
SKIM - The S, K, I Reduction Machine

T.J.W. Clarke, P.J.S. Gladstone, i.D. MacLean, A.C. Norman

Trinity College, Cambridge

Abstract

SKIM is a computer built to explore pure
functional programming, combinators as a machine
language and the use of hardware to provide direct
support for a high level language. Its design
stresses simplicity and aims at providing
minicomputer performance (in its particular
application areas) for microcomputer costs. This
paper discusses the high level reduction language
that SKIM supports, the way in which this language
is compiled into combinators and the hardware and
microcode that then evaluate programs.

I. Introduction

In [I] Turner shows how combinators can be used as
an intermediate representation for applicative
programs. He compares (software) interpretation of
combinator forms with more traditional schemes
based on lambda calculus, and demonstrates that
his new method is both elegant and efficient, at
least when normal order evaluation is required.
SKIM is an investigation of how Turner's ideas
translate into hardware. It views his combinators
as machine code, and the fixed program that obeys
them as microcode. In section 2 we will present
the particular applicative language we use, and
comment on the need for special computers to
support such languages. Section 3 reviews Turner's
observations about combinators, leading in to
section 4 where SKIM's hardware is described. The
SKIM microcode is covered in section 5, and
performance in section 6. Our conclusions, which
are given at length in section 7, are that
languages with applicative semantics are fun, and
that very modest amounts of hardware can provide
good support for them.

2. Small: an applicative language

SKIM achieves much of its simplicity by being
specialised to support just one style of high
level language. The language we use is called
Small, and was initially designed as the user
interface to an algebra system [2]. This origin
has had two effects on Small. The language is
applicative (i.e. no constructs in it can ever
have side-effects) since this leads to a

programming style which fits in very smoothly with
the mathematical flavour of symbolic algebra.
Also, since in an algebra system even small
amounts of arithmetic may involve calling fairly
expensive subroutines, the initial design for
Small dld not feel obliged to allow for
compilation into efficient machine code. As a
user-level language for driving large packages it
can afford an interpretive implementation. This
results in a language which demands proper
treatment of functional objects (the Funarg
facility, so often missing or restricted in full
sized LISP systems), call-by-need (otherwise known
as lazy evaluation) and an error-handling scheme
compatible with the semantics of the rest of the
language.

Figure 1 gives a few simple examples of Small
functions and so illustrates how it compares with
the direct use of lambda calculus or LISP. It is
easy to demonstrate the positive features of a
language such as Small, such as its pattern-
matching test for decomposing structures, its
capability for recursive definitions of data as
well as program and its lazy evaluation. When
these points have been covered there remain
various real worries as to how practical Small
could be for the development of large programs.
Here we will ignore most of these - for instance
those concerning the relationship between pure
language and file stores - and just discuss the
two concerns that we have considered most
pressing. We pose each in the form of direct
questions:

(a) Is it possible to write substantial programs
without using (updatable) global variables and
without the ability to alter existing data
structures?

(b) Is there a time penalty associated with the
use of applicative languages?

In (a) the word "possible" has to be read as
implying convenience and reasonably clean
programs, for after all the lambda calculus is
computationally universal. Concern over time in
(b) will have to consider both the effects of
purity on algorithms and the practical
implications of call-by-need, retention and so on.

128

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800087.802798&domain=pdf&date_stamp=1980-08-25

Experience with the initial interpretive
implementation of Small rapidly convinced us that
any loss in expressive power that may result from
removing imperative constructs from a language is
more than balanced by the convenience of having
normal order evaluation and higher order
functions. Our consideration of gradually larger
programming tasks soon however ran into problem
(b) - not only was Small implemented
interpretively, but its interpreter was not a
particularly fast one. The speed penalty we were
paying was one which has been observed before when
lazy evaluation schemes have been implemented, and
we have seen several suggestions for reducing its
effects. In [3] Mycroft shows that many programs
can be executed using an efficient call-by-value
implementation, and he proposes compilation
techniques that mean that the costs associated
with call-by-need are only paid when they are
provably necessary. This line of work views
programs in pure languages as specifications of
tasks to be performed and seeks to map the
processes onto ones which make efficient use of
existing computers. At the other extreme Mago [4]
and Berkling [5] have been involved with the
design of large-scale hardware that will execute
applicative languages directly. The next section
presents the basis of our attack on the efficiency
problem.

3. Combinators and their use as a machine code

Our response to the cost of running an applicative
language has been to accept that we will need an
interpreter to support it, and to view the (fixed)
program that is the interpreter as being mierocode
for the computer that our end-user sees. By doing
this we hope to show that the observed performance
problem is just an effect of the bias of today's
computers towards efficient support of procedural
language, and that it is not intrinsic to
applicative ones. The idea of hardware support for
side-effect-free languages immediately raises the
possibility of parallel processing. This is an
issue which we have not addressed: we wish to
demonstrate how limited amounts of special
hardware can have a large effect on performance.
Given that we wish to have a machine with a
substantial amount of Small-specific microcode, we
have to decide what data structures this microcode
will work with. It would perhaps be possible to
interpret Small direct from the character form of
source code, but we are prepared to use a simple
compiler if doing so will speed up the
interpreter.

There are two conventional ways of balancing
compilation effort against microcode complexity.
The first is to store programs as trees
representing lambda-expressions, the second is to
flatten the trees into something that resembles
the object code of an ordinary machine but which
provides good support for LISP-like variable
access and function linkage. The scheme we adopt
is closer to the first of these, but following
Turner it uses combinators rather than lambda
expressions as its representation of programs.

To start the description of our interpreter we
will review some basic facts about combinators.
Full details of the properties of combinators and
the way in which they can form a model of
computation can be found in any text on symbolic
logic (e.g. [6]), for present purposes the
following sketch will be sufficient. In its most
primitive form combinatory logic is built up using
just the two symbols S and K, which represent
functions satisfying

Kxy : x
and S f g x = f x (g x) (A)

By convention functional composition associates to
the left so that S f g x is ((S f) g) x.
Define a new object I = S K K then observe
that for any x we have I x = S K K x = K x (K x)
(using the definition of S) = x. Thus I acts as
the identity function. Any lambda expression can
be represented in terms of the basic combinators
by using the abstraction rules

A a.a -> I (a is atomic),
A a.b -> K b (b atomic and a ~: b), (B)
A a.p q -> S (A a.b) (A a . q)

(p q is any function application)

If a language such as Small can be parsed to give
a tree equivalent to some lambda expression, the
rules (B) define a codegenerator that unwinds the
tree into a combinator machine code. For programs
which model all their data using lambda
expressions the entire order set of the machine
then needed is (A).

In practice of course we will want to use an
applied lambda calculus or combinator model, with
lists and integers (for instance) as the data
types supported. Doing this does not make any
significant difference to the compilation process
(B) but does mean that the machine specification
(A) has to be expanded to include rules like

plus m n = (the sum of m and n)
and cons a b =(a list node with refs. to a and b).

How does this idea compare with the use of a
lambda calculus interpreter? The main thing is
that the reduction rules used are extraordinarily
simple and do not involve the manipulation of
anything besides the program text. In contrast
lambda calculus reducers either have to keep
association-list like environments or use some
form of systematic renaming of user variables. The
combinator language also avoids almost all
temptation to make hardware registers and stacks
in any way visible to the end user, whereas in
lambda calculus there are opportunities to abandon
retention and use shallow binding of variables
with quick address modes for the first few
variables in each stack frame.

Provided the compilation process is slightly
extended to use a few extra combinators it also
turns out that the amount of work that has to be
done in performing a normal order reduction of a
combinator expression is very close to that

129

involved in doing an applicative order reduction
on an equivalent lambda expression, and is
substantially less than that invovled in a 'lazy'
normal order lambda reduction. Figure 2 lists the
complete set of combinators we use: it can be seen
that none of them are substantially more
complicated than S or K.

It was the simplicity and elegance of the
combinator model which made us consider a hardware
implementation worthwhile.

4. The Architecture of SKIM

SKIM was designed specifically to provide hardware
support for a combinator interpreter. It is a
microprogrammed design with a microinstruction set
that has been optimised for tree manipulation.
This optimisation has succeeded in that SKIM's
performance is limited by main memory bandwidth
rather than by the details of the design.

We will describe the design at microinstruction
level. Data is held in 16 internal registers and
in 32K words of main memory, the word length being
16 bits throughout. There are only three
microinstruction types: memory read, memory write
and ALU. Each specifies two internal registers, Ra
and Rb (two four bit fields) and performs the
following data transfer:

Memory read Rb <- (Ra)
Memory write (Ra) <- Rb
ALU Rb <- f Ra Rb
where f is the ALU function selected.

This set is sufficient because of the following
features:

a) All I/O is handled over a 16 bit port,
addressed as an internal register (R15).

b) The microprogram sequence register is available
as another internal register (R13).

c) All microinstructions include a conditional
branch. Four bits in the microinstruction are
decoded to give one of sixteen branch conditions
and twelve bits are used to give a full 4K branch
address.

The branch address, suitably extended to 16 bits,
can be addressed as a read-only internal register
(R14), and provides for insertion of immediate
data when the branch facility is not used.

Rather than list the ALU functions we remark that
the chips we use are 74S281's, and that bits in
the instruction control the shifting of the data
and the carry bit. Support is provided for
multiple length operations.

So far the design has seemed quite general
purpose. The hardware optimisation involves the
organisation of main memory. This is divided into
two banks (Head and Tail), so that a memory
location is given by one bit in the instruction,
selecting the bank, together with a 14 bit
address. This addressing mode is the only one
needed, since all programs, data, stacks etc. are
held as trees. The top two bits of a data word
give information about the type of pointer and
branch conditions are provided to test these.
Associated with each word in memory is a flag bit,
used by the garbage collector, and memory write
instructions may set or reset this bit. During a
memory read a conditional branch may be made on
the value of this flag bit.

This microinstruction set determines the hardware
design, shown schematically in figure 3. All
microinstructions are the same length, 600 ns,
which is determined by the cycle time of the main
memory (4116 16K dynamic RAM). Conveniently, this
means that slow MOS EPROMs can be used to store
the microcode, provided that one level of
pipelining is used. The long cycle time allows all
data transfers to be multiplexed through one main
bus, there being at most three such transfers per
cycle, greatly simplifying the design. ALU
instructions, which represent wasted memory
cycles, provide an economical way of refreshing
the RAM.

The completed design, including 64K bytes of RAM
and 4K words of EPROM, comes to just 100 packages,
which fit comfortably on two double sized Eurocard
boards. This is no larger than many microprocessor
systems with the same amount of memory,
vindicating our decision to use msi TTL rather
than bit-slice technology.

5. SKIM microcode

The SKIM microcode falls into four main sections
which are, in decreasing order of size, the
combinator evaluator, the expression reader, the
printer and the storage manager/garbage collector.
The first and last of these are interesting enough
to warrant special attention. We will cover the
storage manager first.

Apart from a very few words used by various
routines to contain useful constants and a save
area for the garbage collector, all of SKIM's
memory is organised as pairs and is subject to the
control of the garbage collector. To avoid having
to set aside dedicated memory and because SKIM is
not very good at running real stacks this has a
non-recursive mark phase, the code for which is
displayed in figure 4. Without a full key to the
mnemonics used in SKIM's assembler the details of
this code will remain obscure. It is however
possible to see from it how a large proportion of
the instructions are able to perform tests and
conditional branches in parallel with data
movement. Timings of this code will be quoted in
the next section. Close inspection of the code

130

will reveal more details of the hardware. For
instance the cycle after a conditional branch has
to be inhibited while a pipeline register is
drained; after unconditional branches this is not
done. The effect of this is that unconditional
branches have to be written one line "early" in
the source code, but to compensate for this they
do not slow the machine down at all.

The core of the combinator reducer is a piece of
code which searches down the leftmost branch of a
tree until it finds an operator as a leaf, and
then it goes off to decode and execute the
operator. To make the final part of this process
fast we make the internal representation of
combinators just the absolute address in mierocode
store of the program that does the required
reduction. This also provides an easy way to gain
non-standard entry to diagnostic routines hidden
in the microcode. The reducer, like the garbage
collector, uses pointer reversal to keep track of
its tree-walk. Figure 5 shows how pointers get
reversed In the process of finding and processing
an S combinator. Note how when S needs to find its
arguments the back-pointer chain gives convenient
and cheap access to them. If, as the result of a
programmer error, the pointer reversing reducer
were given a cyclic structure representing a self-
dependent computation then it would eventually
reach a portion of the structure which it had
already traversed. In this situation it traces the
wrong way up the tree, finding its back-pointer
terminator as a combinator. This is easy to detect
and provides a neat check for this form of illegal
program. When working on the operands of an
arithmetic operator such as + the reducer does
need a real stack. We use a linked list, which
with SKIM's hardware is almost as efficient as a
real stack on a more normal machine. It also has
the advantage that the stack does not have to
occupy large contiguous areas of free store, but
can use any free pairs.

6. Performance

In evaluating a design such as SKIM it is
necessary to measure both the low level efficiency
of the microcode and the effect that the
programming model used has on gross performance.
The results to be presented here are still fairly
rough, since SKIM has only been running for a
month or so. We can however report results of
paper studies, simulations of the SKIM hardware,
other software combinator-reducing programs and
programs run directly on SKIM, and hope that a
good composite picture of the potential of
combinators will emerge.

The first piece of code to be considered is the
garbage collector of Figure 4. We have used the
pointer reversing tree-walk algorithm that it uses
as a benchmark to compare SKIM against a number of
other processors. The programs used in this
comparison were written in assembly code by a
number of different people, and on some processors
(notably the Z80) it was clear that individual

coding skill could make a large difference to the
times reported. We nevertheless find the final
results, table I, consistent enough to be used as
a rough measure of machine speed. For the simpler
machines (i.e. those without elaborate instruction
look-ahead and cache stores) the times quoted were
computed from published instruction timings. Where
possible empirical verification was then obtained.
For the 370, times depend critically on the exact
sequencing of orders, and so the result given is
based solely on observation.

Two things show up in these timings. The first is
that the scattered memory references and dense
control structure of a tree-walk program can be
bad news for a mainframe such as the IBM 370 - its
performance is limited by the speed of its main
memory which is not very much faster than that of
a mini. The second is that SKIM can get a great
deal of list processing done per cycle. We
attribute most of this to the fact that it is a
fixed program machine, and so instruction fetches
are done in parallel with store manipulation.

We now consider the SKIM code in more detail to
get some idea of its absolute performance. A first
way of measuring this is to consider its use of
memory cycles, counting each ALU cycle in the
processor as a wasted opportunity to do something
with main store. Here we find that about 60% of
all cycles are memory accesses. Of those that are
left about 10% are needed for refreshing the
dynamic RAMs. Thus if we stay with an architecture
where only one word is touched at a time,
elaborations to the SKIM processor can at the very
best less than double the speed of its garbage
collector. Since the main combinator reducing
algorithm has a similar structure to that of the
list marker, and since the most important
combinators involve pointer adjustments, we expect
a similar result to hold for the entire SKIM
system.

Now how does SKIM perform when programmed in its
combinator language? The simple answer is: like a
system that runs interpretively on a fairly fast
processor. We consider it fair to compare SKIM
against interpretive LISP on the local IBM
mainframe and against a fast integer BASIC running
on a 6502 micro. Th~ first test we ran involved
the generation of lists of prime numbers. The
algorithm used in all cases involved test division
by all primes up to the square root of the next
number to be tested for primality. On SKIM this
can be done very neatly using a recursively
defined list structure. By running SKIM for a few
hours we have made it tabulate the primes up to a
million or so. For present purposes we quote
figures for computations lasting about a minute.
In I minute a program running in interpreted 32-
bit integer BASIC on 1 2MHz 6502 [7] was able to
find all primes up to 4621 (there are slightly
over 600 of them). For the same calculation SKIM
takes 35 seconds. A compiled version of the same
BASIC program produced between 1100 and 1200
primes in a minute - to get to the same state SKIM
takes 80 seconds. We note that the 2MHz version of

131

the 6502 used is still one of the faster 8-bit
micros available. For comparison with a mainframe
we coded an arbitrary precision integer arithmetic
package in both Small and LISP, in each case
avoiding machine dependance by representing
numbers base 1000. Interpreted LISP [8] on the
370/165 took 12 seconds to compute 2"'1000, while
SKIM took 25 seconds. Compiled LISP code obtained
the same result in about 3 seconds. A separate
test, involving the computation and display of the
first 12 Legendre polynomials again showed a
tenfold speed advantage to the 370 when running
compiled code. Given the fairly high level of
SKIM's combinator machine code and the fact that
our test programs were all produced by compilation
from Small (i.e. without any hand-optimisation) we
find these results most encouraging.

7. Conclusions

When the SKIM project started we felt that the
clean logical structure of combinators ought to
lead to a simple yet fast hardware design. As the
hardware and microcode has crystallised, and as we
have gained experience with combinators and
applicative programming these initial hopes have
been largely fulfilled. SKIM demonstrates yet
again that special purpose hardware can be a great
help when a slightly unconventional language is
being implemented, and that at least for llst-
processing applications even a simple computer can
deliver a quite respectable performance. There
have been a few ways in which SKIM has surprised
us. The amount of microcode needed to implement a
combinator reduction scheme is much less than we
had feared, and although we allowed for 4K words
we at present need only 2K. It has also become
clear that our machine, even though it was
intended just for the support of reduction
languages can be viewed as a medium speed
minicomputer where all programs happen to reside
in PROM. This is encouraging us to experiment with
it, not just by modifying our combinator reducer
so that it works on lambda-expressions and so LISP
programs, but by considering SKIM as the basis for
real-time music generation and the like.

Suppose we were starting the project from fresh,
what would we do in the light of the experience we
have gained so far? Almost certainly we would
succumb to the temptation to make the processor
slightly more elaborate but slightly faster. The
main test programs we have used so far have all
been badly limited by the rather slow
multiplication and division that SKIM supports. A
modest add-on extended arithmetic unit might speed
up our primes and long arithmetic code
substantially. However, beyond that rather
straightforward change it seems clear that major
speed enhancements can only come out of better use
of memory. We suggest that the main ways of doing
this would be:

Change the microcode model so that all store
accesses use three registers, rather than two,
with a typical operation having the form

RI -> (R2) -> R3,
i.e. using R2 as a memory address, reading from
that word into R3 and writing RI as the new memory
contents. This combines a register transfer with a
read-modify-write memory cycle and would
drastically reduce our need for non-memory cpu
cycles as well as reducing the total number of
memory cycles required.

Allow instructions to access both left and right
pointers in a cell at once, using a 32 bit (rather
than 16 bit) memory data bus.

Either Provide a separate special memory for use
as a stack, or Slave the top few links of
backpointer chains in a special FIFO register that
could provide rapid access to the arguments of
combinators.

More elaborate timing generation and microcode to
keep all cycles as short as possible.

It seems plausible that a combination of these
techniques would improve performance by a factor
of about 4 (at the cost of perhaps doubling the
size of the processor), and would move us into a
class of machine where we would want to increase
our wordlength and provide much more than 64k
bytes of memory. The other direction in which we
could move would be towards a VLSI implementlon of
a combinator reducing processor. Our estimates for
the number of transistors in SKIM as we have it at
present suggest that (providing we do not suddenly
find a need for a lot more microcode) it would fit
fairly tidily onto a single chip.

Perhaps the real conclusion of this paper is that
one cycle of hardware design is just coming to
completion for us, but that we still have a lot of
software experience to gather, and that there is
plenty of scope for that to lead us to further
processor designs. The support that SKIM provides
will now make it possible for us to treat
applicative programming as a viable option rather
than just as an interesting but impractical idea.

8. Acknowledgements

The SKIM project was financed by the Cambridge
University Processor Group and by Research
Machines Ltd of Oxford. Additional assistance came
from Acorn Computers/CPU of Cambridge. Many people
around Cambridge provided encouragement and
pressure to make the processor work: of these we
note particularly Ian Kitching who wrote the final
version of the SKIM emulator and Bill Worzel who
was much involved in the decision to go ahead and
actually build something.

132

Figure I.

(a) reverse a list

LISP: DEFINE ((
(REVERSE (LAMBDA (L) (REVI L NIL)))
(REVI (LAMBDA (A B) (COND

((NULL A) B)
(T (REVI (CDR A) (CONS (CAR A) B))))))

))

Small: Let REVERSE L = REVI L Nil
[REVI A B :

If A Is NEXT . A' Then REVI A' (NEXT . B)
Else B Fi]

Combinators:
: REVERSE(C(Y(B C(B(S' U' K)(C(

B'(B' C))(C P)))))NIL).

Notes: Square brackets in Small introduce
qualifying clauses or local definitions. The
If...Is...Then construction matches the structure
of A against a template and provides names for the
components so found. The symbol 'Fi' is used to
terminate conditionals, following the style of
Algol68. The combinators can only be understood by
experts.

(b) a fixed point operator

Lambda-calculus:
Y = Af. ((Ah. h h) (~g. f(g g)))

Small: Let Y F : H H [H G = F (G G)]
or more directly: Let Y F : F (Y F)

Combinators (using S, K and I only):

= Y S(K(S I I))(S(S(K S)K)(K(S I I))).

(c) a re-entrant list

Pictures :

Small: X [X : X . X]

Figure 2. The SKIM instruction set

S f g x -> f x (g x)
Kxy ->x
Ix -> x

B f g x -> f (g x)
Cfxy -> fyx
S' k f g x -> k (f x) (g x)
B' k f g x -> k f (g x)
C' k f x y -> k (f x) y
Y f -> f (Y f)
(but this is implemented as follows:)

I f b o o l a b - > a i f boo1 i s t r u e
-> b if bool is false

+pq ->p+q

Similarly for -, *, /

P a b -> a.b (a list)
U' f g a -> f a if a is not a list
U' f g (p.q) -> g p q where p.q is a list
A bl b2 -> bl and b2 (boolean)
0 bl b2 -> bl or b2 (boolean)
U f x -> f (ear x) (cdr x)

car, cdr

and various speeialised functions
to get at internal representations
for debugging purposes.

Figure 3. Machine block diagram

L

9
aa

vl
"b

Z

7

RO - R.IZ_

PRJ3 : PC.

P . I S : .T . Io

(4 - hSzgl

kid I K×I B Fto.~

133

Figure 4. Garbage collector microcode

* MOV RA,RB means Move RA to RB
* SUB RA,RB means Subtract RA from RB
* WRTL RA,RB means Write RA to tail of RB
* RDHD RB,RA means Read head of RB to RA
* F=0 means reset flag bit
* B:(cond,loc) means jump to loc on cond

MARK MOV R3,FPTR,B=(JGE,NUMBERP) Is pointer number or immediate data
MARK3 RDHD FPTR,R3,B=(JOF,ISMARKED) Has the cell been marked

WRHD BACK,FPTR,F=I,B=(JMP,MARK) Mark this cell as in use
MOV FPTR,BACK Move forward pointer to back

* That completes the HEAD side mark.
NUMBERP MOV R3,NULL,B=(JLA,ISNUM) Is pointer numeric

SUB R5,R3,B=(JEQ, ITSINODE)
ISMARKED MOV BACK, NULL,B=(JEQ,DONEMARK) BACK equals NIL ?
ISNOTTOP RDTL BACK,R3,B=(JOF,DONETAIL) are we coming up 2nd time

RDHD BACK,R4 read out the back pointer
WRTL R4,BACK,F=I,B=(JMP,MARK) Mark doing tail and save back ptr
WRHD FPTR,BACK,F=I restore head side pointer

ISNUM RDHD FPTR,R3,B=(JMP,ISMARKED) Read head side so can be marked
WRHD R3,FPTR,F=I Mark cell (numeric) as in use

* That concludes the TAIL side mark. Now we have the upward traverse
DONETAIL WRTL FPTR,BACK,F=O restore tail side pointer & unset tag

MOV BACK,FPTR,B=(JMP,ISNOTTOP) climb up a level and
MOV R3,BACK,B=(JEQ, DONEMARK) pretend cell was marked

* Vertical bars indicate the minimal garbage collector. The rest is optional
* We remove indirection nodes for efficiency
ITSINODE MOV BACK,R3,B=(JNP,ISMARKED) Are we in an application cell

RDTL BACK,NULL,B=(JOF,ISMARKED) Was I in the head side
RDTL R3,FPTR,B:(JGE,IMMOPND) we get an immediate pointer
RDHD BACK,BACK Move BACK back a bit so cell lost
WRHD R5,R3,F=0 Restore the head cell and unmark it
MOV FPTR,NULL,B=(JSM,MARK3) Pair pointer
RDHD FPTR,R4,B=(JMP,MARK3) get head of next cell
SUB R5,R4,B=(JEQ,*+I) Goto mark3 if not an I-node

* It is an I-node (possibly the same one) [Y I]
* We now mark this node and trace till we find either
* a not I-node or a marked I-node

MOV R3,FFfR Head of list of I-nodes
ANOTHERI WRHD R5,FPTR,F=I Flag this cell

RDTL FPTR,FPTR,B=(JNP,NOTINODE) move to next cell
RDHD FPTR,R4,B=(JOF,MKDINODE) get head side
SUB R5,R4,B=(JEQ,ANOTHERI) We have another I-node
MOV PC,NULL,B:(JNE,NOTINODE) Always branch to NOTINODE

MKDINODE SUB R5,R4,B=(JNE,NOTINODE)
* This implies that we have an infinite list of I's. We take the
* arbitrary decision to make this list finite by changing it to
* I Fixed-point-of-I-combinator which is a value held as a literal

WRTL
NOTINODE MOV

SUB
WRHD
MOV
RDTL
WRTL

IMMOPND RDHD
WRHD
MOV

IDR, FPTR, I:F IXEDPTI
FPTR,R4
R3,R4,B:(JEQ,MARK) When we reach the last cell
R5,R3,F=O Unmark this cell
R3,R8
R3,R3,B=(JMP,NOTINODE) Go down list of I's
FPTR,R8 Helps next time
BACK,BACK Repeat some earlier code
R5,R3,F=O,B=(JMP,NUMBERP) restore and unmark head cell
FPTR, R3,B=(JLA, ISNUM)

134

Figure 5.

0
>I,I~i ~-Ixl

Irl~l I I

Is I~,1 >l/'IFI
>S

® +-t- I \1
X,

~F
Table I. Timings for the garbage collector

Machine SKIM Z80 M68000 IBM 370/165
Node Size 34 32 64 64 (bi¥~)
Time/Node 10 64 27 7 ~

References.

[I] Turner, D. A. "A new implementation
technique for applicative languages"
Software Practise & Experience, 1979

[2] Norman, A. C. and Moore, P. M. A.
',The design of a vector-based algebra
system" Proc. EUROSAM 79, 1979
(Springer Lecture Notes
in Computer Science 71, ed: E. Ng)

[3] Mycroft, A. "The theory and practise of
transforming call-by-need into call-by-value"
4th Int. Colloq. on Programming, Paris 1980

[4] Mago, G. "A network of microcomputers
to execute reduction languages"
Int. Jrnl. of Comp. & Inf. Sciences, Oct 79

[5] Berkling, K.

[6] Curry and Feys "Combinatory Logic"
North Holland

[7] BASIC Users manual, Acorn Computers,
4a Market Hill, Cambridge. 1980.

[8] Fitch, J.P. and Norman, A. C.
"Implementing LISP in a high-level language"
Software Practise and Experience, 1977.

135

