Skip to main content
Log in

Unlabelled LRET biosensor based on double-stranded DNA for the detection of anthraquinone anticancer drugs

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Based on upconversion nanoparticles (UCNPs) as energy donor and herring sperm DNA (hsDNA) as molecular recognition element, an unlabelled upconversion luminescence (UCL) affinity biosensor was constructed for the detection of anthraquinone (AQ) anticancer drugs in biological fluids. AQ anticancer drugs can insert into the double helix structure of hsDNA on the surface of UCNPs, thereby shortening the distance from UCNPs. Therefore, the luminescence resonance energy transfer (LRET) phenomenon is effectively triggered between UCNPs and AQ anticancer drugs. Hence, AQ anticancer drugs can be quantitatively detected according to the UCL quenching rate. The biosensor showed good sensitivity and stability for the detection of daunorubicin (DNR) and doxorubicin (ADM). For the detection of DNR, the linear range is 1–100 μg·mL−1 with a limit of detection (LOD) of 0.60 μg·mL−1, and for ADM, the linear range is 0.5–100 μg·mL−1 with a LOD of 0.38 μg·mL−1. The proposed biosensor provides a convenient method for monitoring AQ anticancer drugs in clinical biological fluids in the future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917. https://doi.org/10.1002/ijc.25516

    Article  CAS  PubMed  Google Scholar 

  2. Jafari M, Rezvanpour A (2019) Upconversion nano-particles from synthesis to cancer treatment: a review. Adv Powder Technol 30(9):1731–1753. https://doi.org/10.1016/j.apt.2019.05.027

    Article  CAS  Google Scholar 

  3. Qiu L, Zhou G, Cao S (2020) Targeted inhibition of ULK1 enhances daunorubicin sensitivity in acute myeloid leukemia. Life Sci 243:117234. https://doi.org/10.1016/j.lfs.2019.117234

    Article  CAS  PubMed  Google Scholar 

  4. Schramm F, Zimmermann M, Jorch N, Pekrun A, Borkhardt A, Imschweiler T, Christiansen H, Faber J, Feuchtinger T, Schmid I, Beron G, Horstmann MA, Escherich G (2019) Daunorubicin during delayed intensification decreases the incidence of infectious complications-a randomized comparison in trial CoALL 08-09. Leuk Lymphoma 60(1):60–68. https://doi.org/10.1080/10428194.2018.1473575

    Article  CAS  PubMed  Google Scholar 

  5. Jirkovský E, Jirkovská A, Bavlovič-Piskáčková H, Skalická V, Pokorná Z, Karabanovich G, Kollárová-Brázdová P, Kubeš J, Lenčová-Popelová O, Mazurová Y, Adamcová M, Lyon AR, Roh J, Šimůnek T, Štěrbová-Kovaříková P, Štěrba M (2021) Clinically translatable prevention of anthracycline cardiotoxicity by dexrazoxane is mediated by topoisomerase II beta and not metal chelation. Circ Heart Fail 14(11):e008209. https://doi.org/10.1161/CIRCHEARTFAILURE.120.008209

    Article  CAS  PubMed  Google Scholar 

  6. Haghi-Aminjan H, Farhood B, Rahimifard M, Didari T, Baeeri M, Hassani S, Hosseini R, Abdollahi M (2018) The protective role of melatonin in chemotherapy-induced nephrotoxicity: a systematic review of non-clinical studies. Expert Opin Drug Metab Toxicol 14(9):937–950. https://doi.org/10.1080/17425255.2018.1513492

    Article  CAS  PubMed  Google Scholar 

  7. Zhou H, Fu LX, Li L, Chen YY, Zhu HQ, Zhou JL, Lv MX, Gan RZ, Zhang XX, Liang G (2020) The epigallocatechin gallate derivative Y6 reduces the cardiotoxicity and enhances the efficacy of daunorubicin against human hepatocellular carcinoma by inhibiting carbonyl reductase 1 expression. J Ethnopharmacol 261:113118. https://doi.org/10.1016/j.jep.2020.113118

    Article  CAS  PubMed  Google Scholar 

  8. Sahyon HA, Al-Harbi SA (2020) Chemoprotective role of an extract of the heart of the Phoenix dactylifera tree on adriamycin-induced cardiotoxicity and nephcity by regulating apoptosis, oxidative stress and PD-1 suppression. Food Chem Toxicol 135:111045. https://doi.org/10.1016/j.fct.2019.111045

    Article  CAS  PubMed  Google Scholar 

  9. Karimi-Maleh H, Alizadeh M, Orooji Y, Karimi F, Baghayeri M, Rouhi J, Tajik S, Beitollahi H, Agarwal S, Gupta VK, Rajendran S, Rostamnia S, Fu L, Saberi-Movahed F, Malekmohammadi S (2021) Guanine-based DNA biosensor amplified with Pt/SWCNTs nanocomposite as analytical tool for nanomolar determination of daunorubicin as an anticancer drug: a docking/experimental investigation. Ind Eng Chem Res 60(2):816–823. https://doi.org/10.1021/acs.iecr.0c04698

    Article  CAS  Google Scholar 

  10. Oliveira-Brett AM, Paquim AMC, Diculescu VC, Piedade JAP (2006) Electrochemistry of nanoscale DNA surface films on carbon. Med Eng Phys 28(10):963–970. https://doi.org/10.1016/j.medengphy.2006.05.009

    Article  CAS  PubMed  Google Scholar 

  11. Yu DS, Ma CP, Chang SY (2000) Establishment and characterization of renal cell carcinoma cell lines with multidrug resistance. Urol Res 28(2):86–92. https://doi.org/10.1007/s002400050143

    Article  CAS  PubMed  Google Scholar 

  12. Guichard N, Ogereau M, Falaschi L, Rudaz S, Schappler J, Bonnabry P, Fleury-Souverain S (2018) Determination of 16 antineoplastic drugs by capillary electrophoresis with UV detection: applications in quality control. Electrophoresis 39(20):2512–2520. https://doi.org/10.1002/elps.201800007

    Article  CAS  PubMed  Google Scholar 

  13. Katzenmeyer JB, Eddy CV, Arriaga EA (2010) Tandem laser-induced fluorescence and mass spectrometry detection for high-performance liquid chromatography analysis of the in vitro metabolism of doxorubicin. Anal Chem 82(19):8113–8120. https://doi.org/10.1021/ac1011415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bezeaud A, Drouet L, Leverger G, Griffin JH, Guillin MC (1986) Effect of L-asparaginase therapy for acute lymphoblastic leukemia on plasma vitamin K-dependent coagulation factors and inhibitors. J Pediatr 108:698–701. https://doi.org/10.1016/s0022-3476(86)81044-7

    Article  CAS  PubMed  Google Scholar 

  15. Deák É, Rosta J, Boros K, Kis G, Sántha P, Messlinger K, Jancsó G, Dux M (2018) Chronic adriamycin treatment impairs CGRP-mediated functions of meningeal sensory nerves. Neuropeptides 69:46–52. https://doi.org/10.1016/j.npep.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Zong S, Wu L, Zhang Y, Wang Z, Wang Z, Chen B, Cui Y (2018) Evaluation of multidrug resistance of leukemia using surface-enhanced Raman scattering method for clinical applications. ACS Appl Mater Interfaces 10(30):24999–25005. https://doi.org/10.1021/acsami.8b02917

    Article  CAS  PubMed  Google Scholar 

  17. Szafraniec E, Majzner K, Farhane Z, Byrne HJ, Lukawska M, Oszczapowicz I, Chlopicki S, Baranska M (2016) Spectroscopic studies of anthracyclines: structural characterization and in vitro tracking. Spectrochim Acta A Mol Biomol Spectrosc 169:152–160. https://doi.org/10.1016/j.saa.2016.06.035

    Article  CAS  PubMed  Google Scholar 

  18. Chen Z, Qian S, Liu G, Chen X, Chen J (2011) Highly sensitive determination of doxorubicin and daunorubicin based on their effect on the resonance light scattering signals of the ethidium-DNA complex. Microchim Acta 175:217–223. https://doi.org/10.1007/s00604-011-0692-2

    Article  CAS  Google Scholar 

  19. Pakmanesh F, Moslemi D, Mahjoub S (2020) Pre and post chemotherapy evaluation of breast cancer patients: biochemical approach of serum selenium and antioxidant enzymes. Caspian. J Intern Med 11(4):403–409. https://doi.org/10.22088/cjim.11.4.403

    Article  Google Scholar 

  20. Alves AC, Ribeiro D, Horta M, Lima JLFC, Nunes C, Reis S (2017) The daunorubicin interplay with mimetic model membranes of cancer cells: a biophysical interpretation. BBA-Biomembranes 1859(5):941–948. https://doi.org/10.1016/j.bbamem.2017.01.034

    Article  CAS  PubMed  Google Scholar 

  21. Zhao XY, Wang J, Hao HG, Yang H, Yang QS, Zhao WY (2021) A water-stable europium-MOF sensor for the selective, sensitive ratiometric fluorescence detection of anthrax biomarker. Microchem J 166:106253. https://doi.org/10.1016/j.microc.2021.106253

    Article  CAS  Google Scholar 

  22. Ren W, Pang J, Ma R, Liang X, Wei M, Suo Z, He B, Liu Y (2022) A signal on-off fluorescence sensor based on the self-assembly DNA tetrahedron for simultaneous detection of ochratoxin A and aflatoxin B1. Anal Chim Acta 1198:339566. https://doi.org/10.1016/j.aca.2022.339566

    Article  CAS  PubMed  Google Scholar 

  23. Jia P, Yang K, Hou J, Cao Y, Wang X, Wang L (2021) Ingenious dual-emitting Ru@UiO-66-NH2 composite as ratiometric fluorescence sensor for detection of mercury in aqueous. J Hazard Mater 408:124469. https://doi.org/10.1016/j.jhazmat.2020.124469

    Article  CAS  PubMed  Google Scholar 

  24. Lin Z, Ma Q, Fei X, Zhang H, Su X (2014) A novel aptamer functionalized CuInS2 quantum dots probe for daunorubicin sensing and near infrared imaging of prostate cancer cells. Anal Chim Acta 818:54–60. https://doi.org/10.1016/j.aca.2014.01.057

    Article  CAS  PubMed  Google Scholar 

  25. Guo D, Xu P, Chen D, Wang L, Zhu Y, Zuo Y, Chen B (2020) Daunorubicin-loaded CdTe QDs conjugated with Anti-CD123 mAbs: a novel delivery system for myelodysplastic syndromes treatment. Int J Nanomedicine 15:521–536. https://doi.org/10.2147/IJN.S233395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Manzoori JL, Jouyban A, Amjadi M, Panahi-Azar V, Karami-Bonari AR, Tamizi E (2011) Spectrofluorimetric determination of buparvaquone in biological fluids, food samples and a pharmaceutical formulation by using terbium-deferasirox probe. Food Chem 126(4):1845–1849. https://doi.org/10.1016/j.foodchem.2010.11.160

    Article  CAS  PubMed  Google Scholar 

  27. Zhu J, Shen J, Hu B, Yang L, Jiang C (2022) Chromaticity evolutionary detection of food contaminant semicarbazide through an upconversion luminescence-based nanosensor. Anal Chem 94(2):1126–1134. https://doi.org/10.1021/acs.analchem.1c04207

    Article  CAS  PubMed  Google Scholar 

  28. Sun G, Xie Y, Sun L, Zhang H (2021) Lanthanide upconversion and downshifting luminescence for biomolecules detection. Nanoscale Horiz 6(10):766–780. https://doi.org/10.1039/d1nh00299f

    Article  CAS  PubMed  Google Scholar 

  29. Li Y, Li Y, Zhang D, Tan W, Shi J, Li Z, Liu H, Yu Y, Yang L, Wang X, Gong Y, Zou X (2021) A fluorescence resonance energy transfer probe based on functionalized graphene oxide and upconversion nanoparticles for sensitive and rapid detection of zearalenone. LWT 147:111541. https://doi.org/10.1016/j.lwt.2021.111541

    Article  CAS  Google Scholar 

  30. Jo EJ, Byun JY, Mun H, Bang D, Son JH, Lee JY, Lee LP, Kim MG (2018) Single-step LRET aptasensor for rapid mycotoxin detection. Anal Chem 90(1):716–722. https://doi.org/10.1021/acs.analchem.7b02368

    Article  CAS  PubMed  Google Scholar 

  31. Bogdan N, Vetrone F, Ozin GA, Capobianco JA (2011) Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett 11(2):835–840. https://doi.org/10.1021/nl1041929

    Article  CAS  PubMed  Google Scholar 

  32. Li P, Liu S, Yan S, Fan X, He Y (2011) A sensitive sensor for anthraquinone anticancer drugs and hsDNA based on CdTe/CdS quantum dots fluorescence reversible control. Colloids Surf A: Physicochem Eng Asp 392(1):7–15. https://doi.org/10.1016/j.colsurfa.2011.08.037

    Article  CAS  Google Scholar 

  33. Zhu H, Ding Y, Wang A, Sun X, Wu XC, Zhu JJ (2015) A simple strategy based on upconversion nanoparticles for a fluorescent resonant energy transfer biosensor. J Mater Chem B 3(3):458–464. https://doi.org/10.1039/c4tb01320d

    Article  CAS  PubMed  Google Scholar 

  34. Boyer JC, Vetrone F, Cuccia LA, Capobianco JA (2006) Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J Am Chem Soc 128(23):7444–7445. https://doi.org/10.1021/ja061848b

    Article  CAS  PubMed  Google Scholar 

  35. Krzak A, Swiech O, Majdecki M, Bilewicz R (2017) Complexing daunorubicin with β-cyclodextrin derivative increases drug intercalation into DNA. Electrochim Acta 247:139–148. https://doi.org/10.1016/j.electacta.2017.06.140

    Article  CAS  Google Scholar 

  36. Takenaka S, Ihara T, Takagi M (1990) Bis-9-acridinyl derivative containing a viologen linker chain: electrochemically active intercalator for reversible labelling of DNA. J Chem Soc Chem Commun 21:1485–1487. https://doi.org/10.1039/c39900001485

    Article  Google Scholar 

  37. Quigley GJ, Wang AH, Ughetto G, van der Marel G, van Boom JH, Rich A (1980) Molecular structure of an anticancer drug-DNA complex: daunomycin plus d(CpGpTpApCpG). Proc Natl Acad Sci USA 77(12):7204–7208. https://doi.org/10.1073/pnas.77.12.7204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harahap Y, Ardiningsih P, Corintias Winarti A, Purwanto DJ (2020) Analysis of the doxorubicin and doxorubicinol in the plasma of breast cancer patients for monitoring the toxicity of doxorubicin. Drug Des Devel Ther 14:3469–3475. https://doi.org/10.2147/DDDT.S251144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang L, Xing H, Liu W, Wang Z, Hao Y, Wang H, Dong W, Liu Y, Shuang S, Dong C, Gong X (2021) 11-Mercaptoundecanoic acid-functionalized carbon dots as a ratiometric optical probe for doxorubicin detection. ACS Appl Nano Mater 4:13734–13746. https://doi.org/10.1021/acsanm.1c03141

    Article  CAS  Google Scholar 

  40. Mo J, Wang S, Zeng J, Ding X (2023) Aptamer-based upconversion fluorescence sensor for doxorubicin detection. J Fluoresc 33(5):1897–1905. https://doi.org/10.1007/s10895-023-03184-5

    Article  CAS  PubMed  Google Scholar 

  41. Mescheryakova SA, Matlakhov IS, Strokin PD, Drozd DD, Goryacheva IY, Goryacheva OA (2023) Fluorescent alloyed CdZnSeS/ZnS nanosensor for doxorubicin detection. Biosensors 13(6):596. https://doi.org/10.3390/bios13060596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rus I, Tertiș M, Barbălată C, Porfire A, Tomuță I, Săndulescu R, Cristea C (2021) An electrochemical strategy for the simultaneous detection of doxorubicin and simvastatin for their potential use in the treatment of cancer. Biosensors 11(1):15. https://doi.org/10.3390/bios11010015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zeng J, Wang X, Jia Y, Mo J, Sun R, Wu T, Xu Q, Jin H (2021) A fluorescent sensor for daunorubicin determination using 808 nm-excited upconversion nanoparticles. J Inorg Organomet Polym Mater 31:2868–2876. https://doi.org/10.1007/s10904-020-01872-4

    Article  CAS  Google Scholar 

  44. Findik M, Bingol H, Erdem A (2021) Electrochemical detection of interaction between daunorubicin and DNA by hybrid nanoflowers modified graphite electrodes. Sens Actuators B Chem 329:129120. https://doi.org/10.1016/j.snb.2020.129120

    Article  CAS  Google Scholar 

  45. Congur G, Eksin E, Erdem A (2021) Levan modified DNA biosensor for voltammetric detection of daunorubicin-DNA interaction. Sens Actuators B Chem 326:128818. https://doi.org/10.1016/j.snb.2020.128818

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported in part by the Natural Science Foundation of Fujian Province (Nos. 2020J01628, 2022J011310), the Fuzhou Health Innovation Platform Construction Project (No. 2021-S-wp2), and the Fuzhou Science and Technology Plan Technology Innovation Platform Project (No. 2022-P-018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Zhang or Jianming Lan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 416 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Chen, Z., Yu, C. et al. Unlabelled LRET biosensor based on double-stranded DNA for the detection of anthraquinone anticancer drugs. Microchim Acta 191, 15 (2024). https://doi.org/10.1007/s00604-023-06076-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06076-4

Keywords

Navigation