WO2017006548A1 - Communication system, base station, and communication control method and device - Google Patents

Communication system, base station, and communication control method and device Download PDF

Info

Publication number
WO2017006548A1
WO2017006548A1 PCT/JP2016/003155 JP2016003155W WO2017006548A1 WO 2017006548 A1 WO2017006548 A1 WO 2017006548A1 JP 2016003155 W JP2016003155 W JP 2016003155W WO 2017006548 A1 WO2017006548 A1 WO 2017006548A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
communication
communication terminal
base station
congestion state
Prior art date
Application number
PCT/JP2016/003155
Other languages
French (fr)
Japanese (ja)
Inventor
誠 藤波
暢彦 伊藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2017006548A1 publication Critical patent/WO2017006548A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/088Load balancing or load distribution among core entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/142Reselecting a network or an air interface over the same radio air interface technology

Definitions

  • the present invention relates to a communication system, and more particularly to a network congestion management technique.
  • Non-patent Document 1 Non-patent Document 1
  • RCAF RAN Congestion Awareness Function
  • RCI RAN user plane Congestion Information
  • QoE Quality of Experience
  • an object of the present invention is to provide a communication system, a base station, a communication control method and an apparatus capable of reducing or avoiding congestion of a radio access network without reducing a user's QoE.
  • a first network capable of accommodating a communication terminal detects a congestion state of a radio access network, and the first network establishes a wireless connection of at least one communication terminal according to the congestion state.
  • the first network and at least the radio access network are switched to a second network that is physically independent.
  • a first network capable of accommodating communication terminals detects a congestion state of a radio access network, and the first network establishes a wireless connection of at least one communication terminal according to the congestion state.
  • the first network and at least the radio access network are switched to a second network that is physically independent.
  • the base station according to the present invention is a base station in a network capable of accommodating communication terminals, and includes congestion detection means for detecting a congestion state of a radio access network of the network, and at least one communication terminal according to the congestion state. Control means for switching the wireless connection to at least another network in which the wireless access network is physically independent.
  • the communication control device according to the present invention comprises a congestion recognition means for recognizing a congestion state of a radio access network in a first network capable of accommodating a communication terminal, and a wireless connection of at least one communication terminal according to the congestion state, Control means for switching to a second network in which the first network and at least the radio access network are physically independent.
  • congestion of the radio access network can be reduced or avoided without reducing the user's QoE.
  • FIG. 1 is a system configuration diagram showing a schematic functional configuration of a communication system according to a first embodiment of the present invention.
  • FIG. 2 is a system configuration diagram showing a schematic functional configuration of a communication system according to the second embodiment of the present invention.
  • FIG. 3 is a block diagram showing in more detail the configuration of the base station function in the radio access network of the communication system according to the second embodiment.
  • FIG. 4 is a sequence diagram showing a communication control operation of the communication system according to the second embodiment.
  • FIG. 5 is a system configuration diagram showing a schematic functional configuration of a communication system according to the third embodiment of the present invention.
  • FIG. 6 is a block diagram showing in more detail the configuration of the core network function of the communication system according to the third embodiment.
  • FIG. 1 is a system configuration diagram showing a schematic functional configuration of a communication system according to a first embodiment of the present invention.
  • FIG. 2 is a system configuration diagram showing a schematic functional configuration of a communication system according to the second embodiment of the present invention.
  • FIG. 7 is a sequence diagram showing a communication control operation of the communication system according to the third embodiment.
  • FIG. 8 is a system configuration diagram showing a schematic functional configuration of a communication system according to the fourth embodiment of the present invention.
  • FIG. 9 is a sequence diagram showing a communication control operation of the communication system according to the fourth embodiment.
  • FIG. 10 is a system configuration diagram showing a schematic functional configuration of a communication system according to the fifth embodiment of the present invention.
  • FIG. 11 is a sequence diagram showing a communication control operation of the communication system according to the fifth embodiment.
  • the traffic of one or more terminals connected to or trying to connect to the radio access network is offloaded to another network according to the congestion level in the radio access network. For example, when congestion occurs in a radio access network, congestion of the radio access network can be reduced or avoided by offloading at least a part of user traffic related to the congestion to another network. Furthermore, since the offloaded traffic is maintained through other networks, it is possible to avoid a decrease in the QoE of the user.
  • embodiments of the present invention will be described in detail with reference to the drawings.
  • a communication system is a first network 10 and a second network 20 having at least a radio access function physically independent, and an external packet network.
  • RAN radio access network
  • EPC Evolved Packet Core
  • the first network 10 is a non-virtual network
  • the second network 20 is a virtual network that can realize addition or deletion of network functions as necessary.
  • the first network has a function of detecting the presence or absence of RAN congestion or the RAN congestion level.
  • the second network 20 has a wireless access function that allows at least the communication terminal 40 to be wirelessly connected, and the wireless access function is physically independent of the RAN function of the first network 10.
  • the wireless access function of the second network 20 does not have to be the same access method as the RAN of the first network, but if the access method is different, the communication terminal 40 is provided with wireless communication means corresponding to both access methods. Need to be.
  • the second network 20 has the same wireless access function and Internet connection function as the RAN of the first network 10, and the communication terminal 40 can be connected to the Internet 30 through the second network.
  • the first network 10 and the second network 20 are exemplified as a plurality of physically independent networks. However, three or more networks may be used.
  • the communication terminal 40 is a mobile radio station such as a mobile phone, a user equipment (UE: User Equipment), and the like, and has radio communication means that can be connected to both the networks 10 and 20.
  • UE User Equipment
  • the communication terminal 40 has radio communication means that can be connected to both the networks 10 and 20.
  • a case where a plurality of communication terminals 40 are connected to the first network and congestion occurs in the RAN of the first network 10 will be described.
  • a part of the plurality of communication terminals 40 is connected with the EPC with or without the EPC.
  • 2 Handover to the network 20 or switching (operation S2). More specifically, the number of communication terminals according to the level of congestion, a predetermined number of communication terminals, or a communication terminal performing low-priority communication is handed over to the second network or connected to the first network 10. By switching the request to the second network 20, RAN congestion of the first network 10 is reduced.
  • congestion is reduced by offloading user traffic to another network instead of narrowing down user traffic on the core network side. A decrease can be avoided.
  • Second Embodiment when a base station of a non-virtual network detects congestion, a virtual network is provided to at least a part of a plurality of currently connected communication terminals according to the congestion level. Local handover (X2 handover) to the base station. Thereby, congestion of the radio access network in the non-virtual network can be reduced or avoided.
  • X2 handover Local handover
  • the base station of the virtual network has a C-RAN architecture.
  • a baseband processing unit BBU: BaseBand Unit
  • RRH Remote Radio Head
  • a fronthaul such as an optical fiber.
  • BBUs can be installed together in a center unit and implemented as a virtual BBU (vBBU: virtualized : BBU) using a general-purpose server.
  • vBBU virtualized : BBU
  • RRH and vBBU can be dynamically allocated according to the congestion level detected by the base station. For example, consumption is achieved by stopping unused RRH and vBBU. It is possible to reduce electric power and improve the operation rate.
  • the communication system includes a non-virtual network 10 as a first network and a virtualized network 20a as a second network.
  • the non-virtual network 10 is as described in the first embodiment.
  • the virtual network 20 a includes a vBBU pool 21 a composed of a plurality of vBBUs configured on a server, and the vBBU pool 21 a is connected to the EPC 12 through the backhaul of the non-virtual network 10.
  • the virtual network 20a may also be provided with a virtual core network vEPC similar to the EPC 12 of the non-virtualized network 10.
  • the base station on the virtual network side has a C-RAN architecture, and a vBBU pool 21a and a plurality of RRHs 22 are connected by a front hole 23.
  • the front hole 23 is, for example, a CPRI (Common Public Radio Interface) or ORI (Open Radio Equipment Interface) network.
  • CPRI Common Public Radio Interface
  • ORI Open Radio Equipment Interface
  • the number of vBBUs and RRHs to be used can be increased / decreased according to traffic conditions, so that power consumption can be reduced and the operating rate of the apparatus can be improved.
  • the base station 11 of the non-virtual network 10 detects the occurrence of congestion, the base station 11 performs handover to at least a part of the currently connected communication terminals 40 to the RRH 22 according to the congestion level. To control.
  • the communication terminal 40 handed over to the RRH side maintains communication with the Internet 30 through the vBBU of the vBBU pool 21a and the EPC 12 of the non-virtual network 10.
  • the configurations of the base station 11 and the virtual baseband processing unit vBBU of the non-virtual network 10 will be described in more detail.
  • the base station 11 includes a wireless communication unit 101 for wireless communication with a plurality of communication terminals 40 and a congestion detection unit 102 for detecting the congestion status of the wireless access network.
  • the base station 11 also includes a handover control unit 103, a backhaul communication unit 104, an interface 105 for communicating with other base stations, and a control unit 106 that controls the overall operation of the base station.
  • Base station operations such as wireless connection to the terminal, terminal control during handover, communication with the EPC 12, and the like.
  • the vBBU pool 21a is installed by aggregating and mounting a plurality of vBBUs on a virtual machine on the server, and realizes a base station function by the RRH 22 connected by the front hole 23 and the vBBU connected thereto.
  • Each RRH 22 includes an antenna and a radio (RF: Radio Frequency) unit for wireless communication with a communication terminal in the cell.
  • RF Radio Frequency
  • Each vBBU is mounted on the virtual machine of the server, and communicates with the fronthaul communication unit 201 for communicating with each RRH 22, the handover control unit 202, the backhaul communication unit 203 for communicating with the EPC 12, and other base stations.
  • at least one communication terminal 40 that is located in the overlapping region of the cells mC1 and sC1 and is performing radio communication with the cell mC1 performs handover from the cell mC1 to the predetermined cell sC1 triggered by the congestion detection of the base station 11 Will be explained.
  • the communication terminal 40 establishes a connection with the Internet 30 through the base station 11 and the non-virtual network 10 and performs communication (operation S301).
  • the congestion detection unit 102 of the base station 11 detects congestion in the radio access network or determines that there is a high possibility of congestion (operation S302)
  • the control unit 106 performs handover according to the congestion level.
  • the handover control unit 103 selects at least one communication terminal 40 as a handover target according to the congestion level and selects the handover destination cell sC1.
  • the handover control unit 103 transmits a handover request message to the vBBU pool 21a through the interface 105 (operation S303).
  • the handover control unit 202 of the vBBU determines whether or not the handover of the communication terminal 40 can be accepted (operation S304), and can be performed. If so, a handover request response is returned to the base station 11 (operation S305).
  • the handover control unit 103 of the base station 11 transmits a handover instruction to the communication terminal 40 through the wireless communication unit 101 (operation S306).
  • the communication terminal 40 transmits a handover instruction response to the handover destination RRH and vBBU (operation S307).
  • the handover control unit 202 of the vBBU transmits a path switching request to the EPC 12 (Operation S308).
  • the path to the communication terminal 40 is switched from the base station 11 side to the vBBU side in the EPC 12
  • a response to the path switching request is received from the EPC 12 (Operation S309).
  • the connection between the communication terminal 40 and the Internet 30 is established through the vBBU and the EPC 12, and the communication of the communication terminal 40 is continued (operation S310).
  • the second embodiment of the present invention when occurrence of congestion is detected in the RAN of the non-virtual network, a part of traffic of a plurality of currently connected communication terminals is transferred to the base station of the virtual network. By being offloaded locally, RAN congestion of the non-virtual network can be reduced or avoided. Further, as described above, since the base station of the virtual network has the C-RAN architecture using vBBU, it becomes possible to dynamically allocate RRH and vBBU according to the congestion level of RAN of the non-virtual network, Also, even in a C-RAN architecture using a normal BBU, the number of RRHs can be increased / decreased, so that power consumption can be reduced and the operating rate can be improved.
  • Third Embodiment when congestion is detected in a RAN of a non-virtual network, at least a part of a plurality of currently connected communication terminals is transferred to a base station of a virtual network.
  • the path between the communication terminal and the Internet is switched from the non-virtual network to the virtual network. This reduces RAN congestion in the non-virtual network and also reduces the load on the core network in the non-virtual network.
  • the base station of the virtual network has a C-RAN architecture.
  • the communication system includes a non-virtual network 10 as a first network and a virtualized network 20b as a second network.
  • the non-virtual network 10 includes a base station 11 and The EPC 12 has a mobile backhaul (MBH) that connects them, and the EPC 12 includes a serving gateway (SGW) 1201, a packet data network gateway (PGW) 1202, a mobility management entity (MME) Management Entity) 1203, and RAN Congestion Awareness Function (RCAF) 1204.
  • SGW serving gateway
  • PGW packet data network gateway
  • MME mobility management entity
  • RCF RAN Congestion Awareness Function
  • the virtual network 20b includes a vBBU pool 21b composed of a plurality of vBBUs configured on a server, a vEPC 12b that is a virtual core network, and a mobile backhaul (MBH) that connects them.
  • VEPC 12b includes a virtual serving gateway (vSGW) 1201b, a virtual packet data network gateway (vPGW) 1202b, and a virtual mobility management device (vMME) 1203b.
  • the vEPC 12b and each vBBU are mounted on a server virtual machine.
  • the base station on the virtual network side has a C-RAN architecture as in the second embodiment, and a vBBU pool 21b and a plurality of RRHs 22 are connected by a front hole 23. It is assumed that the cell configuration is the same.
  • the MME 1203 in the EPC 12 on the non-virtual network side has a relocation control function and a target MME selection function in accordance with the congestion level, as will be described later, in addition to a normal mobility management function.
  • the base station 11 of the non-virtual network 10 detects the occurrence of congestion, the base station 11 notifies the MME 1203 of congestion information through the RCAF 1204 of the EPC 12.
  • the MME 1203 selects a target MME in the virtual network 20b and transmits an MME relocation request to the vEPC 12b.
  • At least a part of the communication terminals 40 connected to the base station 11 is handed over to the RRH 22 and vBBU by the X2 handover similar to the second embodiment or the S1 handover led by the MME 1203, and the communication with the Internet 30 is maintained through the vEPC 12b.
  • At least one communication terminal 40 that is located in the overlapping region of the cells mC1 and sC1 and is performing wireless communication with the cell mC1 is triggered by the congestion detection of the base station 11. A case where a handover is performed from the cell mC1 to the predetermined cell sC1 will be described.
  • the MME 1203 Upon receiving the congestion notification, the MME 1203 selects a target MME in the virtual network 20b (operation S404), transmits an MME relocation request to the virtual network 20b (operation S405), and at least one of the relocation procedure and handover target.
  • the X2 / S1 handover procedure for the two communication terminals 40 is started (operation S406).
  • a connection between the communication terminal 40 and the Internet 30 is established through the vBBU and vEPC 12b, and the communication of the communication terminal 40 continues (operation S407).
  • the third embodiment of the present invention when congestion occurrence is detected in the RAN of the non-virtual network, a part of traffic of a plurality of currently connected communication terminals is offloaded to the virtual network. This reduces RAN congestion and EPC load in the non-virtual network. Further, since the base station of the virtual network has the C-RAN architecture, RRH and vBBU can be dynamically allocated according to the RAN congestion level of the non-virtual network.
  • the core network of the non-virtual network takes the lead, and at least a part of a plurality of currently connected communication terminals Instructs the user to detach from the non-virtual network and attach to the virtual network.
  • RAN congestion of the non-virtual network can be reduced, and the load on the core network in the non-virtual network can also be reduced.
  • the base station of the virtual network has a C-RAN architecture.
  • the basic configuration of the communication system according to the fourth embodiment of the present invention is the same as that of the third embodiment, so the same reference numerals are given and the description thereof is omitted.
  • the communication control operation according to the present embodiment is different in that the communication terminal detach and retouch operations are used instead of the handover of the third embodiment. More specifically, when receiving the congestion notification, the MME 1203 of the EPC 12 in the non-virtual network 10 has a function of transmitting a detach request to at least some communication terminals and instructing retouch to the virtual network 20b.
  • the MME 1203 of the EPC 12 in the non-virtual network 10 has a function of transmitting a detach request to at least some communication terminals and instructing retouch to the virtual network 20b.
  • At least one communication terminal 40 that is located in the overlapping region of the cells mC1 and sC1 and is performing wireless communication with the cell mC1 is triggered by the congestion detection of the base station 11. A case of retouching from the cell mC1 to the predetermined cell sC1 will be described.
  • the MME 1203 Upon receiving the congestion notification, the MME 1203 designates a retouch destination (network ID or the like) for at least some communication terminals 40 corresponding to the congestion level among the connected communication terminals (operation S504), and each communication terminal 40 A detach request including retouch destination information is transmitted to (operation S505). As a result, the connection in the non-virtual network 12 between the communication terminal 40 that has received the detach request and the Internet 30 is released (operation S506).
  • a retouch destination network ID or the like
  • the communication terminal 40 that has received the detach request transmits an attach request to the designated retouch destination virtual network 20b (operation S507). Accordingly, a connection is established in the virtual network 20b, and communication can be resumed between the communication terminal 40 and the Internet 30 (operation S508).
  • the EPC when congestion occurrence is detected in the RAN of the non-virtual network, the EPC takes the initiative to offload some traffic of a plurality of currently connected communication terminals to the virtual network. RAN congestion and EPC load in a non-virtual network can be reduced. Further, since the base station of the virtual network has the C-RAN architecture, RRH and vBBU can be dynamically allocated according to the RAN congestion level of the non-virtual network.
  • the EPC 12 instructs the communication terminal 40 to switch the attachment destination while the communication terminal 40 is executing the attachment procedure to the non-virtual network 10. More specifically, when receiving the congestion notification, the MME 1203 of the EPC 12 in the non-virtual network 10 has a function of instructing the communication terminal that has transmitted the attach request to switch the attachment destination to the virtual network 20b. In response to the attach destination switching instruction, the communication terminal 40 switches the transmission destination of the attach request to the virtual network 20b.
  • communication control according to the present embodiment will be described with reference to FIG.
  • the communication terminal 40 transmits an attach request to the MME 1203 through the base station 11 (Operation S601), and the attach procedure is started (Operation S602).
  • the congestion detection unit 102 of the base station 11 detects congestion in the radio access network or determines that there is a high possibility of congestion when the attach procedure is being executed (operation S603)
  • the control unit 106 The congestion information is notified to the MME 1203 through the RCAF 1204 (Operation S604).
  • the MME 1203 Upon receiving the congestion notification, the MME 1203 transmits a switching instruction message including the network ID of the attachment destination to at least a part of the communication terminals 40 that are executing the attach request procedure (Operation S605).
  • the communication terminal 40 that has received the attach destination switching instruction transmits an attach request to the virtual network 20b instructed as the switching destination (operation S606).
  • the vMME of the virtual network 20b establishes a connection between the communication terminal 40 and the Internet 30 through the vSGW and vPGW of the virtual network 20b (Operation S607), and the communication terminal 40 passes through the virtual network 20b. Communication with the Internet 30 is started.
  • the fourth embodiment of the present invention when congestion occurs in the RAN of the non-virtual network, by instructing at least a part of the communication terminals that are performing the attach procedure to switch the attach destination to the virtual network. , An increase in the load on the RAN and the core network can be avoided. Further, since the base station of the virtual network has the C-RAN architecture, RRH and vBBU can be dynamically allocated according to the RAN congestion level of the non-virtual network.
  • the first network that can accommodate the communication terminal detects the congestion state of the radio access network, The first network switches the wireless connection of at least one communication terminal to a second network in which the first network and at least the radio access network are physically independent according to the congestion state; Communications system.
  • Appendix 2 The communication system according to appendix 1, wherein the first network is a non-virtual network and the second network is a virtual network.
  • the first network In response to the attach request from the at least one communication terminal, the first network transmits the attach destination switching instruction in which the attach destination is the second network in response to the congestion state, so that the at least one communication
  • the first network that can accommodate the communication terminal detects the congestion state of the radio access network, The first network switches the wireless connection of at least one communication terminal to a second network in which the first network and at least the radio access network are physically independent according to the congestion state; Communication control method.
  • (Appendix 12) A base station in a network capable of accommodating communication terminals, Congestion detection means for detecting a congestion state of the wireless access network of the network; Control means for switching a wireless connection of at least one communication terminal to another network at least a radio access network is physically independent according to the congestion state; Base station with (Appendix 13) 13. The base station according to appendix 12, wherein the control means switches the wireless connection of the at least one communication terminal by handover to the base station of the other network according to the congestion state. (Appendix 14) 14. The base station according to appendix 12 or 13, wherein the control means switches the wireless connection of the at least one communication terminal by a handover involving only the base station according to the congestion state.
  • a congestion recognition means for recognizing a congestion state of the radio access network in the first network capable of accommodating communication terminals; Control means for switching the wireless connection of at least one communication terminal to a second network in which the first network and at least the wireless access network are physically independent according to the congestion state; A communication control device.
  • Control device. (Appendix 17) The communication control device according to appendix 15 or 16, wherein the traffic of the at least one communication terminal is offloaded to a path including a base station of the second network and a core network of the first network.
  • the first network In response to the attach request from the at least one communication terminal, the first network transmits the attach destination switching instruction in which the attach destination is the second network in response to the congestion state, so that the at least one communication
  • the communication control device according to attachment 15, wherein the wireless connection of the terminal is switched.
  • Appendix 22 A program for causing a computer to function as a base station in a network capable of accommodating communication terminals, A congestion detection function for detecting a congestion state of the wireless access network of the network; A control function for switching a wireless connection of at least one communication terminal to another network at least a radio access network is physically independent according to the congestion state; A program for realizing the above on the computer.
  • Appendix 23 A program for causing a computer to function as a communication control device, A congestion recognition function for recognizing the congestion state of the radio access network in the first network capable of accommodating communication terminals; A control function for switching the wireless connection of at least one communication terminal to a second network in which the first network and at least the radio access network are physically independent according to the congestion state; A program for realizing the above on the computer.
  • the present invention is generally applicable to mobile communication systems.
  • First network non-virtual network
  • Base station EPC 12b vEPC
  • Second network 20a, 20b Virtual network 21a, 21b vBBU pool 22 RRH 23 Front hall

Abstract

[Problem] To provide a communication system, a base station, and a communication control method and device with which it is possible to reduce or avoid the congestion of a wireless access network without lowering the quality of experience (QoE) of a user. [Solution] The communication system detects the congestion state of the radio access network (RAN) of a first network (10) capable of accommodating a communication terminal, and the first network (10) switches, in accordance with the congestion state, the radio connection of at least one communication terminal (40) to a second network (20) at least the radio access network of which is physically independent from the first network (10).

Description

通信システム、基地局、通信制御方法および装置COMMUNICATION SYSTEM, BASE STATION, COMMUNICATION CONTROL METHOD AND DEVICE
 本発明は通信システムに係り、特にネットワークの輻輳管理技術に関する。 The present invention relates to a communication system, and more particularly to a network congestion management technique.
 近年、スマートフォンの普及に伴いトラフィックが急増しており、このために無線アクセスネットワーク(RAN:Radio Access Network)で輻輳が発生し易くなっている。RANユーザプレーンの輻輳はパケットの損失あるいは遅延を生じさせ、ユーザの体感通信品質を劣化させる。そこで、3GPP(3rd Generation Partnership Project)では、輻輳を検出し軽減するための管理システムとして、UPCON(User Plane CONgestion management)の検討が進められている(非特許文献1)。 In recent years, traffic has increased rapidly with the spread of smartphones. For this reason, congestion is likely to occur in a radio access network (RAN). The congestion of the RAN user plane causes packet loss or delay, and degrades the user's quality of experience communication. Therefore, in 3GPP (3rd Generation Partnership Project), studies on UPCON (User Plane CONgestion management) are being promoted as a management system for detecting and reducing congestion (Non-patent Document 1).
 UPCONでは、コアネットワークにRCAF(RAN Congestion Awareness Function)を新たに定義し、RAN側から輻輳レポート(RCI:RAN user plane Congestion Information)を収集して輻輳を検出する。コアネットワーク側は、RANの輻輳に応じて帯域制御、優先制御等を実行することでトラフィックを絞り、輻輳を軽減することができる。 In UPCON, RCAF (RAN Congestion Awareness Function) is newly defined in the core network, and a congestion report (RCI: RAN user plane Congestion Information) is collected from the RAN side to detect congestion. The core network side can narrow down traffic and reduce congestion by executing bandwidth control, priority control, etc. according to RAN congestion.
 しかしながら、コアネットワーク側でトラフィック規制を行うと、RANの輻輳を回避できたとしても、規制対象となったユーザ側では通信の体感品質(QoE:Quality of Experience)が低下する可能性がある。 However, if traffic regulation is performed on the core network side, even if RAN congestion can be avoided, the quality of communication (QoE: Quality of Experience) may be reduced on the regulated user side.
 そこで、本発明の目的は、ユーザのQoEを低下させることなく無線アクセスネットワークの輻輳を軽減あるいは回避することができる通信システム、基地局、通信制御方法および装置を提供することにある。 Therefore, an object of the present invention is to provide a communication system, a base station, a communication control method and an apparatus capable of reducing or avoiding congestion of a radio access network without reducing a user's QoE.
 本発明による通信システムは、通信端末を収容可能な第一ネットワークが無線アクセスネットワークの輻輳状態を検出し、前記第一ネットワークが、前記輻輳状態に応じて、少なくとも一つの通信端末の無線接続を、前記第一ネットワークと少なくとも無線アクセスネットワークが物理的に独立した第二ネットワークへ切り替える、ことを特徴とする。
 本発明による通信制御方法は、通信端末を収容可能な第一ネットワークが無線アクセスネットワークの輻輳状態を検出し、前記第一ネットワークが、前記輻輳状態に応じて、少なくとも一つの通信端末の無線接続を、前記第一ネットワークと少なくとも無線アクセスネットワークが物理的に独立した第二ネットワークへ切り替える、ことを特徴とする。
 本発明による基地局は、通信端末を収容可能なネットワークにおける基地局であって、前記ネットワークの無線アクセスネットワークの輻輳状態を検出する輻輳検出手段と、前記輻輳状態に応じて、少なくとも一つの通信端末の無線接続を、少なくとも無線アクセスネットワークが物理的に独立した他のネットワークへ切り替える制御手段と、を有することを特徴とする。
 本発明による通信制御装置は、通信端末を収容可能な第一ネットワークにおける無線アクセスネットワークの輻輳状態を認識する輻輳認識手段と、前記輻輳状態に応じて、少なくとも一つの通信端末の無線接続を、前記第一ネットワークと少なくとも無線アクセスネットワークが物理的に独立した第二ネットワークへ切り替える制御手段と、ことを特徴とする。
In the communication system according to the present invention, a first network capable of accommodating a communication terminal detects a congestion state of a radio access network, and the first network establishes a wireless connection of at least one communication terminal according to the congestion state. The first network and at least the radio access network are switched to a second network that is physically independent.
In the communication control method according to the present invention, a first network capable of accommodating communication terminals detects a congestion state of a radio access network, and the first network establishes a wireless connection of at least one communication terminal according to the congestion state. The first network and at least the radio access network are switched to a second network that is physically independent.
The base station according to the present invention is a base station in a network capable of accommodating communication terminals, and includes congestion detection means for detecting a congestion state of a radio access network of the network, and at least one communication terminal according to the congestion state. Control means for switching the wireless connection to at least another network in which the wireless access network is physically independent.
The communication control device according to the present invention comprises a congestion recognition means for recognizing a congestion state of a radio access network in a first network capable of accommodating a communication terminal, and a wireless connection of at least one communication terminal according to the congestion state, Control means for switching to a second network in which the first network and at least the radio access network are physically independent.
 本発明によれば、ユーザのQoEを低下させることなく無線アクセスネットワークの輻輳を軽減あるいは回避することができる。 According to the present invention, congestion of the radio access network can be reduced or avoided without reducing the user's QoE.
図1は本発明の第1実施形態による通信システムの概略的機能構成を示すシステム構成図である。FIG. 1 is a system configuration diagram showing a schematic functional configuration of a communication system according to a first embodiment of the present invention. 図2は本発明の第2実施形態による通信システムの概略的機能構成を示すシステム構成図である。FIG. 2 is a system configuration diagram showing a schematic functional configuration of a communication system according to the second embodiment of the present invention. 図3は第2実施形態による通信システムの無線アクセスネットワークにおける基地局機能の構成をより詳細に示すブロック図である。FIG. 3 is a block diagram showing in more detail the configuration of the base station function in the radio access network of the communication system according to the second embodiment. 図4は第2実施形態による通信システムの通信制御動作を示すシーケンス図である。FIG. 4 is a sequence diagram showing a communication control operation of the communication system according to the second embodiment. 図5は本発明の第3実施形態による通信システムの概略的機能構成を示すシステム構成図である。FIG. 5 is a system configuration diagram showing a schematic functional configuration of a communication system according to the third embodiment of the present invention. 図6は第3実施形態による通信システムのコアネットワーク機能の構成をより詳細に示すブロック図である。FIG. 6 is a block diagram showing in more detail the configuration of the core network function of the communication system according to the third embodiment. 図7は第3実施形態による通信システムの通信制御動作を示すシーケンス図である。FIG. 7 is a sequence diagram showing a communication control operation of the communication system according to the third embodiment. 図8は本発明の第4実施形態による通信システムの概略的機能構成を示すシステム構成図である。FIG. 8 is a system configuration diagram showing a schematic functional configuration of a communication system according to the fourth embodiment of the present invention. 図9は第4実施形態による通信システムの通信制御動作を示すシーケンス図である。FIG. 9 is a sequence diagram showing a communication control operation of the communication system according to the fourth embodiment. 図10は本発明の第5実施形態による通信システムの概略的機能構成を示すシステム構成図である。FIG. 10 is a system configuration diagram showing a schematic functional configuration of a communication system according to the fifth embodiment of the present invention. 図11は第5実施形態による通信システムの通信制御動作を示すシーケンス図である。FIG. 11 is a sequence diagram showing a communication control operation of the communication system according to the fifth embodiment.
 <実施形態の概要>
 本発明の実施形態によれば、無線アクセスネットワークでの輻輳レベルに応じて、当該無線アクセスネットワークに接続した、あるいは接続しようとする一つ以上の端末のトラフィックを他のネットワークへオフロードする。たとえば、無線アクセスネットワークで輻輳が発生すると、当該輻輳に関係するユーザトラフィックの少なくとも一部を他のネットワークへオフロードすることにより、無線アクセスネットワークの輻輳を軽減あるいは回避することができる。さらに、オフロードされたトラフィックは他のネットワークを通して維持されるので、当該ユーザのQoEの低下を回避することもできる。以下、本発明の実施形態について図面を参照しながら詳細に説明する。
<Outline of Embodiment>
According to the embodiment of the present invention, the traffic of one or more terminals connected to or trying to connect to the radio access network is offloaded to another network according to the congestion level in the radio access network. For example, when congestion occurs in a radio access network, congestion of the radio access network can be reduced or avoided by offloading at least a part of user traffic related to the congestion to another network. Furthermore, since the offloaded traffic is maintained through other networks, it is possible to avoid a decrease in the QoE of the user. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 1.第1実施形態
 図1に例示するように、本発明の第1実施形態による通信システムは、少なくとも無線アクセス機能が物理的に独立した第1ネットワーク10および第2ネットワーク20と、外部パケットネットワークであるインターネット30と、複数の通信端末40と、を含み、複数の通信端末40が第1ネットワークの無線アクセスネットワーク(RAN)およびコアネットワーク(EPC:Evolved Packet Core)を通してインターネット30に接続可能であるものとする。
1. First Embodiment As illustrated in FIG. 1, a communication system according to a first embodiment of the present invention is a first network 10 and a second network 20 having at least a radio access function physically independent, and an external packet network. A plurality of communication terminals 40 including the Internet 30 and a plurality of communication terminals 40, the plurality of communication terminals 40 being connectable to the Internet 30 through a radio access network (RAN) and a core network (EPC: Evolved Packet Core) of the first network; To do.
 望ましい例として、第1ネットワーク10は非仮想ネットワークであり、第2ネットワーク20は必要に応じてネットワーク機能の追加あるいは削除を実現できる仮想化ネットワークである。第1ネットワークは、上述した非特許文献1に記載されているように、RAN輻輳発生の有無あるいはRAN輻輳レベルを検知する機能を有するものとする。第2ネットワーク20は、少なくとも通信端末40が無線接続可能な無線アクセス機能を有し、当該無線アクセス機能は第1ネットワーク10のRAN機能と物理的に独立している。第2ネットワーク20の無線アクセス機能は、第1ネットワークのRANと同じアクセス方式である必要はないが、異なるアクセス方式であれば、通信端末40に両方のアクセス方式にそれぞれ対応する無線通信手段が設けられている必要がある。 As a desirable example, the first network 10 is a non-virtual network, and the second network 20 is a virtual network that can realize addition or deletion of network functions as necessary. As described in Non-Patent Document 1 described above, the first network has a function of detecting the presence or absence of RAN congestion or the RAN congestion level. The second network 20 has a wireless access function that allows at least the communication terminal 40 to be wirelessly connected, and the wireless access function is physically independent of the RAN function of the first network 10. The wireless access function of the second network 20 does not have to be the same access method as the RAN of the first network, but if the access method is different, the communication terminal 40 is provided with wireless communication means corresponding to both access methods. Need to be.
 本実施形態では、第2ネットワーク20は、第1ネットワーク10のRANと同じ無線アクセス機能とインターネット接続機能とを有し、通信端末40が第2ネットワークを通してインターネット30に接続可能であるものとする。なお、物理的に独立した複数のネットワークとして、本実施形態では第1ネットワーク10および第2ネットワーク20を例示するが、3つ以上のネットワークを利用することも可能である。 In the present embodiment, it is assumed that the second network 20 has the same wireless access function and Internet connection function as the RAN of the first network 10, and the communication terminal 40 can be connected to the Internet 30 through the second network. In the present embodiment, the first network 10 and the second network 20 are exemplified as a plurality of physically independent networks. However, three or more networks may be used.
 通信端末40は、携帯電話等の移動無線局、ユーザ機器(UE:User Equipment)等であり、ネットワーク10および20のいずれにも接続可能な無線通信手段を有する。以下、複数の通信端末40が第1ネットワークに接続し、第1ネットワーク10のRANで輻輳が発生した場合について説明する。 The communication terminal 40 is a mobile radio station such as a mobile phone, a user equipment (UE: User Equipment), and the like, and has radio communication means that can be connected to both the networks 10 and 20. Hereinafter, a case where a plurality of communication terminals 40 are connected to the first network and congestion occurs in the RAN of the first network 10 will be described.
 図1に示すように、第1ネットワーク10のRANで輻輳発生が検知されると(動作S1)、EPCが関与して、あるいはEPCが関与せずに、複数の通信端末40の一部を第2ネットワーク20へハンドオーバさせるか、あるいは切り替える(動作S2)。より詳しくは、輻輳のレベルに応じた数の通信端末あるいは所定数の通信端末、あるいは優先度の低い通信を行っている通信端末を第2ネットワークへハンドオーバさせるか、あるいは第1ネットワーク10への接続要求を第2ネットワーク20へ切り替えることで、第1ネットワーク10のRANの輻輳が軽減される。 As shown in FIG. 1, when the occurrence of congestion is detected in the RAN of the first network 10 (operation S1), a part of the plurality of communication terminals 40 is connected with the EPC with or without the EPC. 2 Handover to the network 20 or switching (operation S2). More specifically, the number of communication terminals according to the level of congestion, a predetermined number of communication terminals, or a communication terminal performing low-priority communication is handed over to the second network or connected to the first network 10. By switching the request to the second network 20, RAN congestion of the first network 10 is reduced.
 本実施形態によれば、上述したUPCONのように、コアネットワーク側でユーザトラフィックを絞ることによってではなく、ユーザトラフィックを別のネットワークへオフロードすることによって輻輳を軽減するので、当該ユーザのQoEの低下を回避することができる。 According to the present embodiment, unlike the above-described UPCON, congestion is reduced by offloading user traffic to another network instead of narrowing down user traffic on the core network side. A decrease can be avoided.
 2.第2実施形態
 本発明の第2実施形態によれば、非仮想ネットワークの基地局が輻輳を検知すると、輻輳レベルに応じて、現在接続中の複数の通信端末の少なくとも一部に対して仮想ネットワークの基地局へローカルなハンドオーバ(X2ハンドオーバ)を実行させる。これにより非仮想ネットワークにおける無線アクセスネットワークの輻輳を軽減あるいは回避することができる。
2. Second Embodiment According to the second embodiment of the present invention, when a base station of a non-virtual network detects congestion, a virtual network is provided to at least a part of a plurality of currently connected communication terminals according to the congestion level. Local handover (X2 handover) to the base station. Thereby, congestion of the radio access network in the non-virtual network can be reduced or avoided.
 望ましくは仮想ネットワークの基地局がC-RANアーキテクチャを有する。C-RANアーキテクチャでは、変復調処理などを行うバースバンド処理部(BBU:BaseBand Unit)とアンテナを含む遠隔無線部(RRH:Remote Radio Head)とが分離され、それらが光ファイバ等によるフロントホールで接続される。特に、BBUをセンタユニットにまとめて設置し、汎用サーバを利用して仮想BBU(vBBU:virtualized BBU)として実装することができる。このような仮想BBUを採用したC-RANアーキテクチャでは、基地局が検出した輻輳レベルに応じて、RRHおよびvBBUを動的に割り当てることができ、たとえば、使用しないRRHおよびvBBUを停止させることで消費電力の削減、稼働率の向上が可能となる。以下、本実施形態によるシステムの構成および動作について図2~図4を参照しながら説明する。 Desirably, the base station of the virtual network has a C-RAN architecture. In the C-RAN architecture, a baseband processing unit (BBU: BaseBand Unit) that performs modulation / demodulation processing and a remote radio unit (RRH: Remote Radio Head) including an antenna are separated and connected by a fronthaul such as an optical fiber. Is done. In particular, BBUs can be installed together in a center unit and implemented as a virtual BBU (vBBU: virtualized : BBU) using a general-purpose server. In the C-RAN architecture adopting such a virtual BBU, RRH and vBBU can be dynamically allocated according to the congestion level detected by the base station. For example, consumption is achieved by stopping unused RRH and vBBU. It is possible to reduce electric power and improve the operation rate. The configuration and operation of the system according to the present embodiment will be described below with reference to FIGS.
 2.1)システム構成
 図2に例示するように、本発明の第2実施形態による通信システムは、第1ネットワークとしての非仮想ネットワーク10と、第2ネットワークとしての仮想化ネットワーク20aと、を有し、非仮想ネットワーク10は第1実施形態で説明したとおりである。仮想化ネットワーク20aは、サーバ上に構成された複数のvBBUからなるvBBUプール21aを含み、vBBUプール21aは非仮想ネットワーク10のバックホールを通してEPC12に接続される。なお、仮想化ネットワーク20aにも、非仮想化ネットワーク10のEPC12と同様の仮想化コアネットワークvEPCが設けられてもよい。
2.1) System Configuration As illustrated in FIG. 2, the communication system according to the second embodiment of the present invention includes a non-virtual network 10 as a first network and a virtualized network 20a as a second network. The non-virtual network 10 is as described in the first embodiment. The virtual network 20 a includes a vBBU pool 21 a composed of a plurality of vBBUs configured on a server, and the vBBU pool 21 a is connected to the EPC 12 through the backhaul of the non-virtual network 10. The virtual network 20a may also be provided with a virtual core network vEPC similar to the EPC 12 of the non-virtualized network 10.
 仮想化ネットワーク側の基地局はC-RANアーキテクチャを有し、vBBUプール21aと複数のRRH22とがフロントホール23で接続されている。フロントホール23は、たとえばCPRI(Common Public Radio Interface)あるいはORI(Open Radio equipment Interface)ネットワークである。C-RANアーキテクチャは、トラフィックの状況に応じて、使用するvBBUおよびRRHの数を増減することができるので、消費電力の削減および装置の稼働率向上が可能となる。なお、仮想化されたものではなく通常のBBUを用いたC-RANアーキテクチャにおいても、RRHの数を増減できるので、消費電力削減および稼働率の向上が可能となる。 The base station on the virtual network side has a C-RAN architecture, and a vBBU pool 21a and a plurality of RRHs 22 are connected by a front hole 23. The front hole 23 is, for example, a CPRI (Common Public Radio Interface) or ORI (Open Radio Equipment Interface) network. In the C-RAN architecture, the number of vBBUs and RRHs to be used can be increased / decreased according to traffic conditions, so that power consumption can be reduced and the operating rate of the apparatus can be improved. Even in a C-RAN architecture using a normal BBU instead of being virtualized, the number of RRHs can be increased / decreased, so that power consumption can be reduced and the operating rate can be improved.
 このような通信システムにおいて、非仮想ネットワーク10の基地局11が輻輳発生を検知すると、輻輳レベルに応じて基地局11は現在接続中の通信端末40の少なくとも一部に対してRRH22へハンドオーバするように制御する。RRH側へハンドオーバした通信端末40は、vBBUプール21aのvBBUと非仮想ネットワーク10のEPC12とを通してインターネット30との間の通信が維持される。以下、非仮想ネットワーク10の基地局11と仮想化ベースバンド処理部vBBUの構成についてより詳細に説明する。 In such a communication system, when the base station 11 of the non-virtual network 10 detects the occurrence of congestion, the base station 11 performs handover to at least a part of the currently connected communication terminals 40 to the RRH 22 according to the congestion level. To control. The communication terminal 40 handed over to the RRH side maintains communication with the Internet 30 through the vBBU of the vBBU pool 21a and the EPC 12 of the non-virtual network 10. Hereinafter, the configurations of the base station 11 and the virtual baseband processing unit vBBU of the non-virtual network 10 will be described in more detail.
 図3に示すように、基地局11は、複数の通信端末40とそれぞれ無線通信するための無線通信部101と無線アクセスネットワークの輻輳状況を検出する輻輳検出部102とを有する。また、基地局11は、ハンドオーバ制御部103、バックホール通信部104、他の基地局と通信を行うためのインタフェース105、および基地局の全体的動作を制御する制御部106を有し、各端末との無線接続、ハンドオーバ時の端末制御、EPC12との通信等の基地局動作を実行する。 As shown in FIG. 3, the base station 11 includes a wireless communication unit 101 for wireless communication with a plurality of communication terminals 40 and a congestion detection unit 102 for detecting the congestion status of the wireless access network. The base station 11 also includes a handover control unit 103, a backhaul communication unit 104, an interface 105 for communicating with other base stations, and a control unit 106 that controls the overall operation of the base station. Base station operations such as wireless connection to the terminal, terminal control during handover, communication with the EPC 12, and the like.
 vBBUプール21aは、複数のvBBUをサーバ上の仮想マシンに集約して実装することにより設置され、フロントホール23により接続されたRRH22とそれに接続されたvBBUとにより基地局機能を実現する。各RRH22は、セル内の通信端末と無線通信するためのアンテナおよび無線(RF:Radio Frequency)部からなる。図3では、基地局11により管理されるセルmC1内に、RRH22およびvBBUにより管理され、セルmC1よりも小さいセルsC1、sC2、・・・が形成されうるものとする。 The vBBU pool 21a is installed by aggregating and mounting a plurality of vBBUs on a virtual machine on the server, and realizes a base station function by the RRH 22 connected by the front hole 23 and the vBBU connected thereto. Each RRH 22 includes an antenna and a radio (RF: Radio Frequency) unit for wireless communication with a communication terminal in the cell. 3, it is assumed that cells sC1, sC2,..., Which are managed by the RRH 22 and vBBU and are smaller than the cell mC1, can be formed in the cell mC1 managed by the base station 11.
 各vBBUは、サーバの仮想マシン上に実装され、各RRH22と通信するためのフロントホール通信部201、ハンドオーバ制御部202、EPC12と通信するためのバックホール通信部203、他の基地局と通信を行うためのインタフェース204、およびvBBUの全体的動作を制御する制御部205を有する。以下、セルmC1およびsC1の重複領域に位置しセルmC1と無線通信を行っている少なくとも一つの通信端末40が、基地局11の輻輳検出を契機として、セルmC1から所定のセルsC1へハンドオーバする場合を説明する。 Each vBBU is mounted on the virtual machine of the server, and communicates with the fronthaul communication unit 201 for communicating with each RRH 22, the handover control unit 202, the backhaul communication unit 203 for communicating with the EPC 12, and other base stations. An interface 204 for performing the operation, and a control unit 205 for controlling the overall operation of the vBBU. Hereinafter, when at least one communication terminal 40 that is located in the overlapping region of the cells mC1 and sC1 and is performing radio communication with the cell mC1 performs handover from the cell mC1 to the predetermined cell sC1 triggered by the congestion detection of the base station 11 Will be explained.
 2.2)動作
 図4に例示するように、通信端末40が基地局11および非仮想ネットワーク10を通してインターネット30とコネクションを確立し、通信を行っているものとする(動作S301)。この状態で、基地局11の輻輳検出部102が無線アクセスネットワークでの輻輳を検出するか、あるいは輻輳になる可能性が大きいと判断すると(動作S302)、制御部106は輻輳レベルに応じたハンドオーバ手順を開始する。すなわち、ハンドオーバ制御部103は、輻輳レベルに応じて少なくとも一つの通信端末40をハンドオーバ対象とし、そのハンドオーバ先のセルsC1を選択する。少なくとも一つの通信端末40を選択されたセルsC1へハンドオーバさせるために、ハンドオーバ制御部103はハンドオーバ要求メッセージをインタフェース105を通してvBBUプール21aへ送信する(動作S303)。
2.2) Operation As illustrated in FIG. 4, it is assumed that the communication terminal 40 establishes a connection with the Internet 30 through the base station 11 and the non-virtual network 10 and performs communication (operation S301). In this state, when the congestion detection unit 102 of the base station 11 detects congestion in the radio access network or determines that there is a high possibility of congestion (operation S302), the control unit 106 performs handover according to the congestion level. Start the procedure. That is, the handover control unit 103 selects at least one communication terminal 40 as a handover target according to the congestion level and selects the handover destination cell sC1. In order to hand over at least one communication terminal 40 to the selected cell sC1, the handover control unit 103 transmits a handover request message to the vBBU pool 21a through the interface 105 (operation S303).
 vBBUプール21aのうち、所定セルsC1を管理するためのRRHおよびvBBUが割り当てられると、vBBUのハンドオーバ制御部202は、通信端末40のハンドオーバを受け入れ可能か否かを判定し(動作S304)、可能であれば、ハンドオーバ要求応答を基地局11へ返信する(動作S305)。 When the RRH and vBBU for managing the predetermined cell sC1 in the vBBU pool 21a are assigned, the handover control unit 202 of the vBBU determines whether or not the handover of the communication terminal 40 can be accepted (operation S304), and can be performed. If so, a handover request response is returned to the base station 11 (operation S305).
 ハンドオーバ要求応答を受信すると、基地局11のハンドオーバ制御部103は、無線通信部101を通して通信端末40に対してハンドオーバ指示を送信する(動作S306)。ハンドオーバ指示を受けると、通信端末40はハンドオーバ指示応答をハンドオーバ先のRRHおよびvBBUへ送信する(動作S307)。ハンドオーバ指示応答を受けると、vBBUのハンドオーバ制御部202は、EPC12に対して経路切り替え要求を送信し(動作S308)、EPC12において通信端末40に対するパスが基地局11側からvBBU側へ切り替えられると、EPC12から経路切り替え要求に対する応答を受信する(動作S309)。これにより、通信端末40とインターネット30との間のコネクションがvBBUおよびEPC12を通して確立し、通信端末40の通信を継続する(動作S310)。 When the handover request response is received, the handover control unit 103 of the base station 11 transmits a handover instruction to the communication terminal 40 through the wireless communication unit 101 (operation S306). Upon receiving the handover instruction, the communication terminal 40 transmits a handover instruction response to the handover destination RRH and vBBU (operation S307). When receiving the handover instruction response, the handover control unit 202 of the vBBU transmits a path switching request to the EPC 12 (Operation S308). When the path to the communication terminal 40 is switched from the base station 11 side to the vBBU side in the EPC 12, A response to the path switching request is received from the EPC 12 (Operation S309). Thereby, the connection between the communication terminal 40 and the Internet 30 is established through the vBBU and the EPC 12, and the communication of the communication terminal 40 is continued (operation S310).
 2.3)効果
 本発明の第2実施形態によれば、非仮想ネットワークのRANで輻輳発生が検知されると、現在接続中の複数の通信端末の一部のトラフィックが仮想ネットワークの基地局へローカルにオフロードされることで、非仮想ネットワークのRANの輻輳を軽減あるいは回避できる。また、上述したように、仮想ネットワークの基地局がvBBUを用いたC-RANアーキテクチャを有することで、非仮想ネットワークのRANの輻輳レベルに応じてRRHおよびvBBUを動的に割り当てることが可能となり、また、通常のBBUを用いたC-RANアーキテクチャにおいてもRRHの数を増減できるので、消費電力削減および稼働率の向上が可能となる。
2.3) Effect According to the second embodiment of the present invention, when occurrence of congestion is detected in the RAN of the non-virtual network, a part of traffic of a plurality of currently connected communication terminals is transferred to the base station of the virtual network. By being offloaded locally, RAN congestion of the non-virtual network can be reduced or avoided. Further, as described above, since the base station of the virtual network has the C-RAN architecture using vBBU, it becomes possible to dynamically allocate RRH and vBBU according to the congestion level of RAN of the non-virtual network, Also, even in a C-RAN architecture using a normal BBU, the number of RRHs can be increased / decreased, so that power consumption can be reduced and the operating rate can be improved.
 3.第3実施形態
 本発明の第3実施形態によれば、非仮想ネットワークのRANで輻輳が検出されると、現在接続中の複数の通信端末の少なくとも一部に対して、仮想ネットワークの基地局へX2あるいはS1ハンドオーバを実行させることで、通信端末とインターネットとの間のパスを非仮想ネットワークから仮想ネットワークへ切り替える。これにより非仮想ネットワークにおけるRANの輻輳を軽減するとともに、非仮想ネットワークにおけるコアネットワークの負荷も軽減可能となる。また、上述した第2実施形態と同様に、仮想ネットワークの基地局はC-RANアーキテクチャを有することが望ましい。以下、本実施形態によるシステムの構成および動作について図5~図7を参照しながら説明する。
3. Third Embodiment According to the third embodiment of the present invention, when congestion is detected in a RAN of a non-virtual network, at least a part of a plurality of currently connected communication terminals is transferred to a base station of a virtual network. By executing the X2 or S1 handover, the path between the communication terminal and the Internet is switched from the non-virtual network to the virtual network. This reduces RAN congestion in the non-virtual network and also reduces the load on the core network in the non-virtual network. Further, as in the second embodiment described above, it is desirable that the base station of the virtual network has a C-RAN architecture. The configuration and operation of the system according to this embodiment will be described below with reference to FIGS.
 3.1)システム構成
 図5に例示するように、本発明の第3実施形態による通信システムは、第1ネットワークとしての非仮想ネットワーク10と、第2ネットワークとしての仮想化ネットワーク20bと、を有する。非仮想ネットワーク10は、第2実施形態と同様に、基地局11と、
EPC12と、それらを接続するモバイルバックホール(MBH)を有し、EPC12がサービングゲートウェイ(SGW:Serving Gateway)1201、パケットデータネットワークゲートウェイ(PGW:Packet Data Network Gateway)1202、移動管理エンティティ(MME:Mobility Management Entity)1203、およびRAN輻輳認識機能(RCAF:RAN Congestion Awareness Function)1204を含む。
3.1) System Configuration As illustrated in FIG. 5, the communication system according to the third embodiment of the present invention includes a non-virtual network 10 as a first network and a virtualized network 20b as a second network. . As in the second embodiment, the non-virtual network 10 includes a base station 11 and
The EPC 12 has a mobile backhaul (MBH) that connects them, and the EPC 12 includes a serving gateway (SGW) 1201, a packet data network gateway (PGW) 1202, a mobility management entity (MME) Management Entity) 1203, and RAN Congestion Awareness Function (RCAF) 1204.
 仮想化ネットワーク20bは、第2実施形態と同様に、サーバ上に構成された複数のvBBUからなるvBBUプール21bと、仮想化コアネットワークであるvEPC12bと、それらを接続するモバイルバックホール(MBH)とを有し、vEPC12bが、仮想化サービングゲートウェイ(vSGW)1201b、仮想化パケットデータネットワークゲートウェイ(vPGW)1202b、仮想化移動管理装置(vMME)1203bを含む。vEPC12bおよび各vBBUはサーバの仮想マシン上に実装される。 Similarly to the second embodiment, the virtual network 20b includes a vBBU pool 21b composed of a plurality of vBBUs configured on a server, a vEPC 12b that is a virtual core network, and a mobile backhaul (MBH) that connects them. VEPC 12b includes a virtual serving gateway (vSGW) 1201b, a virtual packet data network gateway (vPGW) 1202b, and a virtual mobility management device (vMME) 1203b. The vEPC 12b and each vBBU are mounted on a server virtual machine.
 図6に示すように、仮想化ネットワーク側の基地局は、第2実施形態と同様に、C-RANアーキテクチャを有し、vBBUプール21bと複数のRRH22とがフロントホール23で接続され、図3と同様のセル構成であるものとする。非仮想ネットワーク側のEPC12におけるMME1203は、通常の移動管理機能の他に、後述するように輻輳レベルに応じたリロケーション制御機能およびターゲットMME選択機能を有する。 As shown in FIG. 6, the base station on the virtual network side has a C-RAN architecture as in the second embodiment, and a vBBU pool 21b and a plurality of RRHs 22 are connected by a front hole 23. It is assumed that the cell configuration is the same. The MME 1203 in the EPC 12 on the non-virtual network side has a relocation control function and a target MME selection function in accordance with the congestion level, as will be described later, in addition to a normal mobility management function.
 このような通信システムにおいて、非仮想ネットワーク10の基地局11が輻輳発生を検知すると、基地局11はEPC12のRCAF1204を通して輻輳情報をMME1203へ通知する。MME1203は、輻輳通知を受けると、仮想ネットワーク20bにおけるターゲットMMEを選択し、vEPC12bに対してMME再配置要求を送信する。基地局11に接続中の通信端末40の少なくとも一部は、第2実施形態と同様のX2ハンドオーバあるいはMME1203が主導するS1ハンドオーバによりRRH22およびvBBUへハンドオーバし、vEPC12bを通してインターネット30との通信が維持される。以下、図6で示すセル構成を一例として、セルmC1およびsC1の重複領域に位置し、セルmC1と無線通信を行っている少なくとも一つの通信端末40が、基地局11の輻輳検出を契機として、セルmC1から所定のセルsC1へハンドオーバする場合を説明する。 In such a communication system, when the base station 11 of the non-virtual network 10 detects the occurrence of congestion, the base station 11 notifies the MME 1203 of congestion information through the RCAF 1204 of the EPC 12. Upon receiving the congestion notification, the MME 1203 selects a target MME in the virtual network 20b and transmits an MME relocation request to the vEPC 12b. At least a part of the communication terminals 40 connected to the base station 11 is handed over to the RRH 22 and vBBU by the X2 handover similar to the second embodiment or the S1 handover led by the MME 1203, and the communication with the Internet 30 is maintained through the vEPC 12b. The Hereinafter, taking the cell configuration shown in FIG. 6 as an example, at least one communication terminal 40 that is located in the overlapping region of the cells mC1 and sC1 and is performing wireless communication with the cell mC1 is triggered by the congestion detection of the base station 11. A case where a handover is performed from the cell mC1 to the predetermined cell sC1 will be described.
 3.2)動作
 図7に例示するように、通信端末40が基地局11、非仮想ネットワーク10のSGW1201およびPGW1202を通してインターネット30とコネクションを確立し、通信を行っているものとする(動作S401)。この状態で、基地局11の輻輳検出部102が無線アクセスネットワークでの輻輳を検出するか、あるいは輻輳になる可能性が大きいと判断すると(動作S402)、制御部106は輻輳レベルを含む輻輳情報をRCAF1204を通してMME1203へ通知する(動作S403)。MME1203は、輻輳通知を受けると、仮想ネットワーク20bにおけるターゲットMMEを選択し(動作S404)、仮想ネットワーク20bに対してMME再配置要求を送信し(動作S405)、リロケーション手順とハンドオーバ対象となる少なくとも一つの通信端末40のX2/S1ハンドオーバ手順とを開始する(動作S406)。ハンドオーバが完了すると、通信端末40とインターネット30との間のコネクションがvBBUおよびvEPC12bを通して確立し、通信端末40の通信が継続する(動作S407)。
3.2) Operation As illustrated in FIG. 7, it is assumed that the communication terminal 40 establishes a connection with the Internet 30 through the base station 11 and the SGW 1201 and PGW 1202 of the non-virtual network 10 and performs communication (operation S401). . In this state, when the congestion detection unit 102 of the base station 11 detects congestion in the radio access network or determines that there is a high possibility of congestion (operation S402), the control unit 106 includes congestion information including the congestion level. Is notified to the MME 1203 through the RCAF 1204 (operation S403). Upon receiving the congestion notification, the MME 1203 selects a target MME in the virtual network 20b (operation S404), transmits an MME relocation request to the virtual network 20b (operation S405), and at least one of the relocation procedure and handover target. The X2 / S1 handover procedure for the two communication terminals 40 is started (operation S406). When the handover is completed, a connection between the communication terminal 40 and the Internet 30 is established through the vBBU and vEPC 12b, and the communication of the communication terminal 40 continues (operation S407).
 3.3)効果
 本発明の第3実施形態によれば、非仮想ネットワークのRANで輻輳発生が検知されると、現在接続中の複数の通信端末の一部のトラフィックが仮想ネットワークへオフロードされることで、非仮想ネットワークにおけるRANの輻輳およびEPCの負荷が軽減される。また、仮想ネットワークの基地局がC-RANアーキテクチャを有することで、非仮想ネットワークのRANの輻輳レベルに応じてRRHおよびvBBUを動的に割り当てることが可能となる。
3.3) Effect According to the third embodiment of the present invention, when congestion occurrence is detected in the RAN of the non-virtual network, a part of traffic of a plurality of currently connected communication terminals is offloaded to the virtual network. This reduces RAN congestion and EPC load in the non-virtual network. Further, since the base station of the virtual network has the C-RAN architecture, RRH and vBBU can be dynamically allocated according to the RAN congestion level of the non-virtual network.
 4.第4実施形態
 本発明の第4実施形態によれば、非仮想ネットワークのRANで輻輳が発生すると、非仮想ネットワークのコアネットワークが主導して、現在接続中の複数の通信端末の少なくとも一部に対して非仮想ネットワークからデタッチし仮想ネットワークへアタッチするように指示する。これにより非仮想ネットワークのRANの輻輳を軽減するとともに、非仮想ネットワークにおけるコアネットワークの負荷も軽減可能となる。上述した第2実施形態と同様に、仮想ネットワークの基地局はC-RANアーキテクチャを有することが望ましい。以下、本実施形態によるシステムの構成および動作について図8および図9を参照しながら説明する。
4). Fourth Embodiment According to the fourth embodiment of the present invention, when congestion occurs in a RAN of a non-virtual network, the core network of the non-virtual network takes the lead, and at least a part of a plurality of currently connected communication terminals Instructs the user to detach from the non-virtual network and attach to the virtual network. As a result, RAN congestion of the non-virtual network can be reduced, and the load on the core network in the non-virtual network can also be reduced. As in the second embodiment described above, it is desirable that the base station of the virtual network has a C-RAN architecture. Hereinafter, the configuration and operation of the system according to the present embodiment will be described with reference to FIGS.
 図8に例示するように、本発明の第4実施形態による通信システムの基本的構成は第3実施形態と同様であるから同一符号を付して説明は省略する。本実施形態による通信制御動作は、第3実施形態のハンドオーバではなく、通信端末のデタッチおよびリタッチ動作を利用する点が異なっている。より詳しくは、非仮想ネットワーク10におけるEPC12のMME1203は、輻輳通知を受けると、少なくとも一部の通信端末に対してデタッチ要求を送信し、仮想ネットワーク20bへのリタッチを指示する機能を有する。以下、図6で示すセル構成を一例として、セルmC1およびsC1の重複領域に位置し、セルmC1と無線通信を行っている少なくとも一つの通信端末40が、基地局11の輻輳検出を契機として、セルmC1から所定のセルsC1へリタッチする場合を説明する。 As illustrated in FIG. 8, the basic configuration of the communication system according to the fourth embodiment of the present invention is the same as that of the third embodiment, so the same reference numerals are given and the description thereof is omitted. The communication control operation according to the present embodiment is different in that the communication terminal detach and retouch operations are used instead of the handover of the third embodiment. More specifically, when receiving the congestion notification, the MME 1203 of the EPC 12 in the non-virtual network 10 has a function of transmitting a detach request to at least some communication terminals and instructing retouch to the virtual network 20b. Hereinafter, taking the cell configuration shown in FIG. 6 as an example, at least one communication terminal 40 that is located in the overlapping region of the cells mC1 and sC1 and is performing wireless communication with the cell mC1 is triggered by the congestion detection of the base station 11. A case of retouching from the cell mC1 to the predetermined cell sC1 will be described.
 図9に例示するように、通信端末40が基地局11、非仮想ネットワーク10のSGW1201およびPGW1202を通してインターネット30とコネクションを確立し、通信を行っているものとする(動作S501)。この状態で、基地局11の輻輳検出部102が無線アクセスネットワークでの輻輳を検出するか、あるいは輻輳になる可能性が大きいと判断すると(動作S502)、制御部106は輻輳情報をRCAF1204を通してMME1203へ通知する(動作S503)。MME1203は、輻輳通知を受けると、接続中の通信端末のうち輻輳レベルに応じた少なくとも一部の通信端末40に対してリタッチ先(ネットワークID等)を指定し(動作S504)、各通信端末40に対してリタッチ先情報を含むデタッチ要求を送信する(動作S505)。これにより、デタッチ要求を受信した通信端末40とインターネット30との間の非仮想ネットワーク12におけるコネクションが解放される(動作S506)。 9, it is assumed that the communication terminal 40 establishes a connection with the Internet 30 through the base station 11 and the SGW 1201 and PGW 1202 of the non-virtual network 10 and performs communication (operation S501). In this state, when the congestion detection unit 102 of the base station 11 detects congestion in the radio access network or determines that there is a high possibility of congestion (operation S502), the control unit 106 transmits the congestion information through the RCAF 1204 to the MME 1203. (Operation S503). Upon receiving the congestion notification, the MME 1203 designates a retouch destination (network ID or the like) for at least some communication terminals 40 corresponding to the congestion level among the connected communication terminals (operation S504), and each communication terminal 40 A detach request including retouch destination information is transmitted to (operation S505). As a result, the connection in the non-virtual network 12 between the communication terminal 40 that has received the detach request and the Internet 30 is released (operation S506).
 デタッチ要求を受信した通信端末40は、指定されたリタッチ先の仮想ネットワーク20bへアタッチ要求を送信する(動作S507)。これにより、仮想ネットワーク20bにおいてコネクションが確立され、当該通信端末40とインターネット30との間で通信を再開することができる(動作S508)。 The communication terminal 40 that has received the detach request transmits an attach request to the designated retouch destination virtual network 20b (operation S507). Accordingly, a connection is established in the virtual network 20b, and communication can be resumed between the communication terminal 40 and the Internet 30 (operation S508).
 本発明の第4実施形態によれば、非仮想ネットワークのRANで輻輳発生が検知されると、EPC主導により、現在接続中の複数の通信端末の一部のトラフィックを仮想ネットワークへオフロードさせることができ、非仮想ネットワークにおけるRANの輻輳およびEPCの負荷を軽減することができる。また、仮想ネットワークの基地局がC-RANアーキテクチャを有することで、非仮想ネットワークのRANの輻輳レベルに応じてRRHおよびvBBUを動的に割り当てることが可能となる。 According to the fourth embodiment of the present invention, when congestion occurrence is detected in the RAN of the non-virtual network, the EPC takes the initiative to offload some traffic of a plurality of currently connected communication terminals to the virtual network. RAN congestion and EPC load in a non-virtual network can be reduced. Further, since the base station of the virtual network has the C-RAN architecture, RRH and vBBU can be dynamically allocated according to the RAN congestion level of the non-virtual network.
 5.第5実施形態
 本発明の第5実施形態によれば、非仮想ネットワークのRANで輻輳が発生すると、アタッチ手順を実行中の通信端末に対して、仮想ネットワークへのアタッチ先切り替えを指示する。これにより非仮想ネットワークのRANの輻輳の悪化を防止でき、非仮想ネットワークにおけるコアネットワークの負荷増大も回避できる。上述した第2実施形態と同様に、仮想ネットワークの基地局はC-RANアーキテクチャを有することが望ましい。以下、本実施形態によるシステムの構成および動作について図10および図11を参照しながら説明する。
5). Fifth Embodiment According to the fifth embodiment of the present invention, when congestion occurs in the RAN of a non-virtual network, the communication terminal that is executing the attach procedure is instructed to switch the attach destination to the virtual network. As a result, deterioration of RAN congestion in the non-virtual network can be prevented, and an increase in the load on the core network in the non-virtual network can be avoided. As in the second embodiment described above, it is desirable that the base station of the virtual network has a C-RAN architecture. Hereinafter, the configuration and operation of the system according to the present embodiment will be described with reference to FIGS. 10 and 11.
 図10に例示するように、本発明の第5実施形態による通信システムの基本的構成は第3実施形態と同様であるから同一符号を付して説明は省略する。本実施形態によれば、通信端末40が非仮想ネットワーク10へのアタッチ手順を実行中に、EPC12の主導により、当該通信端末40に対してアタッチ先の切り替えを指示する。より詳しくは、非仮想ネットワーク10におけるEPC12のMME1203は、輻輳通知を受けると、アタッチ要求を送信した通信端末に対してアタッチ先を仮想ネットワーク20bへ切り替えるように指示する機能を有する。このアタッチ先切替指示に応答して、当該通信端末40はアタッチ要求の送信先を仮想ネットワーク20bへ切り替える。以下、図11を参照しながら、本実施形態による通信制御を説明する。 As illustrated in FIG. 10, since the basic configuration of the communication system according to the fifth embodiment of the present invention is the same as that of the third embodiment, the same reference numerals are given and description thereof is omitted. According to the present embodiment, the EPC 12 instructs the communication terminal 40 to switch the attachment destination while the communication terminal 40 is executing the attachment procedure to the non-virtual network 10. More specifically, when receiving the congestion notification, the MME 1203 of the EPC 12 in the non-virtual network 10 has a function of instructing the communication terminal that has transmitted the attach request to switch the attachment destination to the virtual network 20b. In response to the attach destination switching instruction, the communication terminal 40 switches the transmission destination of the attach request to the virtual network 20b. Hereinafter, communication control according to the present embodiment will be described with reference to FIG.
 図11に例示するように、通信端末40が基地局11を通してMME1203へアタッチ要求を送信し(動作S601)、アタッチ手順が開始されたものとする(動作S602)。このアタッチ手順が実行されている時に、基地局11の輻輳検出部102が無線アクセスネットワークでの輻輳を検出するか、あるいは輻輳になる可能性が大きいと判断すると(動作S603)、制御部106は輻輳情報をRCAF1204を通してMME1203へ通知する(動作S604)。MME1203は、輻輳通知を受けると、アタッチ要求手順を実行中の通信端末40のうち少なくとも一部に対して、アタッチ先のネットワークID等を含む切替指示メッセージを送信する(動作S605)。 As illustrated in FIG. 11, it is assumed that the communication terminal 40 transmits an attach request to the MME 1203 through the base station 11 (Operation S601), and the attach procedure is started (Operation S602). If the congestion detection unit 102 of the base station 11 detects congestion in the radio access network or determines that there is a high possibility of congestion when the attach procedure is being executed (operation S603), the control unit 106 The congestion information is notified to the MME 1203 through the RCAF 1204 (Operation S604). Upon receiving the congestion notification, the MME 1203 transmits a switching instruction message including the network ID of the attachment destination to at least a part of the communication terminals 40 that are executing the attach request procedure (Operation S605).
 アタッチ先切替指示を受けた通信端末40は、切替先として指示された仮想ネットワーク20bに対してアタッチ要求を送信する(動作S606)。これにより、仮想ネットワーク20bのvMMEは、当該通信端末40とインターネット30との間のコネクションを仮想ネットワーク20bのvSGWおよびvPGWを通して確立し(動作S607)、当該通信端末40は仮想ネットワーク20bを経由してインターネット30と通信を開始する。 The communication terminal 40 that has received the attach destination switching instruction transmits an attach request to the virtual network 20b instructed as the switching destination (operation S606). Thereby, the vMME of the virtual network 20b establishes a connection between the communication terminal 40 and the Internet 30 through the vSGW and vPGW of the virtual network 20b (Operation S607), and the communication terminal 40 passes through the virtual network 20b. Communication with the Internet 30 is started.
 本発明の第4実施形態によれば、非仮想ネットワークのRANで輻輳が発生すると、アタッチ手順を実行中の通信端末の少なくとも一部に対して、仮想ネットワークへのアタッチ先切り替えを指示することにより、RANおよびコアネットワークの負荷増大を回避できる。また、仮想ネットワークの基地局がC-RANアーキテクチャを有することで、非仮想ネットワークのRANの輻輳レベルに応じてRRHおよびvBBUを動的に割り当てることが可能となる。 According to the fourth embodiment of the present invention, when congestion occurs in the RAN of the non-virtual network, by instructing at least a part of the communication terminals that are performing the attach procedure to switch the attach destination to the virtual network. , An increase in the load on the RAN and the core network can be avoided. Further, since the base station of the virtual network has the C-RAN architecture, RRH and vBBU can be dynamically allocated according to the RAN congestion level of the non-virtual network.
 6.付記
 上述した実施形態の一部あるいは全部は、以下の付記のようにも記載されうるが、これらに限定されるものではない。
 (付記1)
  通信端末を収容可能な第一ネットワークが無線アクセスネットワークの輻輳状態を検出し、
 前記第一ネットワークが、前記輻輳状態に応じて、少なくとも一つの通信端末の無線接続を、前記第一ネットワークと少なくとも無線アクセスネットワークが物理的に独立した第二ネットワークへ切り替える、
 通信システム。
(付記2)
 前記第一ネットワークが非仮想ネットワーク、前記第二ネットワークが仮想ネットワークである、付記1に記載の通信システム。
(付記3)
 前記第一ネットワークが、前記輻輳状態に応じて、前記少なくとも一つの通信端末の無線接続を、前記第一ネットワークの基地局から前記第二ネットワークの基地局へのハンドオーバにより切り替える、付記1または2に記載の通信システム。
(付記4)
 前記少なくとも一つの通信端末のトラフィックを前記第二ネットワークの基地局と前記第一ネットワークのコアネットワークとからなる経路へオフロードする、付記1-3のいずれか1項に記載の通信システム。
(付記5)
 前記第一ネットワークが、前記輻輳状態に応じて、前記少なくとも一つの通信端末の無線接続を、基地局のみが関与するハンドオーバにより切り替える、付記1-4のいずれか1項に記載の通信システム。
(付記6)
 前記少なくとも一つの通信端末のトラフィックを前記第二ネットワークの基地局と前記第二ネットワークのコアネットワークとからなる経路へオフロードする、付記1-3のいずれか1項に記載の通信システム。
(付記7)
 前記第一ネットワークが、前記輻輳状態に応じて、前記少なくとも一つの通信端末の無線接続を、前記第一ネットワークのコアネットワークと前記第二ネットワークのコアネットワークとが関与するハンドオーバにより切り替える、付記1-3、6のいずれか1項に記載の通信システム。
(付記8)
 前記第一ネットワークが、前記輻輳状態に応じて、リタッチ先を前記第二ネットワークとした前記第一ネットワークからのデタッチ要求を前記少なくとも一つの通信端末へ送信するにより、前記少なくとも一つの通信端末の無線接続を切り替える、付記1または2に記載の通信システム。
(付記9)
 前記第一ネットワークが、前記輻輳状態に応じて、前記少なくとも一つの通信端末からのアタッチ要求に対して、アタッチ先を前記第二ネットワークとしたアタッチ先切替指示を送信するにより、前記少なくとも一つの通信端末の無線接続を切り替える、付記1または2に記載の通信システム。
(付記10)
 前記第二ネットワークの基地局の機能がリモート無線局とベースバンド処理部とに分離している、付記1-9のいずれか1項に記載の通信システム。
(付記11)
 通信端末を収容可能な第一ネットワークが無線アクセスネットワークの輻輳状態を検出し、
 前記第一ネットワークが、前記輻輳状態に応じて、少なくとも一つの通信端末の無線接続を、前記第一ネットワークと少なくとも無線アクセスネットワークが物理的に独立した第二ネットワークへ切り替える、
 通信制御方法。
(付記12)
 通信端末を収容可能なネットワークにおける基地局であって、
 前記ネットワークの無線アクセスネットワークの輻輳状態を検出する輻輳検出手段と、
 前記輻輳状態に応じて、少なくとも一つの通信端末の無線接続を、少なくとも無線アクセスネットワークが物理的に独立した他のネットワークへ切り替える制御手段と、
 を有する基地局。
(付記13)
 前記制御手段が、前記輻輳状態に応じて、前記少なくとも一つの通信端末の無線接続を、前記他のネットワークの基地局へのハンドオーバにより切り替える、付記12に記載の基地局。
(付記14)
 前記制御手段が、前記輻輳状態に応じて、前記少なくとも一つの通信端末の無線接続を、基地局のみが関与するハンドオーバにより切り替える、付記12または13に記載の基地局。
(付記15)
 通信端末を収容可能な第一ネットワークにおける無線アクセスネットワークの輻輳状態を認識する輻輳認識手段と、
 前記輻輳状態に応じて、少なくとも一つの通信端末の無線接続を、前記第一ネットワークと少なくとも無線アクセスネットワークが物理的に独立した第二ネットワークへ切り替える制御手段と、
 を有する通信制御装置。
(付記16)
 前記制御手段が、前記輻輳状態に応じて、前記少なくとも一つの通信端末の無線接続を、前記第一ネットワークの基地局から前記第二ネットワークの基地局へのハンドオーバにより切り替える、付記15に記載の通信制御装置。
(付記17)
 前記少なくとも一つの通信端末のトラフィックを前記第二ネットワークの基地局と前記第一ネットワークのコアネットワークとからなる経路へオフロードする、付記15または16に記載の通信制御装置。
(付記18)
 前記少なくとも一つの通信端末のトラフィックを前記第二ネットワークの基地局と前記第二ネットワークのコアネットワークとからなる経路へオフロードする、付記15または16に記載の通信制御装置。
(付記19)
 前記制御手段が、前記輻輳状態に応じて、前記少なくとも一つの通信端末の無線接続を、前記第一ネットワークのコアネットワークと前記第二ネットワークのコアネットワークとが関与するハンドオーバにより切り替える、付記15、16または18に記載の通信制御装置。
(付記20)
 前記制御手段が、前記輻輳状態に応じて、リタッチ先を前記第二ネットワークとした前記第一ネットワークからのデタッチ要求を前記少なくとも一つの通信端末へ送信するにより、前記少なくとも一つの通信端末の無線接続を切り替える、付記15に記載の通信制御装置。
(付記21)
 前記第一ネットワークが、前記輻輳状態に応じて、前記少なくとも一つの通信端末からのアタッチ要求に対して、アタッチ先を前記第二ネットワークとしたアタッチ先切替指示を送信するにより、前記少なくとも一つの通信端末の無線接続を切り替える、付記15に記載の通信制御装置。
(付記22)
 通信端末を収容可能なネットワークにおける基地局としてコンピュータを機能させるプログラムであって、
 前記ネットワークの無線アクセスネットワークの輻輳状態を検出する輻輳検出機能と、
 前記輻輳状態に応じて、少なくとも一つの通信端末の無線接続を、少なくとも無線アクセスネットワークが物理的に独立した他のネットワークへ切り替える制御機能と、
 を前記コンピュータに実現するプログラム。
(付記23)
 通信制御装置としてコンピュータを機能させるプログラムであって、
 通信端末を収容可能な第一ネットワークにおける無線アクセスネットワークの輻輳状態を認識する輻輳認識機能と、
 前記輻輳状態に応じて、少なくとも一つの通信端末の無線接続を、前記第一ネットワークと少なくとも無線アクセスネットワークが物理的に独立した第二ネットワークへ切り替える制御機能と、
 を前記コンピュータに実現するプログラム。
6). Additional Notes Part or all of the above-described embodiments may be described as the following additional notes, but are not limited thereto.
(Appendix 1)
The first network that can accommodate the communication terminal detects the congestion state of the radio access network,
The first network switches the wireless connection of at least one communication terminal to a second network in which the first network and at least the radio access network are physically independent according to the congestion state;
Communications system.
(Appendix 2)
The communication system according to appendix 1, wherein the first network is a non-virtual network and the second network is a virtual network.
(Appendix 3)
The supplementary note 1 or 2, wherein the first network switches the wireless connection of the at least one communication terminal by a handover from the base station of the first network to the base station of the second network according to the congestion state. The communication system described.
(Appendix 4)
The communication system according to any one of appendices 1-3, wherein the traffic of the at least one communication terminal is offloaded to a path including a base station of the second network and a core network of the first network.
(Appendix 5)
The communication system according to any one of appendices 1-4, wherein the first network switches a wireless connection of the at least one communication terminal by a handover involving only a base station according to the congestion state.
(Appendix 6)
The communication system according to any one of appendices 1-3, wherein the traffic of the at least one communication terminal is offloaded to a path including a base station of the second network and a core network of the second network.
(Appendix 7)
The first network switches the wireless connection of the at least one communication terminal by a handover involving the core network of the first network and the core network of the second network according to the congestion state. The communication system according to any one of 3 and 6.
(Appendix 8)
In response to the congestion state, the first network transmits a detach request from the first network whose retouch destination is the second network to the at least one communication terminal. The communication system according to attachment 1 or 2, wherein the connection is switched.
(Appendix 9)
In response to the attach request from the at least one communication terminal, the first network transmits the attach destination switching instruction in which the attach destination is the second network in response to the congestion state, so that the at least one communication The communication system according to attachment 1 or 2, wherein the wireless connection of the terminal is switched.
(Appendix 10)
The communication system according to any one of appendices 1-9, wherein the function of the base station of the second network is separated into a remote radio station and a baseband processing unit.
(Appendix 11)
The first network that can accommodate the communication terminal detects the congestion state of the radio access network,
The first network switches the wireless connection of at least one communication terminal to a second network in which the first network and at least the radio access network are physically independent according to the congestion state;
Communication control method.
(Appendix 12)
A base station in a network capable of accommodating communication terminals,
Congestion detection means for detecting a congestion state of the wireless access network of the network;
Control means for switching a wireless connection of at least one communication terminal to another network at least a radio access network is physically independent according to the congestion state;
Base station with
(Appendix 13)
13. The base station according to appendix 12, wherein the control means switches the wireless connection of the at least one communication terminal by handover to the base station of the other network according to the congestion state.
(Appendix 14)
14. The base station according to appendix 12 or 13, wherein the control means switches the wireless connection of the at least one communication terminal by a handover involving only the base station according to the congestion state.
(Appendix 15)
A congestion recognition means for recognizing a congestion state of the radio access network in the first network capable of accommodating communication terminals;
Control means for switching the wireless connection of at least one communication terminal to a second network in which the first network and at least the wireless access network are physically independent according to the congestion state;
A communication control device.
(Appendix 16)
The communication according to appendix 15, wherein the control means switches the wireless connection of the at least one communication terminal by a handover from the base station of the first network to the base station of the second network according to the congestion state. Control device.
(Appendix 17)
The communication control device according to appendix 15 or 16, wherein the traffic of the at least one communication terminal is offloaded to a path including a base station of the second network and a core network of the first network.
(Appendix 18)
The communication control device according to appendix 15 or 16, wherein the traffic of the at least one communication terminal is offloaded to a path including a base station of the second network and a core network of the second network.
(Appendix 19)
The control means switches the wireless connection of the at least one communication terminal by a handover involving the core network of the first network and the core network of the second network according to the congestion state. Or the communication control apparatus of 18.
(Appendix 20)
According to the congestion state, the control means transmits a detach request from the first network to which the retouch destination is the second network, to the at least one communication terminal, thereby wirelessly connecting the at least one communication terminal. The communication control device according to attachment 15, wherein the communication control device is switched.
(Appendix 21)
In response to the attach request from the at least one communication terminal, the first network transmits the attach destination switching instruction in which the attach destination is the second network in response to the congestion state, so that the at least one communication The communication control device according to attachment 15, wherein the wireless connection of the terminal is switched.
(Appendix 22)
A program for causing a computer to function as a base station in a network capable of accommodating communication terminals,
A congestion detection function for detecting a congestion state of the wireless access network of the network;
A control function for switching a wireless connection of at least one communication terminal to another network at least a radio access network is physically independent according to the congestion state;
A program for realizing the above on the computer.
(Appendix 23)
A program for causing a computer to function as a communication control device,
A congestion recognition function for recognizing the congestion state of the radio access network in the first network capable of accommodating communication terminals;
A control function for switching the wireless connection of at least one communication terminal to a second network in which the first network and at least the radio access network are physically independent according to the congestion state;
A program for realizing the above on the computer.
 本発明は移動体通信システム一般に利用可能である。 The present invention is generally applicable to mobile communication systems.
10 第1ネットワーク(非仮想ネットワーク)
11 基地局
12 EPC
12b vEPC
20 第2ネットワーク
20a、20b 仮想ネットワーク
21a、21b vBBUプール
22 RRH
23 フロントホール

 
10 First network (non-virtual network)
11 Base station 12 EPC
12b vEPC
20 Second network 20a, 20b Virtual network 21a, 21b vBBU pool 22 RRH
23 Front hall

Claims (23)

  1.   通信端末を収容可能な第一ネットワークが無線アクセスネットワークの輻輳状態を検出し、
     前記第一ネットワークが、前記輻輳状態に応じて、少なくとも一つの通信端末の無線接続を、前記第一ネットワークと少なくとも無線アクセスネットワークが物理的に独立した第二ネットワークへ切り替える、
     通信システム。
    The first network that can accommodate the communication terminal detects the congestion state of the radio access network,
    The first network switches the wireless connection of at least one communication terminal to a second network in which the first network and at least the radio access network are physically independent according to the congestion state;
    Communications system.
  2.  前記第一ネットワークが非仮想ネットワーク、前記第二ネットワークが仮想ネットワークである、請求項1に記載の通信システム。 The communication system according to claim 1, wherein the first network is a non-virtual network and the second network is a virtual network.
  3.  前記第一ネットワークが、前記輻輳状態に応じて、前記少なくとも一つの通信端末の無線接続を、前記第一ネットワークの基地局から前記第二ネットワークの基地局へのハンドオーバにより切り替える、請求項1または2に記載の通信システム。 The first network switches the wireless connection of the at least one communication terminal by a handover from a base station of the first network to a base station of the second network according to the congestion state. The communication system according to 1.
  4.  前記少なくとも一つの通信端末のトラフィックを前記第二ネットワークの基地局と前記第一ネットワークのコアネットワークとからなる経路へオフロードする、請求項1-3のいずれか1項に記載の通信システム。 The communication system according to any one of claims 1 to 3, wherein traffic of the at least one communication terminal is offloaded to a path including a base station of the second network and a core network of the first network.
  5.  前記第一ネットワークが、前記輻輳状態に応じて、前記少なくとも一つの通信端末の無線接続を、基地局のみが関与するハンドオーバにより切り替える、請求項1-4のいずれか1項に記載の通信システム。 The communication system according to any one of claims 1 to 4, wherein the first network switches wireless connection of the at least one communication terminal by handover involving only a base station according to the congestion state.
  6.  前記少なくとも一つの通信端末のトラフィックを前記第二ネットワークの基地局と前記第二ネットワークのコアネットワークとからなる経路へオフロードする、請求項1-3のいずれか1項に記載の通信システム。 The communication system according to any one of claims 1 to 3, wherein traffic of the at least one communication terminal is offloaded to a path including a base station of the second network and a core network of the second network.
  7.  前記第一ネットワークが、前記輻輳状態に応じて、前記少なくとも一つの通信端末の無線接続を、前記第一ネットワークのコアネットワークと前記第二ネットワークのコアネットワークとが関与するハンドオーバにより切り替える、請求項1-3、6のいずれか1項に記載の通信システム。 The first network switches the wireless connection of the at least one communication terminal by a handover involving a core network of the first network and a core network of the second network according to the congestion state. The communication system according to any one of -3 and 6.
  8.  前記第一ネットワークが、前記輻輳状態に応じて、リタッチ先を前記第二ネットワークとした前記第一ネットワークからのデタッチ要求を前記少なくとも一つの通信端末へ送信するにより、前記少なくとも一つの通信端末の無線接続を切り替える、請求項1または2に記載の通信システム。 In response to the congestion state, the first network transmits a detach request from the first network whose retouch destination is the second network to the at least one communication terminal. The communication system according to claim 1 or 2, wherein the connection is switched.
  9.  前記第一ネットワークが、前記輻輳状態に応じて、前記少なくとも一つの通信端末からのアタッチ要求に対して、アタッチ先を前記第二ネットワークとしたアタッチ先切替指示を送信するにより、前記少なくとも一つの通信端末の無線接続を切り替える、請求項1または2に記載の通信システム。 In response to the attach request from the at least one communication terminal, the first network transmits the attach destination switching instruction in which the attach destination is the second network in response to the congestion state, so that the at least one communication The communication system according to claim 1, wherein the wireless connection of the terminal is switched.
  10.  前記第二ネットワークの基地局の機能がリモート無線局とベースバンド処理部とに分離している、請求項1-9のいずれか1項に記載の通信システム。 The communication system according to any one of claims 1 to 9, wherein a function of a base station of the second network is separated into a remote radio station and a baseband processing unit.
  11.  通信端末を収容可能な第一ネットワークが無線アクセスネットワークの輻輳状態を検出し、
     前記第一ネットワークが、前記輻輳状態に応じて、少なくとも一つの通信端末の無線接続を、前記第一ネットワークと少なくとも無線アクセスネットワークが物理的に独立した第二ネットワークへ切り替える、
     通信制御方法。
    The first network that can accommodate the communication terminal detects the congestion state of the radio access network,
    The first network switches the wireless connection of at least one communication terminal to a second network in which the first network and at least the radio access network are physically independent according to the congestion state;
    Communication control method.
  12.  通信端末を収容可能なネットワークにおける基地局であって、
     前記ネットワークの無線アクセスネットワークの輻輳状態を検出する輻輳検出手段と、
     前記輻輳状態に応じて、少なくとも一つの通信端末の無線接続を、少なくとも無線アクセスネットワークが物理的に独立した他のネットワークへ切り替える制御手段と、
     を有する基地局。
    A base station in a network capable of accommodating communication terminals,
    Congestion detection means for detecting a congestion state of the wireless access network of the network;
    Control means for switching a wireless connection of at least one communication terminal to another network at least a radio access network is physically independent according to the congestion state;
    Base station with
  13.  前記制御手段が、前記輻輳状態に応じて、前記少なくとも一つの通信端末の無線接続を、前記他のネットワークの基地局へのハンドオーバにより切り替える、請求項12に記載の基地局。 The base station according to claim 12, wherein the control means switches the wireless connection of the at least one communication terminal by a handover to a base station of the other network according to the congestion state.
  14.  前記制御手段が、前記輻輳状態に応じて、前記少なくとも一つの通信端末の無線接続を、基地局のみが関与するハンドオーバにより切り替える、請求項12または13に記載の基地局。 The base station according to claim 12 or 13, wherein the control means switches the wireless connection of the at least one communication terminal by a handover involving only the base station according to the congestion state.
  15.  通信端末を収容可能な第一ネットワークにおける無線アクセスネットワークの輻輳状態を認識する輻輳認識手段と、
     前記輻輳状態に応じて、少なくとも一つの通信端末の無線接続を、前記第一ネットワークと少なくとも無線アクセスネットワークが物理的に独立した第二ネットワークへ切り替える制御手段と、
     を有する通信制御装置。
    A congestion recognition means for recognizing a congestion state of the radio access network in the first network capable of accommodating communication terminals;
    Control means for switching the wireless connection of at least one communication terminal to a second network in which the first network and at least the wireless access network are physically independent according to the congestion state;
    A communication control device.
  16.  前記制御手段が、前記輻輳状態に応じて、前記少なくとも一つの通信端末の無線接続を、前記第一ネットワークの基地局から前記第二ネットワークの基地局へのハンドオーバにより切り替える、請求項15に記載の通信制御装置。 16. The control unit according to claim 15, wherein the control means switches the wireless connection of the at least one communication terminal by a handover from a base station of the first network to a base station of the second network according to the congestion state. Communication control device.
  17.  前記少なくとも一つの通信端末のトラフィックを前記第二ネットワークの基地局と前記第一ネットワークのコアネットワークとからなる経路へオフロードする、請求項15または16に記載の通信制御装置。 The communication control device according to claim 15 or 16, wherein the traffic of the at least one communication terminal is offloaded to a path including a base station of the second network and a core network of the first network.
  18.  前記少なくとも一つの通信端末のトラフィックを前記第二ネットワークの基地局と前記第二ネットワークのコアネットワークとからなる経路へオフロードする、請求項15または16に記載の通信制御装置。 The communication control device according to claim 15 or 16, wherein the traffic of the at least one communication terminal is offloaded to a path including a base station of the second network and a core network of the second network.
  19.  前記制御手段が、前記輻輳状態に応じて、前記少なくとも一つの通信端末の無線接続を、前記第一ネットワークのコアネットワークと前記第二ネットワークのコアネットワークとが関与するハンドオーバにより切り替える、請求項15、16または18に記載の通信制御装置。 The control means switches the wireless connection of the at least one communication terminal by a handover involving the core network of the first network and the core network of the second network according to the congestion state, The communication control device according to 16 or 18.
  20.  前記制御手段が、前記輻輳状態に応じて、リタッチ先を前記第二ネットワークとした前記第一ネットワークからのデタッチ要求を前記少なくとも一つの通信端末へ送信するにより、前記少なくとも一つの通信端末の無線接続を切り替える、請求項15に記載の通信制御装置。 According to the congestion state, the control means transmits a detach request from the first network to which the retouch destination is the second network, to the at least one communication terminal, thereby wirelessly connecting the at least one communication terminal. The communication control device according to claim 15, wherein the communication control device is switched.
  21.  前記第一ネットワークが、前記輻輳状態に応じて、前記少なくとも一つの通信端末からのアタッチ要求に対して、アタッチ先を前記第二ネットワークとしたアタッチ先切替指示を送信するにより、前記少なくとも一つの通信端末の無線接続を切り替える、請求項15に記載の通信制御装置。 In response to the attach request from the at least one communication terminal, the first network transmits the attach destination switching instruction in which the attach destination is the second network in response to the congestion state, so that the at least one communication The communication control device according to claim 15, wherein the wireless connection of the terminal is switched.
  22.  通信端末を収容可能なネットワークにおける基地局としてコンピュータを機能させるプログラムであって、
     前記ネットワークの無線アクセスネットワークの輻輳状態を検出する輻輳検出機能と、
     前記輻輳状態に応じて、少なくとも一つの通信端末の無線接続を、少なくとも無線アクセスネットワークが物理的に独立した他のネットワークへ切り替える制御機能と、
     を前記コンピュータに実現するプログラム。
    A program for causing a computer to function as a base station in a network capable of accommodating communication terminals,
    A congestion detection function for detecting a congestion state of the wireless access network of the network;
    A control function for switching a wireless connection of at least one communication terminal to another network at least a radio access network is physically independent according to the congestion state;
    A program for realizing the above on the computer.
  23.  通信制御装置としてコンピュータを機能させるプログラムであって、
     通信端末を収容可能な第一ネットワークにおける無線アクセスネットワークの輻輳状態を認識する輻輳認識機能と、
     前記輻輳状態に応じて、少なくとも一つの通信端末の無線接続を、前記第一ネットワークと少なくとも無線アクセスネットワークが物理的に独立した第二ネットワークへ切り替える制御機能と、
     を前記コンピュータに実現するプログラム。
    A program for causing a computer to function as a communication control device,
    A congestion recognition function for recognizing the congestion state of the radio access network in the first network capable of accommodating communication terminals;
    A control function for switching the wireless connection of at least one communication terminal to a second network in which the first network and at least the radio access network are physically independent according to the congestion state;
    A program for realizing the above on the computer.
PCT/JP2016/003155 2015-07-06 2016-07-01 Communication system, base station, and communication control method and device WO2017006548A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015134896 2015-07-06
JP2015-134896 2015-07-06

Publications (1)

Publication Number Publication Date
WO2017006548A1 true WO2017006548A1 (en) 2017-01-12

Family

ID=57685522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003155 WO2017006548A1 (en) 2015-07-06 2016-07-01 Communication system, base station, and communication control method and device

Country Status (1)

Country Link
WO (1) WO2017006548A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020508018A (en) * 2017-02-13 2020-03-12 アファームド ネットワークス コミュニケーションズ テクノロジーズ,インク. Resource control in shared RAN
CN112672374A (en) * 2020-11-30 2021-04-16 国网山东省电力公司滨州供电公司 Electric power data communication state processing system and terminal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079715A1 (en) * 2009-01-06 2010-07-15 シャープ株式会社 MOBILE COMMUNICATION SYSTEM, QoS CONTROL STATION, AND MOBILE STATION
WO2013044958A1 (en) * 2011-09-29 2013-04-04 Nokia Siemens Networks Oy Dynamically extending mobile coverage and capacity by offloading
WO2014066403A1 (en) * 2012-10-22 2014-05-01 Qualcomm Incorporated Switching of users between co-existence wireless systems
WO2014192749A1 (en) * 2013-05-31 2014-12-04 株式会社Nttドコモ Base station, user device, congestion status notification control method, and switch control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079715A1 (en) * 2009-01-06 2010-07-15 シャープ株式会社 MOBILE COMMUNICATION SYSTEM, QoS CONTROL STATION, AND MOBILE STATION
WO2013044958A1 (en) * 2011-09-29 2013-04-04 Nokia Siemens Networks Oy Dynamically extending mobile coverage and capacity by offloading
WO2014066403A1 (en) * 2012-10-22 2014-05-01 Qualcomm Incorporated Switching of users between co-existence wireless systems
WO2014192749A1 (en) * 2013-05-31 2014-12-04 株式会社Nttドコモ Base station, user device, congestion status notification control method, and switch control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020508018A (en) * 2017-02-13 2020-03-12 アファームド ネットワークス コミュニケーションズ テクノロジーズ,インク. Resource control in shared RAN
JP7132950B2 (en) 2017-02-13 2022-09-07 マイクロソフト テクノロジー ライセンシング,エルエルシー Resource control in shared RAN
CN112672374A (en) * 2020-11-30 2021-04-16 国网山东省电力公司滨州供电公司 Electric power data communication state processing system and terminal

Similar Documents

Publication Publication Date Title
US11095645B2 (en) Virtualization of the evolved packet core to create a local EPC
EP3035735B1 (en) Handover method, master base station and slave base station
US9883441B2 (en) Method and apparatus to route packet flows over two transport radios
EP3788766B1 (en) Direct user equipment to user equipment without data network access identifier
US11895024B2 (en) Method, device and computer readable medium for delivering data-plane packets by using separate transport service VNFC
EP2717538B1 (en) Communication method and system, access network device, and application server
EP2781123B1 (en) Performing mobility load balancing and mobility robustness optimization between access nodes for only a subset of user equipment
CN106162765B (en) Data transmission method and device
EP3530030B1 (en) Improving handover efficiency
JP2023100718A (en) Server in internet-of-things communication path
US10624145B2 (en) Service transmission method, apparatus, and device
US11330489B2 (en) Apparatus, method and computer program
US10447603B2 (en) Control signaling transmission method and device
US20150141009A1 (en) Communication system and method for path control
CN108848528B (en) SDN and NFV converged network mobility management method
KR20140117963A (en) Method and apparatus of traffic control in next generation mobile communication system
WO2017006548A1 (en) Communication system, base station, and communication control method and device
JP7018884B2 (en) Communication method
US11310148B2 (en) Methods, systems, and computer programs for intelligent content delivery using a software defined network and edge computing
EP4307763A1 (en) Traffic flow processing method, apparatus and system
EP3110076A1 (en) Multi-path telecommunications networks
EP2801234B1 (en) Method for accessing in wireless communication network
WO2024022687A1 (en) Inter cell beam management
WO2022098279A1 (en) Methods and network nodes for handling congestion associated with control plane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP