WO2012153501A1 - 位置算出方法及び位置算出装置 - Google Patents

位置算出方法及び位置算出装置 Download PDF

Info

Publication number
WO2012153501A1
WO2012153501A1 PCT/JP2012/002967 JP2012002967W WO2012153501A1 WO 2012153501 A1 WO2012153501 A1 WO 2012153501A1 JP 2012002967 W JP2012002967 W JP 2012002967W WO 2012153501 A1 WO2012153501 A1 WO 2012153501A1
Authority
WO
WIPO (PCT)
Prior art keywords
calculation
unit
error
ins
result
Prior art date
Application number
PCT/JP2012/002967
Other languages
English (en)
French (fr)
Inventor
ラマ サンジャイ
アナン クマ-
俊一 水落
健至 恩田
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Priority to EP12782570.1A priority Critical patent/EP2717014B1/en
Priority to US14/116,750 priority patent/US9026362B2/en
Publication of WO2012153501A1 publication Critical patent/WO2012153501A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/05Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial

Definitions

  • the present invention relates to a position calculation method using the measurement results of the inertial positioning unit and the satellite positioning unit in combination.
  • inertial sensors In various fields such as so-called seamless positioning, motion sensing, and attitude control, the use of inertial sensors is attracting attention.
  • an acceleration sensor As an inertial sensor, an acceleration sensor, a gyro sensor, a pressure sensor, a geomagnetic sensor, and the like are widely known.
  • An inertial navigation system (hereinafter referred to as “INS (Inertial Navigation System)”) that performs inertial navigation calculation using the detection result of the inertial sensor has also been devised.
  • INS Inertial Navigation System
  • Patent Document 1 discloses a technique for correcting an INS calculation result using GPS (Global Positioning System).
  • the technology for correcting the INS calculation result using GPS is based on the assumption that the GPS calculation result is correct.
  • the technique disclosed in Patent Document 1 is also the same.
  • the accuracy of the GPS calculation result may decrease due to various factors such as the signal strength of the GPS satellite signal received from the GPS satellite, the reception environment, the sky arrangement of the GPS satellite, and the multipath.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to propose a method for calculating the position more accurately by using the measurement results of the satellite positioning unit and the inertial positioning unit.
  • the first mode for solving the above problems is to execute at least a first calculation process for calculating at least a position of the moving body using a measurement result of an inertial positioning unit installed in the moving body.
  • the position calculation method includes: adjusting a calculation coefficient related to the first calculation process using a result of the first calculation process and a result of the second calculation process.
  • a first calculation processing unit that executes a first calculation process for calculating the position of the moving body
  • a second calculation processing unit that executes a second calculation process for calculating the position of the moving body using the result of the first calculation process and the measurement result of the satellite positioning unit installed in the moving body.
  • an adjustment unit that adjusts the calculation coefficient related to the first calculation process using the result of the first calculation process and the result of the second calculation process. May be.
  • At least the first calculation process for calculating the position of the moving body is executed using the measurement result of the inertial positioning unit installed in the moving body. Further, the second calculation process for calculating the position of the moving body is executed using the result of the first calculation process and the measurement result of the satellite positioning unit installed in the moving body. Then, the calculation coefficient related to the first calculation process is adjusted using the result of the first calculation process and the result of the second calculation process.
  • the calculation process includes a first calculation process using the measurement result of the inertial positioning unit and a second calculation process using the result of the first calculation process and the measurement result of the satellite positioning unit. Then, by adjusting the calculation coefficient related to the first calculation process using the result of the first calculation process and the result of the second calculation process, the accuracy of position calculation in the first calculation process is improved. Can be improved.
  • the measurement result of the inertial positioning unit includes an inertial positioning position
  • the first calculation process includes the calculated first calculation position.
  • a predetermined error estimation calculation for estimating a first position error inherent in the first adjustment and the adjustment uses the first position error and the second calculation position obtained by the second calculation process.
  • a position calculation method may be configured that includes estimating an inertial positioning error inherent in the inertial positioning position and adjusting the calculation coefficient using the inertial positioning error.
  • a predetermined error estimation calculation is performed to estimate the first position error inherent in the first calculation position calculated in the first calculation process. Then, using the first position error and the second calculation position obtained in the second calculation process, an inertial positioning error inherent in the inertial positioning position included in the measurement result of the inertial positioning unit is estimated. By using the second calculation position together with the first position error, it is possible to appropriately estimate the inertial positioning error. Then, by adjusting the calculation coefficient related to the first calculation process using the inertial positioning error, it is possible to improve the accuracy of position calculation in the first calculation process.
  • the estimating includes calculating a difference between the inertial positioning position and the second calculation position, and the first position error. And calculating the inertial positioning error by averaging the difference and the difference may be configured.
  • the difference between the inertial positioning position and the second calculation position is calculated. Then, the inertial positioning error can be appropriately estimated by averaging the first position error and the difference.
  • the averaging process may be performed based on one or both of the positioning environment and the reliability of the measurement result of the satellite positioning unit.
  • a position calculation method may be configured, which is a process of setting a weight between the position error and the difference and performing a weighted average.
  • the weight of the first position error and the difference is set based on one or both of the positioning environment and the reliability of the measurement result of the satellite positioning unit. Weighted average. Thereby, based on the reliability of the measurement environment and the measurement result of the satellite positioning unit, the inertial positioning error can be estimated more accurately.
  • the measurement result of the inertial positioning unit includes an inertial positioning position
  • the first calculation process includes A position calculation method that is a Kalman filter process using the inertial positioning position as an input may be configured.
  • the position of the moving body and the like can be obtained easily and appropriately by performing the Kalman filter process using the inertial positioning position as an input as the first calculation process.
  • the measurement result of the satellite positioning unit includes a speed
  • the Kalman filter process is a process using the speed as an observation amount.
  • a position calculation method may be configured.
  • the speed included in the measurement result of the satellite positioning unit is further used as the observation amount, so that the position of the moving body can be obtained more accurately. Can do.
  • a satellite positioning position is included in the measurement result of the satellite positioning unit, and the second calculation process includes
  • the position calculation method may be configured, which is a Kalman filter process using the result of the first calculation process as an input and using the satellite positioning position as an observation amount.
  • the Kalman filter process is executed with the result of the first calculation process as an input and the satellite positioning position included in the measurement result of the satellite positioning unit as an observation amount. By doing so, the position of the moving body can be determined easily and appropriately.
  • the block diagram of a position calculation apparatus The block diagram of a 1st position calculation apparatus. Explanatory drawing of the input-output data of a 1st Kalman filter process. Explanatory drawing of the 1st weight setting condition. Explanatory drawing of 2nd weight setting conditions. The figure which shows an example of the experimental result which performed position calculation. The figure which shows an example of the experimental result which performed position calculation.
  • the system block diagram of a navigation system The block diagram which shows the function structure of a car navigation apparatus.
  • the flowchart which shows the flow of a navigation process.
  • the flowchart which shows the flow of an INS calculation error estimation process.
  • FIG. 1 is a main configuration diagram of a position calculation apparatus 1 according to the present embodiment.
  • the position calculation device 1 is a device (system) that is provided in a moving body and calculates the position of the moving body.
  • the moving body may be a person such as a car, a motorcycle, a bicycle, a ship, a train, or a person.
  • a person may carry the position calculation device 1 and the person himself / herself may include the position calculation device 1.
  • a unit (module) is illustrated by a double line, and a processing block that performs arithmetic processing using a measurement result of the unit is illustrated by a single line to distinguish the two.
  • the position calculation device 1 includes an inertial positioning unit 2 and a satellite positioning unit 3 as units (modules). In addition, the position calculation device 1 includes a first calculation processing unit 5, a second calculation processing unit 7, and a calculation coefficient adjustment unit 9 as main processing blocks.
  • the position calculation device 1 may be configured with units and processing blocks, or the position calculation device 1 may be configured with only processing blocks without the unit.
  • the inertial positioning unit 2 is a unit for performing positioning using inertial navigation.
  • the inertial positioning unit 2 includes an inertial sensor such as an acceleration sensor and a gyro sensor, an inertial measurement unit (IMU (Inertial Measurement Unit)) in which the inertial sensor is packaged, an inertial navigation system in which an inertial measurement unit and an arithmetic processing unit are packaged.
  • IMU Inertial Measurement Unit
  • INS Inertial Navigation System
  • the satellite positioning unit 3 is a unit for performing positioning using a satellite positioning system.
  • a GPS Global Positioning System
  • satellite positioning system For example, a GPS (Global Positioning System) which is a kind of satellite positioning system can be applied.
  • the first arithmetic processing unit 5 calculates the position of at least the moving body by performing a predetermined first arithmetic processing using the measurement result of the inertial positioning unit 2 and the given observation amount in combination. To do.
  • a suitable application example for the first arithmetic processing is Kalman filter processing.
  • the second calculation processing unit 7 uses the first calculation result that is the calculation result of the first calculation processing unit 5 and the measurement result of the satellite positioning unit 3 to perform a second calculation process that is determined in advance. To calculate the position of the moving body.
  • a suitable application example for the second arithmetic processing is Kalman filter processing, sigma point filter processing, or regression filter processing.
  • the calculation coefficient adjustment unit 9 uses the first calculation result input from the first calculation processing unit 5 and the second calculation result input from the second calculation processing unit 7 to perform the first calculation processing. The calculation coefficient is adjusted. The first calculation processing unit 5 performs the first calculation processing using the calculation coefficient adjusted by the calculation coefficient adjustment unit 9.
  • FIG. 2 is a configuration diagram of a first position calculation device 1A to which the position calculation device 1 of FIG. 1 is applied.
  • the first position calculation device 1A includes an INS unit 2A, a GPS unit 3A, a first Kalman filter processing unit 5A, a second Kalman filter processing unit 7A, and a Kalman filter coefficient adjustment unit 9A.
  • the first position calculation device 1A is a system in which the INS unit 2A is applied as the inertial positioning unit 2 and the GPS unit 3A is applied as the satellite positioning unit 3.
  • the first and second arithmetic processing units 5 and 7 are systems to which the first and second Kalman filter processing units 5A and 7A are applied, respectively.
  • the INS unit 2A is configured to be able to output INS measurement information such as acceleration and angular velocity measured by the IMU in the local coordinate system.
  • the INS unit 2A is configured to perform an inertial navigation calculation using the INS measurement information to calculate and output the position, speed, and attitude angle of the moving body.
  • the INS unit 2A calculates and outputs the INS calculation position (inertial positioning position), the INS calculation speed, and the INS calculation attitude angle in the absolute coordinate system.
  • the GPS unit 3A is configured to receive GPS satellite signals transmitted from GPS satellites, and to measure and output GPS measurement information such as code phase, Doppler frequency, pseudorange, and pseudorange change rate.
  • the GPS unit 3A is configured to be able to calculate and output the position and speed of the moving body by performing GPS calculation using GPS measurement information.
  • the GPS unit 3A calculates and outputs a GPS calculation position (satellite positioning position) and a GPS calculation speed using an absolute coordinate system.
  • the local coordinate system is a local coordinate system (sensor coordinate system) associated with the inertial sensor of the INS unit 2A.
  • the absolute coordinate system is a coordinate system that defines a moving space of a moving body.
  • NED North East Down
  • ENU East North Up
  • ECEF Earth Centered Earth Fixed
  • a coordinate system such as a coordinate system is applicable.
  • the INS unit 2A calculates and outputs the position, velocity, and attitude angle of the moving object in the ENU coordinate system
  • the GPS unit 3A calculates and outputs the position and velocity of the moving object in the ECEF coordinate system. It will be described as being. In the first and second Kalman filter processes, description will be made assuming that the calculation is performed in the ENU coordinate system. In addition, various quantities such as acceleration and speed are actually expressed as vectors having magnitude and direction. However, in this specification, the term “vector” is omitted, and the description will be simply made as acceleration and velocity.
  • the first Kalman filter processing unit 5A performs a calculation process based on the theory of the Kalman filter to calculate the position, speed, posture angle, etc. of the moving body. For example, an INS calculation position, an INS calculation speed, and an INS calculation attitude angle input from the INS unit 2A are set as an input U (control input). Also, a given constraint condition determined based on the GPS calculation speed input from the GPS unit 3A and the motion model of the moving object is defined as an observation amount Z. Then, the Kalman filter prediction calculation (time update) and correction calculation (observation update) are performed to obtain the state estimated value.
  • the state “X” of the moving object to be estimated is set, for example, as in the following equations (1) and (2).
  • the first Kalman filter process in this embodiment is an error estimation type Kalman filter process for estimating an error included in the calculation result of the INS unit 2A. That is, the error included in the calculation result of the INS unit 2A is estimated as the states “X 1 ” and “X 2 ”.
  • the first Kalman filter processing includes an error covariance matrix “P 11 ” including the error covariance of each component in the state “X 1 ” and an error covariance of each component in the state “X 2 ”.
  • An error covariance matrix “P 12 ” including the error covariance of each component in the state “X 1 ” for each component is also calculated.
  • the speed (hereinafter referred to as “GPS calculation speed”) calculated by the GPS unit 3A is used as the observation amount “Z”, and the state “X” predicted by the prediction calculation is used. to correct.
  • the correction calculation is performed using the observation amount “Z” given by the following equation (3).
  • (V E , V N , V U ) INS is the INS calculation speed calculated by the INS unit 2A in the ENU coordinate system.
  • (V X , V Y , V Z ) GPS ” is a GPS calculation speed calculated by the GPS unit 3A in the ECEF coordinate system.
  • C ECEF ENU is a coordinate transformation matrix from the ECEF coordinate system to the ENU coordinate system.
  • the first Kalman filter processing is configured such that a constraint condition based on the motion model of the moving object can be applied as the observation amount “Z” separately from the GPS calculation speed.
  • a constraint condition based on the motion model of the moving object can be applied as the observation amount “Z” separately from the GPS calculation speed.
  • speed constraints there are two types of speed constraints: a “speed restriction condition at stop” that is a speed restriction condition when the moving body is stopped and a “speed restriction condition at the time of movement” that is a speed restriction condition when the moving body is moving. Conditions are applicable.
  • the INS calculation speed is corrected using the speed error “( ⁇ V E , ⁇ V N , ⁇ V U )”, and the result is used as the first calculation speed.
  • the data is output to the second Kalman filter processing unit 7A.
  • the clock drift “d” is output to the second Kalman filter processor 7A as the first arithmetic clock drift.
  • the acceleration bias “(b ax , b ay , b az )” and the angular velocity bias “(b gx , b gy , b gz )” are fed back to the INS unit 2A.
  • the INS unit 2A uses the acceleration bias “(b ax , b ay , b az )” and the angular velocity bias “(b gx , b gy , b gz )” input from the first Kalman filter processing unit 5A to accelerate the acceleration. Compensate the sensor and gyro sensor.
  • the INS calculation position is corrected using the position error “( ⁇ P E , ⁇ P N , ⁇ P U )”, and the result is calculated as the first calculation. Output as position.
  • the first calculation position is used for various application processes as the final position of the moving body.
  • a predetermined error estimation calculation is performed to estimate a first calculation position error inherent in the first calculation position.
  • the first calculation position error “P1 err ” is calculated and estimated according to the following equation (4).
  • “ ⁇ t” is the calculation time interval of the first Kalman filter process.
  • the speed error “( ⁇ V E , ⁇ V N , ⁇ V U )” which is the first to third components of the state “X 1 ”
  • the position error in the calculation time interval can be reduced.
  • the first calculated position error “P1 err ” is calculated by adding the change to the position error “( ⁇ P E , ⁇ P N , ⁇ P U )” of the state “X 2 ”.
  • the second Kalman filter processing unit 7A uses the first calculation speed and the first calculation clock drift input from the first Kalman filter processing unit 5A as input U, and uses the GPS calculation position input from the GPS unit 3A as an observation amount.
  • the position of the moving object is calculated as “Z”.
  • the position calculated by the second Kalman filter processing unit 7A is output to the addition / subtraction unit 8 as the second calculation position.
  • the state “X” of the moving object to be estimated is set as in the following equation (5), for example.
  • the observation amount “Z” is set as in the following equation (6), for example.
  • the GPS calculation position is not the observation amount “Z”, and the GPS calculation speed is the observation amount “Z”. Instead, the GPS calculation position is the observation amount “Z” of the second Kalman filter process. This is because various error factors exist in GPS, and it is assumed that a large error may be included in the GPS calculation position.
  • a typical example is a multipath environment.
  • the position calculation is separated into a first calculation process (first Kalman filter process) and a second calculation process (second Kalman filter process), and the GPS calculation position is used in the first calculation process. Without moving, the position of the moving body was calculated.
  • GPS can calculate the speed of a moving object together with the position of the moving object.
  • the speed is less susceptible to multipath than the position, and does not significantly affect the coupling with the INS calculation result. Therefore, in the first Kalman filter process, the position of the moving object is calculated using the GPS calculation speed as an observation amount.
  • the addition / subtraction unit 8 calculates a difference between the second calculation position output from the second Kalman filter processing unit 7A and the INS calculation position output from the INS unit 2A. For convenience, this difference is referred to as a “second calculation position error”.
  • the second calculation position error “P2 err ” calculated by the addition / subtraction unit 8 is output to the Kalman filter coefficient adjustment unit 9A.
  • the Kalman filter coefficient adjustment unit 9A includes an INS calculation error estimation unit 91 and a filter coefficient calculation unit 93, and adjusts the filter coefficient related to the first Kalman filter processing.
  • the filter coefficient calculation unit 93 is illustrated and described as a functional unit of the first Kalman filter processing unit 5A.
  • the filter coefficient calculation unit 93 uses the INS calculation error estimated by the INS calculation error estimation unit 91 to calculate a filter coefficient related to the first Kalman filter process.
  • the filter coefficients to be adjusted are, for example, states “X 1 ”, “X 2 ” and error covariance matrices “P 11 ”, “P 22 ”, “P 21 ”, “P 12 ”. The method for adjusting the filter coefficient will be described later in detail.
  • the INS calculation error estimation unit 91 is a functional unit that estimates an INS calculation error that is an error included in the INS calculation result. For example, a position error weighted average unit 911, a weight setting unit 913, and an error conversion unit 915 are included. Have.
  • the position error weighted average unit 911 uses the weight set by the weight setting unit 913 to perform a weighted average of the first calculation position error “P1 err ” and the second calculation position error “P2 err ” to obtain the INS.
  • the calculation position error (inertial positioning error) of the unit 2A is calculated. Specifically, for example, the average position error “aveP err ” is calculated according to the following equation (7).
  • is a weight for the first calculation position error “P1 err ”, and “0 ⁇ ⁇ ⁇ 1”.
  • the weight for the second calculation position error “P2 err ” is “1 ⁇ ”.
  • the weight setting unit 913 sets the weighted average weight “ ⁇ ” of the position error weighted average unit 911 based on a plurality of factors such as the positioning environment and the reliability of the measurement result of the GPS unit 3A.
  • the weight setting method will be described later in detail.
  • the error conversion unit 915 converts the average position error “aveP err ” input from the position error weighted average unit 911 into an INS calculation error using the error covariance “P” input from the first Kalman filter processing unit 5A. .
  • a method for converting the INS calculation error will also be described in detail later.
  • FIG. 3 is an explanatory diagram of input / output data of the first Kalman filter processing unit 5A.
  • a table of the correspondence relationship between the state “X”, the input “U”, and the observation amount “Z” is illustrated.
  • coupling There are various types of coupling. Among them, a method called loose coupling (loose coupling) and a method called tight coupling (tight coupling) are generally used.
  • the loose coupling method is a coupling method in which the connection between GPS and INS is relatively weak.
  • the state “X” is an INS calculation error (INS calculation position error, INS calculation speed error, INS calculation attitude angle error, INS acceleration bias, INS angular speed bias, clock bias, etc.).
  • the input “U” is the INS calculation result (INS calculation position, INS calculation speed, INS calculation attitude angle, etc.)
  • the observation amount “Z” is a constraint condition based on the GPS calculation result (GPS calculation speed, etc.) or the motion model ( Stop or move).
  • the tight coupling method is a coupling method in which the connection between GPS and INS is relatively strong.
  • the input “U” and the state “X” are the same as described above, and the observation amount “Z” is a constraint condition based on GPS measurement information (pseudo-range change rate, etc.) or a motion model.
  • Each component of the above state “X”, input “U”, and observation amount “Z” can be added / deleted as appropriate.
  • the bias component may be deleted, and the INS calculation position error, the INS calculation speed error, and the INS calculation posture angle error may be used as the component of the state “X”.
  • the observation amount ⁇ ⁇ “Z” the GPS calculation speed or pseudorange change rate and the constraint condition based on the motion model may be used in combination, or only one of them may be used.
  • weight “ ⁇ ” a high setting value “ ⁇ high ” defined as a relatively high value
  • a medium setting value “ ⁇ middle ” defined as a medium value
  • a low setting value defined as a relatively low value
  • One of the three values “ ⁇ low ” is set as the weight “ ⁇ ”. These specific values may be determined as appropriate.
  • FIG. 4 is a diagram illustrating an example of a first weight setting condition table in which first weight setting conditions relating to weight setting are defined.
  • a low weight setting condition and a high weight setting condition are defined in association with each other.
  • the low weight setting condition is a condition for setting the low setting value “ ⁇ low ” to the weight “ ⁇ ”.
  • the high weight setting condition is a condition for setting the high setting value “ ⁇ high ” to the weight “ ⁇ ”.
  • the middle setting value “ ⁇ middle ” is set to the weight “ ⁇ ”.
  • the first weight setting condition is a condition determined based on the positioning environment.
  • the low weight setting condition stipulates that the positioning environment is a multipath environment
  • the high weight setting condition stipulates that the positioning environment is an open sky environment.
  • the positioning environment is a multipath environment, an error occurs in the observed pseudorange due to the influence of indirect waves. Therefore, the accuracy of the position calculated by the GPS unit 3A is reduced.
  • the GPS calculation position is set to the observation amount “Z”. Therefore, if the accuracy of the GPS calculation position is low, the second calculation position also has an influence.
  • the second calculation position error “P2 err ” calculated as a difference between the second calculation position and the INS calculation position is a value including the influence of multipath. Therefore, when the positioning environment is a multi-path environment, the weight for the second operational position error “P2 err” to multipath effects emphasize second operational position error “P2 err” which is significantly reflected in Increase “1- ⁇ ”. This corresponds to reducing the weight “ ⁇ ” for the first calculation position error “P1 err ”.
  • FIG. 5 is a diagram illustrating an example of a second weight setting condition table in which second weight setting conditions relating to weight setting are defined.
  • a condition number that is a condition number, a low weight setting condition, and a high weight setting condition are defined in association with each other.
  • the reliability of the GPS calculation position is low, the accuracy of the second calculation position calculated by the second Kalman filter processing unit 7A decreases. Therefore, the influence is significantly reflected in the second calculation position error “P2 err ” calculated as a difference between the second calculation position and the INS calculation position. Therefore, when the reliability of the GPS calculation position is low, the weight “ ⁇ ” for the first calculation position error “P1 err ” is reduced to emphasize the second calculation position error “P2 err ”.
  • the reliability of the GPS calculation position can be determined by comprehensively considering a plurality of factors such as the reception environment and signal strength of the GPS satellite signal, the sky arrangement of the GPS satellite, and detection of a sudden change in position. For example, when the GPS satellites are not well positioned (for example, when the DOP (Dilution Of Precision) value is large) or when a large position jump occurs (a position far away from the true position can be obtained as a calculation result) When a rapid position change in the altitude direction occurs, it can be determined that the reliability of the GPS calculation position is low.
  • DOP Deution Of Precision
  • a second calculation position error “P2 err ” calculated as a difference between the second calculation position and the INS calculation position is calculated.
  • the weight “ ⁇ ” for the first calculation position error “P1 err ” is reduced.
  • the second calculation position changes discontinuously, or a sudden position jump occurs at the second calculation position. In this case, it is determined that the reliability of the second calculation position is low.
  • the condition “D” is a condition related to the reliability of time information.
  • time information reliability high
  • time information reliability low
  • the GPS time synchronization error exceeds a predetermined threshold (or more than the threshold), it is determined that the reliability of the time information is low.
  • the reliability of the determination item is quantified for each of a plurality of conditions. For example, the state with the lowest reliability of the judgment item is defined as reliability “0”, the state with the highest reliability is defined as reliability “1”, and the reliability of each judgment item is quantified in the range of “0 to 1” .
  • the weight setting index value “W” is calculated according to the following equation (8).
  • the first weight setting condition in FIG. 4 and the second weight setting condition in FIG. 5 may be used alone or in combination. That is, it is possible to set a weight based on the positioning environment and perform a weighted average, or set a weight based on the reliability of the measurement result of the GPS unit 3A and the like, and perform a weighted average. It is also possible to set a weight using these conditions in combination and perform a weighted average.
  • the weight “ ⁇ ” may be set using the determination result of the first weight setting condition and the determination result of the second weight setting condition as an AND condition or an OR condition.
  • the weight setting index value “W” of Expression (8) may be calculated including the quality of the measured positioning environment.
  • INS Calculation Error Estimation Method Next, an INS calculation error estimation method will be described.
  • a method for converting the average position error into the INS calculation error for example, a Kalman filter can be used.
  • “H 22 X 2 ” is a predicted value of the observation amount “Z 2 ” and corresponds to a predicted value of the average position error “aveP err ”. That is, this is an equation indicating that the average position error “aveP err ” is predicted by applying the observation matrix “H 22 ” to the state “X 2 ” given by Equation (2).
  • the observation matrix “H 22 ” is a conversion matrix from the state “X 2 ” to the observation amount “Z 2 ”.
  • Kalman gains “K 12 ” and “K 22 ” are calculated according to the following equations (10) and (11).
  • K 12 is a Kalman gain for calculating the state “X 1 ” from the difference “V 2 ”
  • K 22 is a Kalman gain for calculating the state “X 2 ” from the difference “V 2 ”.
  • R 2 is an observation error (observation noise) of the observation amount “Z 2 ”.
  • the first Kalman filter processing unit uses the velocity error and the posture angle error as the estimated velocity error “V err ” and the estimated posture angle error “A err ”. Feedback to 5A. Further, the position error that is a component of the state “X 2 ” calculated according to the equation (13) is fed back to the first Kalman filter processing unit 5A as the estimated position error “P err ”. The Kalman gains “K 12 ” and “K 22 ” are fed back to the first Kalman filter processing unit 5A.
  • the filter coefficient calculation unit 93 receives the INS calculation error (estimated position error “P err ”, estimated speed error “V err ” and estimated attitude angle error “A err ”) input from the INS calculation error estimation unit 91 and the Kalman gain “K”. The filter coefficient is calculated using “ 12 ” and “K 22 ”.
  • the filter coefficient calculation unit 93 converts the estimated speed error “V err ” and the estimated attitude angle error “A err ” input from the INS calculation error estimation unit 91 into the corresponding component of the state “X 1 ” (
  • the state “X 1 ” is calculated and updated in consideration of the speed error “( ⁇ V E , ⁇ V N , ⁇ V U )” and the attitude angle error “( ⁇ x , ⁇ y , ⁇ z )”).
  • the estimated position error “P err ” input from the INS calculation error estimator 91 is added to each component (position error “( ⁇ P E , ⁇ P N , ⁇ P U )”) of the state “X 2 ”, and the state “ X 2 ′′ is calculated / updated.
  • the filter coefficient calculation unit 93 uses the Kalman gains “K 12 ” and “K 22 ”, for example, according to the following equations (14) to (17), the error covariance matrices “P 11 ”, “P 22 ”. , “P 21 ” and “P 12 ” are calculated and updated.
  • FIGS. 6 and 7 are diagrams illustrating an example of experimental results obtained by performing position calculation using the position calculation method described above.
  • the first position calculation device 1A was installed in an automobile, and an experiment was performed in which an automobile travels on an urban road.
  • the urban area where we traveled is a multipath environment with many high-rise buildings.
  • the position was calculated by circling the urban road in FIGS. 6 and 7 counterclockwise, and the locus was drawn. The start and goal points are at the bottom center of the drawing.
  • FIG. 6 (1) is a true trajectory (reference trajectory) of the car.
  • FIG. 6B is a locus of a GPS calculation position that is an output of the GPS unit 3A.
  • FIG. 6 (3) is a locus of the second calculation position, which is the output of the second Kalman filter processing unit 7A.
  • FIG. 7 (1) shows the locus of the first calculation position (no calculation coefficient adjustment), which is the output of the first Kalman filter processing unit 5A when the calculation coefficient is not adjusted.
  • FIG. 7 (2) shows the locus of the first calculation position (with calculation coefficient adjustment and no weight setting) when the calculation coefficient is adjusted but the weight “ ⁇ ” is not set.
  • FIG. 7 (3) shows the locus of the first calculation position (with calculation coefficient adjustment and with weight setting) when both adjustment of the calculation coefficient and setting of the weight “ ⁇ ” are performed.
  • the trajectory of the second computation position in FIG. 6 (3) shows a smooth trajectory compared to the trajectory of the GPS computation position, but still, the trajectory along the true trajectory in FIG. 6 (1). It is not.
  • FIG. 7 (3) If the setting of the weight “ ⁇ ” of this embodiment is further added to this, the result of FIG. 7 (3) is obtained. Looking at the locus of the first calculation position in FIG. 7 (3) (with calculation coefficient adjustment and weight setting), it can be seen that an accurate locus along the true locus in FIG. 6 (1) is obtained. Recognize. In particular, the position calculation accuracy is also improved for the portion corresponding to the dotted line portion S1 in FIG. 7A and the dotted line portion S2 in FIG. From this experimental result, it was proved that the position calculation method of this embodiment is effective.
  • FIG. 8 is an explanatory diagram of the system configuration of the navigation system 1000 in the present embodiment.
  • the navigation system 1000 is configured such that a car navigation device 100 including the position calculation device 1 is installed in a four-wheeled vehicle (hereinafter simply referred to as “automobile”) that is a kind of mobile body.
  • automobile a four-wheeled vehicle
  • the car navigation device 100 is an electronic device that is installed in a car and performs navigation for the driver of the car.
  • the car navigation apparatus 100 includes an INS unit 2A and a GPS unit 3A.
  • the car navigation apparatus 100 calculates the position of the vehicle according to the position calculation method described in the principle, using the INS calculation result input from the INS unit 2A and the GPS calculation result input from the GPS unit 3A. Then, a navigation screen in which the calculated positions are plotted is generated and displayed on the display that is the display unit 30.
  • FIG. 9 is a block diagram illustrating an example of a functional configuration of the car navigation device 100.
  • the car navigation device 100 includes an INS unit 2A, a GPS unit 3A, a processing unit 10, an operation unit 20, a display unit 30, a communication unit 40, and a storage unit 50.
  • the processing unit 10 is a control device that comprehensively controls each unit of the car navigation apparatus 100 according to various programs such as a system program stored in the storage unit 50, and includes a processor such as a CPU (Central Processing Unit). Composed.
  • the processing unit 10 performs navigation processing according to the navigation program 51 stored in the storage unit 50 and causes the display unit 30 to display a map indicating the current position of the automobile.
  • the operation unit 20 is an input device configured by, for example, a touch panel or a button switch, and outputs a signal of a pressed key or button to the processing unit 10. By operating the operation unit 20, various instructions such as destination input are input.
  • the display unit 30 is configured by an LCD (Liquid Crystal Display) or the like, and is a display device that performs various displays based on a display signal input from the processing unit 10. A navigation screen or the like is displayed on the display unit 30.
  • LCD Liquid Crystal Display
  • the communication unit 40 is a communication device for exchanging information used inside the device with the outside via a communication network such as the Internet under the control of the processing unit 10.
  • a communication network such as the Internet under the control of the processing unit 10.
  • a known wireless communication technique can be applied to this communication.
  • the storage unit 50 is configured by a storage device such as a ROM (Read Only Memory), a flash ROM, or a RAM (Random Access Memory), and various types for realizing various functions such as a system program of the car navigation device 100 and a navigation function. Stores programs, data, etc. In addition, it has a work area for temporarily storing data being processed and results of various processes.
  • a storage device such as a ROM (Read Only Memory), a flash ROM, or a RAM (Random Access Memory)
  • various types for realizing various functions such as a system program of the car navigation device 100 and a navigation function. Stores programs, data, etc. In addition, it has a work area for temporarily storing data being processed and results of various processes.
  • the storage unit 50 stores a navigation program 51 that is read as a program by the processing unit 10 and executed as a navigation process (see FIG. 10).
  • the navigation program 51 includes an INS calculation error estimation program 511 executed as an INS calculation error estimation process (see FIG. 11) as a subroutine.
  • a weight setting condition table 53 As data, for example, a weight setting condition table 53, an INS calculation result 55, a GPS calculation result 56, a first calculation result 57, a second calculation result 58, and a calculation coefficient are stored. 59 is stored.
  • the weight setting condition table 53 is a table in which conditions for weight setting such as a first weight setting condition table (see FIG. 4) and a second weight setting condition table (see FIG. 5) are defined.
  • FIG. 10 is a flowchart showing the flow of navigation processing executed by the processing unit 10 according to the navigation program 51 stored in the storage unit 50.
  • the processing unit 10 starts acquiring the INS calculation result 55 and the GPS calculation result 56 from the INS unit 2A and the GPS unit 3A (step A1). Then, the processing unit 10 executes the first Kalman filter process (step A3).
  • the filter coefficient is adjusted using the estimation result of the previous INS calculation error estimation process (step A9), and the calculation coefficient 59 of the storage unit 50 is updated. Specifically, as described in the principle, the state “X” is adjusted using the estimated INS calculation error, and the error covariance “P” is adjusted according to, for example, the equations (14) to (17). Then, Kalman filter processing is performed using the adjusted filter coefficient, and the first calculation result 57 of the storage unit 50 is updated with the calculation result.
  • the processing unit 10 performs a map matching process on the calculation position calculated by the first Kalman filter process, and updates and displays the navigation screen of the display unit 30 as a result (step A5).
  • the processing unit 10 executes a second Kalman filter process (step A7).
  • the processing unit 10 updates the second calculation result 58 of the storage unit 50 with the calculation result of the second Kalman filter process.
  • the processing unit 10 performs INS calculation error estimation processing according to the INS calculation error estimation program 511 stored in the storage unit 50 (step A9).
  • FIG. 11 is a flowchart showing the flow of the INS calculation error estimation process.
  • the processing unit 10 performs weight setting processing (step B1). Specifically, the weight “ ⁇ ” is set according to the method described in the principle with reference to the weight setting condition table 53 stored in the storage unit 50.
  • the processing unit 10 performs a position error weighted average process (step B3). Specifically, the first calculation position error “P1 err ” calculated by the first Kalman filter process and the second calculation position error “P2 err ” calculated by the second Kalman filter process are set in step B1.
  • the average position error “aveP err ” is calculated by performing the weighted average according to the equation (7) using the weight “ ⁇ ” set in (1).
  • step B5 the processing unit 10 performs error conversion processing. Specifically, the average position error “aveP err ” calculated in step B3 is converted into an INS calculation error according to equations (9) to (13). Then, the processing unit 10 ends the INS calculation error estimation process.
  • the processing unit 10 determines whether or not to end the process (step A11). For example, when a navigation end instruction operation is performed by the user via the operation unit 20, it is determined that the navigation process is to be ended.
  • step A11; No If it is determined that the process is not terminated (step A11; No), the processing unit 10 returns to step A3. If it is determined that the process is to be terminated (step A11; Yes), the navigation process is terminated.
  • the first calculation process for calculating at least the position of the moving body using the measurement result of the inertial positioning unit 2 installed in the moving body is the first. It is executed by the arithmetic processing unit 5.
  • the second calculation processing unit 7 calculates the position of the moving object using the result of the first calculation process and the measurement result of the satellite positioning unit 3 installed in the moving object. It is executed by. Then, using the result of the first calculation process and the result of the second calculation process, the calculation coefficient related to the first calculation process is adjusted by the calculation coefficient adjustment unit 9.
  • the first Kalman filter processing unit 5A receives the calculation result (INS calculation result) of the INS unit as an input, and the calculation speed (GPS A Kalman filter process using the observation speed as the calculation speed is executed. Further, in the second Kalman filter processing unit 7A, the calculation result (first calculation result) of the first Kalman filter processing unit 5A is input, and the calculation position (GPS calculation position) of the GPS unit 3A is the observation amount. Kalman filtering is performed.
  • the addition / subtraction unit 8 calculates the difference between the INS calculation position and the second calculation position as a second calculation position error.
  • the weight setting unit 913 sets a weight for weighted averaging of the first calculation position error and the second calculation position error. Then, the first calculation position error and the second calculation position error are weighted and averaged by the position error weighted average unit 911. Then, using the average position error that is the weighted average result, the error conversion unit 915 converts the average position error into an INS calculation error, and the conversion result is fed back to the first Kalman filter processing unit 5A.
  • the weight setting unit 913 includes, for example, the first weight setting condition determined based on the positioning environment, the reliability of the GPS calculation position, the reliability of the GPS measurement information, the reliability of the second calculation position, and the reliability of the time information.
  • a weighted average weight is set according to a second weight setting condition determined based on a plurality of factors such as sex. Thereby, the weight of the weighted average can be optimized, and the error included in the INS calculation position can be estimated appropriately.
  • the error conversion unit 915 performs a conversion operation using the Kalman filter by using the error covariance input from the first Kalman filter processing unit 5A and the average position error input from the position error weighted average unit 911. Then, the INS calculation error is estimated. By using the Kalman filter, the INS calculation error can be appropriately estimated from the average position error.
  • the filter coefficient calculation unit 93 calculates and adjusts the filter coefficient used in the first Kalman filter processing, using the INS calculation error and the Kalman gain estimated by the INS calculation error estimation unit 91. For example, the state (state vector) and error covariance (error covariance matrix) used in the first Kalman filter process are calculated and adjusted. By performing the first Kalman filter process using the filter coefficient adjusted in this way, the position of the moving body can be obtained with high accuracy.
  • the GPS unit 3A to which GPS is applied has been described as an example of the satellite positioning unit 3.
  • a WAAS Wide Area Augmentation System
  • QZSS Quadrati Zenith Satellite System
  • GLONASS GLObal NAvigation
  • it may be a unit to which another satellite positioning system such as Satellite System) or GALILEO is applied.
  • the case where the INS unit 2A is applied as the inertial positioning unit 2 has been described as an example.
  • the INS measurement information measured by the inertial positioning unit 2 may be used as the input U so that the first arithmetic processing unit 5 performs the first arithmetic processing.
  • the arithmetic processing performed by the first arithmetic processing unit 5 and the second arithmetic processing unit 7 is not limited to Kalman filter processing.
  • sigma point filter processing using sigma points (sigma points) or regression filter processing may be applied to the second calculation processing.
  • the INS unit 2A has been described as calculating the position, velocity, and attitude angle of the moving body in the ENU coordinate system.
  • the INS unit 2A may calculate in the NED coordinate system or the ECEF coordinate system.
  • the first calculation process and the second calculation process may be calculated using the NED coordinate system or the ECEF coordinate system instead of using the ENU coordinate system.
  • Weight Setting Conditions The weight setting conditions exemplified in the above embodiment are merely examples, and can be added / deleted as appropriate. For example, a condition based on the reliability of the calculation result of the INS unit 2A may be determined. If a large error is mixed in the measurement result of the inertial sensor (gyro sensor or acceleration sensor) included in the INS unit 2A, the calculation accuracy of the INS unit 2A decreases. In this case, the calculation accuracy of the first calculation process using the INS calculation result as input decreases.
  • the INS unit 2A performs the INS calculation
  • the GPS unit 3A performs the GPS calculation
  • the processing unit 10 of the electronic device may be configured to execute INS calculation or GPS calculation.
  • the INS unit 2A outputs INS measurement information (acceleration, angular velocity, etc.).
  • the GPS unit 3A outputs GPS measurement information (code phase, Doppler frequency, pseudo distance, pseudo distance change rate, etc.).
  • the processing unit 10 of the electronic device performs the INS calculation using the INS measurement information input from the INS unit 2A, and performs the GPS calculation using the GPS measurement information input from the GPS unit 3A. Then, the processing unit 10 performs the first and second calculation processes using the INS calculation result and the GPS calculation result.
  • the present invention can be similarly applied to electronic devices other than navigation.
  • the present invention can be similarly applied to other electronic devices such as a mobile phone, a personal computer, and a PDA (Personal Digital Assistant), and position calculation of the electronic device can be realized.
  • PDA Personal Digital Assistant
  • 1, 1A position calculation device 1, 1A position calculation device, 2 inertial positioning unit, 2A INS unit, 3 satellite positioning unit, 3A GPS unit, 5 1st arithmetic processing unit, 5A 1st Kalman filter processing unit, 7 2nd arithmetic processing Unit, 7A, second Kalman filter processing unit, 9 calculation coefficient adjustment unit, 9A Kalman filter coefficient adjustment unit, 10 processing unit, 20 operation unit, 30 display unit, 40 communication unit, 50 storage unit, 100 car navigation device, 1000 Navigation system.

Abstract

 慣性測位用ユニット及び衛星測位用ユニットそれぞれの計測結果を併用して、位置をより正確に算出するための手法の提案。 位置算出装置(1)において、移動体に設置された慣性測位用ユニット(2)の計測結果を用いて、少なくとも移動体の位置を演算する第1の演算処理が第1の演算処理部(5)により実行される。また、第1の演算処理の結果と、移動体に設置された衛星測位用ユニット(3)の計測結果とを用いて、移動体の位置を演算する第2の演算処理が第2の演算処理部(7)により実行される。そして、第1の演算処理の結果と、第2の演算処理の結果とを用いて、第1の演算処理に係る演算係数が演算係数調整部(9)により調整される。

Description

位置算出方法及び位置算出装置
 本発明は、慣性測位用ユニット及び衛星測位用ユニットそれぞれの計測結果を併用した位置算出方法等に関する。
 いわゆるシームレス測位やモーションセンシング、姿勢制御など様々な分野において、慣性センサーの活用が注目されている。慣性センサーとしては、加速度センサーやジャイロセンサー、圧力センサー、地磁気センサーなどが広く知られている。慣性センサーの検出結果を利用して慣性航法演算を行う慣性航法システム(以下、「INS(Inertial Navigation System)」と称する。)も考案されている。
 INSでは、慣性センサーの検出結果に含まれ得る種々の誤差成分に起因して位置算出の正確性が低下するという問題があり、位置算出の正確性を向上させるための様々な技術が考案されている。例えば、特許文献1には、INS演算結果を、GPS(Global Positioning System)を利用して補正する技術が開示されている。
米国特許出願公開第2010/0019963号明細書
 GPSを利用してINS演算結果を補正する技術は、GPS演算結果が正しいことを前提としている。特許文献1に開示された技術も同様である。しかし、GPS演算結果は、GPS衛星から受信したGPS衛星信号の信号強度、受信環境、GPS衛星の天空配置、マルチパスといった種々の要因により、演算結果の精度が低下する場合がある。
 GPS演算結果の精度が低下しているにも関わらず、特許文献1の技術のようにGPS演算結果を用いてINS演算結果を補正してしまうと、位置算出の正確性が低下するという問題があった。
 本発明は上述した課題に鑑みて為されたものであり、衛星測位用ユニット及び慣性測位用ユニットそれぞれの計測結果を併用して、位置をより正確に算出するための手法を提案することを目的とする。
 以上の課題を解決するための第1の形態は、移動体に設置された慣性測位用ユニットの計測結果を用いて、少なくとも前記移動体の位置を演算する第1の演算処理を実行することと、前記第1の演算処理の結果と、前記移動体に設置された衛星測位用ユニットの計測結果とを用いて、前記移動体の位置を演算する第2の演算処理を実行することと、前記第1の演算処理の結果と、前記第2の演算処理の結果とを用いて、前記第1の演算処理に係る演算係数を調整することと、を含む位置算出方法である。
 また、他の形態として、移動体に設置された慣性測位用ユニットの計測結果を用いて、少なくとも前記移動体の位置を演算する第1の演算処理を実行する第1の演算処理部と、前記第1の演算処理の結果と、前記移動体に設置された衛星測位用ユニットの計測結果とを用いて、前記移動体の位置を演算する第2の演算処理を実行する第2の演算処理部と、前記第1の演算処理の結果と、前記第2の演算処理の結果とを用いて、前記第1の演算処理に係る演算係数を調整する調整部と、を備えた位置算出装置を構成してもよい。
 この第1の形態等によれば、移動体に設置された慣性測位用ユニットの計測結果を用いて、少なくとも移動体の位置を演算する第1の演算処理を実行する。また、第1の演算処理の結果と、移動体に設置された衛星測位用ユニットの計測結果とを用いて、移動体の位置を演算する第2の演算処理を実行する。そして、第1の演算処理の結果と、第2の演算処理の結果とを用いて、第1の演算処理に係る演算係数を調整する。
 演算処理には、慣性測位用ユニットの計測結果を用いた第1の演算処理と、第1の演算処理の結果及び衛星測位用ユニットの計測結果を用いた第2の演算処理とがある。そして、第1の演算処理の結果と、第2の演算処理の結果とを用いて、第1の演算処理に係る演算係数を調整することで、第1の演算処理における位置算出の正確性を向上させることができる。
 また、第2の形態として、第1の形態の位置算出方法において、前記慣性測位用ユニットの計測結果には慣性測位位置が含まれ、前記第1の演算処理は、演算した第1の演算位置に内在する第1の位置誤差を推定する所定の誤差推定演算を含み、前記調整することは、前記第1の位置誤差と、前記第2の演算処理で求めた第2の演算位置とを用いて、前記慣性測位位置に内在する慣性測位誤差を推定することと、前記慣性測位誤差を用いて前記演算係数を調整することと、を含む、位置算出方法を構成することとしてもよい。
 この第2の形態によれば、所定の誤差推定演算を行って、第1の演算処理で演算した第1の演算位置に内在する第1の位置誤差を推定する。そして、第1の位置誤差と、第2の演算処理で求めた第2の演算位置とを用いて、慣性測位用ユニットの計測結果に含まれる慣性測位位置に内在する慣性測位誤差を推定する。第1の位置誤差と併せて第2の演算位置を用いることで、慣性測位誤差を適切に推定することができる。そして、当該慣性測位誤差を用いて第1の演算処理に係る演算係数を調整することで、第1の演算処理における位置算出の正確性を向上させることができる。
 また、第3の形態として、第2の形態の位置算出方法において、前記推定することは、前記慣性測位位置と前記第2の演算位置との差分を算出することと、前記第1の位置誤差と前記差分とを平均処理して前記慣性測位誤差を算出することと、を含む、位置算出方法を構成することとしてもよい。
 この第3の形態によれば、慣性測位位置と第2の演算位置との差分を算出する。そして、第1の位置誤差と当該差分とを平均処理することで、慣性測位誤差を適切に推定することができる。
 また、第4の形態として、第3の形態の位置算出方法において、前記平均処理は、測位環境と前記衛星測位用ユニットの計測結果の信頼性とのどちらか又は両方に基づいて、前記第1の位置誤差と前記差分との重みを設定して加重平均する処理である、位置算出方法を構成することとしてもよい。
 この第4の形態によれば、平均処理において、測位環境と衛星測位用ユニットの計測結果の信頼性とのどちらか又は両方に基づいて、第1の位置誤差と差分との重みを設定して加重平均する。これにより、測位環境や衛星測位用ユニットの計測結果の信頼性に基づいて、慣性測位誤差をより正確に推定することができる。
 また、第5の形態として、第1~第4の何れかの形態の位置算出方法において、前記慣性測位用ユニットの計測結果には慣性測位位置が含まれ、前記第1の演算処理は、前記慣性測位位置を入力とするカルマンフィルター処理である、位置算出方法を構成することとしてもよい。
 この第5の形態によれば、第1の演算処理として慣性測位位置を入力とするカルマンフィルター処理を行うことで、移動体の位置等を簡易且つ適切に求めることができる。
 また、第6の形態として、第5の形態の位置算出方法において、前記衛星測位用ユニットの計測結果には速度が含まれ、前記カルマンフィルター処理は、前記速度を観測量とする処理である、位置算出方法を構成してもよい。
 この第6の形態によれば、第5の形態のカルマンフィルター処理において、さらに衛星測位用ユニットの計測結果に含まれる速度を観測量とすることで、移動体の位置等をより正確に求めることができる。
 また、第7の形態として、第1~第6の何れかの形態の位置算出方法において、前記衛星測位用ユニットの計測結果には衛星測位位置が含まれ、前記第2の演算処理は、前記第1の演算処理の結果を入力とし、前記衛星測位位置を観測量とするカルマンフィルター処理である、位置算出方法を構成することとしてもよい。
 この第7の形態によれば、第2の演算処理として、第1の演算処理の結果を入力とし、衛星測位用ユニットの計測結果に含まれる衛星測位位置を観測量とするカルマンフィルター処理を実行することで、移動体の位置を簡易且つ適切に求めることができる。
位置算出装置の構成図。 第1の位置算出装置の構成図。 第1のカルマンフィルター処理の入出力データの説明図。 第1の重み設定条件の説明図。 第2の重み設定条件の説明図。 位置算出を行った実験結果の一例を示す図。 位置算出を行った実験結果の一例を示す図。 ナビゲーションシステムのシステム構成図。 カーナビゲーション装置の機能構成を示すブロック図。 ナビゲーション処理の流れを示すフローチャート。 INS演算誤差推定処理の流れを示すフローチャート。
 1.原理
 1-1.構成
 図1は、本実施形態における位置算出装置1の主要構成図である。位置算出装置1は、移動体に備えられ、当該移動体の位置を算出する装置(システム)である。移動体は、自動車やオートバイ、自転車、船、電車といった物の他、人間自体であってもよい。人間が位置算出装置1を携帯し、人間自身が位置算出装置1を備えることとしてもよい。
 本明細書で参照する図面では、ユニット(モジュール)を二重線で図示し、ユニットの計測結果を利用して演算処理を行う処理ブロックを一重線で図示することで、両者を区別する。
 位置算出装置1には、ユニット(モジュール)として、慣性測位用ユニット2と、衛星測位用ユニット3とが含まれる。また、位置算出装置1は、主要な処理ブロックとして、第1の演算処理部5と、第2の演算処理部7と、演算係数調整部9とを有する。なお、ユニットと処理ブロックとで位置算出装置1を構成してもよいし、ユニットを除外して処理ブロックのみで位置算出装置1を構成してもよい。
 慣性測位用ユニット2は、慣性航法を利用して測位を行うためのユニットである。慣性測位用ユニット2は、加速度センサーやジャイロセンサー等の慣性センサーや、慣性センサーをパッケージ化した慣性計測ユニット(IMU(Inertial Measurement Unit))、慣性計測ユニット及び演算処理部をパッケージ化した慣性航法システム(INS(Inertial Navigation System))等を適用したユニットである。
 衛星測位用ユニット3は、衛星測位システムを利用して測位を行うためのユニットであり、例えば衛星測位システムの一種であるGPS(Global Positioning System)を適用可能である。
 第1の演算処理部5は、慣性測位用ユニット2の計測結果と、所与の観測量とを併用して、予め定められた第1の演算処理を行って、少なくとも移動体の位置を算出する。本実施形態において、第1の演算処理に好適な適用例は、カルマンフィルター処理である。
 第2の演算処理部7は、第1の演算処理部5の演算結果である第1の演算結果と、衛星測位用ユニット3の計測結果とを用いて、予め定められた第2の演算処理を行って、移動体の位置を算出する。本実施形態において、第2の演算処理に好適な適用例は、カルマンフィルター処理やシグマポイントフィルター処理、回帰フィルター処理である。
 演算係数調整部9は、第1の演算処理部5から入力した第1の演算結果と、第2の演算処理部7から入力した第2の演算結果とを用いて、第1の演算処理に係る演算係数を調整する。第1の演算処理部5は、演算係数調整部9により調整された演算係数を用いて第1の演算処理を行う。
 図2は、図1の位置算出装置1を適用した第1の位置算出装置1Aの構成図である。第1の位置算出装置1Aは、INSユニット2Aと、GPSユニット3Aと、第1のカルマンフィルター処理部5Aと、第2のカルマンフィルター処理部7Aと、カルマンフィルター係数調整部9Aとを有する。
 第1の位置算出装置1Aは、慣性測位用ユニット2としてINSユニット2Aを適用し、衛星測位用ユニット3としてGPSユニット3Aを適用したシステムである。また、第1及び第2の演算処理部5,7として、第1及び第2のカルマンフィルター処理部5A,7Aをそれぞれ適用したシステムである。
 INSユニット2Aは、IMUがローカル座標系で計測した加速度や角速度等のINSメジャメント情報を出力可能に構成されている。また、INSユニット2Aは、INSメジャメント情報を用いた慣性航法演算を行って、移動体の位置や速度、姿勢角を演算して出力可能に構成されている。本実施形態では、INSユニット2Aは、INS演算位置(慣性測位位置)、INS演算速度及びINS演算姿勢角を絶対座標系で演算して出力する。
 GPSユニット3Aは、GPS衛星から発信されているGPS衛星信号を受信して、コード位相やドップラー周波数、擬似距離、擬似距離変化率等のGPSメジャメント情報を計測して出力可能に構成されている。また、GPSユニット3Aは、GPSメジャメント情報を用いたGPS演算を行って、移動体の位置や速度を演算して出力可能に構成されている。本実施形態では、GPSユニット3Aは、GPS演算位置(衛星測位位置)及びGPS演算速度を絶対座標系で演算して出力する。
 ローカル座標系は、INSユニット2Aが有する慣性センサーに対応付けられたローカルな座標系(センサー座標系)である。それに対し、絶対座標系は、移動体の移動空間を定める座標系である。例えば、北東下座標系として知られるNED(North East Down)座標系や、東北上座標系として知られるENU(East North Up)座標系、地球中心地球固定座標系として知られるECEF(Earth Centered Earth Fixed)座標系といった座標系を適用可能である。
 以下の数式では、INSユニット2Aは、移動体の位置、速度及び姿勢角をENU座標系で演算して出力し、GPSユニット3Aは、移動体の位置及び速度をECEF座標系で演算して出力するものとして説明する。また、第1及び第2のカルマンフィルター処理では、ENU座標系で演算するものとして説明する。また、加速度や速度といった諸量は、実際には大きさ及び方向を持ったベクトルとして表される。しかし、本明細書では、ベクトルの文言を省略して、簡単に加速度や速度として説明する。
 第1のカルマンフィルター処理部5Aは、カルマンフィルターの理論に基づく演算処理を行って、移動体の位置や速度、姿勢角等を演算する。例えば、INSユニット2Aから入力したINS演算位置、INS演算速度及びINS演算姿勢角を入力U(制御入力)とする。また、GPSユニット3Aから入力したGPS演算速度や、移動体の運動モデルに基づき定められる所与の制約条件を観測量Zとする。そして、カルマンフィルターの予測演算(時刻更新)及び補正演算(観測更新)を行って、状態推定値を求める。
 第1のカルマンフィルター処理では、推定対象とする移動体の状態“X”を、例えば次式(1)及び(2)のように設定する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 式(1)で表される状態“X1”において、“(δVE,δVN,δVU)”は、ENU座標系で演算したINS演算速度の誤差である。“(Ψx,Ψy,Ψz)”は、ローカル座標系で演算したINS演算姿勢角の誤差である。“(bax,bay,baz)”は、ローカル座標系で計測した加速度のバイアスである。“(bgx,bgy,bgz)”は、ローカル座標系で計測した角速度のバイアスである。また、“d”は、GPSユニット3Aの内部クロックのドリフト(クロックドリフト)である。
 また、式(2)で表される状態“X2”において、“(δPE,δPN,δPU)”は、ENU座標系で演算したINS演算位置の誤差である。
 式(1)及び(2)から分かるように、本実施形態における第1のカルマンフィルター処理は、INSユニット2Aの演算結果に含まれる誤差を推定する誤差推定型のカルマンフィルター処理である。つまり、INSユニット2Aの演算結果に含まれる誤差を、状態 “X1”及び“X2”として推定する。
 また、第1のカルマンフィルター処理では、状態“X1”の各成分の誤差の共分散を含む誤差共分散行列“P11”と、状態“X2”の各成分の誤差の共分散を含む誤差共分散行列“P22”と、状態“X1”の各成分に対する状態“X2”の各成分の誤差の共分散を含む誤差共分散行列“P21”と、状態“X2”の各成分に対する状態“X1”の各成分の誤差の共分散を含む誤差共分散行列“P12”と、を併せて演算する。
 第1のカルマンフィルター処理の補正演算では、GPSユニット3Aにより演算された速度(以下、「GPS演算速度」と称す。)を観測量“Z”として、予測演算で予測された状態“X”を補正する。
 具体的には、例えば次式(3)で与えられる観測量“Z”を用いて補正演算を行う。
Figure JPOXMLDOC01-appb-M000003
 但し、“(VE,VN,VU)INS”は、INSユニット2AがENU座標系で演算したINS演算速度である。また、“(VX,VY,VZGPS”は、GPSユニット3AがECEF座標系で演算したGPS演算速度である。また、“CECEF ENU”は、ECEF座標系からENU座標系への座標変換行列である。
 さらに、第1のカルマンフィルター処理では、GPS演算速度とは別に、移動体の運動モデルに基づく制約条件を観測量“Z”として適用可能に構成されている。具体的には、移動体の停止時における速度制約条件である「停止時速度制約条件」と、移動体の移動時における速度制約条件である「移動時速度制約条件」との2種類の速度制約条件を適用可能である。
 停止時速度制約条件(第1の制約条件)は、移動体の停止時に適用可能な制約条件である。移動体が停止しているのであれば、理想的には移動体の速度はゼロである。従って、移動体が停止していると判定した場合は「移動体の各軸の速度成分=0」を観測量“Z”として与えることができる。
 移動時速度制約条件(第2の制約条件)は、移動体の移動時に適用可能な制約条件である。例えば、移動体として四輪自動車を想定した場合、通常、四輪自動車はジャンプや横滑りすることはないと仮定することができる。従って、移動体が移動していると判定した場合は「移動体の縦横方向の速度成分=0」を観測量“Z”として与えることができる。四輪自動車以外の移動体についても、当該移動体の移動方向や速度の大きさに関する制約に基づいて、移動時制約条件を適宜設定可能である。
 第1のカルマンフィルター処理で求めた状態“X1”について、その速度誤差“(δVE,δVN,δVU)”を用いてINS演算速度を補正し、その結果を第1の演算速度として第2のカルマンフィルター処理部7Aに出力する。クロックドリフト“d”は、第1の演算クロックドリフトとして第2のカルマンフィルター処理部7Aに出力する。
 また、加速度バイアス“(bax,bay,baz)”及び角速度バイアス“(bgx,bgy,bgz)”をINSユニット2Aにフィードバックする。INSユニット2Aは、第1のカルマンフィルター処理部5Aから入力した加速度バイアス“(bax,bay,baz)”及び角速度バイアス“(bgx,bgy,bgz)”を用いて、加速度センサー及びジャイロセンサーを補償(キャリブレーション)する。
 また、第1のカルマンフィルター処理で求めた状態“X2”について、その位置誤差“(δPE,δPN,δPU)”を用いてINS演算位置を補正し、その結果を第1の演算位置として出力する。第1の演算位置は、最終的な移動体の位置として、各種のアプリケーション処理に利用される。
 また、第1のカルマンフィルター処理では、所定の誤差推定演算を行って、第1の演算位置に内在する第1の演算位置誤差を推定する。具体的には、例えば次式(4)に従って第1の演算位置誤差“P1err”を算出・推定する。
Figure JPOXMLDOC01-appb-M000004
 式(4)において、“Δt”は、第1のカルマンフィルター処理の演算時間間隔である。状態“X1”の第1~第3成分である速度誤差“(δVE,δVN,δVU)”に演算時間間隔“Δt”を乗算することで、その演算時間間隔での位置誤差の変化分を求める。そして、当該変化分を状態“X2”の位置誤差“(δPE,δPN,δPU)”に加算することで、第1の演算位置誤差“P1err”を算出する。
 第2のカルマンフィルター処理部7Aは、第1のカルマンフィルター処理部5Aから入力した第1の演算速度及び第1の演算クロックドリフトを入力Uとし、GPSユニット3Aから入力したGPS演算位置を観測量“Z”として、移動体の位置を演算する。第2のカルマンフィルター処理部7Aにより演算された位置は、第2の演算位置として加減算部8に出力される。
 第2のカルマンフィルター処理では、推定対象とする移動体の状態“X”を、例えば次式(5)のように設定する。
Figure JPOXMLDOC01-appb-M000005
 但し、“(PE,PN,PU)”は、ENU座標系で表した移動体の位置である。“d”はクロックドリフトである。
 また、第2のカルマンフィルター処理では、観測量“Z”を、例えば次式(6)のように設定する。
Figure JPOXMLDOC01-appb-M000006
 但し、“(PX,PY,PZGPS”は、ECEF座標系で表したGPS演算位置である。
 本実施形態において特徴的であるのは、第1のカルマンフィルター処理では、GPS演算位置を観測量“Z”とせず、GPS演算速度を観測量“Z”としている点である。その代わり、GPS演算位置は、第2のカルマンフィルター処理の観測量“Z”とする。これは、GPSでは種々の誤差要因が存在するため、GPS演算位置に大きな誤差が含まれ得ることを想定したためである。その典型例はマルチパス環境である。
 マルチパス環境でGPS演算を行うと、演算される位置の正確性が低下する。そのため、GPS演算位置とINS演算位置とを単純にカップリングしてしまうと、GPS演算位置の誤差に引きずられて、演算位置の正確性が低下するおそれがある。そこで、位置演算を、第1の演算処理(第1のカルマンフィルター処理)と第2の演算処理(第2のカルマンフィルター処理)とに分離し、第1の演算処理では、GPS演算位置を用いずに移動体の位置を演算することとした。
 また、GPSでは、移動体の位置と併せて、移動体の速度も演算することができる。速度は位置と比べてマルチパスの影響を受けにくく、INS演算結果とのカップリングにそれほど大きな影響を与えない。そこで、第1のカルマンフィルター処理では、GPS演算速度を観測量として用いて移動体の位置を演算することとした。
 加減算部8は、第2のカルマンフィルター処理部7Aから出力された第2の演算位置と、INSユニット2Aから出力されたINS演算位置との差分を算出する。便宜的に、この差分のことを「第2の演算位置誤差」と呼称する。加減算部8により算出された第2の演算位置誤差“P2err”は、カルマンフィルター係数調整部9Aに出力される。
 カルマンフィルター係数調整部9Aは、INS演算誤差推定部91及びフィルター係数算出部93を有し、第1のカルマンフィルター処理に係るフィルター係数を調整する。本実施形態では、フィルター係数算出部93を、第1のカルマンフィルター処理部5Aの機能部として図示・説明する。
 フィルター係数算出部93は、INS演算誤差推定部91により推定されたINS演算誤差を利用して、第1のカルマンフィルター処理に係るフィルター係数を算出する。調整するフィルター係数は、例えば、状態“X1”,“X2”、及び、誤差共分散行列“P11”,“P22”,“P21”,“P12”である。フィルター係数の調整方法については詳細に後述する。
 INS演算誤差推定部91は、INS演算結果に含まれる誤差であるINS演算誤差を推定する機能部であり、例えば、位置誤差加重平均部911と、重み設定部913と、誤差変換部915とを有する。
 位置誤差加重平均部911は、重み設定部913により設定された重みを用いて、第1の演算位置誤差“P1err”と第2の演算位置誤差“P2err”とを加重平均して、INSユニット2Aの演算位置誤差(慣性測位誤差)を算出する。具体的には、例えば次式(7)に従って平均位置誤差“avePerr”を算出する。
Figure JPOXMLDOC01-appb-M000007
 但し、“α”は、第1の演算位置誤差“P1err”に対する重みであり、“0≦α≦1”である。第2の演算位置誤差“P2err”に対する重みは“1-α”である。
 重み設定部913は、測位環境やGPSユニット3Aの計測結果の信頼性といった複数の要素に基づいて、位置誤差加重平均部911の加重平均の重み“α”を設定する。重み設定方法については詳細に後述する。
 誤差変換部915は、第1のカルマンフィルター処理部5Aから入力した誤差共分散“P”を用いて、位置誤差加重平均部911から入力した平均位置誤差“avePerr”をINS演算誤差に変換する。INS演算誤差の変換方法についても詳細に後述する。
 図3は、第1のカルマンフィルター処理部5Aの入出力データの説明図である。状態“X”と、入力“U”と、観測量“Z”との対応関係のテーブルを図示している。カップリングには種々の方式が存在する。その中でも、ルーズカップリング(疎結合)と呼ばれる方式と、タイトカップリング(密結合)と呼ばれる方式とが一般的に用いられる。
 ルーズカップリング方式は、GPSとINSとの結び付きが比較的弱いカップリング方式である。この方式では、例えば、状態“X”をINS演算誤差(INS演算位置誤差、INS演算速度誤差、INS演算姿勢角誤差、INS加速度バイアス、INS角速度バイアス、クロックバイアス等)とする。また、入力“U”をINS演算結果(INS演算位置、INS演算速度、INS演算姿勢角等)とし、観測量“Z”をGPS演算結果(GPS演算速度等)や運動モデルに基づく制約条件(停止時又は移動時)とする。
 タイトカップリング方式は、GPSとINSとの結び付きが比較的強いカップリング方式である。この方式では、例えば、入力“U”及び状態“X”を上記と同様とし、観測量 “Z”をGPSメジャメント情報(擬似距離変化率等)や運動モデルに基づく制約条件とする。
 上記の状態“X”、入力“U”、観測量“Z”の各成分は、適宜追加/削除可能である。例えば、状態“X”について、バイアス成分を削除して、INS演算位置誤差、INS演算速度誤差及びINS演算姿勢角誤差を状態“X”の成分としてもよい。また、観測量 “Z”について、GPS演算速度又は擬似距離変化率と、運動モデルに基づく制約条件とを併用することとしてもよいし、何れか一方のみを用いることとしてもよい。
 1-2.重み設定方法
 次に、重み“α”の設定方法を説明する。本実施形態では、比較的高い値として定められた高設定値“αhigh”と、中程度の値として定められた中設定値“αmiddle”と、比較的低い値として定められた低設定値“αlow”との3種類の値の何れかを重み“α”に設定する。これらの具体的な値は、適宜定めることとしてよい。重み“α”は「0~1」の範囲で、「αhigh=0.9,αmiddle=0.5,αlow=0.1」といった値や、「αhigh=0.75,αmiddle=0.5,αlow=0.25」といった値を定めておくことができる。
 図4は、重み設定に係る第1の重み設定条件を定めた第1の重み設定条件テーブルの一例を示す図である。第1の重み設定条件テーブルには、低重み設定条件と、高重み設定条件とが対応付けて定められている。低重み設定条件は、重み“α”に低設定値“αlow”を設定するための条件である。高重み設定条件は、重み“α”に高設定値“αhigh”を設定するための条件である。低重み設定条件及び高重み設定条件の何れの条件も成立しない場合は、重み“α”に中設定値“αmiddle”を設定する。
 第1の重み設定条件は、測位環境に基づき定められた条件である。低重み設定条件には、測位環境がマルチパス環境であることが定められており、高重み設定条件には、測位環境がオープンスカイ環境であることが定められている。
 測位環境がマルチパス環境である場合は、間接波の影響により、観測される擬似距離に誤差が生ずる。そのため、GPSユニット3Aにより演算される位置の正確性が低下する。第2のカルマンフィルター処理部7AではGPS演算位置を観測量“Z”とするため、GPS演算位置の正確性が低いと、第2の演算位置にもその影響が現れる。
 この場合、第2の演算位置とINS演算位置との差分として算出される第2の演算位置誤差“P2err”は、マルチパスの影響を含む値となる。従って、測位環境がマルチパス環境である場合は、マルチパスの影響が顕著に反映された第2の演算位置誤差“P2err”を重視するために第2の演算位置誤差“P2err”に対する重み“1-α”を大きくする。これは、第1の演算位置誤差“P1err”に対する重み“α”を小さくすることに相当する。
 図5は、重み設定に係る第2の重み設定条件を定めた第2の重み設定条件テーブルの一例を示す図である。第2の重み設定条件テーブルには、条件の番号である条件Noと、低重み設定条件と、高重み設定条件とが対応付けて定められている。
 条件“A”は、GPS演算位置の信頼性に関する条件である。低重み設定条件には「GPS演算位置の信頼性=低」が定められており、高重み設定条件には「GPS演算位置の信頼性=高」が定められている。
 GPS演算位置の信頼性が低いと、第2のカルマンフィルター処理部7Aで演算される第2の演算位置の正確性が低下する。そのため、第2の演算位置とINS演算位置との差分として算出される第2の演算位置誤差“P2err”には、その影響が顕著に反映される。そこで、GPS演算位置の信頼性が低い場合には、第2の演算位置誤差“P2err”を重視するために、第1の演算位置誤差“P1err”に対する重み“α”を小さくする。
 GPS演算位置の信頼性は、GPS衛星信号の受信環境や信号強度、GPS衛星の天空配置、位置の急激な変化の検出といった複数の要素を総合的に考慮して判定することができる。例えば、GPS衛星の天空配置が良好でない場合(例えばDOP(Dilution Of Precision)値が大きい場合)や、大きな位置飛び(真の位置から大きく離れた位置が演算結果として得られること)が発生した場合、高度方向の急激な位置変化が発生した場合に、GPS演算位置の信頼性が低いと判定することができる。
 条件“B”は、GPSメジャメント情報の信頼性に関する条件である。低重み設定条件には「GPSメジャメント情報の信頼性=低」が定められており、高重み設定条件には「GPSメジャメント情報の信頼性=高」が定められている。GPSメジャメント情報の信頼性が低いと、演算されるGPS演算位置の信頼性が低下する。従って、この場合は条件 “A”と同様に、第1の演算位置誤差“P1err”に対する重み“α”を小さくする。
 例えば、アーバンキャニオン環境等においてGPSメジャメント情報に突発的に異常値が混入したような場合や、擬似距離変化率(レンジレート)と擬似距離(シュードレンジ)との相関関係に矛盾が生じている場合に、GPSメジャメント情報の信頼性は低いと判定する。
 条件“C”は、第2の演算位置の信頼性に関する条件である。低重み設定条件には「第2の演算位置の信頼性=低」が定められており、高重み設定条件には「第2の演算位置の信頼性=高」が定められている。第2のカルマンフィルター処理で演算された第2の演算位置の信頼性が低い場合は、第2の演算位置とINS演算位置との差分として算出される第2の演算位置誤差“P2err”を重視するように、第1の演算位置誤差“P1err”に対する重み“α”を小さくする。
 例えば、移動体の速度はゼロであるか微小値であるにも関わらず第2の演算位置が不連続的に変化している場合や、第2の演算位置に突発的な位置飛びが発生した場合に、第2の演算位置の信頼性は低いと判定する。
 条件“D”は、時刻情報の信頼性に関する条件である。低重み設定条件には「時刻情報の信頼性=高」が定められており、高重み設定条件には「時刻情報の信頼性=低」が定められている。時刻情報の信頼性が低いと、GPSユニット3Aにより演算されるGPS演算位置の信頼性が低下する。そのため、条件“A”と同様に、第1の演算位置誤差“P1err”に対する重み“α”を小さくする。
 例えば、GPSの時刻同期誤差が所定の閾値を超えている(或いは閾値以上)場合に、時刻情報の信頼性は低いと判定する。
 上記の複数の条件を用いて重み“α”を設定する。まず、複数の条件それぞれについて、判定項目の信頼性を数値化する。例えば、判定項目の信頼性が最も低い状態を信頼度“0”、信頼性が最も高い状態を信頼度“1”として、各判定項目の信頼度を「0~1」の範囲で数値化する。
 そして、例えば次式(8)に従って、重み設定指標値“W”を算出する。
Figure JPOXMLDOC01-appb-M000008
 但し、“k=kA,kB,kC,・・・”は、各々の条件“A,B,C,・・・”の信頼度に対する重みであり、“kA+kB+kC+・・・=Σk=1”である。単純化するのであれば“kA=kB=kC=・・・=1/N”としてもよい。但し、“N”は、重み設定に用いる条件の総数である。
 重み設定指標値“W”に基づいて、設定する重み“α”を決定する。例えば、重み設定指標値“W”が第1の閾値“θ1”よりも小さい(又は以下)場合は、重み“α”を低設定値とする(α=αlow)。また、重み設定指標値“W”が第2の閾値“θ2(>θ1)”よりも大きい(又は以上)場合は、重み“α”を高設定値とする(α=αhigh)。また、上記以外の場合には、重み“α”を中設定値とする(α=αmiddle)。
 図4の第1の重み設定条件と、図5の第2の重み設定条件とは、それぞれ単体で用いてもよいし、併用してもよい。つまり、測位環境に基づいて重みを設定して加重平均することも可能であるし、GPSユニット3Aの計測結果の信頼性等に基づいて重みを設定して加重平均することも可能であるし、これらの条件を併用して重みを設定して加重平均することも可能である。条件を併用する場合は、第1の重み設定条件の判定結果と第2の重み設定条件の判定結果とをAND条件又はOR条件として、重み“α”を設定することとしてもよい。
 また、第1の重み設定条件を第2の重み設定条件に含めて判定を行うことも可能である。具体的には、例えば、測位環境が最も良好な状態(例えばオープンスカイ環境)を“1”、測位環境が最も悪い状態(例えばアーバンキャニオン環境)を“0”として、測位環境の良否を数値化する。そして、数値化した測位環境の良否を含めて、式(8)の重み設定指標値“W”を算出することとしてもよい。
 1-3.INS演算誤差推定方法
 次に、INS演算誤差の推定方法を説明する。平均位置誤差をINS演算誤差に変換する方法としては、例えばカルマンフィルターを用いることができる。
 最初に、次式(9)に従って、観測量“Z2”と予測した観測量“H222”との差分“V2”を算出する。
Figure JPOXMLDOC01-appb-M000009
 式(9)において、観測量“Z2”は平均位置誤差“avePerr”である。すなわち、 “Z2=avePerr”である。また、“H222”は観測量“Z2”の予測値であり、平均位置誤差“avePerr”の予測値に相当する。つまり、式(2)で与えられる状態“X2”に観測行列“H22”を作用させて平均位置誤差“avePerr”を予測することを示す式である。観測行列“H22”は、状態“X2”から観測量“Z2”への変換行列である。
 次に、次式(10)及び(11)に従って、カルマンゲイン“K12”及び“K22”を算出する。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 “K12”は差分“V2”から状態“X1”を演算するためのカルマンゲインであり、“K22”は差分“V2”から状態“X2”を演算するためのカルマンゲインである。また、“R2”は観測量“Z2”の観測誤差(観測ノイズ)である。
 そして、上記のカルマンゲイン“K12”及び“K22”を用いて、状態“X1”及び“X2”を、次式(12)及び(13)に従って算出する。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 式(12)に従って算出された状態“X1”の成分のうち、速度誤差及び姿勢角誤差を、推定速度誤差“Verr”及び推定姿勢角誤差“Aerr”として第1のカルマンフィルター処理部5Aにフィードバックする。また、式(13)に従って算出された状態“X2”の成分である位置誤差を、推定位置誤差“Perr”として第1のカルマンフィルター処理部5Aにフィードバックする。また、カルマンゲイン“K12”及び“K22”を第1のカルマンフィルター処理部5Aにフィードバックする。
 1-4.フィルター係数調整方法
 次に、フィルター係数の調整方法を説明する。フィルター係数算出部93は、INS演算誤差推定部91から入力したINS演算誤差(推定位置誤差“Perr”、推定速度誤差 “Verr”及び推定姿勢角誤差“Aerr”)やカルマンゲイン“K12”及び“K22”を用いて、フィルター係数を算出する。
 第1に、フィルター係数算出部93は、INS演算誤差推定部91から入力した推定速度誤差“Verr”及び推定姿勢角誤差“Aerr”を、状態“X1”のうちの対応する成分(速度誤差“(δVE,δVN,δVU)”、姿勢角誤差“(Ψx,Ψy,Ψz)”)に加味して、状態“X1”を算出・更新する。また、INS演算誤差推定部91から入力した推定位置誤差“Perr”を状態“X2”の各成分(位置誤差“(δPE,δPN,δPU)”)に加味して、状態“X2”を算出・更新する。
 第2に、フィルター係数算出部93は、カルマンゲイン“K12”及び“K22”を用いて、例えば次式(14)~(17)に従って誤差共分散行列“P11”,“P22”,“P21”,“P12”をそれぞれ算出・更新する。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 2.実験結果
 図6及び図7は、上記の位置算出方法を用いて位置算出を行った実験結果の一例を示す図である。第1の位置算出装置1Aを自動車に設置し、都市部の道路を自動車で走行する実験を行った。走行した都市部は高層ビルが数多く存在するマルチパス環境である。図6及び図7の都市部の道路を反時計回りに周回して位置を算出し、その軌跡を描いてみた。スタート,ゴール地点は、図面中央下部である。
 図6(1)は、自動車の真の軌跡(参照軌跡)である。図6(2)は、GPSユニット3Aの出力であるGPS演算位置の軌跡である。図6(3)は、第2のカルマンフィルター処理部7Aの出力である第2の演算位置の軌跡である。
 図7(1)は、演算係数の調整を行わない場合の第1のカルマンフィルター処理部5Aの出力である第1の演算位置の軌跡(演算係数調整なし)である。図7(2)は、演算係数の調整は行ったが、重み“α”の設定を行わなかった場合の第1の演算位置の軌跡(演算係数調整あり、重み設定なし)である。図7(3)は、演算係数の調整及び重み“α”の設定を両方とも行った場合の第1の演算位置の軌跡(演算係数調整あり、重み設定あり)である。
 最初に、図6(2)のGPS演算位置の軌跡を見ると、所々に大きく蛇行しており、位置誤差が非常に大きくなっていることがわかる。これは、マルチパスの影響によりGPSの演算精度が低下したことによるものである。図6(3)の第2の演算位置の軌跡を見ると、GPS演算位置の軌跡と比べると滑らかな軌跡を描いているが、それでもやはり、図6(1)の真の軌跡に沿った軌跡とはなっていない。
 次に、図7(1)の第1の演算位置の軌跡(演算係数調整なし)を見ると、点線部分S1において、真の軌跡に対してバイアスがかかったような軌跡が得られている。これに本実施形態の演算係数の調整を追加すると、図7(2)の結果が得られる。この図7(2)の第1の演算位置の軌跡(演算係数調整あり、重み設定なし)を見ると、演算係数の調整により位置算出精度が改善されていることがわかる。しかし、それでもなお、点線部分S2において真の軌跡からの位置ズレが生じている。
 これにさらに本実施形態の重み“α”の設定を追加すると、図7(3)の結果が得られる。この図7(3)の第1の演算位置の軌跡(演算係数調整あり、重み設定あり)を見ると、図6(1)の真の軌跡に沿った正確な軌跡が得られていることがわかる。特に、図7(1)の点線部分S1や図7(2)の点線部分S2に対応する部分についても位置算出精度が改善されている。この実験結果から、本実施形態の位置算出方法が有効であることが実証された。
 3.実施例
 次に、上記の位置算出装置を備えた電子機器の実施例について説明する。ここでは、位置算出装置を具備するカーナビゲーション装置の実施例を説明する。但し、本発明を適用可能な実施例が以下説明する実施例に限定されるわけではないことは勿論である。
 3-1.システム構成
 図8は、本実施例におけるナビゲーションシステム1000のシステム構成の説明図である。ナビゲーションシステム1000は、移動体の一種である四輪自動車(以下、単に「自動車」と称す。)に、位置算出装置1を具備したカーナビゲーション装置100が設置されてなる。
 カーナビゲーション装置100は、自動車に設置され、自動車の運転者に対するナビゲーションを行う電子機器である。カーナビゲーション装置100は、INSユニット2Aと、GPSユニット3Aとを備える。
 カーナビゲーション装置100は、INSユニット2Aから入力したINS演算結果と、GPSユニット3Aから入力したGPS演算結果とを用いて、原理で説明した位置算出方法に従って自動車の位置を算出する。そして、算出位置をプロットしたナビゲーション画面を生成して、表示部30であるディスプレイに表示させる。
 3-2.機能構成
 図9は、カーナビゲーション装置100の機能構成の一例を示すブロック図である。カーナビゲーション装置100は、INSユニット2Aと、GPSユニット3Aと、処理部10と、操作部20と、表示部30と、通信部40と、記憶部50とを備える。
 処理部10は、記憶部50に記憶されているシステムプログラム等の各種プログラムに従ってカーナビゲーション装置100の各部を統括的に制御する制御装置であり、CPU(Central Processing Unit)等のプロセッサーを有して構成される。処理部10は、記憶部50に記憶されたナビゲーションプログラム51に従ってナビゲーション処理を行い、自動車の現在位置を指し示した地図を表示部30に表示させる。
 操作部20は、例えばタッチパネルやボタンスイッチ等により構成される入力装置であり、押下されたキーやボタンの信号を処理部10に出力する。この操作部20の操作により、目的地の入力等の各種指示入力がなされる。
 表示部30は、LCD(Liquid Crystal Display)等により構成され、処理部10から入力される表示信号に基づいた各種表示を行う表示装置である。表示部30には、ナビゲーション画面等が表示される。
 通信部40は、処理部10の制御に従って、装置内部で利用される情報をインターネット等の通信ネットワークを介して外部とやりとりするための通信装置である。この通信には、公知の無線通信技術を適用可能である。
 記憶部50は、ROM(Read Only Memory)やフラッシュROM、RAM(Random Access Memory)等の記憶装置によって構成され、カーナビゲーション装置100のシステムプログラムや、ナビゲーション機能等の各種機能を実現するための各種プログラム、データ等を記憶している。また、各種処理の処理中データ、処理結果などを一時的に記憶するワークエリアを有する。
 記憶部50には、プログラムとして、処理部10により読み出され、ナビゲーション処理(図10参照)として実行されるナビゲーションプログラム51が記憶されている。ナビゲーションプログラム51は、INS演算誤差推定処理(図11参照)として実行されるINS演算誤差推定プログラム511をサブルーチンとして含む。
 また、記憶部50には、データとして、例えば、重み設定条件テーブル53と、INS演算結果55と、GPS演算結果56と、第1の演算結果57と、第2の演算結果58と、演算係数59とが記憶される。
 重み設定条件テーブル53は、第1の重み設定条件テーブル(図4参照)や第2の重み設定条件テーブル(図5参照)といった重み設定用の条件が定められたテーブルである。
 3-3.処理の流れ
 図10は、処理部10が、記憶部50に記憶されたナビゲーションプログラム51に従って実行するナビゲーション処理の流れを示すフローチャートである。
 先ず、処理部10は、INSユニット2A及びGPSユニット3Aから、INS演算結果55及びGPS演算結果56の取得を開始する(ステップA1)。そして、処理部10は、第1のカルマンフィルター処理を実行する(ステップA3)。
 第1のカルマンフィルター処理では、前回のINS演算誤差推定処理(ステップA9)の推定結果を用いてフィルター係数を調整し、記憶部50の演算係数59を更新する。具体的には、原理で説明したように、推定したINS演算誤差を用いて状態“X”を調整するとともに、例えば式(14)~(17)に従って誤差共分散“P”を調整する。そして、調整したフィルター係数を用いてカルマンフィルター処理を行い、その演算結果で記憶部50の第1の演算結果57を更新する。
 次いで、処理部10は、第1のカルマンフィルター処理で演算した演算位置に対するマップマッチング処理等を行い、その結果で表示部30のナビゲーション画面を表示更新する(ステップA5)。
 その後、処理部10は、第2のカルマンフィルター処理を実行する(ステップA7)。処理部10は、第2のカルマンフィルター処理の演算結果で記憶部50の第2の演算結果58を更新する。そして、処理部10は、記憶部50に記憶されたINS演算誤差推定プログラム511に従ってINS演算誤差推定処理を行う(ステップA9)。
 図11は、INS演算誤差推定処理の流れを示すフローチャートである。
 先ず、処理部10は、重み設定処理を行う(ステップB1)。具体的には、記憶部50に記憶されている重み設定条件テーブル53を参照して、原理で説明した手法に従って重み“α”を設定する。
 次いで、処理部10は、位置誤差加重平均処理を行う(ステップB3)。具体的には、第1のカルマンフィルター処理で演算した第1の演算位置誤差“P1err”と、第2のカルマンフィルター処理で演算した第2の演算位置誤差“P2err”とを、ステップB1で設定した重み“α”を用いて式(7)に従って加重平均して、平均位置誤差“avePerr”を算出する。
 その後、処理部10は、誤差変換処理を行う(ステップB5)。具体的には、ステップB3で算出した平均位置誤差“avePerr”を、式(9)~式(13)に従ってINS演算誤差に変換する。そして、処理部10は、INS演算誤差推定処理を終了する。
 図10のナビゲーション処理に戻り、INS演算誤差推定処理を行った後、処理部10は、処理を終了するか否かを判定する(ステップA11)。例えば、操作部20を介してユーザーによりナビゲーションの終了指示操作がなされた場合に、ナビゲーション処理を終了すると判定する。
 処理を終了しないと判定した場合は(ステップA11;No)、処理部10は、ステップA3に戻る。また、処理を終了すると判定した場合は(ステップA11;Yes)、ナビゲーション処理を終了する。
 4.作用効果
 本実施形態によれば、位置算出装置1において、移動体に設置された慣性測位用ユニット2の計測結果を用いて、少なくとも移動体の位置を演算する第1の演算処理が第1の演算処理部5により実行される。また、第1の演算処理の結果と、移動体に設置された衛星測位用ユニット3の計測結果とを用いて、移動体の位置を演算する第2の演算処理が第2の演算処理部7により実行される。そして、第1の演算処理の結果と、第2の演算処理の結果とを用いて、第1の演算処理に係る演算係数が演算係数調整部9により調整される。
 例えば、位置算出装置1を適用した第1の位置算出装置1Aでは、第1のカルマンフィルター処理部5Aにおいて、INSユニットの演算結果(INS演算結果)を入力とし、GPSユニット3Aの演算速度(GPS演算速度)を観測量とするカルマンフィルター処理が実行される。また、第2のカルマンフィルター処理部7Aにおいて、第1のカルマンフィルター処理部5Aの演算結果(第1の演算結果)を入力とし、GPSユニット3Aの演算位置(GPS演算位置)を観測量とするカルマンフィルター処理が実行される。
 加減算部8では、INS演算位置と第2の演算位置との差分が、第2の演算位置誤差として算出される。INS演算誤差推定部91では、重み設定部913により、第1の演算位置誤差と第2の演算位置誤差とを加重平均する際の重みが設定される。そして、第1の演算位置誤差と第2の演算位置誤差とが、位置誤差加重平均部911により加重平均される。そして、加重平均結果である平均位置誤差を用いて、誤差変換部915により平均位置誤差がINS演算誤差に変換され、その変換結果が第1のカルマンフィルター処理部5Aにフィードバックされる。
 重み設定部913は、例えば、測位環境に基づき定められた第1の重み設定条件や、GPS演算位置の信頼性、GPSメジャメント情報の信頼性、第2の演算位置の信頼性、時刻情報の信頼性といった複数の要素に基づき定められた第2の重み設定条件に従って、加重平均の重みを設定する。これにより、加重平均の重みを適正化し、INS演算位置に含まれる誤差を適切に推定することができる。
 また、誤差変換部915は、第1のカルマンフィルター処理部5Aから入力した誤差共分散と、位置誤差加重平均部911から入力した平均位置誤差とを用いて、カルマンフィルターを利用した変換演算を行って、INS演算誤差を推定する。カルマンフィルターを利用することで、平均位置誤差からINS演算誤差を適切に推定することができる。
 また、フィルター係数算出部93は、INS演算誤差推定部91により推定されたINS演算誤差やカルマンゲインを用いて、第1のカルマンフィルター処理で用いるフィルター係数を算出・調整する。例えば、第1のカルマンフィルター処理で用いる状態(状態ベクトル)や誤差共分散(誤差共分散行列)を算出・調整する。このようにして調整したフィルター係数を用いて第1のカルマンフィルター処理を行うことで、移動体の位置を高い正確性で求めることが可能となる。
 5.変形例
 本発明を適用可能な実施例は、上記の実施例に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能であることは勿論である。以下、変形例について説明するが、上記の実施例と同一の構成要素については同一の符号を付して説明を省略し、上記の実施例とは異なる部分を中心に説明する。
 5-1.ユニット
 上記の実施形態では、衛星測位用ユニット3として、GPSを適用したGPSユニット3Aを例に挙げて説明したが、WAAS(Wide Area Augmentation System)、QZSS(Quasi Zenith Satellite System)、GLONASS(GLObal NAvigation Satellite System)、GALILEO等の他の衛星測位システムを適用したユニットとしてもよいことは勿論である。
 また、上記の実施形態では、慣性測位用ユニット2として、INSユニット2Aを適用した場合を例に挙げて説明したが、INSメジャメント情報(加速度や角速度)を計測する慣性センサーや慣性計測ユニット(IMU)を慣性測位用ユニット2としてもよい。この場合は、慣性測位用ユニット2により計測されたINSメジャメント情報を入力Uとして、第1の演算処理部5が第1の演算処理を行うように構成すればよい。
 5-2.演算処理
 第1の演算処理部5及び第2の演算処理部7が行う演算処理は、カルマンフィルター処理に限定されるわけではない。例えば、第2の演算処理について、シグマ点(シグマポイント)を利用したシグマポイントフィルター処理や、回帰フィルター処理を適用することとしてもよい。
 5-3.座標系
 上記の実施形態では、INSユニット2Aは、移動体の位置、速度及び姿勢角をENU座標系で演算するものとして説明したが、NED座標系や、ECEF座標系で演算することとしてもよいことは勿論である。また、第1の演算処理や第2の演算処理についても、ENU座標系で演算するのではなく、NED座標系やECEF座標系で演算してもよい。
 5-4.重み設定条件
 上記の実施形態で例示した重み設定条件はあくまでも一例であり、適宜追加/削除可能である。例えば、INSユニット2Aの演算結果の信頼性に基づく条件を定めておいてもよい。INSユニット2Aが有する慣性センサー(ジャイロセンサーや加速度センサー)の計測結果に大きな誤差が混入すると、INSユニット2Aの演算精度が低下する。この場合、INS演算結果を入力とする第1の演算処理の演算精度が低下する。
 その結果、第1の演算処理で演算される第1の演算位置誤差“P1err”には、その影響が顕著に現れる。そこで、INSユニット2Aの演算結果の信頼性が低い場合は、第1の演算位置誤差“P1err”を重視して加重平均するように、第1の演算位置誤差“P1err”に対する重み“α”を大きくすると効果的である。この場合は、高重み設定条件として「INSユニットの信頼性=低」を定めておけばよい。
 また、上記の実施形態では、第2の重み設定条件に関して、複数の条件“A,B,C,D,・・・”を組み合わせて重み“α”を設定する方法を説明した。しかし、複数の条件 “A,B,C,D,・・・”をそれぞれ単体で用いて重み“α”を設定するといったことも当然に可能である。
 5-5.処理主体
 上記の実施形態では、INSユニット2AがINS演算を行い、GPSユニット3AがGPS演算を行うものとして説明した。しかし、電子機器の処理部10がINS演算やGPS演算を実行する構成としてもよい。
 この場合は、INSユニット2Aは、INSメジャメント情報(加速度や角速度等)を出力する。また、GPSユニット3Aは、GPSメジャメント情報(コード位相やドップラー周波数、擬似距離、擬似距離変化率等)を出力する。
 そして、電子機器の処理部10は、INSユニット2Aから入力したINSメジャメント情報を用いてINS演算を行うとともに、GPSユニット3Aから入力したGPSメジャメント情報を用いてGPS演算を行う。そして、処理部10は、INS演算結果及びGPS演算結果を用いて、第1及び第2の演算処理を行う。
 5-6.電子機器
 上記の実施例では、四輪自動車に搭載するナビゲーション装置に本発明を適用した場合を例に挙げて説明したが、本発明を適用可能な電子機器はこれに限られるわけではない。例えば、二輪自動車に搭載するナビゲーション装置に適用してもよいし、携帯型ナビゲーション装置に適用することとしてもよい。
 また、ナビゲーション以外の用途の電子機器についても本発明を同様に適用可能であることは勿論である。例えば、携帯型電話機やパソコン、PDA(Personal Digital Assistant)といった他の電子機器についても本発明を同様に適用して、当該電子機器の位置算出を実現することが可能である。
 1、1A 位置算出装置、 2 慣性測位用ユニット、 2A INSユニット、 3 衛星測位用ユニット、 3A GPSユニット、 5 第1の演算処理部、 5A 第1のカルマンフィルター処理部、 7 第2の演算処理部、 7A 第2のカルマンフィルター処理部、 9 演算係数調整部、 9A カルマンフィルター係数調整部、 10 処理部、 20 操作部、 30 表示部、 40 通信部、 50 記憶部、 100 カーナビゲーション装置、 1000 ナビゲーションシステム。

Claims (8)

  1.  移動体に設置された慣性測位用ユニットの計測結果を用いて、少なくとも前記移動体の位置を演算する第1の演算処理を実行することと、
     前記第1の演算処理の結果と、前記移動体に設置された衛星測位用ユニットの計測結果とを用いて、前記移動体の位置を演算する第2の演算処理を実行することと、
     前記第1の演算処理の結果と、前記第2の演算処理の結果とを用いて、前記第1の演算処理に係る演算係数を調整することと、
     を含む位置算出方法。
  2.  前記慣性測位用ユニットの計測結果には慣性測位位置が含まれ、
     前記第1の演算処理は、演算した第1の演算位置に内在する第1の位置誤差を推定する所定の誤差推定演算を含み、
     前記調整することは、
     前記第1の位置誤差と、前記第2の演算処理で求めた第2の演算位置とを用いて、前記慣性測位位置に内在する慣性測位誤差を推定することと、
     前記慣性測位誤差を用いて前記演算係数を調整することと、
     を含む、
     請求項1に記載の位置算出方法。
  3.  前記推定することは、
     前記慣性測位位置と前記第2の演算位置との差分を算出することと、
     前記第1の位置誤差と前記差分とを平均処理して前記慣性測位誤差を算出することと、
     を含む、
     請求項2に記載の位置算出方法。
  4.  前記平均処理は、測位環境と前記衛星測位用ユニットの計測結果の信頼性とのどちらか又は両方に基づいて、前記第1の位置誤差と前記差分との重みを設定して加重平均する処理である、
     請求項3に記載の位置算出方法。
  5.  前記慣性測位用ユニットの計測結果には慣性測位位置が含まれ、
     前記第1の演算処理は、前記慣性測位位置を入力とするカルマンフィルター処理である、
     請求項1~4の何れか一項に記載の位置算出方法。
  6.  前記衛星測位用ユニットの計測結果には速度が含まれ、
     前記カルマンフィルター処理は、前記速度を観測量とする処理である、
     請求項5に記載の位置算出方法。
  7.  前記衛星測位用ユニットの計測結果には衛星測位位置が含まれ、
     前記第2の演算処理は、前記第1の演算処理の結果を入力とし、前記衛星測位位置を観測量とするカルマンフィルター処理である、
     請求項1~6の何れか一項に記載の位置算出方法。
  8.  移動体に設置された慣性測位用ユニットの計測結果を用いて、少なくとも前記移動体の位置を演算する第1の演算処理を実行する第1の演算処理部と、
     前記第1の演算処理の結果と、前記移動体に設置された衛星測位用ユニットの計測結果とを用いて、前記移動体の位置を演算する第2の演算処理を実行する第2の演算処理部と、
     前記第1の演算処理の結果と、前記第2の演算処理の結果とを用いて、前記第1の演算処理に係る演算係数を調整する調整部と、
     を備えた位置算出装置。
PCT/JP2012/002967 2011-05-10 2012-05-02 位置算出方法及び位置算出装置 WO2012153501A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12782570.1A EP2717014B1 (en) 2011-05-10 2012-05-02 Position calculation method and position calculation device
US14/116,750 US9026362B2 (en) 2011-05-10 2012-05-02 Position calculating method and position calculating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011105614A JP5742450B2 (ja) 2011-05-10 2011-05-10 位置算出方法及び位置算出装置
JP2011-105614 2011-05-10

Publications (1)

Publication Number Publication Date
WO2012153501A1 true WO2012153501A1 (ja) 2012-11-15

Family

ID=47138989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002967 WO2012153501A1 (ja) 2011-05-10 2012-05-02 位置算出方法及び位置算出装置

Country Status (4)

Country Link
US (1) US9026362B2 (ja)
EP (1) EP2717014B1 (ja)
JP (1) JP5742450B2 (ja)
WO (1) WO2012153501A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085060A (ja) * 2014-10-23 2016-05-19 株式会社小野測器 速度計測装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6260983B2 (ja) * 2013-05-24 2018-01-17 株式会社Ihi 自己位置推定装置及び方法
US9309631B2 (en) 2014-03-26 2016-04-12 Caterpillar Trimble Control Technologies Llc Enhanced control of road construction equipment
US9574320B2 (en) * 2014-03-26 2017-02-21 Trimble Navigation Limited Blended position solutions
JP6139722B1 (ja) * 2016-02-19 2017-05-31 ヤフー株式会社 推定装置、推定方法及び推定プログラム
JP6712037B2 (ja) * 2017-01-27 2020-06-17 株式会社FADrone 慣性計測方法と慣性計測装置及び慣性計測プログラム
WO2019049599A1 (ja) * 2017-09-05 2019-03-14 Necソリューションイノベータ株式会社 情報処理装置、情報処理システム、測位結果出力方法およびプログラムを格納した非一時的なコンピュータ可読媒体
US11513234B2 (en) 2019-09-13 2022-11-29 Apple Inc. Estimating device position in multipath environments
US11593411B2 (en) * 2019-09-13 2023-02-28 International Business Machines Corporation Historical augmentation of electronic maps
WO2021059346A1 (ja) * 2019-09-24 2021-04-01 日本電信電話株式会社 測位システム、機器、サーバ装置、測位方法及びプログラム
US20210278847A1 (en) * 2020-03-05 2021-09-09 Analog Devices, Inc. Trusted motion unit
CN113359167A (zh) * 2021-04-16 2021-09-07 电子科技大学 一种通过惯性测量参数将gps与激光雷达融合定位的方法
US11550064B1 (en) * 2021-06-30 2023-01-10 Guangzhou Xiaopeng Autopilot Technology Co., Ltd. Apparatus, system and method for providing global localization output and application of same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014715A (ja) * 2008-07-02 2010-01-21 O2 Micro Inc 全地球測位システム及び推測航法(gps&dr)一体型ナビゲーションシステム
US20100019963A1 (en) 2006-06-15 2010-01-28 Uti Limited Partnership Vehicular navigation and positioning system
JP2010151459A (ja) * 2008-12-24 2010-07-08 Seiko Epson Corp 位置算出方法及び位置算出装置
JP2011013115A (ja) * 2009-07-02 2011-01-20 Seiko Epson Corp 位置算出方法及び位置算出装置
JP2011013228A (ja) * 2010-08-30 2011-01-20 Seiko Epson Corp 位置算出方法及び位置算出装置

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646857A (en) * 1995-03-31 1997-07-08 Trimble Navigation Limited Use of an altitude sensor to augment availability of GPS location fixes
US5862511A (en) * 1995-12-28 1999-01-19 Magellan Dis, Inc. Vehicle navigation system and method
US6393046B1 (en) * 1996-04-25 2002-05-21 Sirf Technology, Inc. Spread spectrum receiver with multi-bit correlator
US6234799B1 (en) 1998-04-06 2001-05-22 American Gnc Corporation Real-time IMU simulator
US6449559B2 (en) * 1998-11-20 2002-09-10 American Gnc Corporation Fully-coupled positioning process and system thereof
US6608589B1 (en) * 1999-04-21 2003-08-19 The Johns Hopkins University Autonomous satellite navigation system
ATE345487T1 (de) * 1999-09-16 2006-12-15 Sirf Tech Inc Navigationssystem und -verfahren zum verfolgen der position eines objektes
US6731237B2 (en) * 1999-11-09 2004-05-04 The Charles Stark Draper Laboratory, Inc. Deeply-integrated adaptive GPS-based navigator with extended-range code tracking
US6489922B1 (en) * 2000-04-22 2002-12-03 American Gnc Corporation Passive/ranging/tracking processing method for collision avoidance guidance and control
US6735523B1 (en) * 2000-06-19 2004-05-11 American Gnc Corp. Process and system of coupled real-time GPS/IMU simulation with differential GPS
US6408245B1 (en) 2000-08-03 2002-06-18 American Gnc Corporation Filtering mechanization method of integrating global positioning system receiver with inertial measurement unit
WO2002052225A2 (en) * 2000-12-22 2002-07-04 The Charles Stark Draper Laboratory, Inc. Geographical navigation using multipath wireless navigation signals
US6424914B1 (en) * 2000-12-26 2002-07-23 American Gnc Corporation Fully-coupled vehicle positioning method and system thereof
US6493631B1 (en) * 2001-05-31 2002-12-10 Mlho, Inc. Geophysical inertial navigation system
US6853909B2 (en) * 2001-12-03 2005-02-08 Applanix Corporation, Inc Walking stick navigator for position determination
US6697736B2 (en) * 2002-02-06 2004-02-24 American Gnc Corporation Positioning and navigation method and system thereof
KR100498480B1 (ko) * 2003-01-23 2005-07-01 삼성전자주식회사 Gps 위성 신호를 이용한 위치추정방법 및 위치추정장치
JP4199553B2 (ja) * 2003-02-03 2008-12-17 古野電気株式会社 ハイブリッド航法装置
KR100520166B1 (ko) * 2003-03-14 2005-10-10 삼성전자주식회사 네비게이션시스템에서 이동체의 위치검출장치 및 그 방법
WO2005072458A2 (en) * 2004-01-28 2005-08-11 Delorme Publishing Company, Inc. Method and device for processing raw gps data
FR2866423B1 (fr) * 2004-02-13 2006-05-05 Thales Sa Dispositif de surveillance de l'integrite des informations delivrees par un systeme hybride ins/gnss
US8013789B2 (en) * 2004-10-06 2011-09-06 Ohio University Systems and methods for acquisition and tracking of low CNR GPS signals
US7395156B2 (en) * 2005-06-23 2008-07-01 Raytheon Company System and method for geo-registration with global positioning and inertial navigation
US7474962B2 (en) * 2005-07-13 2009-01-06 Honeywell International Inc. Methods and systems of relative navigation for shipboard landings
KR101216551B1 (ko) * 2006-03-06 2012-12-31 콸콤 인코포레이티드 측정 스티칭을 사용한 위치 결정 방법
JP4830559B2 (ja) * 2006-03-16 2011-12-07 セイコーエプソン株式会社 測位装置及び測位方法
US7865299B2 (en) * 2006-09-14 2011-01-04 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system for predicting a future position of a vehicle using numerical integration
US7626544B2 (en) * 2006-10-17 2009-12-01 Ut-Battelle, Llc Robust low-frequency spread-spectrum navigation system
US8068984B2 (en) * 2006-10-17 2011-11-29 Ut-Battelle, Llc Triply redundant integrated navigation and asset visibility system
US8493267B2 (en) * 2006-11-10 2013-07-23 Qualcomm Incorporated Method and apparatus for position determination with extended SPS orbit information
US7439907B2 (en) * 2006-11-20 2008-10-21 Sirf Technology Holdihgs, Inc. Navigation signal receiver trajectory determination
US7835863B2 (en) * 2007-04-18 2010-11-16 Mitac International Corporation Method and system for navigation using GPS velocity vector
US7869948B2 (en) * 2007-04-27 2011-01-11 Sirf Technology, Inc. Method and apparatus in positioning without broadcast ephemeris
US8260036B2 (en) * 2007-05-09 2012-09-04 Honeywell International Inc. Object detection using cooperative sensors and video triangulation
US20090287414A1 (en) * 2007-05-14 2009-11-19 Zupt, Llc System and process for the precise positioning of subsea units
US7855678B2 (en) * 2007-05-16 2010-12-21 Trimble Navigation Limited Post-mission high accuracy position and orientation system
US7586441B2 (en) * 2007-06-27 2009-09-08 Mediatek Inc. Methods and apparatuses for searching for satellite signals
JP4964047B2 (ja) * 2007-07-12 2012-06-27 アルパイン株式会社 位置検出装置及び位置検出方法
JP4976948B2 (ja) * 2007-07-25 2012-07-18 古野電気株式会社 姿勢計測装置
JP4453728B2 (ja) * 2007-08-07 2010-04-21 株式会社デンソー 位置補正装置
US20090093959A1 (en) * 2007-10-04 2009-04-09 Trimble Navigation Limited Real-time high accuracy position and orientation system
US7994971B2 (en) * 2008-01-09 2011-08-09 Mayflower Communications Company, Inc. GPS-based measurement of roll rate and roll angle of spinning platforms
US9366763B2 (en) * 2009-02-04 2016-06-14 Qualcomm Incorporated Method and apparatus for position determination with hybrid SPS orbit data
US8134497B2 (en) * 2008-09-30 2012-03-13 Trimble Navigation Limited Method and system for location-dependent time-specific correction data
JP2010117148A (ja) * 2008-11-11 2010-05-27 Seiko Epson Corp 位置算出方法及び位置算出装置
JP2010117147A (ja) * 2008-11-11 2010-05-27 Seiko Epson Corp 位置算出方法及び位置算出装置
US7978130B1 (en) * 2009-05-01 2011-07-12 Coherent Navigation, Inc. Practical method for upgrading existing GNSS user equipment with tightly integrated Nav-Com capability
US8296065B2 (en) * 2009-06-08 2012-10-23 Ansaldo Sts Usa, Inc. System and method for vitally determining position and position uncertainty of a railroad vehicle employing diverse sensors including a global positioning system sensor
EP2339378B1 (en) * 2009-12-17 2013-03-20 u-blox AG Hybrid satellite positioning receiver
JP5521531B2 (ja) * 2009-12-18 2014-06-18 セイコーエプソン株式会社 位置算出方法及び位置算出システム
US8704707B2 (en) * 2010-06-02 2014-04-22 Qualcomm Incorporated Position determination using measurements from past and present epochs
JP2012215491A (ja) * 2011-04-01 2012-11-08 Seiko Epson Corp 位置算出方法及び位置算出装置
JP5842363B2 (ja) * 2011-04-01 2016-01-13 セイコーエプソン株式会社 位置算出方法及び位置算出装置
EP2530488B1 (en) * 2011-06-01 2016-04-13 u-blox AG Hybrid satellite positioning with prediction
US8626198B2 (en) * 2011-11-16 2014-01-07 Qualcomm Incorporated Characterizing an indoor structure based on detected movements and/or position locations of a mobile device
US8983492B2 (en) * 2012-06-21 2015-03-17 Qualcomm Incorporated Methods and apparatuses for affecting a motion model within a mobile device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100019963A1 (en) 2006-06-15 2010-01-28 Uti Limited Partnership Vehicular navigation and positioning system
JP2010014715A (ja) * 2008-07-02 2010-01-21 O2 Micro Inc 全地球測位システム及び推測航法(gps&dr)一体型ナビゲーションシステム
JP2010151459A (ja) * 2008-12-24 2010-07-08 Seiko Epson Corp 位置算出方法及び位置算出装置
JP2011013115A (ja) * 2009-07-02 2011-01-20 Seiko Epson Corp 位置算出方法及び位置算出装置
JP2011013228A (ja) * 2010-08-30 2011-01-20 Seiko Epson Corp 位置算出方法及び位置算出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2717014A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085060A (ja) * 2014-10-23 2016-05-19 株式会社小野測器 速度計測装置

Also Published As

Publication number Publication date
US20140214317A1 (en) 2014-07-31
JP2012237606A (ja) 2012-12-06
EP2717014A4 (en) 2014-10-29
EP2717014A1 (en) 2014-04-09
US9026362B2 (en) 2015-05-05
JP5742450B2 (ja) 2015-07-01
EP2717014B1 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
JP5742450B2 (ja) 位置算出方法及び位置算出装置
JP5606656B2 (ja) 測位装置
US9714841B2 (en) Satellite navigation/dead-reckoning navigation integrated positioning device
US8560234B2 (en) System and method of navigation based on state estimation using a stepped filter
JP6094026B2 (ja) 姿勢判定方法、位置算出方法及び姿勢判定装置
US8600660B2 (en) Multipath modeling for deep integration
US9423509B2 (en) Moving platform INS range corrector (MPIRC)
WO2012137415A1 (ja) 位置算出方法及び位置算出装置
JP5842363B2 (ja) 位置算出方法及び位置算出装置
JP5602070B2 (ja) 位置標定装置、位置標定装置の位置標定方法および位置標定プログラム
WO2009006341A1 (en) Compensation for mounting misalignment of a navigation device
CN113203418B (zh) 基于序贯卡尔曼滤波的gnssins视觉融合定位方法及系统
WO2016203744A1 (ja) 測位装置
JP5119967B2 (ja) 測位方法、プログラム及び測位装置
JP2012154769A (ja) 加速度検出方法、位置算出方法及び加速度検出装置
WO2012172780A1 (ja) 位置算出方法及び位置算出装置
JP2015102330A (ja) 移動情報算出装置、移動情報算出方法、移動情報算出プログラム、および移動体
JP2013108930A (ja) 慣性航法演算方法及び慣性航法演算装置
Komori et al. Initial Study on Spoofing Detection Using IMU and GNSS Compass
JP2013195325A (ja) 移動体の測位方法、および移動体の測位装置
JP2012198068A (ja) 方位測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782570

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012782570

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012782570

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14116750

Country of ref document: US