terminals.
  • AOA Angle Of Arrival in English terminology
  • the location of a mobile terminal is achieved by a triangulation using the angles of reception of signals from three separate fixed landmarks.
  • the APS technique abbreviation Ad-hoc Positioning System in English terminology
  • TOA acronym for Time Of Arrival in English terminology
  • TDOA acronym for Time Difference Of Arrival in English terminology
  • the distance between a mobile terminal and a fixed terminal, between two mobile terminals or between two fixed terminals can be estimated from a measurement of the power of a signal received from a fixed terminal or a mobile terminal. Such a measure is known by the name of RSSI (acronym for Received Signal Strength Variations in English terminology).
  • This technique consists in measuring, in a receiver, the power of signals received from a transmitter and evaluating the distance between the transmitter and the receiver.
  • This method can be coupled with a triangulation technique to determine the location of a mobile terminal or a fixed terminal receiving signals.
  • the distance between a transmitter and a receiver is estimated using a model of attenuation of the power of the signals received with the distance.
  • the signal attenuation models represent the difference, in decibels (dB), of the signal strengths between transmission and reception.
  • a frequently used mitigation model is the Friis Free Space Path Model
  • is the wavelength of the transmitted signal and d is the distance between the transmitter and the receiver.
  • This equation can be generalized as follows, for all distances d, from a reference power defined here at the distance of one meter,
  • n is the signal attenuation parameter, representing the increase in signal attenuation as the distance between transmitter and receiver increases.
  • the value of n is typically equal to two. However, it is best to calibrate this setting according to the actual environment.
  • the invention solves at least one of the problems discussed above.
  • the invention thus relates to a computer method for orienting a first mobile terminal according to the relative position of at least one second terminal, said at least one second terminal comprising means for transmitting at least one signal and said first mobile terminal comprising wireless means for receiving said at least one signal and means for obtaining a representation of the power of said at least one received signal, which method comprises the following steps, obtaining a representation of a power level of said at least one received signal;
  • the method according to the invention thus allows a first mobile terminal to go to a second terminal without requiring additional means, based on the power gradient of a received signal.
  • the second terminal can be fixed or mobile.
  • the method according to the invention does not require any mapping of the places where the terminals are located or calibration phase.
  • the method can be implemented very quickly in outdoor or indoor environments.
  • the method can be implemented in a mobile terminal with few resources, including computing resources, memory and energy.
  • said at least one predetermined rule is identified from a state machine.
  • the method according to the invention is thus particularly simple to implement in a mobile terminal with few resources.
  • said at least one predetermined rule is at least partially based on a history of directions of said first mobile terminal to optimize the movement of the first mobile terminal.
  • the method further comprises a step of calculating an angle between a first and a second direction, said first direction corresponding to a direction followed by said first mobile terminal and said second direction corresponding to a particular direction related to the relative position of said at least one second terminal with respect to said first mobile terminal, said angle defining the direction to be followed by said first mobile terminal.
  • Said calculation step of said angle can be carried out periodically or, preferably, according to a power variation of said at least one received signal. This calculation stage, whose needs in terms of resources and energy are greater, is thus not systematically implemented.
  • said step of calculating said angle is performed when said power variation of said at least one received signal is less than a predetermined threshold. This calculation step is thus used only when it is necessary to optimize the trajectory of the first mobile terminal.
  • the method is implemented in an ad hoc type network, said first mobile terminal and said at least one second terminal forming nodes of said network.
  • the method according to the invention can thus be implemented in many applications and in many configurations.
  • the invention also relates to a computer program comprising instructions adapted to the implementation of each of the steps of the method described above, when said program is executed on a computer, and a mobile terminal comprising means adapted to the implementation of each of the steps of the method described above.
  • FIG. 1 schematically illustrates an exemplary algorithm for evaluating a direction of movement of a first mobile terminal (receiver) receiving a signal from a second mobile terminal (transmitter) in order to orient the first mobile terminal towards the second;
  • FIG. 2 illustrates a first example of a state machine, based on predetermined rules, for evaluating a direction as a function of a power gradient of a received signal;
  • FIG. 3 represents an example of each of the steps of a trajectory of a first mobile terminal pointing towards a second mobile terminal in accordance with the algorithm described with reference to FIG. 1 and with the state machine described with reference. in Figure 2;
  • FIG. 4 illustrates certain steps of a first orientation determination algorithm according to which the orientation is estimated according to predetermined rules and by calculations
  • FIG. 5 illustrates a method of calculating an orientation enabling a receiver to orient towards an emitter
  • FIG. 6, comprising FIGS. 6a and 6b, illustrates an example of choosing a direction evaluation mode
  • FIG. 7 illustrates a second example of a state machine that can be used to determine the direction to be followed by a receiver towards a transmitter
  • FIG. 8 illustrates certain steps of a second orientation determination algorithm according to which the orientation is estimated according to predetermined rules and by calculations
  • FIG. 9 illustrates an example of trajectory followed by a receiver, the direction followed being determined according to predetermined rules and, punctually, by calculation;
  • FIG. 10 illustrates an exemplary mobile terminal adapted to implement the invention or a part of the invention.
  • the invention implements a relative orientation technique based on the evaluation of electromagnetic signal strengths, preferably radioelectric, received by entities of a wireless network, using a power gradient, in order to to suggest directions to take to reach a target emitting these signals. More specifically, the invention aims to determine the necessary instructions to allow a mobile node of a network to be oriented towards an entity at its range of this network, using power measurements of a signal received from this entity, for example RSSIs measurements (acronym for Received Signal Strength Indicators in English terminology). It is considered here that the signals transmitted by the same network node are sent with the same transmission power.
  • RSSIs measurements ascronym for Received Signal Strength Indicators in English terminology
  • the orientation of a first mobile terminal, called receiver, to a second or to a fixed terminal, called transmitter, is performed in steps, each step corresponding to a displacement that can be characterized, for example, in time or distance.
  • the receiver determines a direction indication according to the power of a signal received from the transmitter.
  • the signals transmitted by a transmitter and received by a receiver are signals conforming to the IEEE 802.1 1 standard (ISO / IEC 8802-1 1), that is to say signals transmitting packets of data. It is observed here that the measurement of the signal power is performed natively, hardware or software, by many mobile terminals to quantify the quality of reception of a signal.
  • the invention uses this information generally accessible via an API (acronym for Application Programming Interface in English terminology).
  • Mobile terminals may in particular be mobile phones, PDAs, called PDAs (Personal Digital Assistant) and laptops belonging to an ad hoc network. They are here assimilated to computers including functions of calculation and memorization
  • the transmitter of a signal can be identified according to the data transmitted in the signal. This may be, for example, the MAC address (acronym for Media Access Control in English terminology) of the issuer.
  • the iwspy command of the Linux operating system allows, from a list of addresses of transmitters, to read the quality, the power and the level of noise of signals received from these transmitters. This information is updated whenever data is received, typically in the form of packets.
  • a direction is determined, at a given moment, according to a power gradient of the signal received from the transmitter and predetermined rules, for example arranged in the form of a state machine, so that the Received signal strength increases with the movement of the receiver.
  • FIG. 1 schematically illustrates an exemplary algorithm for evaluating a direction of movement of a first mobile terminal (receiver) receiving a signal from a second mobile terminal (transmitter) in order to orient the first mobile terminal towards the second mobile terminal (receiver).
  • a first step aims to initialize a first direction of movement and to measure the power of a signal received from the transmitter (step 100).
  • the first direction is, for example, initialized randomly.
  • the first mobile terminal is then moved in the given direction (step 105).
  • the first mobile terminal is moved a predetermined distance, for example a meter, in the given direction.
  • the first mobile terminal can be moved for a predetermined time, for example a second, in the given direction.
  • the second mobile terminal can move independently of the first.
  • the power P of the signal received by the receiver, emitted by the transmitter, is then measured (step 1 10). As indicated above, this power is preferably obtained from an existing function of the mobile terminal via an API. It is noted here that only the signals transmitted by the terminal (s) to which the receiving mobile terminal is to be directed are taken into consideration.
  • the measured power is here compared with a predetermined threshold ⁇ (step 1 15). If the measured power is greater than the threshold ⁇ , it is considered that the first mobile terminal is close to the second and the process ends.
  • the power gradient is estimated as a function of the power of the previously measured received signal, that is to say measured in the previous step (Step 120) and the direction to be followed by the first mobile terminal is estimated according to predetermined rules (step 125).
  • step 105 to 125 The preceding steps (steps 105 to 125) are then repeated until the first mobile terminal is close to the second, that is to say until the measured power is greater than the threshold ⁇ .
  • Figure 2 illustrates a first example of a state machine 200, based on predetermined rules, for evaluating a direction as a function of a power gradient of a received signal.
  • Each node here represents a state, that is, an estimate of a direction to follow.
  • the direction is arbitrary (state 205). From this direction and after a first displacement, the power gradient of a received signal is determined. If the gradient is positive, noted P ++ in the figure, the direction is considered correct. The state machine goes into state 210 where the direction is not changed (transition 215). If, on the contrary, the gradient is negative, noted P ⁇ in the figure, the direction is considered to be incorrect, the state machine goes into state 220 (transition 225) according to which the estimated direction is the direction opposite to that previously determined. Thus, for example, if the previously selected direction was a (with respect to any reference) the new direction is ⁇ + ⁇ (with respect to the same reference).
  • a first direction is defined, for example in a random manner, such that the angle ⁇ between the previous direction and the new direction is understood. between ⁇ / 4 and 3 ⁇ / 4 (transition 240).
  • the state machine thus goes into the state 245.
  • a second direction is defined, for example in a random manner, such that the angle ⁇ between the previous direction and the new direction is between n / 4 and 7 ⁇ / 4 (transition 250).
  • the state machine thus goes into state 255. If, from the state 245, the power gradient is positive, the direction previously estimated, considered good, is retained (transition 260). The state machine thus goes to state 210. On the other hand, if, from state 245, the power gradient is negative, the direction is considered to be incorrect and the state machine goes into state 220 (transition 265) in which the estimated direction is the direction opposite to that previously determined.
  • FIG. 3 represents an example of each of the steps (steps 1 to 23) of a trajectory 300 of a first mobile terminal 305 going to a second mobile terminal 310 in accordance with the algorithm described with reference to FIG. the state machine described with reference to FIG. 2.
  • the reference 315 here represents the limit according to which the power of the received signal is greater than a predetermined threshold ⁇ , that is to say the limit beyond which the orientation process is here halted.
  • the direction of a first mobile terminal to reach a second mobile terminal is determined alternatively by predetermined rules defined, for example, by a state machine such as that described with reference to FIG. by one estimating a displacement angle calculated as a function of power variations of a received signal.
  • the frequency of implementation of one of these two modes can in particular be random, predetermined or determined according to the available resources of the first mobile terminal.
  • step 100 shown in Fig. 1 includes a step of initializing a variable / to the zero value
  • step 125 shown in Fig. 1 comprises the steps illustrated in Fig. 4.
  • a first step is to compare the value of the variable / with a predetermined value n (step 400).
  • the direction of the first mobile terminal is determined according to predetermined rules (step 405), for example according to a state machine such as that described with reference to FIG. , and the variable / is incremented by one (step 410).
  • the angle of the direction that the first mobile terminal must take with respect to its current direction is calculated as a function of the power variation of a received signal as described below (step 415) and the variable / is reset to the zero value (step 420).
  • the object here is to calculate the angle ⁇ between the direction followed and a preferred direction at the midpoint noted 510.
  • Points 500 and 505 are distant by a distance L.
  • the first mobile terminal calculates the distances di and c / 2 separating it from the second mobile terminal at points 500 and 505, respectively, according to the Friis model. It is admitted here that the distance d between the first and second mobile terminals at point 510 is equal to the average of the distances di and c / 2 when these distances are very large compared to the distance L between the points 500 and 505, c that is to say,
  • the first mobile terminal when it is at point 505, it can calculate the angle ⁇ and the distance d.
  • a calibration step can be implemented to improve the results obtained.
  • Pr represents the power of a signal received by the receiver at a time / and d represents the average distance between the receiver and the transmitter at times / and (i-1).
  • the choice of the mode of evaluation of the direction is carried out according to the evolution of the variation of power of a signal received when the receiver approaches the transmitter.
  • FIG. 6, comprising FIGS. 6a and 6b, illustrates an example of choosing a direction evaluation mode.
  • FIG. 6a illustrates the variation of the distance between a first mobile terminal, referenced 305, and a second, referenced 310, when the first mobile terminal follows a rectilinear trajectory 300 '.
  • a power referenced Pi to P 7 of the signal received from the transmitter 310 corresponds to each point noted /? to 17 of the trajectory from which can be calculated the distance noted di to ⁇ between the receiver 305 and the transmitter 310.
  • the variation of the power may in particular be based on the second derivative of the curve representing the power of a received signal as a function of distance, representing a change in concavity of the curve.
  • the orientation of the receiver is, by default, determined according to a state machine such as that described with reference to FIG. 2, the angle of orientation being calculated if the variation of power of a received signal is positive and less than a threshold, for example a predetermined threshold, that is to say if, at the moment / ' ,
  • FIG. 7 illustrates a state machine 200 'that can be used to determine the direction a receiver must follow to turn towards a transmitter. This comprises the states and transitions described with reference to FIG. 2 as well as the calculation of an angle when the direction is generally good and the power variation of a received signal is less than a threshold ⁇ '.
  • each node here represents the estimation of a direction to follow.
  • the direction is arbitrary (state 205 '). From this direction and after a first displacement, the power gradient of a received signal is determined. If the gradient is positive, again noted P ++ in the figure, the direction is considered correct. The state machine goes into the state 210 'where the direction is not changed (transition 215'). If, on the contrary, the gradient is negative, always noted P- in the figure, the direction is considered as incorrect, the state machine goes into the state 220 '(transition 225') according to which the estimated direction is the direction opposite to that previously determined.
  • a second direction is defined, for example in a random manner, such that the angle a between the previous direction and the new direction is between n / 4 and 7 ⁇ / 4 (transition 250 ').
  • the state machine thus goes into state 255 '.
  • the state machine goes to state 210 '(transition 710). If, on the contrary, the power gradient of a received signal is negative, the opposite direction is chosen. For these purposes, the state machine goes to state 220 '(transition 715).
  • FIG 8 schematically illustrates certain steps of step 125 shown in Figure 1 to implement such an embodiment.
  • a first step is to determine the sign of the power difference of a signal received at times / and i-1 and compare it to a threshold ⁇ '(step 800).
  • the direction of the first mobile terminal is determined in accordance with predetermined rules (step 805). If, on the contrary, the power difference of a signal received at times / and i-1 is positive and less than the threshold ⁇ ', the direction of the first mobile terminal is calculated as a function of the power variation of a received signal. as previously described (step 810).
  • the trajectory followed by a receiver can be that shown in FIG. 9 according to which the direction followed between the starting point of the receiver and the point 14 is determined according to predetermined rules, the direction followed at the point U is calculated according to the equation
  • U is determined according to predetermined rules.
  • FIG. 10 A device adapted to implement the invention or a part of the invention, in particular the algorithms described with reference to FIGS. 1, 4 and 8, is illustrated in FIG. 10.
  • the device 1000 representing a mobile terminal, is here assimilated to a computer including functions of calculation and memorization.
  • a mobile phone including the smartphone type, a personal digital assistant PDA, an ultra-portable computer (also called netbook in English terminology), or a computer portable type PC.
  • the device 1000 here comprises a communication bus 1005 to which are connected:
  • a central processing unit or microprocessor 1010 CPU, Central Processing Unit
  • a read-only memory 1015 may include the programs “Prog”, “Progl” and “Prog2";
  • RAM Random Access Memory
  • cache memory 1020 comprising registers adapted to record variables and parameters created and modified during the execution of the aforementioned programs
  • a wireless communication interface 1050 adapted to receive and, advantageously, to transmit data in the form of signals.
  • the device 1000 furthermore has:
  • a screen 1025 making it possible to display data and / or to act as a graphical interface with the user who can interact with the programs according to the invention, using a keyboard and a mouse 1030 or another pointing device such as an optical pen, a touch screen or a remote control.
  • the screen 1025 is particularly adapted to indicate a direction to follow;
  • a hard disk 1035 that may comprise the "Prog", “Progl” and “Prog2" programs mentioned above and data processed or to be processed according to the invention.
  • a memory card reader 1040 adapted to receive a memory card 1045 and to read or write to it data processed or to be processed according to the invention.
  • the device 1000 is thus equipped with a screen, loudspeakers and / or a tactile surface according to the needs of the user.
  • the communication bus of the device 1000 allows communication and interoperability between the various elements included in the device 1000 or connected to it.
  • the representation of the bus is not limiting and, in particular, the central unit is able to communicate instructions to any element of the device 1000 directly or through another element of the device 1000.
  • the executable code of each program enabling the programmable device to implement the processes according to the invention can be stored, for example, in the hard disk 1035 or in the read-only memory 1015.
  • the memory card 1045 may contain data as well as the executable code of the aforementioned programs which, once read by the device 1000, will be stored in the hard disk 1035.
  • the executable code of the programs may be received, at least partially, via the interface 1050, to be stored in an identical manner to that described above.
  • program or programs may be loaded into one of the storage means of the device 1000 before being executed.
  • the central unit 1010 will control and direct the execution of the instructions or portions of software code of the program or programs according to the invention, instructions which are stored in the hard disk 1035 or in the read-only memory 1015 or else in the other elements of aforementioned storage.
  • the program or programs that are stored in a non-volatile memory for example the hard disk 1035 or the read-only memory 1015, are transferred into the random access memory 1020 which then contains the executable code of the program or programs according to the invention, as well as registers for storing the variables and parameters necessary for the implementation of the invention.
  • the invention can be used in many applications.
  • the invention can be implemented in applications of guidance according to which a mobile terminal broadcasts a search request of other terminals, mobile or otherwise, having a given profile corresponding to the request in order to direct it to the terminals thus identified.

Abstract

L'invention a notamment pour objet l'orientation relative d'un premier terminal mobile par rapport à un second terminal, ledit au moins un second terminal comprenant des moyens pour émettre au moins un signal et ledit premier terminal comprenant des moyens, sans fil, pour recevoir ledit au moins un signal et des moyens pour obtenir une représentation de la puissance dudit au moins un signal reçu. Après avoir obtenu (110) une représentation d'un niveau de puissance dudit au moins un signal reçu, un gradient de puissance dudit au moins un signal reçu est évalué (120) selon ladite représentation dudit niveau de puissance dudit au moins un signal reçu. Une direction de déplacement dudit premier terminal mobile est alors estimée (125, 405, 805), ladite direction étant déterminée selon ledit gradient et au moins une règle prédéterminée.

Description

« Procédé, programme d'ordinateur et dispositif pour l'orientation relative de terminaux mobiles sans fil »
La présente invention concerne l'orientation relative de terminaux mobiles sans fil, les uns par rapport aux autres, dans un environnement intérieur ou extérieur, et plus particulièrement un procédé, un programme d'ordinateur et un dispositif pour l'orientation relative de terminaux mobiles sans fil ne nécessitant pas de serveur central ni de systèmes tiers tels que des systèmes de positionnement.
De nombreuses applications nécessitent la localisation relative d'un terminal mobile sans fil par rapport à un autre terminal mobile ou par rapport à une borne fixe pour permettre, par exemple, de le guider vers celui-ci.
Généralement, l'orientation d'un terminal mobile vers un autre ou vers une borne fixe est basée sur une méthode de localisation absolue et selon une carte prédéterminée en utilisant des signaux électromagnétiques.
A titre d'illustration, un terminal mobile mettant en œuvre le système GPS (sigle de Global Positioning System en terminologie anglo-saxonne) comprend un capteur recevant et analysant des signaux envoyés par des satellites afin de définir sa position dans un espace tridimensionnel avec une marge d'erreur évaluée entre 10 et 20 mètres. Bien que cette solution soit très utilisée, elle présente des inconvénients, notamment en terme de coûts. En outre, elle ne peut être utilisée que dans un environnement extérieur, c'est-à- dire un environnement avec une vue directe sur les satellites. De plus, le temps de mise en route et d'initialisation est généralement important, typiquement de l'ordre de quelques minutes.
D'autres solutions sont basées sur l'utilisation de bornes fixes au sol, aussi appelées beacons en terminologie anglo-saxonne.
Selon une technique de localisation topologique, aussi appelée range free en terminologie anglo-saxonne, un terminal mobile détermine sa position à partir d'informations de position reçues de bornes fixes. Ainsi, par exemple, selon l'algorithme connu sous le nom de Centroid, un terminal mobile évalue une moyenne des coordonnées reçues.
Selon une technique de localisation topographique, aussi appelée range based en terminologie anglo-saxonne, la position d'un terminal mobile est estimée à partir de mesures physiques caractérisant des distances relatives entre des terminaux mobiles et/ou des bornes fixes. A titre d'illustration, selon l'algorithme connu sous le nom d'AOA (sigle d'Angle Of Arrivai en terminologie anglo-saxonne), la localisation d'un terminal mobile est réalisée par une triangulation utilisant les angles de réception de signaux issus de trois bornes fixes distinctes. Toujours à titre d'exemple, la technique APS (sigle d'Ad-hoc Positioning System en terminologie anglo-saxonne) vise une méthode selon laquelle la position d'un terminal mobile est estimée selon l'algorithme AOA dans un environnement comprenant des bornes fixes se localisant par GPS. Il existe d'autres méthodes similaires telles que les méthodes TOA (sigle de Time Of Arrivai en terminologie anglo-saxonne) et TDOA (sigle de Time Différence Of Arrivai en terminologie anglo-saxonne).
La distance entre un terminal mobile et une borne fixe, entre deux terminaux mobiles ou entre deux bornes fixes peut être estimée à partir d'une mesure de la puissance d'un signal reçu d'une borne fixe ou d'un terminal mobile. Une telle mesure est connue sous le nom de RSSI (sigle de Received Signal Strength Variations en terminologie anlgo-saxonne). Cette technique consiste à mesurer, dans un récepteur, la puissance de signaux reçus d'un émetteur et à évaluer la distance entre l'émetteur et le récepteur. Cette méthode peut être couplée avec une technique de triangulation afin de déterminer la localisation d'un terminal mobile ou d'une borne fixe recevant des signaux. La distance entre un émetteur et un récepteur est estimée en utilisant un modèle d'atténuation de la puissance des signaux reçus avec la distance. Les modèles d'atténuation du signal représentent la différence, en décibels (dB), des puissances des signaux entre l'émission et la réception. Un modèle d'atténuation souvent utilisé est le modèle Friis Free Space Path Loss Model selon lequel,
Figure imgf000005_0001
où λ est la longueur d'onde du signal transmis et d est la distance entre l'émetteur et le récepteur. Cette équation pour être généralisée de la façon suivante, pour toutes les distances d, à partir d'une puissance de référence définie ici à la distance do 'un mètre,
PL(d)[dB] = 2PLfs(d0)[dB] +
Figure imgf000005_0002
où n est le paramètre d'atténuation du signal, représentant l'augmentation de l'atténuation du signal quand la distance entre l'émetteur et le récepteur augmente. Pour un espace libre, c'est-à-dire sans obstacle, la valeur de n est typiquement égale à deux. Cependant, il est préférable de calibrer ce paramètre selon l'environnement réel.
Bien que les solutions brièvement décrites ci-dessus permettent la localisation relative d'un terminal mobile par rapport à un autre ou par rapport à une borne fixe, ces solutions manquent de précisions, ne peuvent être mises en œuvre que dans des environnements particuliers et/ou requièrent des ressources particulières, notamment en termes de puissance de calcul, et, par conséquent, une énergie importante. Ces solutions ne sont donc pas adaptées pour la localisation relative de terminaux mobiles tels que des téléphones portables, utilisés dans un environnement intérieur ou extérieur et disposant de faibles ressources de calcul et d'énergie, à des fins d'orientation.
L'invention permet de résoudre au moins un des problèmes exposés précédemment.
L'invention a ainsi pour objet un procédé pour ordinateur pour orienter un premier terminal mobile selon la position relative d'au moins un second terminal, ledit au moins un second terminal comprenant des moyens pour émettre au moins un signal et ledit premier terminal mobile comprenant des moyens, sans fil, pour recevoir ledit au moins un signal et des moyens pour obtenir une représentation de la puissance dudit au moins un signal reçu, ce procédé comprenant les étapes suivantes, - obtention d'une représentation d'un niveau de puissance dudit au moins un signal reçu ;
- évaluation d'un gradient de puissance dudit au moins un signal reçu selon ladite représentation dudit niveau de puissance dudit au moins un signal reçu ; et,
- estimation d'une direction de déplacement dudit premier terminal mobile, ladite direction étant déterminée selon ledit gradient et au moins une règle prédéterminée.
Le procédé selon l'invention permet ainsi à un premier terminal mobile de se diriger vers un second terminal sans requérir de moyen additionnel, en se basant sur le gradient de puissance d'un signal reçu. Le second terminal peut être fixe ou mobile. En outre, le procédé selon l'invention ne requière aucune cartographie des lieux où se situent les terminaux ni de phase de calibration. De plus, le procédé peut être mis en œuvre très rapidement dans des environnements extérieur ou intérieur. Par ailleurs, le procédé peut être implémenté dans un terminal mobile disposant de peu de ressources, notamment de ressources de calcul, de mémoire et d'énergie.
De façon avantageuse, ladite au moins une règle prédéterminée est identifiée à partir d'une machine d'états. Le procédé selon l'invention est ainsi particulièrement simple à implémenter dans un terminal mobile disposant de peu de ressources.
Toujours de façon avantageuse, ladite au moins une règle prédéterminée est au moins partiellement basée sur un historique de directions dudit premier terminal mobile pour optimiser le déplacement du premier terminal mobile.
Selon un mode de réalisation particulier, le procédé comprend en outre une étape de calcul d'un angle entre une première et une seconde directions, ladite première direction correspondant à une direction suivie par ledit premier terminal mobile et ladite seconde direction correspondant à une direction particulière liée à la position relative dudit au moins un second terminal par rapport audit premier terminal mobile, ledit angle définissant la direction à suivre par ledit premier terminal mobile. Le procédé permet ainsi d'optimiser la trajectoire du premier terminal mobile, notamment lorsque celui cherche à rejoindre le second terminal.
Ladite étape de calcul dudit angle peut être effectuée de façon périodique ou, de préférence, selon une variation de puissance dudit au moins un signal reçu. Cette étape de calcul, dont les besoins en termes de ressources et d'énergie sont plus importants, n'est ainsi pas mise en œuvre systématiquement.
De façon avantageuse, ladite étape de calcul dudit angle est effectuée lorsque ladite variation de puissance dudit au moins un signal reçu est inférieure à un seuil prédéterminé. Cette étape de calcul n'est ainsi utilisée que lorsque cela est nécessaire pour optimiser la trajectoire du premier terminal mobile.
Toujours selon un mode de réalisation particulier, le procédé est mis en œuvre dans un réseau de type ad hoc, ledit premier terminal mobile et ledit au moins un second terminal formant des nœuds dudit réseau. Le procédé selon l'invention peut ainsi être mis en œuvre dans de nombreuses applications et selon de nombreuses configurations.
L'invention a également pour objet un programme d'ordinateur comprenant des instructions adaptées à la mise en œuvre de chacune des étapes du procédé décrit précédemment, lorsque ledit programme est exécuté sur un ordinateur, ainsi qu'un terminal mobile comprenant des moyens adaptés à la mise en œuvre de chacune des étapes du procédé décrit précédemment.
Les avantages procurés par ce programme d'ordinateur et ce terminal mobile sont similaires à ceux évoqués précédemment.
D'autres avantages, buts et caractéristiques de la présente invention ressortent de la description détaillée qui suit, faite à titre d'exemple non limitatif, au regard des dessins annexés dans lesquels :
- la figure 1 illustre schématiquement un exemple d'algorithme pour évaluer une direction de déplacement d'un premier terminal mobile (récepteur) recevant un signal d'un second terminal mobile (émetteur) afin d'orienter le premier terminal mobile vers le second ; - la figure 2 illustre un premier exemple d'une machine d'états, basée sur des règles prédéterminées, pour évaluer une direction en fonction d'un gradient de puissance d'un signal reçu ;
- la figure 3 représente un exemple de chacune des étapes d'une trajectoire d'un premier terminal mobile se dirigeant vers un second terminal mobile conformément à l'algorithme décrit en référence à la figure 1 et à la machine d'états décrite en référence à la figure 2 ;
- la figure 4 illustre certaines étapes d'un premier algorithme de détermination d'orientation selon lequel l'orientation est estimée selon des règles prédéterminées et par calculs ;
- la figure 5 illustre une méthode de calcul d'une orientation permettant à un récepteur de s'orienter vers un émetteur ;
- la figure 6, comprenant les figures 6a et 6b, illustre un exemple de choix d'un mode d'évaluation de la direction ;
- la figure 7 illustre un second exemple d'une machine d'états pouvant être utilisée pour déterminer la direction que doit suivre un récepteur pour s'orienter vers un émetteur ;
- la figure 8 illustre certaines étapes d'un second algorithme de détermination d'orientation selon lequel l'orientation est estimée selon des règles prédéterminées et par calculs ;
- la figure 9 illustre un exemple de trajectoire suivie par un récepteur, la direction suivie étant déterminée selon des règles prédéterminées et, ponctuellement, par calcul ; et,
- la figure 10 illustre un exemple de terminal mobile adapté à mettre en œuvre l'invention ou une partie de l'invention.
De façon générale, l'invention met en œuvre une technique d'orientation relative basée sur l'évaluation de puissances de signaux électromagnétiques, de préférence radioélectriques, reçus par des entités d'un réseau sans fil, en utilisant un gradient de puissances, afin de suggérer des directions à emprunter pour rejoindre une cible émettant ces signaux. Plus précisément, l'invention vise à déterminer les instructions nécessaires pour permettre à un nœud mobile d'un réseau d'être orienté vers une entité à sa portée de ce réseau, en utilisant des mesures de puissance d'un signal reçu de cette entité, par exemple des mesures RSSIs (sigle de Received Signal Strength Indicators en terminologie anglo-saxonne). Il est considéré ici que les signaux émis par un même nœud de réseau sont envoyés avec la même puissance de transmission.
L'orientation d'un premier terminal mobile, appelé récepteur, vers un second ou vers une borne fixe, appelé émetteur, est réalisée par étape, chaque étape correspondant à un déplacement pouvant être caractérisé, par exemple, en temps ou en distance. A chaque étape, le récepteur détermine une indication de direction selon la puissance d'un signal reçu de l'émetteur.
A titre d'illustration, les signaux transmis par un émetteur et reçus par un récepteur sont des signaux conformes à la norme IEEE 802.1 1 (ISO/CEI 8802-1 1 ), c'est-à-dire des signaux transmettant des paquets de données. Il est observé ici que la mesure de la puissance de signaux est réalisée de façon native, matérielle ou logicielle, par de nombreux terminaux mobiles pour quantifier la qualité de réception d'un signal. L'invention utilise cette information généralement accessible via un API (sigle d'Application Programming Interface en terminologie anglo-saxonne).
Les terminaux mobiles peuvent notamment être des téléphones mobiles, des assistants personnels numérique, appelés PDAs (sigle de Personal Digital Assistant en terminologie anglo-saxonne) et des ordinateurs portables appartenant à un réseau ad hoc. Ils sont ici assimilés à des ordinateurs ayant notamment des fonctions de calcul et de mémorisation
L'émetteur d'un signal peut être identifié selon les données transmises dans le signal. Il peut s'agir, par exemple, de l'adresse MAC (acronyme de Media Access Control en terminologie anglo-saxonne) de l'émetteur.
A titre d'illustration, la commande iwspy du système d'exploitation Linux (Linux est une marque) permet, à partir d'une liste d'adresses d'émetteurs, de lire la qualité, la puissance et le niveau de bruit de signaux reçus de ces émetteurs. Ces informations sont mises à jour chaque fois que des données sont reçues, typiquement sous forme de paquets. Selon un premier mode de réalisation, une direction est déterminée, à un instant donné, selon un gradient de puissance du signal reçu de l'émetteur et des règles prédéterminées, par exemple arrangées sous forme d'une machine d'états, afin que la puissance du signal reçu augmente avec le déplacement du récepteur.
La figure 1 illustre schématiquement un exemple d'algorithme pour évaluer une direction de déplacement d'un premier terminal mobile (récepteur) recevant un signal d'un second terminal mobile (émetteur) afin d'orienter le premier terminal mobile vers le second.
Une première étape vise à initialiser une première direction de déplacement et à mesurer la puissance d'un signal reçu de l'émetteur (étape 100). La première direction est, par exemple, initialisée de façon aléatoire. Le premier terminal mobile est ensuite déplacé selon la direction donnée (étape 105). A titre d'illustration, le premier terminal mobile est déplacé d'une distance prédéterminée, par exemple un mètre, dans la direction donnée. Alternativement, le premier terminal mobile peut être déplacé pendant un temps prédéterminé, par exemple une seconde, dans la direction donnée.
Il convient d'observer ici que le second terminal mobile peut se déplacer indépendamment du premier.
La puissance P du signal reçu par le récepteur, émis par l'émetteur, est ensuite mesurée (étape 1 10). Comme indiqué précédemment, cette puissance est, de préférence, obtenue à partir d'une fonction existante du terminal mobile, via un API. Il est noté ici que seuls les signaux émis par le ou les terminaux vers lesquels le terminal mobile récepteur doit être dirigé sont pris en considération.
La puissance mesurée est ici comparée à un seuil prédéterminé Θ (étape 1 15). Si la puissance mesurée est supérieure au seuil Θ, il est considéré que le premier terminal mobile se trouve à proximité du second et le processus se termine.
Si, au contraire, la puissance mesurée est inférieure ou égale au seuil Θ, le gradient de puissance est estimé en fonction de la puissance du signal reçu préalablement mesurée, c'est-à-dire mesurée à l'étape précédente (étape 120) et la direction que doit suivre le premier terminal mobile est estimée selon des règles prédéterminées (étape 125).
Les étapes précédentes (étapes 105 à 125) sont alors répétées jusqu'à ce que le premier terminal mobile se trouve à proximité du second, c'est-à-dire jusqu'à ce que la puissance mesurée soit supérieure au seuil Θ.
La figure 2 illustre un premier exemple d'une machine d'états 200, basée sur des règles prédéterminées, pour évaluer une direction en fonction d'un gradient de puissance d'un signal reçu.
Chaque nœud représente ici un état, c'est-à-dire une estimation d'une direction à suivre. Au début du processus, la direction est quelconque (état 205). A partir de cette direction et après un premier déplacement, le gradient de puissance d'un signal reçu est déterminé. Si le gradient est positif, noté P++ sur la figure, la direction est considérée comme correcte. La machine d'états passe dans l'état 210 où la direction n'est pas modifiée (transition 215). Si, au contraire, le gradient est négatif, noté P~ sur la figure, la direction est considérée comme incorrecte, la machine d'états passe dans l'état 220 (transition 225) selon lequel la direction estimée est la direction opposée à celle précédemment déterminée. Ainsi, par exemple, si la direction précédemment sélectionnée était a (par rapport à une référence quelconque) la nouvelle direction est α+π (par rapport à la même référence).
Si, à partir de l'état 210, le gradient de puissance est positif, la direction est maintenue (transition 230). Au contraire, si , à partir de l'état 210, le gradient de puissance est négatif, une première direction est définie, par exemple de façon aléatoire, de telle sorte que l'angle a entre la précédente direction et la nouvelle direction soit compris entre π/4 et 3π/4 (transition 240). La machine d'états passe ainsi dans l'état 245. Cependant, de façon avantageuse, si l'historique des séquences de direction comprend la séquence (bonne direction ; direction 1 ; direction contraire ; bonne direction) ou la séquence (bonne direction, direction 2 ; bonne direction), une seconde direction est définie, par exemple de façon aléatoire, de telle sorte que l'angle a entre la précédente direction et la nouvelle direction soit compris entre n/4 et 7π/4 (transition 250). La machine d'états passe ainsi dans l'état 255. Si, à partir de l'état 245, le gradient de puissance est positif, la direction précédemment estimée, considérée comme bonne, est conservée (transition 260). La machine d'états passe ainsi à l'état 210. Au contraire, si, à partir de l'état 245, le gradient de puissance est négatif, la direction est considérée comme incorrecte et la machine d'états passe dans l'état 220 (transition 265) selon lequel la direction estimée est la direction opposée à celle précédemment déterminée.
Si, à partir de l'état 255, le gradient de puissance est positif, la direction précédemment estimée, considérée comme bonne, est conservée (transition 270). La machine d'états passe ainsi à l'état 210. Au contraire, si, à partir de l'état 255, le gradient de puissance est négatif, la direction est considérée comme incorrecte et la machine d'états passe dans l'état 220 (transition 275) selon lequel la direction estimée est la direction opposée à celle précédemment déterminée.
Enfin, si, à partir de l'état 220, le gradient de puissance est positif, la direction précédemment estimée, considérée comme bonne, est conservée (transition 280). La machine d'états passe ainsi à l'état 210. Au contraire, si, à partir de l'état 220, le gradient de puissance est négatif, une première direction est définie, par exemple de façon aléatoire, de telle sorte que l'angle a entre la précédente direction et la nouvelle direction soit compris entre π/4 et 3π/4 (transition 285). La machine d'états passe ainsi dans l'état 245.
La figure 3 représente un exemple de chacune des étapes (étapes 1 à 23) d'une trajectoire 300 d'un premier terminal mobile 305 se dirigeant vers un second terminal mobile 310 conformément à l'algorithme décrit en référence à la figure 1 et à la machine d'états décrite en référence à la figure 2. La référence 315 représente ici la limite selon laquelle la puissance du signal reçu est supérieure à un seuil prédéterminé Θ, c'est-à-dire la limite au-delà de laquelle le processus d'orientation est ici stoppé.
Selon un second mode de réalisation, la direction d'un premier terminal mobile pour atteindre un second terminal mobile est déterminée alternativement par des règles prédéterminées définies, par exemple, par une machine d'états telle que celle décrite en référence à la figure 2 et par une estimation d'un angle de déplacement calculée en fonction des variations de puissance d'un signal reçu. La fréquence de mise en œuvre de l'un de ces deux modes peut notamment être aléatoire, prédéterminée ou déterminée selon les ressources disponibles du premier terminal mobile.
A titre d'illustration, comme représenté sur la figure 4, il est possible de calculer un angle de déplacement en fonction des variations de puissance d'un signal reçu toutes les n estimations d'orientation. A ces fins, l'étape 100 représentée sur la figure 1 comprend une étape d'initialisation d'une variable / à la valeur zéro et l'étape 125 représentée sur la figure 1 comprend les étapes illustrées sur la figure 4.
Comme illustré sur cette figure, une première étape a pour objet de comparer la valeur de la variable / avec une valeur n prédéterminée (étape 400).
Si la valeur de la variable / est inférieure à la valeur n, la direction du premier terminal mobile est déterminée selon des règles prédéterminées (étape 405), par exemple conformément à une machine d'états telle que celle décrite en référence à la figure 2, et la variable / est incrémentée de un (étape 410).
Si, au contraire, la valeur de la variable / est supérieure ou égale à la valeur n, l'angle de la direction que doit prendre le premier terminal mobile par rapport à sa direction courante est calculé en fonction de la variation de puissance d'un signal reçu comme décrit ci-dessous (étape 415) et la variable / est réinitialisée à la valeur zéro (étape 420).
Le calcul de l'angle formé par la droite joignant les premier et second terminaux mobiles avec la trajectoire suivie par le premier terminal mobile permet à ce dernier de se diriger de façon plus rapide vers le second terminal mobile que la simple application de règles prédéterminées. Cependant, un tel calcul nécessitant des ressources de calcul importantes et, par conséquent, une énergie importante, ne peut être utilisé systématiquement.
En considérant les deux points 500 et 505 de la trajectoire suivie par le premier terminal mobile, comme illustré sur la figure 5, l'objet est ici de calculer l'angle β entre la direction suivie et une direction préférée au point médian noté 510. Les points 500 et 505 sont distants d'une distance L. Le premier terminal mobile calcule les distances di et c/2 le séparant du second terminal mobile aux points 500 et 505, respectivement, selon le modèle de Friis. Il est admis ici que la distance d entre les premier et second terminaux mobiles au point 510 est égale à la moyenne des distances di et c/2 quand ces distances sont très grandes par rapport à la distance L séparant les points 500 et 505, c'est-à-dire,
d, +
d =
L'analyse géométrique de la figure 5 permet de déduire les relations suivantes,
Figure imgf000014_0001
soit d? d2 = 2L d sin a d'où β = arccos
L
Ainsi, lorsque le premier terminal mobile se trouve au point 505, il peut calculer l'angle β et la distance d. L'incertitude liée au signe de la valeur β ( cos( 3) = cos(- β) ) peut être résolue par déplacement ou à l'aide d'une machine d'états telle que celle décrite en référence à la figure 2.
De façon avantageuse, une étape de calibration peut être mise en œuvre pour améliorer les résultats obtenus. En particulier, le paramètre d'atténuation du modèle d'atténuation, par exemple le paramètre n du modèle de Friis mentionné précédemment, peut être évalué de la façon suivante, lorsque do=1, en utilisant une seconde formulation du modèle de Friis,
Figure imgf000014_0002
où Pr, représente la puissance d'un signal reçu par le récepteur à un instant / et d représente la distance moyenne entre le récepteur et l'émetteur aux instants / et (i-1). Selon un troisième mode de réalisation, le choix du mode d'évaluation de la direction, selon des règles prédéterminées ou par calcul, est réalisé selon l'évolution de la variation de puissance d'un signal reçu lorsque le récepteur se rapproche de l'émetteur.
La figure 6, comprenant les figures 6a et 6b, illustre un exemple de choix d'un mode d'évaluation de la direction. La figure 6a illustre la variation de la distance entre un premier terminal mobile, référencé 305, et un second, référencé 310, lorsque le premier terminal mobile suit une trajectoire rectiligne 300'. A chaque point noté /? à 17 de la trajectoire correspond une puissance référencée Pi à P7 du signal reçu de l'émetteur 310 à partir de laquelle peut être calculée la distance notée di à άγ entre le récepteur 305 et l'émetteur 310.
Il est ainsi possible de représenter graphiquement, comme illustré sur la figure 6b, une courbe théorique 600 de puissance en fonction de la position du récepteur sur une trajectoire. Cette courbe peut notamment être obtenue par extrapolation des puissances mesurées d'un signal reçu d'un émetteur en différents points.
Il est observé ici que la variation de la distance entre l'émetteur et le récepteur pour deux points consécutifs de la trajectoire de ce dernier augmente avec la distance. La variation de puissance d'un signal reçu étant directement liée à la distance entre l'émetteur et le récepteur, il en résulte que la variation de puissance augmente avec la distance.
Ainsi, il est possible d'utiliser la variation de la puissance pour déterminer le choix du mode d'évaluation de la direction. Ce choix peut notamment être basé sur la dérivée seconde de la courbe représentant la puissance d'un signal reçu en fonction de la distance, représentant un changement de concavité de la courbe. Cependant, de façon avantageuse et pour simplifier les calculs nécessaires, l'orientation du récepteur est, par défaut, déterminée selon une machine d'états telle que celle décrite en référence à la figure 2, l'angle d'orientation étant calculé si la variation de puissance d'un signal reçu est positive et inférieure à un seuil, par exemple un seuil prédéterminé, c'est-à-dire si, à l'instant /',
Ο κ Ρ, - Ρ,^ κ θ' La figure 7 illustre une machine d'états 200' pouvant être utilisée pour déterminer la direction que doit suivre un récepteur pour s'orienter vers un émetteur. Celle-ci comprend les états et les transitions décrits en références à la figure 2 ainsi que le calcul d'un angle lorsque la direction est globalement bonne et que la variation de puissance d'un signal reçu est inférieure à un seuil θ'.
Comme sur la figure 2, chaque nœud représente ici l'estimation d'une direction à suivre. Au début du processus, la direction est quelconque (état 205'). A partir de cette direction et après un premier déplacement, le gradient de puissance d'un signal reçu est déterminé. Si le gradient est positif, à nouveau noté P++ sur la figure, la direction est considérée comme correcte. La machine d'états passe dans l'état 210' où la direction n'est pas modifiée (transition 215'). Si, au contraire, le gradient est négatif, toujours noté P- sur la figure, la direction est considérée comme incorrecte, la machine d'états passe dans l'état 220' (transition 225') selon lequel la direction estimée est la direction opposée à celle précédemment déterminée.
Si, à partir de l'état 210', le gradient de puissance est positif, la direction est maintenue (transition 230'). Au contraire, si, à partir de l'état 210', le gradient de puissance est négatif, une première direction est définie, par exemple de façon aléatoire, de telle sorte que l'angle entre la précédente direction et la nouvelle direction soit compris entre π/4 et 3π/4 (transition 240'). La machine d'états passe ainsi dans l'état 245'. Cependant, de façon avantageuse, si l'historique des séquences de direction comprend la séquence (bonne direction ; direction 1 ; direction contraire ; bonne direction) ou la séquence (bonne direction, direction 2 ; bonne direction), une seconde direction est définie, par exemple de façon aléatoire, de telle sorte que l'angle a entre la précédente direction et la nouvelle direction soit compris entre n/4 et 7π/4 (transition 250'). La machine d'états passe ainsi dans l'état 255'.
Si, à partir de l'état 245', le gradient de puissance est positif, la direction précédemment estimée, considérée comme bonne, est conservée (transition 260'). La machine d'états passe ainsi à l'état 210'. Au contraire, si, à partir de l'état 245', le gradient de puissance est négatif, la direction est considérée comme incorrecte et la machine d'états passe dans l'état 220' (transition 265') selon lequel la direction estimée est la direction opposée à celle précédemment déterminée.
Si, à partir de l'état 255', le gradient de puissance est positif, la direction précédemment estimée, considérée comme bonne, est conservée (transition 270'). La machine d'états passe ainsi à l'état 210'. Au contraire, si, à partir de l'état 255', le gradient de puissance est négatif, la direction est considérée comme incorrecte et la machine d'états passe dans l'état 220' (transition 275') selon lequel la direction estimée est la direction opposée à celle précédemment déterminée.
Si, à partir de l'état 220', le gradient de puissance est positif, la direction précédemment estimée, considérée comme bonne, est conservée (transition 280'). La machine d'états passe ainsi à l'état 210'. Au contraire, si, à partir de l'état 220', le gradient de puissance est négatif, une première direction est définie, par exemple de façon aléatoire, de telle sorte que l'angle a entre la précédente direction et la nouvelle direction soit compris entre π/4 et 3π/4 (transition 285'). La machine d'états passe ainsi dans l'état 245'.
Si, lorsque la direction suivie est la bonne { ^ - Ρ^ > 0 , état 210'), la variation de puissance d'un signal reçu est inférieure à un seuil θ' ( ^ - P^ < #' ), la machine d'états passe à l'état 705 (transition 700) où une nouvelle direction est calculée. Ce calcul consiste ici à déterminer l'angle formé par la direction à prendre et la direction actuelle selon l'équation décrite précédemment
Figure imgf000017_0001
Si, après avoir déplacé le récepteur dans la direction calculée, le gradient de puissance d'un signal reçu est positif, la direction est considérée comme bonne et la machine d'états passe à l'état 210' (transition 710). Si, au contraire, le gradient de puissance d'un signal reçu est négatif, la direction contraire est choisie. A ces fins, la machine d'états passe à l'état 220' (transition 715).
A nouveau, une étape de calibration telle que celle décrite précédemment peut être mise en œuvre pour améliorer les résultats obtenus. La figure 8 illustre schématiquement certaines étapes de l'étape 125 représentée sur la figure 1 pour mettre en œuvre un tel mode de réalisation. Comme illustré, une première étape a pour objet de déterminer le signe de la différence de puissance d'un signal reçu aux instants / et i-1 et de la comparer à un seuil θ' (étape 800).
Si la différence de puissance d'un signal reçu aux instants / et i-1 est négative ou supérieure au seuil θ', la direction du premier terminal mobile est déterminée conformément à des règles prédéterminées (étape 805). Si, au contraire, la différence de puissance d'un signal reçu aux instants / et i-1 est positive et inférieure au seuil θ', la direction du premier terminal mobile est calculée en fonction de la variation de puissance d'un signal reçu comme décrit précédemment (étape 810).
Ainsi, à titre d'illustration, la trajectoire suivie par un récepteur peut être celle présentée sur la figure 9 selon laquelle la direction suivie entre le point de départ du récepteur et le point l4 est déterminée selon des règles prédéterminées, la direction suivie au point U est calculée selon l'équation
Figure imgf000018_0001
décrite précédemment ( β = ) et la direction suivie après le point
U est déterminée selon des règles prédéterminées.
Un dispositif adapté à mettre en œuvre l'invention ou une partie de l'invention, notamment les algorithmes décrits en référence aux figures 1 , 4 et 8, est illustré sur la figure 10. Le dispositif 1000, représentant un terminal mobile, est ici assimilé à un ordinateur ayant notamment des fonctions de calcul et de mémorisation. Il s'agit, par exemple, d'un téléphone mobile, notamment du type smartphone, d'un assistant numérique personnel PDA, d'un ordinateur ultra-portable (aussi appelé netbook en terminologie anglo-saxonne), ou d'un ordinateur portable de type PC.
Le dispositif 1000 comporte ici un bus de communication 1005 auquel sont reliés :
- une unité centrale de traitement ou microprocesseur 1010 (CPU, Central Processing Unit) ; - une mémoire morte 1015 (ROM, acronyme de Read Only Memory en terminologie anglo-saxonne) pouvant comporter les programmes "Prog", "Progl " et "Prog2" ;
- une mémoire vive ou mémoire cache 1020 (RAM, acronyme de Random Access Memory en terminologie anglo-saxonne) comportant des registres adaptés à enregistrer des variables et paramètres créés et modifiés au cours de l'exécution des programmes précités ; et,
- une interface de communication sans fil 1050 adaptée à recevoir et, avantageusement, à transmettre des données sous forme de signaux.
De préférence, le dispositif 1000 dispose en outre :
- d'un écran 1025 permettant de visualiser des données et/ou de servir d'interface graphique avec l'utilisateur qui pourra interagir avec les programmes selon l'invention, à l'aide d'un clavier et d'une souris 1030 ou d'un autre dispositif de pointage tel qu'un crayon optique, un écran tactile ou une télécommande. L'écran 1025 est notamment adapté à indiquer une direction à suivre ;
- d'un disque dur 1035 pouvant comporter les programmes "Prog", "Progl " et "Prog2" précités et des données traitées ou à traiter selon l'invention ; et,
- d'un lecteur de cartes mémoires 1040 adapté à recevoir une carte mémoire 1045 et à y lire ou à y écrire des données traitées ou à traiter selon l'invention.
Il est observé ici que les indications de direction déterminées conformément à l'invention peuvent être données à un utilisateur sous différentes formes :
- visuelle, par exemple sur un écran tel que l'écran 1025 ;
- tactile via une surface telle qu'une surface vibrante dont des points peuvent vibrer indépendamment les uns des autres et indiquer ainsi des directions ; et/ou,
- sonore via, par exemple, des haut-parleurs (référence 1025' sur la figure 10). Le dispositif 1000 est ainsi équipé d'un écran, de haut-parleurs et/ou d'une surface tactile selon les besoins de l'utilisateur.
Le bus de communication du dispositif 1000 permet la communication et l'interopérabilité entre les différents éléments inclus dans le dispositif 1000 ou reliés à lui. La représentation du bus n'est pas limitative et, notamment, l'unité centrale est susceptible de communiquer des instructions à tout élément du dispositif 1000 directement ou par l'intermédiaire d'un autre élément du dispositif 1000.
Le code exécutable de chaque programme permettant au dispositif programmable de mettre en œuvre les processus selon l'invention, peut être stocké, par exemple, dans le disque dur 1035 ou en mémoire morte 1015.
Selon une variante, la carte mémoire 1045 peut contenir des données ainsi que le code exécutable des programmes précités qui, une fois lus par le dispositif 1000, sera stocké dans le disque dur 1035.
Selon une autre variante, le code exécutable des programmes pourra être reçu, au moins partiellement, par l'intermédiaire de l'interface 1050, pour être stocké de façon identique à celle décrite précédemment.
De manière plus générale, le ou les programmes pourront être chargés dans un des moyens de stockage du dispositif 1000 avant d'être exécutés.
L'unité centrale 1010 va commander et diriger l'exécution des instructions ou portions de code logiciel du ou des programmes selon l'invention, instructions qui sont stockées dans le disque dur 1035 ou dans la mémoire morte 1015 ou bien dans les autres éléments de stockage précités. Lors de la mise sous tension, le ou les programmes qui sont stockés dans une mémoire non volatile, par exemple le disque dur 1035 ou la mémoire morte 1015, sont transférés dans la mémoire vive 1020 qui contient alors le code exécutable du ou des programmes selon l'invention, ainsi que des registres pour mémoriser les variables et paramètres nécessaires à la mise en œuvre de l'invention.
L'invention peut être utilisée dans de nombreuses applications. En particulier, l'invention peut être mise en œuvre dans des applications de guidage selon lesquelles un terminal mobile diffuse une requête de recherche d'autres terminaux, mobiles ou non, ayant un profil donné correspondant à la requête afin de l'orienter vers les terminaux ainsi identifiés.
Naturellement, pour satisfaire des besoins spécifiques, une personne compétente dans le domaine de l'invention pourra appliquer des modifications dans la description précédente.

Claims

REVENDICATIONS
1 . Procédé pour ordinateur pour orienter un premier terminal mobile
(305) vers un second terminal (310) selon la position relative dudit second terminal, ledit second terminal comprenant des moyens pour émettre au moins un signal et ledit premier terminal mobile comprenant des moyens, sans fil, pour recevoir ledit au moins un signal et des moyens pour obtenir une représentation de la puissance dudit au moins un signal reçu, ce procédé étant caractérisé en ce qu'il comprend les étapes suivantes,
- obtention (1 10) d'une représentation d'un niveau de puissance dudit au moins un signal reçu ;
- évaluation (120) d'un gradient de puissance dudit au moins un signal reçu selon ladite représentation dudit niveau de puissance dudit au moins un signal reçu ; et,
- estimation (125, 405, 805) d'une direction de déplacement dudit premier terminal mobile vers ledit second terminal, ladite direction étant déterminée selon ledit gradient et au moins une règle prédéterminée.
2. Procédé selon la revendication précédente selon lequel ladite au moins une règle prédéterminée est identifiée à partir d'une machine d'états (200, 200').
3. Procédé selon la revendication 1 ou la revendication 2 selon lequel ladite au moins une règle prédéterminée est au moins partiellement basée sur un historique de directions dudit premier terminal mobile.
4. Procédé selon l'une quelconque des revendications 1 à 3 comprenant en outre une étape de calcul (415, 810) d'un angle entre une première et une seconde directions, ladite première direction correspondant à une direction suivie par ledit premier terminal mobile et ladite seconde direction correspondant à une direction particulière liée à la position relative dudit second terminal par rapport audit premier terminal mobile, ledit angle définissant la direction à suivre par ledit premier terminal mobile.
5. Procédé selon la revendication précédente selon lequel ladite étape de calcul (405) dudit angle est effectuée de façon périodique.
6. Procédé selon la revendication 4 selon lequel ladite étape de calcul (810) dudit angle est effectuée selon une variation de puissance dudit au moins un signal reçu.
7. Procédé selon la revendication précédente selon lequel ladite étape de calcul (810) dudit angle est effectuée lorsque ladite variation de puissance dudit au moins un signal reçu est inférieure à un seuil prédéterminé.
8. Procédé selon l'une quelconque des revendications précédentes, le procédé étant mis en œuvre dans un réseau de type ad hoc, ledit premier terminal mobile et ledit second terminal formant des nœuds dudit réseau.
9. Programme d'ordinateur comprenant des instructions adaptées à la mise en œuvre de chacune des étapes du procédé selon l'une quelconque des revendications précédentes lorsque ledit programme est exécuté sur un ordinateur.
10. Terminal mobile comprenant des moyens adaptés à la mise en œuvre de chacune des étapes du procédé selon l'une quelconque des revendications 1 à 8.
PCT/FR2010/052661 2009-12-24 2010-12-09 Procédé, programme d'ordinateur et dispositif pour l'orientation relative de terminaux mobiles sans fil WO2011077026A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0959597A FR2954884B1 (fr) 2009-12-24 2009-12-24 Procede, programme d'ordinateur et dispositif pour l'orientation relative de terminaux mobiles sans fil
FR0959597 2009-12-24

Publications (1)

Publication Number Publication Date
WO2011077026A1 true WO2011077026A1 (fr) 2011-06-30

Family

ID=42344024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052661 WO2011077026A1 (fr) 2009-12-24 2010-12-09 Procédé, programme d'ordinateur et dispositif pour l'orientation relative de terminaux mobiles sans fil

Country Status (2)

Country Link
FR (1) FR2954884B1 (fr)
WO (1) WO2011077026A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070258421A1 (en) * 2006-05-08 2007-11-08 Farshid Alizadeh-Shabdiz Estimation of position using WLAN access point radio propagation characteristics in a WLAN positioning system
WO2007133970A2 (fr) * 2006-05-08 2007-11-22 Skyhook Wireless, Inc. Estimation de la vitesse et du sens de déplacement dans un système de positionnement wlan

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070258421A1 (en) * 2006-05-08 2007-11-08 Farshid Alizadeh-Shabdiz Estimation of position using WLAN access point radio propagation characteristics in a WLAN positioning system
WO2007133970A2 (fr) * 2006-05-08 2007-11-22 Skyhook Wireless, Inc. Estimation de la vitesse et du sens de déplacement dans un système de positionnement wlan

Also Published As

Publication number Publication date
FR2954884B1 (fr) 2012-07-13
FR2954884A1 (fr) 2011-07-01

Similar Documents

Publication Publication Date Title
US11035961B2 (en) Systems and methods for real time kinematic satellite positioning
Chen et al. Locating and tracking ble beacons with smartphones
US20150127287A1 (en) Determining calibrated measurements of pressure for different sensors
US9746331B1 (en) Method and apparatus for map matching
EP3227705B1 (fr) Dispositif électronique pour la localisation proche d&#39;un objet terrestre, et procédé de localisation d&#39;un tel objet
FR3072180B1 (fr) Procede de localisation d&#39;une borne d&#39;acces a un reseau de communication
US11140651B2 (en) Location determination of wireless communications devices
EP3126864B1 (fr) Procédé de géo-localisation de l&#39;environnement d&#39;un porteur
FR3092175A1 (fr) Procédé de localisation par signaux GNSS
WO2013096209A1 (fr) Système et procédé de localisation wlan probabiliste
WO2011077026A1 (fr) Procédé, programme d&#39;ordinateur et dispositif pour l&#39;orientation relative de terminaux mobiles sans fil
EP3494403B1 (fr) Procede et systeme de geolocalisation par calcul direct d&#39;elements de deplacement
WO2021105618A1 (fr) Procede et dispositif de localisation par retrodiffusion ambiante
FR2958096A1 (fr) Procede et systeme de calibration, support d&#39;enregistrement pour ce procede
Zhang et al. FSI: A FTM Calibration Method Using Wi-Fi Physical Layer Information
EP3827273B1 (fr) Méthodes et systèmes de radioguidage en environnements non cooperatifs
Kusuma et al. A review of indoor positioning system techniques using bluetooth low energy
EP3695625B1 (fr) Procédé, terminal, système et logiciel de notification d&#39;informations déterminées par un terminal à destination d&#39;un réseau d&#39;accès d&#39;un système de communication sans fil
KR101658468B1 (ko) 무선 센서 네트워크 장치 및 그 제어방법
FR3044774A1 (fr) Procede utilisant des mesures de puissances pour determiner des donnees de positionnement entre deux corps
WO2022008812A1 (fr) Procédé et dispositif d&#39;obtention d&#39;une position géographique d&#39;un véhicule situé dans une zone non couverte par un système de positionnement par satellite
WO2024009048A1 (fr) Procede de recalage d&#39;une attitude fournie par un systeme de navigation a l&#39;estime au moyen d&#39;un systeme de positionnement relatif
KR20230000064A (ko) 측위 장치 및 방법
FR2963422A1 (fr) Estimation du deplacement d&#39;une personne
WO2021123374A1 (fr) Procede et systeme d&#39;auto-localisation a partir d&#39;ondes radioelectriques, programme et support de programme correspondants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10805622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10805622

Country of ref document: EP

Kind code of ref document: A1