WO2016188693A1 - Composition détergente à lessive - Google Patents

Composition détergente à lessive Download PDF

Info

Publication number
WO2016188693A1
WO2016188693A1 PCT/EP2016/059296 EP2016059296W WO2016188693A1 WO 2016188693 A1 WO2016188693 A1 WO 2016188693A1 EP 2016059296 W EP2016059296 W EP 2016059296W WO 2016188693 A1 WO2016188693 A1 WO 2016188693A1
Authority
WO
WIPO (PCT)
Prior art keywords
laundry detergent
detergent composition
composition according
alkyl
metalloprotease
Prior art date
Application number
PCT/EP2016/059296
Other languages
English (en)
Inventor
Stephen Norman Batchelor
Jayne Michelle Bird
Dietmar Andreas LANG
Original Assignee
Unilever Plc
Unilever N.V.
Conopco, Inc., D/B/A Unilever
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Plc, Unilever N.V., Conopco, Inc., D/B/A Unilever filed Critical Unilever Plc
Priority to BR112017024403-9A priority Critical patent/BR112017024403B1/pt
Priority to CN201680026075.4A priority patent/CN109072130B/zh
Priority to EP16718680.8A priority patent/EP3303535B1/fr
Publication of WO2016188693A1 publication Critical patent/WO2016188693A1/fr
Priority to ZA2017/07150A priority patent/ZA201707150B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/37Mixtures of compounds all of which are anionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/06Ether- or thioether carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols

Definitions

  • the present Invention provides and enzymatic and dispersant formulation for use in domestic laundry.
  • Laundry detergent formulations containing a high fraction of anionic surfactant relative to non-ionic surfactant are ubiquitous.
  • Metalloprotease enzymes are used in laundry detergent formulations to remove protein containing stains from fabrics.
  • WO2013/087286 discloses liquids formulations containing alkyl ether carboxylic acids, betaines, anionic surfactant, non-ionic surfactant for providing softening benefits.
  • US 5 269 960 discloses stable liquid, aqueous enzyme detergent comprising a mixture of nonionic and anionic surfactants, enzymes and a calcium ion source as an enzyme stabilizer, and an alkyl ether carboxylate as a phase stabilizer. There is a need to increase stain removal in laundry formulations containing a high fraction of anionic surfactant relative to non-ionic surfactant.
  • a surfactant other than an alkyi ether carboxylic acid dispersant, selected from: anionic and non-ionic surfactants, preferably from 6 to 30 wt%, more preferably 8 to 20 wt%; wherein the weight fraction of non-ionic surfactant anionic surfactant is from 0 to 0.3, preferably 0 to 0.15, most preferably 0.05 to 0.12; from 0.5 to 20 wt%, preferably 1 .5 to 10 wt%, most preferably 2.5 to 5 wt% of an alkyi ether carboxylic acid dispersant of the following structure:
  • R is selected from saturated and mono-unsaturated C10 to C26 linear or branched alkyi chains, preferably C12 to C24 linear or branched alkyi chains, most preferably a C16 to C20 linear alkyi chain; n is selected from 5 to 20, preferably 7 to 13, more preferably 8 to 12, most preferably 9.5 to 10.5; and,
  • the laundry detergent formulation is a non-phosphate built laundry detergent formulation, i.e., contains less than 1 wt% of phosphate.
  • powder laundry detergent formulations are predominantly carbonate built. Powders, should preferably give an in use pH of 9.5-1 1.
  • the laundry detergent is an aqueous liquid laundry detergent, preferably with a pH of from 7 to 9.
  • Metallo Protease enzymes (E.C 3.4.24) hydrolyse bonds within peptides and proteins, in the laundry context this leads to enhanced removal of protein or peptide containing stains.
  • the protease is selected from the M4, M7 or M35 family, more preferably an M4 metalloprotease, most preferably a neutral metalloprotease.
  • the metallo-proteases that may be used in this invention includes any of those which may be used in a homecare application. These metallo-proteases are, for example, derived from bacterium selected from the group consisting bacillus amyloliquefaciens, bacillus subtilis, bacillus stearothermophilus, and bacillus thermoproteolyticus, and fungi selected from the group consisting Aspergillus oryzae and Aspergillus niger.
  • M4 Metalloprotease Family or "M4 Metalloprotease” or "M4" as used herein means a polypeptide falling into the M4 metalloprotease family according to Rawlings et al., Biochem.
  • M4 metalloproteases are neutral metalloproteases containing mainly endopeptidases. All peptidases in the family bind a single, catalytic zinc ion. M4 metalloprotease family members include the common HEXXH motif, where the histidine residues serve as zinc ligands and glutamate is an active site residue. M4 metalloproteases have a pH optimum mainly at neutral pH.
  • the M4 metalloprotease family includes, e.g., NeutraseTM
  • Novozymes (Novozymes) (classified as MEROPS subclass M04.014), Thermolysin, Bacillolysin, vibriolysin, pseudolysin, Msp peptidase, coccolysin, aureolysin, vimelysin, lambda toxin neutral peptidase B, PA peptidase (Aeromonas- type), griselysin, stearolysin, Mprlll
  • pap6 peptidase (Alteromonas sp. strain 0-7), pap6 peptidase, neutral peptidase (Thermoactinomyces-type), ZmpA peptidase (Burkholderia sp.), zpx peptidase, PrtS peptidase (Photorhabdus luminescens), protealysin, ZmpB peptidase (Burkholderia sp.).
  • the TLPs consist of an alpha-helical C- terminal domain and an N-terminal domain mainly consisting of beta-strands.
  • the domains are connected by a central alpha-helix. This helix is located at the bottom of the active site cleft and contains several of the catalytically important residues such as four substrate binding pockets S2, Si , Si' and S2' have been identified (Hangauer et al. (1984)
  • M7 Metalloprotease Family or "M7 Metalloprotease” or “M7” or “snapalysin family” as used herein means a polypeptide falling into the M7 metalloprotease family according to Rawlings et al., Biochem. J., 290, 205-218 (1993) and as further described in MEROPS - (Rawlings et al., MEROPS: the peptidase database, Nucl Acids Res, 34
  • protease family M7 contains a
  • Snapalysin is active at neutral pH. The only known activity is cleavage of proteins of skimmed milk to form clear plaques around the growing bacterial colonies. The Zinc is bound by two histidines and an aspartate in an
  • M35 M etalloprotease Fami ly or "M 35 Metal loprotease” or "M 35" or
  • deuterolysin family as used herein means a polypeptide falling into the M35
  • the alkyl chain may be linear or branched, preferably it is linear.
  • the alkyl chain may be aliphatic or contain one cis-double bond.
  • Alkyl ether carboxylic acid are available from Kao (Akypo ®), Huntsman (Empicol®) and Clariant (Emulsogen ®)
  • the laundry composition comprises anionic charged surfactant (which includes a mixture of the same).
  • anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher alkyl radicals.
  • suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher Cs to Cis alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl Cg to C20 benzene sulphonates, particularly sodium linear secondary alkyl C10 to C15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
  • the anionic surfactant is preferably selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; soaps; alkyl (preferably methyl) ester sulphonates, and mixtures thereof.
  • the most preferred anionic surfactants are selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates and mixtures thereof.
  • the alkyl ether sulphate is a C12-C14 n-alkyl ether sulphate with an average of 1 to 3EO (ethoxylate) units.
  • Sodium lauryl ether sulphate is particularly preferred (SLES).
  • the linear alkyl benzene sulphonate is a sodium Cn to C15 alkyl benzene sulphonates.
  • the alkyl sulphates is a linear or branched sodium C12 to C18 alkyl sulphates.
  • Sodium dodecyl sulphate is particularly preferred, (SDS, also known as primary alkyl sulphate).
  • the level of anionic surfactant in the laundry composition is preferably from (i) 5 to 50 wt% negatively charged surfactant, preferably the level of negatively charged surfactant is from 6 to 30 wt%, more preferably 8 to 20 wt%.
  • two or more anionic surfactant are present, preferably linear alkyl benzene sulphonate together with an alkyl ether sulphate.
  • Non-ionic surfactant may be present in the surfactant mix.
  • Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide.
  • Preferred nonionic detergent compounds are the condensation products of aliphatic Cs to C18 primary or secondary linear or branched alcohols with ethylene oxide.
  • the alkyl ethoxylated non-ionic surfactant is a Cs to C18 primary alcohol with an average ethoxylation of 7EO to 9EO units.
  • Examples of calcium sequestrant builder materials include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.
  • Examples of precipitating builder materials include sodium orthophosphate and sodium carbonate.
  • Examples of calcium ion-exchange builder materials include the various types of water- insoluble crystalline or amorphous aluminosilicates, of which zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070.
  • zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070.
  • composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or
  • alkenylsuccinic acid nitrilotriacetic acid or the other builders mentioned below.
  • Many builders are also bleach-stabilising agents by virtue of their ability to complex metal ions.
  • Zeolite and carbonate are preferred builders for powder detergents.
  • the composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15%w.
  • Aluminosilicates are materials having the general formula: 0.8-1 .5 M 2 0. AI2O3. 0.8-6 Si02 where M is a monovalent cation, preferably sodium. These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g.
  • the preferred sodium aluminosilicates contain 1.5-3.5 S1O2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature.
  • the ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1 .
  • phosphate builders may be used.
  • 'phosphate' embraces diphosphate, triphosphate, and phosphonate species.
  • Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
  • the laundry detergent formulation is a non-phosphate built laundry detergent formulation, i.e., contains less than 1 wt% of phosphate.
  • the powder laundry detergent formulation is carbonate built.
  • the composition preferably comprises a fluorescent agent (optical brightener).
  • fluorescent agents are well known and many such fluorescent agents are available commercially.
  • Preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1 ,2-d]triazole, disodium 4,4'- bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1 ,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1 ,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, and disodium 4,4'-bis(2-sulfostyryl)biphenyl.
  • the aqueous solution used in the method has a fluorescer present.
  • a fluorescer is present in the aqueous solution used in the method it is preferably in the range from 0.0001 g/l to 0.1 g/l, preferably 0.001 to 0.02 g/l.
  • the composition comprises a perfume.
  • the perfume is preferably in the range from 0.001 to 3 wt %, most preferably 0.1 to 1 wt %.
  • CTFA Cosmetic, Toiletry and Fragrance Association
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
  • Perfume and top note may be used to cue the whiteness benefit of the invention.
  • the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
  • a peroxygen bleach e.g., sodium percarbonate, sodium perborate, and peracid.
  • composition may comprise one or more further polymers. Examples are:
  • carboxymethylcellulose poly (ethylene glycol), polyvinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • Polymers present to prevent dye deposition for example poly(vinylpyrrolidone), poly(vinylpyridine-N-oxide), and poly(vinylimidazole), are preferably absent from the formulation.
  • One or more further enzymes are preferred present in a laundry composition of the invention and when practicing a method of the invention.
  • the level of each enzyme in the laundry composition of the invention is from 0.0001 wt% to 0.1 wt% protein.
  • Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708.
  • a polyol such as propylene glycol or glycerol
  • a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
  • Shading Dyes are preferably present in the formulation at a level from 0.002 to 0.2 wt%.
  • the shading dye is present is present in the composition in range from 0.0001 to
  • Preferred reactive anthraquinone dyes are: Reactive blue 1 ; Reactive blue 2; Reactive blue 4; Reactive blue 5; Reactive blue 6; Reactive blue 12; Reactive blue 16; reactive blue 19;

Abstract

La présente invention concerne une formulation enzymatique et dispersante, destinée à être utilisée pour la lessive domestique.
PCT/EP2016/059296 2015-05-27 2016-04-26 Composition détergente à lessive WO2016188693A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112017024403-9A BR112017024403B1 (pt) 2015-05-27 2016-04-26 Composição de detergente para lavagem de roupas e método doméstico de tratamento de um tecido
CN201680026075.4A CN109072130B (zh) 2015-05-27 2016-04-26 洗衣洗涤剂组合物
EP16718680.8A EP3303535B1 (fr) 2015-05-27 2016-04-26 Composition de détergent pour lessive
ZA2017/07150A ZA201707150B (en) 2015-05-27 2017-10-20 Laundry detergent composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15169368.6 2015-05-27
EP15169368 2015-05-27

Publications (1)

Publication Number Publication Date
WO2016188693A1 true WO2016188693A1 (fr) 2016-12-01

Family

ID=53199896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/059296 WO2016188693A1 (fr) 2015-05-27 2016-04-26 Composition détergente à lessive

Country Status (5)

Country Link
EP (1) EP3303535B1 (fr)
CN (1) CN109072130B (fr)
BR (1) BR112017024403B1 (fr)
WO (1) WO2016188693A1 (fr)
ZA (1) ZA201707150B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018108382A1 (fr) * 2016-12-15 2018-06-21 Unilever Plc Composition détergente à lessive

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3320340A1 (de) * 1982-06-07 1983-12-15 Chem-y, Fabriek van Chemische Produkten B.V., Bodegraven Fluessiges phosphatfreies waschmittel
EP0384070A2 (fr) 1988-11-03 1990-08-29 Unilever Plc Zéolite P, son procédé de préparation et son utilisation dans les compositions détergentes
WO1992019708A1 (fr) 1991-04-30 1992-11-12 The Procter & Gamble Company Detergents liquides comprenant un ester de borate aromatique servant a inhiber l'enzyme proteolytique
WO1992019709A1 (fr) 1991-04-30 1992-11-12 The Procter & Gamble Company Detergents liquides contenant un adjuvant et un complexe polyol acide borique qui sert a inhiber l'enzyme proteolytique
US5269960A (en) 1988-09-25 1993-12-14 The Clorox Company Stable liquid aqueous enzyme detergent
WO2002036727A1 (fr) * 2000-01-14 2002-05-10 The Procter & Gamble Company Composition detergente contenant une metalloprotease et ion calcium
WO2005003274A1 (fr) 2003-06-18 2005-01-13 Unilever Plc Compositions pour le traitement du linge
WO2006027086A1 (fr) 2004-09-11 2006-03-16 Unilever Plc Compositions de traitement de linge
WO2006032327A1 (fr) 2004-09-23 2006-03-30 Unilever Plc Compositions de traitement pour la blanchisserie
WO2006032397A1 (fr) 2004-09-23 2006-03-30 Unilever Plc Compositions detergentes
WO2006045275A2 (fr) 2004-10-25 2006-05-04 Müller Weingarten AG Systeme d'entrainement d'une presse de formage
WO2008017570A1 (fr) 2006-08-10 2008-02-14 Unilever Plc Composition de coloration légère
WO2008087497A1 (fr) 2007-01-19 2008-07-24 The Procter & Gamble Company Composition de lessive munis d'un agent de blanchiment pour substrats cellulosiques
WO2008141880A1 (fr) 2007-05-18 2008-11-27 Unilever Plc Colorants à la triphénodioxazine
WO2009132870A1 (fr) 2008-05-02 2009-11-05 Unilever Plc Granulés à tachage réduit
WO2009141173A1 (fr) 2008-05-20 2009-11-26 Unilever Plc Composition de nuançage
WO2010099997A1 (fr) 2009-03-05 2010-09-10 Unilever Plc Initiateurs radicalaires colorants
WO2010102861A1 (fr) 2009-03-12 2010-09-16 Unilever Plc Formulations de polymères colorants
WO2010148624A1 (fr) 2009-06-26 2010-12-29 Unilever Plc Polymères colorants
WO2010151906A2 (fr) 2010-10-22 2010-12-29 Milliken & Company Colorants diazo utilisés comme produits d’azurage
WO2011011799A2 (fr) 2010-11-12 2011-01-27 The Procter & Gamble Company Colorants azoïques thiophéniques et compositions de lessive les contenant
WO2012054820A1 (fr) 2010-10-22 2012-04-26 The Procter & Gamble Company Composition de détergent contenant un agent azurant et un agent de blanchiment fluorescent rapidement hydrosoluble
WO2012054058A1 (fr) 2010-10-22 2012-04-26 The Procter & Gamble Company Colorants bis-azoïques destinés à être utilisés à titre d'agents de bleuissement
WO2012110564A1 (fr) * 2011-02-16 2012-08-23 Novozymes A/S Composition de détergent comprenant des métalloprotéases m7 ou m35
WO2012110563A1 (fr) * 2011-02-16 2012-08-23 Novozymes A/S Compositions détersives contenant des métalloprotéases
WO2012110562A2 (fr) * 2011-02-16 2012-08-23 Novozymes A/S Compositions détergentes comprenant des métalloprotéases
WO2013087286A1 (fr) 2011-12-12 2013-06-20 Unilever Plc Compositions pour lessiver
WO2013142495A1 (fr) 2012-03-19 2013-09-26 Milliken & Company Colorants carboxilate
WO2013151970A1 (fr) 2012-04-03 2013-10-10 The Procter & Gamble Company Composition détergente pour la lessive comprenant un composé de phtalocyanine soluble dans l'eau

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3320340A1 (de) * 1982-06-07 1983-12-15 Chem-y, Fabriek van Chemische Produkten B.V., Bodegraven Fluessiges phosphatfreies waschmittel
US5269960A (en) 1988-09-25 1993-12-14 The Clorox Company Stable liquid aqueous enzyme detergent
EP0384070A2 (fr) 1988-11-03 1990-08-29 Unilever Plc Zéolite P, son procédé de préparation et son utilisation dans les compositions détergentes
WO1992019708A1 (fr) 1991-04-30 1992-11-12 The Procter & Gamble Company Detergents liquides comprenant un ester de borate aromatique servant a inhiber l'enzyme proteolytique
WO1992019709A1 (fr) 1991-04-30 1992-11-12 The Procter & Gamble Company Detergents liquides contenant un adjuvant et un complexe polyol acide borique qui sert a inhiber l'enzyme proteolytique
WO2002036727A1 (fr) * 2000-01-14 2002-05-10 The Procter & Gamble Company Composition detergente contenant une metalloprotease et ion calcium
WO2005003274A1 (fr) 2003-06-18 2005-01-13 Unilever Plc Compositions pour le traitement du linge
WO2006027086A1 (fr) 2004-09-11 2006-03-16 Unilever Plc Compositions de traitement de linge
WO2006032327A1 (fr) 2004-09-23 2006-03-30 Unilever Plc Compositions de traitement pour la blanchisserie
WO2006032397A1 (fr) 2004-09-23 2006-03-30 Unilever Plc Compositions detergentes
WO2006045275A2 (fr) 2004-10-25 2006-05-04 Müller Weingarten AG Systeme d'entrainement d'une presse de formage
WO2008017570A1 (fr) 2006-08-10 2008-02-14 Unilever Plc Composition de coloration légère
WO2008087497A1 (fr) 2007-01-19 2008-07-24 The Procter & Gamble Company Composition de lessive munis d'un agent de blanchiment pour substrats cellulosiques
WO2008141880A1 (fr) 2007-05-18 2008-11-27 Unilever Plc Colorants à la triphénodioxazine
WO2009132870A1 (fr) 2008-05-02 2009-11-05 Unilever Plc Granulés à tachage réduit
WO2009141173A1 (fr) 2008-05-20 2009-11-26 Unilever Plc Composition de nuançage
WO2010099997A1 (fr) 2009-03-05 2010-09-10 Unilever Plc Initiateurs radicalaires colorants
WO2010102861A1 (fr) 2009-03-12 2010-09-16 Unilever Plc Formulations de polymères colorants
WO2010148624A1 (fr) 2009-06-26 2010-12-29 Unilever Plc Polymères colorants
WO2012054820A1 (fr) 2010-10-22 2012-04-26 The Procter & Gamble Company Composition de détergent contenant un agent azurant et un agent de blanchiment fluorescent rapidement hydrosoluble
WO2010151906A2 (fr) 2010-10-22 2010-12-29 Milliken & Company Colorants diazo utilisés comme produits d’azurage
WO2012054058A1 (fr) 2010-10-22 2012-04-26 The Procter & Gamble Company Colorants bis-azoïques destinés à être utilisés à titre d'agents de bleuissement
WO2011011799A2 (fr) 2010-11-12 2011-01-27 The Procter & Gamble Company Colorants azoïques thiophéniques et compositions de lessive les contenant
WO2012110564A1 (fr) * 2011-02-16 2012-08-23 Novozymes A/S Composition de détergent comprenant des métalloprotéases m7 ou m35
WO2012110563A1 (fr) * 2011-02-16 2012-08-23 Novozymes A/S Compositions détersives contenant des métalloprotéases
WO2012110562A2 (fr) * 2011-02-16 2012-08-23 Novozymes A/S Compositions détergentes comprenant des métalloprotéases
WO2013087286A1 (fr) 2011-12-12 2013-06-20 Unilever Plc Compositions pour lessiver
WO2013142495A1 (fr) 2012-03-19 2013-09-26 Milliken & Company Colorants carboxilate
WO2013151970A1 (fr) 2012-04-03 2013-10-10 The Procter & Gamble Company Composition détergente pour la lessive comprenant un composé de phtalocyanine soluble dans l'eau

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"Cell Function", 1997, IOS PRESS, pages: 13 - 21
"Chemicals Buyers Directory 80th Annual Edition", 1993, SCHNELL PUBLISHING CO.
"Industrial Dyes Chemistry, Properties Applications", 2003, WILEY-VCH
BARRET ET AL.: "Handbook of proteolytic enzymes", 1998, ACADEMIC PRESS, pages: 350 - 369
CHRISTENSEN ET AL: "Proteolytic Enzymes in Nonbuilt, Liquid Detergents", JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY (JAOCS), SPRINGER, DE, vol. 55, 1 January 1978 (1978-01-01), pages 109 - 113, XP009187104, ISSN: 0003-021X *
H ZOLLINGER: "Color Chemistry Synthesis, Properties and Applications of Organic Dyes and Pigments", 2003, WILEY VCH
HANGAUER ET AL., BIOCHEMISTRY, vol. 23, 1984, pages 5730 - 5741
POUCHER, JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS, vol. 6, no. 2, 1955, pages 80
RAWLINGS ET AL., BIOCHEM. J., vol. 290, 1993, pages 205 - 218
RAWLINGS ET AL.: "MEROPS: the peptidase database", NUCL ACIDS RES, vol. 34, 2006, pages 270 - 272
VELTMAN ET AL., BIOCHEMISTRY, vol. 37, no. 15, 1998, pages 5312 - 9

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018108382A1 (fr) * 2016-12-15 2018-06-21 Unilever Plc Composition détergente à lessive

Also Published As

Publication number Publication date
BR112017024403B1 (pt) 2022-03-08
EP3303535B1 (fr) 2018-10-03
CN109072130A (zh) 2018-12-21
EP3303535A1 (fr) 2018-04-11
BR112017024403A2 (pt) 2018-07-24
ZA201707150B (en) 2019-02-27
CN109072130B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
CN107592883B (zh) 洗衣洗涤剂组合物
EP3356505B1 (fr) Composition détergente à lessive
EP3356503B1 (fr) Composition detergente liquide à lessive
CN109072131A (zh) 洗衣洗涤剂组合物
EP3303535B1 (fr) Composition de détergent pour lessive
EP3519542B1 (fr) Procédé de lavage du linge domestique
CN109844083A (zh) 增白组合物
EP3303537B1 (fr) Composition de détergent pour lessive
EP3256557B1 (fr) Composition de lessive liquide
EP3303536B1 (fr) Composition de détergent pour lessive
CN108603140A (zh) 增白组合物
CN110023469A (zh) 洗衣洗涤剂组合物
CN108603139A (zh) 增白组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16718680

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017024403

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017024403

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171113