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Abstract 

SKIM is a computer built to explore pure 
functional programming, combinators as a machine 
language and the use of hardware to provide direct 
support for a high level language. Its design 
stresses simplicity and aims at providing 
minicomputer performance (in its particular 
application areas) for microcomputer costs. This 
paper discusses the high level reduction language 
that SKIM supports, the way in which this language 
is compiled into combinators and the hardware and 
microcode that then evaluate programs. 

I. Introduction 

In [I] Turner shows how combinators can be used as 
an intermediate representation for applicative 
programs. He compares (software) interpretation of 
combinator forms with more traditional schemes 
based on lambda calculus, and demonstrates that 
his new method is both elegant and efficient, at 
least when normal order evaluation is required. 
SKIM is an investigation of how Turner's ideas 
translate into hardware. It views his combinators 
as machine code, and the fixed program that obeys 
them as microcode. In section 2 we will present 
the particular applicative language we use, and 
comment on the need for special computers to 
support such languages. Section 3 reviews Turner's 
observations about combinators, leading in to 
section 4 where SKIM's hardware is described. The 
SKIM microcode is covered in section 5, and 
performance in section 6. Our conclusions, which 
are given at length in section 7, are that 
languages with applicative semantics are fun, and 
that very modest amounts of hardware can provide 
good support for them. 

2. Small: an applicative language 

SKIM achieves much of its simplicity by being 
specialised to support just one style of high 
level language. The language we use is called 
Small, and was initially designed as the user 
interface to an algebra system [2]. This origin 
has had two effects on Small. The language is 
applicative (i.e. no constructs in it can ever 
have side-effects) since this leads to a 

programming style which fits in very smoothly with 
the mathematical flavour of symbolic algebra. 
Also, since in an algebra system even small 
amounts of arithmetic may involve calling fairly 
expensive subroutines, the initial design for 
Small dld not feel obliged to allow for 
compilation into efficient machine code. As a 
user-level language for driving large packages it 
can afford an interpretive implementation. This 
results in a language which demands proper 
treatment of functional objects (the Funarg 
facility, so often missing or restricted in full 
sized LISP systems), call-by-need (otherwise known 
as lazy evaluation) and an error-handling scheme 
compatible with the semantics of the rest of the 
language. 

Figure 1 gives a few simple examples of Small 
functions and so illustrates how it compares with 
the direct use of lambda calculus or LISP. It is 
easy to demonstrate the positive features of a 
language such as Small, such as its pattern- 
matching test for decomposing structures, its 
capability for recursive definitions of data as 
well as program and its lazy evaluation. When 
these points have been covered there remain 
various real worries as to how practical Small 
could be for the development of large programs. 
Here we will ignore most of these - for instance 
those concerning the relationship between pure 
language and file stores - and just discuss the 
two concerns that we have considered most 
pressing. We pose each in the form of direct 
questions: 

(a) Is it possible to write substantial programs 
without using (updatable) global variables and 
without the ability to alter existing data 
structures? 

(b) Is there a time penalty associated with the 
use of applicative languages? 

In (a) the word "possible" has to be read as 
implying convenience and reasonably clean 
programs, for after all the lambda calculus is 
computationally universal. Concern over time in 
(b) will have to consider both the effects of 
purity on algorithms and the practical 
implications of call-by-need, retention and so on. 
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Experience with the initial interpretive 
implementation of Small rapidly convinced us that 
any loss in expressive power that may result from 
removing imperative constructs from a language is 
more than balanced by the convenience of having 
normal order evaluation and higher order 
functions. Our consideration of gradually larger 
programming tasks soon however ran into problem 
(b) - not only was Small implemented 
interpretively, but its interpreter was not a 
particularly fast one. The speed penalty we were 
paying was one which has been observed before when 
lazy evaluation schemes have been implemented, and 
we have seen several suggestions for reducing its 
effects. In [3] Mycroft shows that many programs 
can be executed using an efficient call-by-value 
implementation, and he proposes compilation 
techniques that mean that the costs associated 
with call-by-need are only paid when they are 
provably necessary. This line of work views 
programs in pure languages as specifications of 
tasks to be performed and seeks to map the 
processes onto ones which make efficient use of 
existing computers. At the other extreme Mago [4] 
and Berkling [5] have been involved with the 
design of large-scale hardware that will execute 
applicative languages directly. The next section 
presents the basis of our attack on the efficiency 
problem. 

3. Combinators and their use as a machine code 

Our response to the cost of running an applicative 
language has been to accept that we will need an 
interpreter to support it, and to view the (fixed) 
program that is the interpreter as being mierocode 
for the computer that our end-user sees. By doing 
this we hope to show that the observed performance 
problem is just an effect of the bias of today's 
computers towards efficient support of procedural 
language, and that it is not intrinsic to 
applicative ones. The idea of hardware support for 
side-effect-free languages immediately raises the 
possibility of parallel processing. This is an 
issue which we have not addressed: we wish to 
demonstrate how limited amounts of special 
hardware can have a large effect on performance. 
Given that we wish to have a machine with a 
substantial amount of Small-specific microcode, we 
have to decide what data structures this microcode 
will work with. It would perhaps be possible to 
interpret Small direct from the character form of 
source code, but we are prepared to use a simple 
compiler if doing so will speed up the 
interpreter. 

There are  two conventional ways of balancing 
compilation effort against microcode complexity. 
The first is to store programs as trees 
representing lambda-expressions, the second is to 
flatten the trees into something that resembles 
the object code of an ordinary machine but which 
provides good support for LISP-like variable 
access and function linkage. The scheme we adopt 
is closer to the first of these, but following 
Turner it uses combinators rather than lambda 
expressions as its representation of programs. 

To start the description of our interpreter we 
will review some basic facts about combinators. 
Full details of the properties of combinators and 
the way in which they can form a model of 
computation can be found in any text on symbolic 
logic (e.g. [6]), for present purposes the 
following sketch will be sufficient. In its most 
primitive form combinatory logic is built up using 
just the two symbols S and K, which represent 
functions satisfying 

Kxy : x 
and S f g x = f x (g x) (A) 

By convention functional composition associates to 
the left so that S f g x is ((S f) g) x. 
Define a new object I = S K K then observe 
that for any x we have I x = S K K x = K x (K x) 
(using the definition of S) = x. Thus I acts as 
the identity function. Any lambda expression can 
be represented in terms of the basic combinators 
by using the abstraction rules 

A a.a -> I (a is atomic), 
A a.b -> K b (b atomic and a ~: b), (B) 
A a.p q -> S (A a.b) (A a . q )  

(p q is any function application) 

If a language such as Small can be parsed to give 
a tree equivalent to some lambda expression, the 
rules (B) define a codegenerator that unwinds the 
tree into a combinator machine code. For programs 
which model all their data using lambda 
expressions the entire order set of the machine 
then needed is (A). 

In practice of course we will want to use an 
applied lambda calculus or combinator model, with 
lists and integers (for instance) as the data 
types supported. Doing this does not make any 
significant difference to the compilation process 
(B) but does mean that the machine specification 
(A) has to be expanded to include rules like 

plus m n = (the sum of m and n) 
and cons a b =(a list node with refs. to a and b). 

How does this idea compare with the use of a 
lambda calculus interpreter? The main thing is 
that the reduction rules used are extraordinarily 
simple and do not involve the manipulation of 
anything besides the program text. In contrast 
lambda calculus reducers either have to keep 
association-list like environments or use some 
form of systematic renaming of user variables. The 
combinator language also avoids almost all 
temptation to make hardware registers and stacks 
in any way visible to the end user, whereas in 
lambda calculus there are opportunities to abandon 
retention and use shallow binding of variables 
with quick address modes for the first few 
variables in each stack frame. 

Provided the compilation process is slightly 
extended to use a few extra combinators it also 
turns out that the amount of work that has to be 
done in performing a normal order reduction of a 
combinator expression is very close to that 
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involved in doing an applicative order reduction 
on an equivalent lambda expression, and is 
substantially less than that invovled in a 'lazy' 
normal order lambda reduction. Figure 2 lists the 
complete set of combinators we use: it can be seen 
that none of them are substantially more 
complicated than S or K. 

It was the simplicity and elegance of the 
combinator model which made us consider a hardware 
implementation worthwhile. 

4. The Architecture of SKIM 

SKIM was designed specifically to provide hardware 
support for a combinator interpreter. It is a 
microprogrammed design with a microinstruction set 
that has been optimised for tree manipulation. 
This optimisation has succeeded in that SKIM's 
performance is limited by main memory bandwidth 
rather than by the details of the design. 

We will describe the design at microinstruction 
level. Data is held in 16 internal registers and 
in 32K words of main memory, the word length being 
16 bits throughout. There are only three 
microinstruction types: memory read, memory write 
and ALU. Each specifies two internal registers, Ra 
and Rb (two four bit fields) and performs the 
following data transfer: 

Memory read Rb <- (Ra) 
Memory write (Ra) <- Rb 
ALU Rb <- f Ra Rb 
where f is the ALU function selected. 

This set is sufficient because of the following 
features: 

a) All I/O is handled over a 16 bit port, 
addressed as an internal register (R15). 

b) The microprogram sequence register is available 
as another internal register (R13). 

c) All microinstructions include a conditional 
branch. Four bits in the microinstruction are 
decoded to give one of sixteen branch conditions 
and twelve bits are used to give a full 4K branch 
address. 

The branch address, suitably extended to 16 bits, 
can be addressed as a read-only internal register 
(R14), and provides for insertion of immediate 
data when the branch facility is not used. 

Rather than list the ALU functions we remark that 
the chips we use are 74S281's, and that bits in 
the instruction control the shifting of the data 
and the carry bit. Support is provided for 
multiple length operations. 

So far the design has seemed quite general 
purpose. The hardware optimisation involves the 
organisation of main memory. This is divided into 
two banks (Head and Tail), so that a memory 
location is given by one bit in the instruction, 
selecting the bank, together with a 14 bit 
address. This addressing mode is the only one 
needed, since all programs, data, stacks etc. are 
held as trees. The top two bits of a data word 
give information about the type of pointer and 
branch conditions are provided to test these. 
Associated with each word in memory is a flag bit, 
used by the garbage collector, and memory write 
instructions may set or reset this bit. During a 
memory read a conditional branch may be made on 
the value of this flag bit. 

This microinstruction set determines the hardware 
design, shown schematically in figure 3. All 
microinstructions are the same length, 600 ns, 
which is determined by the cycle time of the main 
memory (4116 16K dynamic RAM). Conveniently, this 
means that slow MOS EPROMs can be used to store 
the microcode, provided that one level of 
pipelining is used. The long cycle time allows all 
data transfers to be multiplexed through one main 
bus, there being at most three such transfers per 
cycle, greatly simplifying the design. ALU 
instructions, which represent wasted memory 
cycles, provide an economical way of refreshing 
the RAM. 

The completed design, including 64K bytes of RAM 
and 4K words of EPROM, comes to just 100 packages, 
which fit comfortably on two double sized Eurocard 
boards. This is no larger than many microprocessor 
systems with the same amount of memory, 
vindicating our decision to use msi TTL rather 
than bit-slice technology. 

5. SKIM microcode 

The SKIM microcode falls into four main sections 
which are, in decreasing order of size, the 
combinator evaluator, the expression reader, the 
printer and the storage manager/garbage collector. 
The first and last of these are interesting enough 
to warrant special attention. We will cover the 
storage manager first. 

Apart from a very few words used by various 
routines to contain useful constants and a save 
area for the garbage collector, all of SKIM's 
memory is organised as pairs and is subject to the 
control of the garbage collector. To avoid having 
to set aside dedicated memory and because SKIM is 
not very good at running real stacks this has a 
non-recursive mark phase, the code for which is 
displayed in figure 4. Without a full key to the 
mnemonics used in SKIM's assembler the details of 
this code will remain obscure. It is however 
possible to see from it how a large proportion of 
the instructions are able to perform tests and 
conditional branches in parallel with data 
movement. Timings of this code will be quoted in 
the next section. Close inspection of the code 
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will reveal more details of the hardware. For 
instance the cycle after a conditional branch has 
to be inhibited while a pipeline register is 
drained; after unconditional branches this is not 
done. The effect of this is that unconditional 
branches have to be written one line "early" in 
the source code, but to compensate for this they 
do not slow the machine down at all. 

The core of the combinator reducer is a piece of 
code which searches down the leftmost branch of a 
tree until it finds an operator as a leaf, and 
then it goes off to decode and execute the 
operator. To make the final part of this process 
fast we make the internal representation of 
combinators just the absolute address in mierocode 
store of the program that does the required 
reduction. This also provides an easy way to gain 
non-standard entry to diagnostic routines hidden 
in the microcode. The reducer, like the garbage 
collector, uses pointer reversal to keep track of 
its tree-walk. Figure 5 shows how pointers get 
reversed In the process of finding and processing 
an S combinator. Note how when S needs to find its 
arguments the back-pointer chain gives convenient 
and cheap access to them. If, as the result of a 
programmer error, the pointer reversing reducer 
were given a cyclic structure representing a self- 
dependent computation then it would eventually 
reach a portion of the structure which it had 
already traversed. In this situation it traces the 
wrong way up the tree, finding its back-pointer 
terminator as a combinator. This is easy to detect 
and provides a neat check for this form of illegal 
program. When working on the operands of an 
arithmetic operator such as + the reducer does 
need a real stack. We use a linked list, which 
with SKIM's hardware is almost as efficient as a 
real stack on a more normal machine. It also has 
the advantage that the stack does not have to 
occupy large contiguous areas of free store, but 
can use any free pairs. 

6. Performance 

In evaluating a design such as SKIM it is 
necessary to measure both the low level efficiency 
of the microcode and the effect that the 
programming model used has on gross performance. 
The results to be presented here are still fairly 
rough, since SKIM has only been running for a 
month or so. We can however report results of 
paper studies, simulations of the SKIM hardware, 
other software combinator-reducing programs and 
programs run directly on SKIM, and hope that a 
good composite picture of the potential of 
combinators will emerge. 

The first piece of code to be considered is the 
garbage collector of Figure 4. We have used the 
pointer reversing tree-walk algorithm that it uses 
as a benchmark to compare SKIM against a number of 
other processors. The programs used in this 
comparison were written in assembly code by a 
number of different people, and on some processors 
(notably the Z80) it was clear that individual 

coding skill could make a large difference to the 
times reported. We nevertheless find the final 
results, table I, consistent enough to be used as 
a rough measure of machine speed. For the simpler 
machines (i.e. those without elaborate instruction 
look-ahead and cache stores) the times quoted were 
computed from published instruction timings. Where 
possible empirical verification was then obtained. 
For the 370, times depend critically on the exact 
sequencing of orders, and so the result given is 
based solely on observation. 

Two things show up in these timings. The first is 
that the scattered memory references and dense 
control structure of a tree-walk program can be 
bad news for a mainframe such as the IBM 370 - its 
performance is limited by the speed of its main 
memory which is not very much faster than that of 
a mini. The second is that SKIM can get a great 
deal of list processing done per cycle. We 
attribute most of this to the fact that it is a 
fixed program machine, and so instruction fetches 
are done in parallel with store manipulation. 

We now consider the SKIM code in more detail to 
get some idea of its absolute performance. A first 
way of measuring this is to consider its use of 
memory cycles, counting each ALU cycle in the 
processor as a wasted opportunity to do something 
with main store. Here we find that about 60% of 
all cycles are memory accesses. Of those that are 
left about 10% are needed for refreshing the 
dynamic RAMs. Thus if we stay with an architecture 
where only one word is touched at a time, 
elaborations to the SKIM processor can at the very 
best less than double the speed of its garbage 
collector. Since the main combinator reducing 
algorithm has a similar structure to that of the 
list marker, and since the most important 
combinators involve pointer adjustments, we expect 
a similar result to hold for the entire SKIM 
system. 

Now how does SKIM perform when programmed in its 
combinator language? The simple answer is: like a 
system that runs interpretively on a fairly fast 
processor. We consider it fair to compare SKIM 
against interpretive LISP on the local IBM 
mainframe and against a fast integer BASIC running 
on a 6502 micro. Th~ first test we ran involved 
the generation of lists of prime numbers. The 
algorithm used in all cases involved test division 
by all primes up to the square root of the next 
number to be tested for primality. On SKIM this 
can be done very neatly using a recursively 
defined list structure. By running SKIM for a few 
hours we have made it tabulate the primes up to a 
million or so. For present purposes we quote 
figures for computations lasting about a minute. 
In I minute a program running in interpreted 32- 
bit integer BASIC on 1 2MHz 6502 [7] was able to 
find all primes up to 4621 (there are slightly 
over 600 of them). For the same calculation SKIM 
takes 35 seconds. A compiled version of the same 
BASIC program produced between 1100 and 1200 
primes in a minute - to get to the same state SKIM 
takes 80 seconds. We note that the 2MHz version of 
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the 6502 used is still one of the faster 8-bit 
micros available. For comparison with a mainframe 
we coded an arbitrary precision integer arithmetic 
package in both Small and LISP, in each case 
avoiding machine dependance by representing 
numbers base 1000. Interpreted LISP [8] on the 
370/165 took 12 seconds to compute 2"'1000, while 
SKIM took 25 seconds. Compiled LISP code obtained 
the same result in about 3 seconds. A separate 
test, involving the computation and display of the 
first 12 Legendre polynomials again showed a 
tenfold speed advantage to the 370 when running 
compiled code. Given the fairly high level of 
SKIM's combinator machine code and the fact that 
our test programs were all produced by compilation 
from Small (i.e. without any hand-optimisation) we 
find these results most encouraging. 

7. Conclusions 

When the SKIM project started we felt that the 
clean logical structure of combinators ought to 
lead to a simple yet fast hardware design. As the 
hardware and microcode has crystallised, and as we 
have gained experience with combinators and 
applicative programming these initial hopes have 
been largely fulfilled. SKIM demonstrates yet 
again that special purpose hardware can be a great 
help when a slightly unconventional language is 
being implemented, and that at least for llst- 
processing applications even a simple computer can 
deliver a quite respectable performance. There 
have been a few ways in which SKIM has surprised 
us. The amount of microcode needed to implement a 
combinator reduction scheme is much less than we 
had feared, and although we allowed for 4K words 
we at present need only 2K. It has also become 
clear that our machine, even though it was 
intended just for the support of reduction 
languages can be viewed as a medium speed 
minicomputer where all programs happen to reside 
in PROM. This is encouraging us to experiment with 
it, not just by modifying our combinator reducer 
so that it works on lambda-expressions and so LISP 
programs, but by considering SKIM as the basis for 
real-time music generation and the like. 

Suppose we were starting the project from fresh, 
what would we do in the light of the experience we 
have gained so far? Almost certainly we would 
succumb to the temptation to make the processor 
slightly more elaborate but slightly faster. The 
main test programs we have used so far have all 
been badly limited by the rather slow 
multiplication and division that SKIM supports. A 
modest add-on extended arithmetic unit might speed 
up our primes and long arithmetic code 
substantially. However, beyond that rather 
straightforward change it seems clear that major 
speed enhancements can only come out of better use 
of memory. We suggest that the main ways of doing 
this would be: 

Change the microcode model so that all store 
accesses use three registers, rather than two, 
with a typical operation having the form 

RI -> (R2) -> R3, 
i.e. using R2 as a memory address, reading from 
that word into R3 and writing RI as the new memory 
contents. This combines a register transfer with a 
read-modify-write memory cycle and would 
drastically reduce our need for non-memory cpu 
cycles as well as reducing the total number of 
memory cycles required. 

Allow instructions to access both left and right 
pointers in a cell at once, using a 32 bit (rather 
than 16 bit) memory data bus. 

Either Provide a separate special memory for use 
as a stack, or Slave the top few links of 
backpointer chains in a special FIFO register that 
could provide rapid access to the arguments of 
combinators. 

More elaborate timing generation and microcode to 
keep all cycles as short as possible. 

It seems plausible that a combination of these 
techniques would improve performance by a factor 
of about 4 (at the cost of perhaps doubling the 
size of the processor), and would move us into a 
class of machine where we would want to increase 
our wordlength and provide much more than 64k 
bytes of memory. The other direction in which we 
could move would be towards a VLSI implementlon of 
a combinator reducing processor. Our estimates for 
the number of transistors in SKIM as we have it at 
present suggest that (providing we do not suddenly 
find a need for a lot more microcode) it would fit 
fairly tidily onto a single chip. 

Perhaps the real conclusion of this paper is that 
one cycle of hardware design is just coming to 
completion for us, but that we still have a lot of 
software experience to gather, and that there is 
plenty of scope for that to lead us to further 
processor designs. The support that SKIM provides 
will now make it possible for us to treat 
applicative programming as a viable option rather 
than just as an interesting but impractical idea. 
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Figure I. 

(a) reverse a list 

LISP: DEFINE ( (  
(REVERSE (LAMBDA (L) (REVI L NIL))) 
(REVI (LAMBDA (A B) (COND 

((NULL A) B) 
(T (REVI (CDR A) (CONS (CAR A) B)))))) 

)) 

Small: Let REVERSE L = REVI L Nil 
[ REVI A B : 

If A Is NEXT . A' Then REVI A' (NEXT . B) 
Else B Fi ] 

Combinators: 
: REVERSE(C(Y(B C(B(S' U' K)(C( 

B'(B' C))(C P)))))NIL). 

Notes: Square brackets in Small introduce 
qualifying clauses or local definitions. The 
If...Is...Then construction matches the structure 
of A against a template and provides names for the 
components so found. The symbol 'Fi' is used to 
terminate conditionals, following the style of 
Algol68. The combinators can only be understood by 
experts. 

(b) a fixed point operator 

Lambda-calculus: 
Y = Af. ((Ah. h h) (~g. f(g g))) 

Small: Let Y F : H H [ H G = F (G G) ] 
or more directly: Let Y F : F (Y F) 

Combinators (using S, K and I only): 

= Y S(K(S I I))(S(S(K S)K)(K(S I I))). 

(c) a re-entrant list 

Pictures : 

Small: X [ X : X . X ] 

Figure 2. The SKIM instruction set 

S f g x -> f x (g x) 
Kxy ->x 
Ix -> x 

B f g x -> f (g x) 
Cfxy -> fyx 
S' k f g x -> k (f x) (g x) 
B' k f g x -> k f (g x) 
C' k f x y -> k (f x) y 
Y f -> f (Y f) 
(but this is implemented as follows:) 

I f  b o o l  a b - >  a i f  boo1  i s  t r u e  
-> b if bool is false 

+pq ->p+q 

Similarly for -, *, / .... 

P a b -> a.b (a list) 
U' f g a -> f a if a is not a list 
U' f g (p.q) -> g p q where p.q is a list 
A bl b2 -> bl and b2 (boolean) 
0 bl b2 -> bl or b2 (boolean) 
U f x -> f (ear x) (cdr x) 

car, cdr 

and various speeialised functions 
to get at internal representations 
for debugging purposes. 

Figure 3. Machine block diagram 
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Figure 4. Garbage collector microcode 

* MOV RA,RB means Move RA to RB 
* SUB RA,RB means Subtract RA from RB 
* WRTL RA,RB means Write RA to tail of RB 
* RDHD RB,RA means Read head of RB to RA 
* F=0 means reset flag bit 
* B:(cond,loc) means jump to loc on cond 

MARK MOV R3,FPTR,B=(JGE,NUMBERP) Is pointer number or immediate data 
MARK3 RDHD FPTR,R3,B=(JOF,ISMARKED) Has the cell been marked 

WRHD BACK,FPTR,F=I,B=(JMP,MARK) Mark this cell as in use 
MOV FPTR,BACK Move forward pointer to back 

* That completes the HEAD side mark. 
NUMBERP MOV R3,NULL,B=(JLA,ISNUM) Is pointer numeric 

SUB R5,R3,B=(JEQ, ITSINODE) 
ISMARKED MOV BACK, NULL,B=(JEQ,DONEMARK) BACK equals NIL ? 
ISNOTTOP RDTL BACK,R3,B=(JOF,DONETAIL) are we coming up 2nd time 

RDHD BACK,R4 read out the back pointer 
WRTL R4,BACK,F=I,B=(JMP,MARK) Mark doing tail and save back ptr 
WRHD FPTR,BACK,F=I restore head side pointer 

ISNUM RDHD FPTR,R3,B=(JMP,ISMARKED) Read head side so can be marked 
WRHD R3,FPTR,F=I Mark cell (numeric) as in use 

* That concludes the TAIL side mark. Now we have the upward traverse 
DONETAIL WRTL FPTR,BACK,F=O restore tail side pointer & unset tag 

MOV BACK,FPTR,B=(JMP,ISNOTTOP) climb up a level and 
MOV R3,BACK,B=(JEQ, DONEMARK) pretend cell was marked 

* Vertical bars indicate the minimal garbage collector. The rest is optional 
* We remove indirection nodes for efficiency 
ITSINODE MOV BACK,R3,B=(JNP,ISMARKED) Are we in an application cell 

RDTL BACK,NULL,B=(JOF,ISMARKED) Was I in the head side 
RDTL R3,FPTR,B:(JGE,IMMOPND) we get an immediate pointer 
RDHD BACK,BACK Move BACK back a bit so cell lost 
WRHD R5,R3,F=0 Restore the head cell and unmark it 
MOV FPTR,NULL,B=(JSM,MARK3) Pair pointer 
RDHD FPTR,R4,B=(JMP,MARK3) get head of next cell 
SUB R5,R4,B=(JEQ,*+I) Goto mark3 if not an I-node 

* It is an I-node (possibly the same one) [ Y I ] 
* We now mark this node and trace till we find either 
* a not I-node or a marked I-node 

MOV R3,FFfR Head of list of I-nodes 
ANOTHERI WRHD R5,FPTR,F=I Flag this cell 

RDTL FPTR,FPTR,B=(JNP,NOTINODE) move to next cell 
RDHD FPTR,R4,B=(JOF,MKDINODE) get head side 
SUB R5,R4,B=(JEQ,ANOTHERI) We have another I-node 
MOV PC,NULL,B:(JNE,NOTINODE) Always branch to NOTINODE 

MKDINODE SUB R5,R4,B=(JNE,NOTINODE) 
* This implies that we have an infinite list of I's. We take the 
* arbitrary decision to make this list finite by changing it to 
* I Fixed-point-of-I-combinator which is a value held as a literal 

WRTL 
NOTINODE MOV 

SUB 
WRHD 
MOV 
RDTL 
WRTL 

IMMOPND RDHD 
WRHD 
MOV 

IDR, FPTR, I:F IXEDPTI 
FPTR,R4 
R3,R4,B:(JEQ,MARK) When we reach the last cell 
R5,R3,F=O Unmark this cell 
R3,R8 
R3,R3,B=(JMP,NOTINODE) Go down list of I's 
FPTR,R8 Helps next time 
BACK,BACK Repeat some earlier code 
R5,R3,F=O,B=(JMP,NUMBERP) restore and unmark head cell 
FPTR, R3,B=(JLA, ISNUM) 
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Figure 5. 
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Table I. Timings for the garbage collector 

Machine SKIM Z80 M68000 IBM 370/165 
Node Size 34 32 64 64 (bi¥~) 
Time/Node 10 64 27 7 ~ 
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