WO2011160353A1 - Method and device for implementing pseudo pilot - Google Patents

Method and device for implementing pseudo pilot Download PDF

Info

Publication number
WO2011160353A1
WO2011160353A1 PCT/CN2010/077474 CN2010077474W WO2011160353A1 WO 2011160353 A1 WO2011160353 A1 WO 2011160353A1 CN 2010077474 W CN2010077474 W CN 2010077474W WO 2011160353 A1 WO2011160353 A1 WO 2011160353A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
pseudo
carrier frequency
signal
pseudo pilot
Prior art date
Application number
PCT/CN2010/077474
Other languages
French (fr)
Chinese (zh)
Inventor
罗夙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011160353A1 publication Critical patent/WO2011160353A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention discloses a method and device for implementing pseudo pilot, and the method includes: configuring a pseudo pilot carrier frequency; according to the system requirement, setting up the number of the pseudo pilots on the pseudo pilot carrier frequency; configuring the frequency points of air interface corresponding to the pseudo pilots, wherein the number of the frequency points of air interface is equal to the number of the pseudo pilots; copying the signal of the pseudo pilot carrier frequency, wherein the number of the copies is equal to the number of the pseudo pilots; separately transmitting the copied signals of the pseudo pilot carrier frequency to the frequency points of the air interface. By the present invention, the cost for the operators to implement the device for pseudo carrier frequency is reduced.

Description

伪导频实现方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种伪导频实现方法及装置。 背景技术 在码分多址 (Code Division Multiple Access, 简称为 CDMA)网络中, 才艮 据网络覆盖的需求,不同站点配置的频点数可能不一样。如室内覆盖站点(室 内微站), 容量较小,一般配置一个频点就可以满足需求; 而室外站点覆盖较 远 (室外宏站), 用户量较大, 都会配置多个频点, 如联通的 CDMA网络就 会配置 4个频点。 当移动台锁定在室外 fl或 f2或 β频点, 从室外移步室内 时, 无论是通话态或者空闲态, 都可以通过室内站 η或 β或 β频点的引导 信号平滑的锁定在室内的 a频点上, 如附图 1所示, 这里 η或 β或 β的引 导信号也称为伪导频信号。 伪导频对于 CDMA 这种配置不均衡网络类型非常重要, 它可以保证手 机在使用不同载波的切换中由原来得硬切换变为软切换, 从而减少手机的掉 话率。 例如: 移动台在室外基站下使用载频 fl通信 (通话状态), 当移动台逐 渐远离室外基站, 靠近室内基站, 室内基站只有载频 K)提供服务。 移动台收 到的室外基站 η 的信号越来越弱, 而室内基站 的信号逐渐增强, 只能釆 用硬切换的方式进行切换, 而且会产生 30 毫秒的中断。 由于不同基站的异 频硬切换的成功率很低, 非常容易形成掉话的现象。 在这种情况下, 室内基 站配置伪导频信号。 当移动台处于载频 fl月艮务之下, 从室外基站移动到室内 基站时, 移动台会不断检测附近基站同频的导频信号强度。 当室内站的 η频 点的导频信号参数超过门限值时, 移动台会主动向基站发送导频强度测量消 息 (Pilot Strength Measuring Message , 简称为 PSMM)。 室内基站收到消息后, 查询本基站的配置信息, 发现 fl频点的导频信号实际上是伪导频信号, 不具 备提供业务信道的可能, 只有 K)频点可以分配业务信道, 因此分配 K)频点 的业务信道资源, 供移动台实现切换。 移动台在室内站 fl频点的伪导频协助 下, 完成了从室外站 fl到室内站 K)的切换, 从而保证的切换顺利进行。 由 于这个过程属于软切换, 不会掉话, 从而提高切换的成功率。 又例如: 移动台在室外基站的载频 fl待机(非通话状态, 即待机状态), 当移动台从室外移向室内移动时, 由于室内站点只有 Κ)载频而没有 fl载频, 移动台发起起呼时,由于室外的 η除了导频信道以外,其他信道的信号很弱, 这样会导致移动台在起呼过程中转入室外的业务信道困难, 引起呼叫失败。 在这种情况下, 室内基站也需要配置伪导频信号。 当移动台从室外向室内移 动的过程中, 检测到同频的 η信号, 可以平滑的切换到室内站的 ω信号待 机。 此时再起呼, 就可以再室内站的各种信道下完成起呼的流程。 在相关技术中, 基站设备供应商一般是釆用一套单独的射频设备和基带 载频来发射一路伪导频信号, 且一路伪导频占用一个基带载频, 对于需要配 置成伪导频的载频, 只配置导频信道, 不配置其它控制信道。 例如: 某个扇 区下配置 1个普通载频 ffi , 配置 3个伪导频 fl , f2 , β , 每路伪导频的信号 频点和内容各不相同, 发射方式如附图 2所示。 但是这种伪导频的实现方式对基带调制解调芯片所能支持的载扇数有要 求, 即系统的基带调制解调芯片和射频系统能够支持足够的载扇数。 而芯片 所支持的载扇数又完全依赖于芯片供应商。 如果芯片供应商推出的芯片只支 持 2个载扇, 那么对于需要多个伪导频的系统就无法实现伪导频配置了, 且 基带调制解调芯片支持的载扇数目越多, 基带调制解调芯片的成本越高, 增 加了运营商的设备成本。 发明内容 本发明的主要目的在于提供一种伪导频实现方法及装置, 以至少解决上 述问题之一。 为了实现上述目的, 根据本发明的一个方面, 提供了一种伪导频实现方 法。 才艮据本发明的伪导频实现方法包括: 配置一个伪导频载频; 居系统需 求设置伪导频载频上的伪导频的个数; 配置伪导频对应的空口频点, 其中, 空口频点的个数等于伪导频的个数; 将伪导频载频的信号进行复制, 其中复 制的份数等于伪导频的个数; 将复制的伪导频载频的信号分别发射到空口频 在将伪导频载频的信号进行复制之前, 还包括: 配置一个普通载频; 配 置伪导频载频的信号, 其中, 信号包括导频信号和同步信号; 配置伪导频载 频的信号的同步信道消息中的频率字段为普通载频的频率字段。 配置伪导频载频的信号的同步信道消息中的频率字段为普通载频的频率 字段包括: 配置同步信道消息中的码分多址频率字段 CDMA FREQ 和码分 多址扩展的频率字段 EXT CDMA FREQ为普通载频的频点。 为了实现上述目的, 根据本发明的另一方面, 提供了一种伪导频实现装 置。 根据本发明的伪导频实现装置包括: 伪载频配置模块, 设置为配置一个 伪导频载频; 设置模块, 设置为根据系统需求设置伪导频载频上的伪导频的 个数; 空口频点配置模块, 设置为配置伪导频对应的空口频点, 其中, 空口 频点的个数等于伪导频的个数; 复制模块, 设置为将伪导频载频的信号进行 复制, 其中复制的份数等于伪导频的个数; 发射模块, 设置为将复制的伪导 频载频的信号分别发射到空口频点。 上述装置还包括: 普通载频配置模块, 设置为配置一个普通载频; 信号 配置模块, 设置为配置伪导频载频的信号, 其中, 信号包括的导频信号和同 步信号; 同步信道配置模块, 设置为配置伪导频载频的信号的同步信道消息 中的频率字段为普通载频的频率字段。 同步信道配置模块设置为配置同步信道消息中的码分多址频率字段 CDMA FREQ 和码分多址扩展的频率字段 EXT CDMA FREQ 为普通载频 的频点。 上述伪载频配置模块、 上述设置模块、 上述空口频点配置模块和上述普 通载频配置模块设置在后台网管系统中。 上述复制模块、 上述发射模块、 上述信号配置模块和上述同步信道配置 模块设置在基站上。 通过本发明, 釆用将伪导频信号的同步信道消息的频点字段填写基本载 频的频点信息, 并将一路伪导频信号按照配置需求复制多路, 分别发送到不 同频点的射频通道上, 再发送到空口, 解决了相关技术中伪导频信号完全依 赖基带芯片支持载扇数造成应用受到限制的问题, 实现了一个伪导频载频支 持多路伪导频信号, 并降低了运营商用于实现伪载频的设备的成本。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是根据相关技术的伪导频示意图; 图 2是根据相关技术的伪导频实现方法示意图; 图 3是 居本发明实施例的伪导频实现方法的流程图; 图 4是 居本发明实施例的伪导频实现装置的结构框图; 图 5是 居本发明实施例的伪导频实现装置的优选的结构框图; 图 6是 居本发明实施例的伪导频实现方式示意图; 以及 图 7是 居本发明优选实施例的伪导频实现的流程图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 实施例一 在本实施例中, 提供了一种伪导频的实现方法, 图 3是根据本发明实施 例的伪导频实现方法的流程图, 如图 3所示, 包括: 步骤 S302, 配置一个伪导频载频; 步骤 S304, 根据系统需求设置伪导频载频上的伪导频的个数; 步骤 S306, 配置伪导频对应的空口频点, 其中, 空口频点的个数等于伪 导频的个数; 步骤 S308, 将伪导频载频的信号进行复制, 其中复制的份数等于伪导频 的个数; 步骤 S310, 将复制的伪导频载频的信号分别发射到空口频点。 通过上述步骤, 将伪导频载频的信号进行复制, 并将复制后的伪导频的 信号发射到空口频点, 克服了相关技术中一路伪导频占用一个基带载频, 伪 导频配置完全受限于基带调制解调芯片支持的扇区数目, 实现了一个伪导频 载频支持多路伪载频信号, 并降低了用于实现伪载频的设备的成本。 优选地, 在步骤 S310 之前, 还包括: 配置一个普通载频; 配置伪导频 载频的信号, 其中, 该信号包括导频信号和同步信号; 配置伪导频载频的信 号的同步信道消息中的频率字段为普通载频的频率字段。 通过该优选实施例 的配置步骤, 配置伪导频信号只包含导频信道和同步信道, 而不包含寻呼信 道,这样大大减少了伪导频信号的发射功率,不配置寻呼信道,可以减少 12% 的功率消耗, 这样以来, 降低了伪导频信号对其他载频的千扰。 下面对上述步骤中配置伪导频载频的信号的同步信道消息中的频率字段 为普通载频的频率字段的一个优选地实施方式进行说明: 配置同步信道消息 中的码分多址频率字段 CDMA_FREQ 和码分多址扩展的频率字段 EXT CDMA FREQ 为普通载频的频点。 通过该优选的实施例的配置步骤, 将同步信道消息中的码分多址频率字段配置为普通载频的频点, 移动台会同 步信道消息中 CDMA_FREQ和 EXT_CDMA_FREQ字段搜索相应频点的寻 呼信道。 将同步信道消息中的 CDMA_FREQ和 EXT_CDMA_FREQ字段填 写为普通载频的频点, 那么移动台在锁定伪导频信号的导频信道和同步信道 后, 才艮据 CDMA_FREQ和 EX _CDMA_FREQ字段的指示, 转去搜索普通 载频的寻呼信道, 从而达到在普通载频上待机的目的。 实施例二 本实施例综合了实施例一及其中的优选方式, 在本实施例中提供了一种 伪导频实现装置, 图 4是才艮据本发明实施例的伪导频实现装置的结构框图, 如图 4所示, 该装置包括: 伪载频配置模块 42、 设置模块 44、 空口频点配 置模块 46、 复制模块 48和发射模块 49 , 下面对上述结构进行详细说明。 伪载频配置模块 42 , 设置为配置一个伪导频载频; 设置模块 44 , 连接 至伪载频配置模块 42 , 设置为根据系统需求设置伪载频配置模块 42配置的 伪导频载频上的伪导频的个数; 空口频点配置模块 46 , 连接至伪载频配置模 块 42和设置模块 44 ,设置为配置伪载频配置模块 42配置的伪导频载频上的 伪导频对应的空口频点, 其中, 空口频点的个数等于伪导频的个数; 复制模 块 48 , 连接至伪载频配置模块 42 , 设置为将伪载频配置模块 42配置的伪导 频载频的信号进行复制, 其中复制的份数等于伪导频的个数; 发射模块 49 , 连接至复制模块 48 , 设置为将复制模块 48复制的伪导频载频的信号分别发 射到空口频点。 图 5是 居本发明实施例的伪导频实现装置的优选的结构框图, 如图 5 所示, 该装置还包括: 普通载频配置模块 52 , 信号配置模块 54 , 同步信道 配置模块 56 , 下面对上述结构进行详细说明。 普通载频配置模块 52 , 设置为配置一个普通载频; 信号配置模块 54 , 连接至伪载频配置模块 42, 设置为配置伪载频配置模块 42配置的伪导频载 频的信号, 其中, 该信号包括导频信号和导频信号; 同步信道配置模块 56 , 连接至普通载频配置模块 52 ,设置为配置伪导频载频的信号的同步信道消息 中的频率字段为普通载频的频率字段。 下面对同步信道配置模块 56 配置伪导频载频的信号的同步信道消息中 的频率字段为普通载频的频率字段的一个优选地实施方式进行说明: 配置同 步信道消息中的码分多址频率字段 CDMA FREQ 和码分多址扩展的频率字 段 EXT CDMA FREQ为普通载频的频点。 优选地, 上述伪载频配置模块、 上述设置模块、 上述空口频点配置模块 和上述普通载频配置模块设置在后台网管系统中。 优选地, 上述复制模块、 上述发射模块、 上述信号配置模块和上述同步 信道配置模块设置在基站上。 实施例三 本实施例综合了实施例一、 实施例二及其中的优选方式, 在本实施例中 提供了一种实际系统中实现伪导频的优选实施方式, 图 6是才艮据本发明实施 例的伪导频实现方式示意图, 图 7是才艮据本发明优选实施例的伪导频实现的 流程图, 下面结合图 6和 7进行说明。 步骤 S702, 在后台网管系统的扇区下配置两个载频, 如图 6所示, 第一 个为普通载频 sectorO, 第二个为伪导频载频 sectorl。 在伪导频的载频下配置 所需要的伪导频的路数及每路伪导频的空口频点。 第一个普通载频的频点为 fD , 第二个伪导频载频下配置 N 路伪导频, 每路伪导频的射频频点为 fl , f2, …… fN。 步骤 S704 , 在伪导频载频下配置一条导频信道和一条同步信道, 同步消 息频点字段的频点位 K)。 各参数取值如下表 1所示: 表 1同步信道消息频点字段参数值参考表 TECHNICAL FIELD The present invention relates to the field of communications, and in particular to a method and an apparatus for implementing a pseudo pilot. BACKGROUND In a Code Division Multiple Access (CDMA) network, the number of frequency points configured by different sites may be different according to the requirements of network coverage. For example, an indoor coverage station (indoor micro-station) has a small capacity, and generally has one frequency point to meet the demand; while the outdoor station covers a long distance (outdoor macro station), and the user volume is large, and multiple frequency points, such as Unicom, are configured. The CDMA network will be configured with 4 frequency points. When the mobile station is locked in the outdoor fl or f2 or β frequency, when moving from the outdoor to the indoor, whether it is the talk state or the idle state, it can be smoothly locked indoors by the pilot signal of the indoor station η or β or β frequency. At a frequency, as shown in Fig. 1, the pilot signal of η or β or β is also referred to as a pseudo pilot signal. Pseudo-pilot is very important for the CDMA unbalanced network type. It can ensure that the mobile phone switches from the original hard switch to the soft switch in the switch using different carriers, thus reducing the dropped call rate of the mobile phone. For example: The mobile station uses the carrier frequency fl communication (talk state) under the outdoor base station, and when the mobile station gradually moves away from the outdoor base station and close to the indoor base station, the indoor base station only provides the service with the carrier frequency K). The signal of the outdoor base station η received by the mobile station becomes weaker and weaker, and the signal of the indoor base station is gradually enhanced, and can only be switched by the hard handover mode, and an interrupt of 30 milliseconds is generated. Since the success rate of the inter-frequency hard handover of different base stations is very low, it is very easy to form a call drop phenomenon. In this case, the indoor base station configures a pseudo pilot signal. When the mobile station is under the carrier frequency and moves from the outdoor base station to the indoor base station, the mobile station continuously detects the pilot signal strength of the same frequency of the nearby base station. When the pilot signal parameter of the η frequency point of the indoor station exceeds the threshold, the mobile station actively sends a Pilot Strength Measuring Message (PSMM) to the base station. After receiving the message, the indoor base station queries the configuration information of the base station, and finds that the pilot signal of the fl frequency point is actually a pseudo pilot signal, and does not have the possibility of providing a traffic channel. Only the K) frequency point can allocate a traffic channel, so the allocation is performed. K) Traffic channel resources of the frequency point for the mobile station to implement handover. The mobile station completes the handover from the outdoor station fl to the indoor station K) with the help of the pseudo pilot of the indoor station fl frequency, thereby ensuring smooth handover. Since this process is a soft handover, it does not drop calls, thereby increasing the success rate of handover. For example, the mobile station is in the standby frequency of the outdoor base station fl (non-talk state, that is, the standby state). When the mobile station moves from the outdoor to the indoor mobile, since the indoor station has only the carrier frequency and no fl carrier frequency, the mobile station When the originating call is initiated, since the outdoor η is weak except for the pilot channel, the signal of the other channel is difficult to be transferred to the outdoor traffic channel during the call-out process, causing the call to fail. In this case, the indoor base station also needs to configure a pseudo pilot signal. When the mobile station moves from the outdoor to the indoor, the n-signal of the same frequency is detected, and the ω signal of the indoor station can be smoothly switched to standby. At this point, the call-up process can be completed under various channels of the indoor station. In the related art, a base station equipment provider generally uses a single set of radio frequency equipment and a baseband carrier frequency to transmit one pseudo pilot signal, and one pseudo pilot occupies one baseband carrier frequency, and needs to be configured as a pseudo pilot. Carrier frequency, only the pilot channel is configured, and no other control channels are configured. For example: a common carrier frequency ffi is configured in a certain sector, and three pseudo pilots fl, f2, and β are configured. The frequency and content of each pseudo pilot are different. The transmission mode is as shown in Figure 2. . However, the implementation of the pseudo pilot has a requirement on the number of carriers that the baseband modulation and demodulation chip can support, that is, the system baseband modulation and demodulation chip and the radio frequency system can support a sufficient number of carriers. The number of fans supported by the chip is completely dependent on the chip supplier. If the chip introduced by the chip supplier supports only two carrier fans, the pseudo pilot configuration cannot be implemented for a system that requires multiple pseudo pilots, and the number of carrier fans supported by the baseband modulation and demodulation chip is larger, and the baseband modulation solution The higher the cost of the chip, the higher the equipment cost of the operator. SUMMARY OF THE INVENTION A primary object of the present invention is to provide a method and apparatus for implementing a pseudo pilot to solve at least one of the above problems. In order to achieve the above object, according to an aspect of the present invention, a pseudo pilot implementation method is provided. The method for implementing the pseudo pilot according to the present invention includes: configuring a pseudo pilot carrier frequency; setting the number of pseudo pilots on the pseudo pilot carrier frequency in the system requirement; and configuring the air interface frequency corresponding to the pseudo pilot, where The number of frequency points of the air interface is equal to the number of pseudo pilots; the signal of the pseudo pilot carrier frequency is copied, wherein the number of copies is equal to the number of pseudo pilots; the signals of the copied pseudo pilot carrier frequencies are respectively Launch to air frequency Before copying the signal of the pseudo pilot carrier frequency, the method further includes: configuring a normal carrier frequency; configuring a signal of the pseudo pilot carrier frequency, wherein the signal includes a pilot signal and a synchronization signal; and configuring the signal of the pseudo pilot carrier frequency The frequency field in the synchronization channel message is the frequency field of the normal carrier frequency. The frequency field in the synchronization channel message of the signal configuring the pseudo pilot carrier frequency is the frequency field of the normal carrier frequency, including: Configuring the code division multiple access frequency field in the synchronization channel message CDMA FREQ and the frequency field of the code division multiple access extension EXT CDMA FREQ is the frequency of the ordinary carrier frequency. In order to achieve the above object, according to another aspect of the present invention, a pseudo pilot implementing apparatus is provided. The pseudo pilot implementation apparatus according to the present invention includes: a pseudo carrier frequency configuration module configured to configure a pseudo pilot carrier frequency; and a setting module configured to set a number of pseudo pilots on the pseudo pilot carrier frequency according to system requirements; The air interface frequency point configuration module is configured to configure an air interface frequency point corresponding to the pseudo pilot, wherein the number of air interface frequency points is equal to the number of pseudo pilots; and the copy module is configured to copy the pseudo pilot carrier frequency signal, The number of copies is equal to the number of pseudo pilots; the transmitting module is configured to transmit the signals of the copied pseudo pilot carrier frequencies to the air interface frequency points respectively. The device further includes: a normal carrier frequency configuration module configured to configure a normal carrier frequency; a signal configuration module configured to configure a pseudo pilot carrier frequency signal, wherein the signal includes a pilot signal and a synchronization signal; and a synchronization channel configuration module The frequency field in the synchronization channel message set to the signal configuring the pseudo pilot carrier frequency is the frequency field of the normal carrier frequency. The synchronization channel configuration module is configured to configure the code division multiple access frequency field CDMA FREQ in the synchronization channel message and the frequency field EXT CDMA FREQ of the code division multiple access extension to be the frequency of the normal carrier frequency. The pseudo carrier frequency configuration module, the setting module, the air interface frequency point configuration module, and the common carrier frequency configuration module are disposed in a background network management system. The copy module, the transmitting module, the signal configuration module, and the synchronization channel configuration module are disposed on a base station. According to the present invention, the frequency point field of the synchronization channel message of the pseudo pilot signal is filled in the frequency point information of the basic carrier frequency, and one pseudo pilot signal is duplicated according to the configuration requirement, and respectively transmitted to the radio frequency of different frequency points. On the channel, it is sent to the air interface, which solves the problem that the pseudo pilot signal in the related art completely depends on the baseband chip supporting the number of fans, which causes the application to be limited, and realizes a pseudo pilot carrier frequency branch. Multi-channel pseudo pilot signals are used, and the cost of equipment used by operators to implement pseudo carrier frequencies is reduced. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are set to illustrate,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, In the drawings: FIG. 1 is a schematic diagram of a pseudo pilot according to the related art; FIG. 2 is a schematic diagram of a method for implementing a pseudo pilot according to the related art; FIG. 3 is a flowchart of a method for implementing a pseudo pilot according to an embodiment of the present invention; 4 is a structural block diagram of a pseudo pilot implementation apparatus according to an embodiment of the present invention; FIG. 5 is a block diagram showing a preferred structure of a pseudo pilot implementation apparatus according to an embodiment of the present invention; FIG. 6 is a pseudo pilot implementation according to an embodiment of the present invention. A schematic diagram of a mode; and Figure 7 is a flow diagram of a pseudo pilot implementation in accordance with a preferred embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. Embodiment 1 In this embodiment, a method for implementing a pseudo pilot is provided. FIG. 3 is a flowchart of a method for implementing a pseudo pilot according to an embodiment of the present invention. As shown in FIG. 3, the method includes: Step S302, Configuration a pseudo pilot carrier frequency; Step S304, setting the number of pseudo pilots on the pseudo pilot carrier frequency according to system requirements; Step S306, configuring an air interface frequency point corresponding to the pseudo pilot, where the number of air interface frequency points is equal to The number of pseudo pilots; step S308, copying the signal of the pseudo pilot carrier frequency, wherein the number of copies is equal to the pseudo pilot The number of the pseudo pilot carrier frequency signals is respectively transmitted to the air interface frequency point. Through the above steps, the pseudo pilot carrier frequency signal is copied, and the copied pseudo pilot signal is transmitted to the air interface frequency point, which overcomes the related art, one pseudo pilot uses one baseband carrier frequency, and the pseudo pilot configuration Fully limited by the number of sectors supported by the baseband modem chip, a pseudo pilot carrier frequency is supported to support multiple pseudo carrier frequency signals, and the cost of the device for implementing the pseudo carrier frequency is reduced. Preferably, before step S310, the method further includes: configuring a normal carrier frequency; configuring a signal of the pseudo pilot carrier frequency, wherein the signal includes a pilot signal and a synchronization signal; and configuring a synchronization channel message of the signal of the pseudo pilot carrier frequency The frequency field in is the frequency field of the normal carrier frequency. Through the configuration steps of the preferred embodiment, the configuration of the pseudo pilot signal includes only the pilot channel and the synchronization channel, and does not include the paging channel, which greatly reduces the transmission power of the pseudo pilot signal, and does not configure the paging channel, which can be reduced. 12% power consumption, thus reducing the interference of the pseudo pilot signal to other carrier frequencies. A preferred implementation manner of the frequency field in the synchronization channel message of the signal for configuring the pseudo pilot carrier frequency in the above step is the frequency field of the normal carrier frequency: configuring the code division multiple access frequency field in the synchronization channel message The frequency field EXT CDMA FREQ of CDMA_FREQ and code division multiple access extension is the frequency of the normal carrier frequency. Through the configuration step of the preferred embodiment, the code division multiple access frequency field in the synchronization channel message is configured as the frequency of the common carrier frequency, and the mobile station synchronizes the CDMA_FREQ and EXT_CDMA_FREQ fields in the synchronization channel message to search for the paging channel of the corresponding frequency point. . The CDMA_FREQ and EXT_CDMA_FREQ fields in the synchronization channel message are filled in as the frequency of the normal carrier frequency, and then the mobile station switches the pilot channel and the synchronization channel of the pseudo pilot signal according to the indications of the CDMA_FREQ and EX_CDMA_FREQ fields. The paging channel of the normal carrier frequency is searched for the purpose of standby on the normal carrier frequency. Embodiment 2 This embodiment combines Embodiment 1 and a preferred mode thereof. In this embodiment, a pseudo pilot implementation apparatus is provided, and FIG. 4 is a structure of a pseudo pilot implementation apparatus according to an embodiment of the present invention. The block diagram, as shown in FIG. 4, includes: a pseudo carrier frequency configuration module 42, a setting module 44, an air interface frequency point configuration module 46, a copy module 48, and a transmitting module 49. The above structure will be described in detail below. The pseudo carrier frequency configuration module 42 is configured to configure a pseudo pilot carrier frequency; the setting module 44 is coupled to the pseudo carrier frequency configuration module 42 and configured to set the pseudo pilot carrier frequency configured by the pseudo carrier frequency configuration module 42 according to system requirements. Number of pseudo pilots; air interface frequency point configuration module 46, connected to the pseudo carrier frequency configuration mode The block 42 and the setting module 44 are configured to configure the air interface frequency corresponding to the pseudo pilot on the pseudo pilot carrier configured by the pseudo carrier frequency configuration module 42, where the number of the air interface frequency points is equal to the number of the pseudo pilots; The copy module 48 is connected to the pseudo carrier frequency configuration module 42 and configured to copy the pseudo pilot carrier frequency configured by the pseudo carrier frequency configuration module 42 to be copied, wherein the number of copies is equal to the number of pseudo pilots; And connected to the replication module 48, configured to transmit the signals of the pseudo pilot carrier frequencies copied by the replication module 48 to the air interface frequency points, respectively. FIG. 5 is a block diagram showing a preferred structure of a pseudo pilot implementation apparatus according to an embodiment of the present invention. As shown in FIG. 5, the apparatus further includes: a normal carrier frequency configuration module 52, a signal configuration module 54, and a synchronization channel configuration module 56. The above structure will be described in detail. The normal carrier frequency configuration module 52 is configured to configure a normal carrier frequency; the signal configuration module 54 is coupled to the pseudo carrier frequency configuration module 42 and configured to configure the pseudo pilot carrier frequency configured by the pseudo carrier frequency configuration module 42, wherein The signal includes a pilot signal and a pilot signal; the synchronization channel configuration module 56 is connected to the normal carrier frequency configuration module 52, and the frequency field in the synchronization channel message of the signal configured to configure the pseudo pilot carrier frequency is the frequency of the normal carrier frequency. Field. A preferred embodiment of the frequency field in the synchronization channel message in which the synchronization channel configuration module 56 configures the signal of the pseudo pilot carrier frequency is the frequency field of the normal carrier frequency is as follows: Configuring code division multiple access in the synchronization channel message The frequency field OFDM FR FREQ of the frequency field CDMA FREQ and the code division multiple access extension is the frequency of the normal carrier frequency. Preferably, the pseudo carrier frequency configuration module, the setting module, the air interface frequency point configuration module, and the normal carrier frequency configuration module are disposed in a background network management system. Preferably, the replication module, the transmitting module, the signal configuration module, and the synchronization channel configuration module are disposed on a base station. Embodiment 3 This embodiment combines Embodiment 1, Embodiment 2 and preferred modes thereof. In this embodiment, a preferred implementation manner for implementing pseudo pilot in an actual system is provided. FIG. 6 is based on the present invention. A schematic diagram of a pseudo pilot implementation of an embodiment. FIG. 7 is a flow diagram of a pseudo pilot implementation in accordance with a preferred embodiment of the present invention, which is described below in conjunction with FIGS. 6 and 7. Step S702, two carrier frequencies are configured in the sector of the background network management system. As shown in FIG. 6, the first one is a normal carrier frequency sectorO, and the second one is a pseudo pilot carrier frequency sectorl. Configured at the carrier frequency of the pseudo pilot The number of pseudo pilots required and the air interface frequency of each pseudo pilot. The frequency of the first normal carrier frequency is fD, and the second pseudo pilot carrier is configured with N-channel pseudo pilots, and the radio frequency frequencies of each pseudo pilot are fl, f2, ... fN. Step S704, configuring a pilot channel and a synchronization channel under the pseudo pilot carrier frequency, and synchronizing the frequency point K of the message frequency field. The values of each parameter are shown in Table 1 below: Table 1 Synchronization channel message frequency point field parameter value reference table
Figure imgf000009_0001
Figure imgf000009_0001
步骤 S706 , 基站将伪导频同步信道消息中的 CDMA_FREQ 和 EXT CDMA FREQ字段填写为普通载频的频点。 步骤 S708 , 基站将一路伪导频信号传给信号复制模块(用于执行图 5中 复制模块的功能),并将伪导频信号的路数及每路伪导频信号的射频通道通知 信号复制模块。 步骤 S710 , 信号复制模块将 1路伪导频信号根据配置参数复制 N份, 如图 6所示, 将原 sectorO的信号复制成 N份, 并将这 N份伪导频信号分别 发送到不同频点的射频通道上, 最后发向空口, 生成伪导频信号 fl 至 fN。 即后台网管系统将这些参数发送到各个基站的前台, 基站前台的信号复制模 块收到参数后, 根据参数配置各个载频, 并根据伪导频的相关参数, 复制伪 导频载频的原始信号, 并将伪导频的原始信号和复制信道分别发送到不同频 点的射频通道上。 通过该优选实施例, 实现了通过一路伪导频载频支持多路伪导频, 每路 伪导频的信号频点不同, 但是内容相同。 发送到不同频点的射频通道上, 保 证移动台可以在需要的频点上接收伪导频信号。 由于信号复制方式复制出来 的信号内容完全相同, 移动台在所需频点上搜索到伪导频信号后, 就可以根 据伪导频信号的内容转到普通载频上待机。 通过本发明, 釆用将伪导频信号的同步信道消息的频点字段填写基本载 频的频点信息, 并将一路伪导频信号按照配置需求复制多路, 分别发送到不 同频点的射频通道上, 再发送到空口, 解决了相关技术中伪导频信号完全依 赖基带芯片支持载扇数造成使用受到限制的问题, 进而达到了一个伪导频载 频支持多路伪导频信号, 并降低了用于实现伪载频的设备的成本。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。 Step S706: The base station fills in the CDMA_FREQ and EXT CDMA FREQ fields in the pseudo pilot synchronization channel message as the frequency of the normal carrier frequency. Step S708, the base station transmits a pseudo pilot signal to the signal copying module (for performing the function of the copy module in FIG. 5), and copies the number of the pseudo pilot signal and the radio frequency channel notification signal of each pseudo pilot signal. Module. Step S710, the signal replication module copies one channel of the pseudo pilot signal according to the configuration parameter, as shown in FIG. 6, copies the signal of the original sectorO into N shares, and sends the N pieces of pseudo pilot signals to different frequencies. On the RF channel of the point, it is finally sent to the air interface to generate pseudo pilot signals fl to fN. That is, the background network management system sends these parameters to the foreground of each base station. After receiving the parameters, the signal replication module of the foreground of the base station configures each carrier frequency according to the parameters, and copies the original signal of the pseudo pilot carrier frequency according to the relevant parameters of the pseudo pilot. And transmitting the original signal of the pseudo pilot and the copy channel to the RF channels of different frequency points respectively. With the preferred embodiment, multi-channel pseudo pilots are supported by one pseudo pilot carrier frequency, and the frequency of each pseudo pilot is different, but the content is the same. Sending to the RF channel of different frequency points ensures that the mobile station can receive the pseudo pilot signal at the required frequency. Since the signal content copied by the signal copying method is completely the same, after the mobile station searches for the pseudo pilot signal at the desired frequency point, it can go to the normal carrier frequency for standby according to the content of the pseudo pilot signal. According to the present invention, the frequency point field of the synchronization channel message of the pseudo pilot signal is filled in the frequency point information of the basic carrier frequency, and one pseudo pilot signal is copied and multiplexed according to the configuration requirement, and respectively sent to The radio frequency channel at the same frequency point is sent to the air interface, which solves the problem that the pseudo pilot signal in the related art completely depends on the number of supported baseband chips to support the use of the number of fans, thereby achieving a pseudo pilot carrier frequency support multipath pseudo. The pilot signal reduces the cost of the device used to implement the pseudo carrier frequency. Obviously, those skilled in the art should understand that the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. The steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Claims

权 利 要 求 书 Claim
1. 一种伪导频实现方法, 包括: A method for implementing a pseudo pilot, comprising:
配置一个伪导频载频;  Configuring a pseudo pilot carrier frequency;
根据系统需求设置所述伪导频载频上的伪导频的个数; 配置所述伪导频对应的空口频点, 其中, 所述空口频点的个数等于 所述伪导频的个数;  Setting the number of the pseudo pilots on the pseudo pilot carrier frequency according to the system requirements; configuring the air interface frequency points corresponding to the pseudo pilots, where the number of the air interface frequency points is equal to the number of the pseudo pilots Number
将所述伪导频载频的信号进行复制, 其中所述复制的份数等于所述 伪导频的个数;  And replicating the signal of the pseudo pilot carrier frequency, wherein the number of copies is equal to the number of the pseudo pilots;
将所述复制的伪导频载频的信号分别发射到所述空口频点。  Transmitting the copied pseudo pilot carrier frequency signals to the air interface frequency points, respectively.
2. 根据权利要求 1所述的方法, 其中, 在将所述伪导频载频的信号进行复 制之前, 还包括: The method according to claim 1, wherein before the signal of the pseudo pilot carrier frequency is copied, the method further includes:
配置一个普通载频;  Configure a normal carrier frequency;
配置所述伪导频载频的信号, 其中, 所述信号包括导频信号和同步 信号;  Configuring a signal of the pseudo pilot carrier frequency, where the signal includes a pilot signal and a synchronization signal;
配置所述伪导频载频的信号的同步信道消息中的频率字段为所述普 通载频的频率字段。  The frequency field in the synchronization channel message configuring the signal of the pseudo pilot carrier frequency is the frequency field of the normal carrier frequency.
3. 根据权利要求 2所述的方法, 其中, 配置所述伪导频载频的信号的同步 信道消息中的频率字段为所述普通载频的频率字段包括: The method according to claim 2, wherein the frequency field in the synchronization channel message of the signal configuring the pseudo pilot carrier frequency is the frequency field of the normal carrier frequency, including:
配置所述同步信道消息中的码分多址频率字段 CDMA_FREQ 和码 分多址扩展的频率字段 EXT CDMA FREQ为所述普通载频的频点。  The frequency division field EXT CDMA FREQ of the code division multiple access frequency field CDMA_FREQ and the code division multiple access extension in the synchronization channel message is configured as the frequency of the normal carrier frequency.
4. 一种伪导频实现装置, 包括: 4. A pseudo pilot implementation apparatus, comprising:
伪载频配置模块, 设置为配置一个伪导频载频;  a pseudo carrier frequency configuration module, configured to configure a pseudo pilot carrier frequency;
设置模块, 设置为根据系统需求设置所述伪导频载频上的伪导频的 个数;  Setting a module, configured to set a number of pseudo pilots on the pseudo pilot carrier frequency according to system requirements;
空口频点配置模块, 设置为配置所述伪导频对应的空口频点, 其中, 所述空口频点的个数等于所述伪导频的个数; 复制模块, 设置为将所述伪导频载频的信号进行复制, 其中所述复 制的份数等于所述伪导频的个数; The air interface frequency point configuration module is configured to configure an air interface frequency point corresponding to the pseudo pilot, where the number of the air interface frequency points is equal to the number of the pseudo pilots; a copying module, configured to: copy the signal of the pseudo pilot carrier frequency, where the number of copies is equal to the number of the pseudo pilots;
发射模块, 设置为将所述复制的伪导频载频的信号分别发射到所述 空口频点。  And a transmitting module, configured to separately transmit the copied pseudo pilot carrier frequency signals to the air interface frequency point.
5. 根据权利要求 4所述的装置, 其中, 还包括: 5. The device according to claim 4, further comprising:
普通载频配置模块, 设置为配置一个普通载频;  Ordinary carrier frequency configuration module, set to configure a normal carrier frequency;
信号配置模块, 设置为配置所述伪导频载频的信号, 其中, 所述信 号包括导频信号和同步信号;  a signal configuration module, configured to configure a signal of the pseudo pilot carrier frequency, where the signal includes a pilot signal and a synchronization signal;
同步信道配置模块, 设置为配置所述伪导频载频的信号的同步信道 消息中的频率字段为所述普通载频的频率字段。  The synchronization channel configuration module, the frequency field in the synchronization channel message set to the signal configuring the pseudo pilot carrier frequency is the frequency field of the normal carrier frequency.
6. 根据权利要求 5所述的装置, 其中, 同步信道配置模块设置为配置所述 同步信道消息中的码分多址频率字段 CDMA FREQ 和码分多址扩展的 频率字段 EXT CDMA FREQ为所述普通载频的频点。 6. The apparatus according to claim 5, wherein the synchronization channel configuration module is configured to configure a code division multiple access frequency field CDMA FREQ and a code division multiple access extended frequency field EXT CDMA FREQ in the synchronization channel message as described The frequency of the ordinary carrier frequency.
7. 根据权利要求 5所述的装置, 其中, 所述伪载频配置模块、 所述设置模 块、 所述空口频点配置模块和所述普通载频配置模块设置在后台网管系 统中。 The device according to claim 5, wherein the pseudo carrier frequency configuration module, the setting module, the air interface frequency point configuration module, and the normal carrier frequency configuration module are disposed in a background network management system.
8. 根据权利要求 5所述的装置, 其中, 所述复制模块、 所述发射模块、 所 述信号配置模块和所述同步信道配置模块设置在基站上。 8. The apparatus according to claim 5, wherein the copying module, the transmitting module, the signal configuration module, and the synchronization channel configuration module are disposed on a base station.
PCT/CN2010/077474 2010-06-21 2010-09-29 Method and device for implementing pseudo pilot WO2011160353A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010211833.4 2010-06-21
CN201010211833.4A CN101877610B (en) 2010-06-21 2010-06-21 Method and device for realizing pilot beacon

Publications (1)

Publication Number Publication Date
WO2011160353A1 true WO2011160353A1 (en) 2011-12-29

Family

ID=43020085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077474 WO2011160353A1 (en) 2010-06-21 2010-09-29 Method and device for implementing pseudo pilot

Country Status (2)

Country Link
CN (1) CN101877610B (en)
WO (1) WO2011160353A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621811B1 (en) * 1999-02-02 2003-09-16 Nortel Networks Limited Method and system for generating multiple pilot beacons of different frequencies from a single pilot beacon
CN1735265A (en) * 2004-08-13 2006-02-15 华为技术有限公司 Different frequency switching method in CDMA communication system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2410396A (en) * 2004-01-20 2005-07-27 Ubinetics Ltd Pilot signal manipulation in transmit diversity communications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621811B1 (en) * 1999-02-02 2003-09-16 Nortel Networks Limited Method and system for generating multiple pilot beacons of different frequencies from a single pilot beacon
CN1735265A (en) * 2004-08-13 2006-02-15 华为技术有限公司 Different frequency switching method in CDMA communication system

Also Published As

Publication number Publication date
CN101877610B (en) 2014-09-10
CN101877610A (en) 2010-11-03

Similar Documents

Publication Publication Date Title
US9826417B2 (en) MBMS service reception and ability transmission method and device
WO2019141189A1 (en) Method for reporting terminal device capability information, apparatus, and system
JP5437509B2 (en) Multimedia broadcast / multicast service reception processing method and related communication apparatus
KR102374235B1 (en) Uplink resource authorization method, apparatus and system
CN106572506B (en) Method, equipment and system for switching sub-bands
WO2016154835A1 (en) Wireless access method and apparatus, communication system and terminal
WO2014044132A1 (en) Method and apparatus for finding small cells
KR20190031279A (en) Method and apparatus for transmitting initial access signal
CN104822168A (en) Guiding method and apparatus for frequency band switching of wireless terminal
WO2023044805A1 (en) Method and apparatus for determining cell configuration
TW201127117A (en) Methods and systems for handover scanning in FDD or H-FDD networks
US20050113023A1 (en) Method of managing communications in a network and the corresponding signal, transmitting device and destination terminal
WO2016116030A1 (en) Method and user equipment for hybrid automatic repeat request entity management
JP2018510563A (en) Frequency band sharing method, apparatus and system
US11051265B2 (en) Method and device for synchronization between base stations
US20230164757A1 (en) Communication method and apparatus
WO2015035552A1 (en) Sector configuration method, service switching method, device and base station
US20160020916A1 (en) Service indication processing method and apparatus
WO2017000269A1 (en) Data transmission method and device
WO2009105986A1 (en) Method and device for setting system channels
CN102438272B (en) Method and system for controlling start of compression mode
WO2011160353A1 (en) Method and device for implementing pseudo pilot
WO2015100947A1 (en) Cell reselecting method and device, and cell parameter configuration method and device
WO2017020804A1 (en) Modulation and coding scheme assignment method, modulation and coding scheme assignment acquisition method, base station and user equipment
WO2024012207A1 (en) Direct communication interface resource determination method, terminal and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853492

Country of ref document: EP

Kind code of ref document: A1