AERODYNAMIC DRAG ON CYLINDERS AND SPHERES

In this lesson, we will:

- Discuss how Drag Coefficient of Spheres and Cylinders varies with Reynolds number
- Show how to apply the Morrison Equation for sphere drag
- Define the Drag Crisis and how Rough Walls can sometimes lower drag (e.g., golf balls)
- Do some example problems

Aerodynamic Drag on Smooth Spheres

Experimental data show a huge range of C_{D} values for a sphere, depending on Reynolds number. This classic plot was first produced by Hermann Schlichting, Boundary Layer Theory, 1954.

Laminar Bl separation

From Çengel and Cimbala, Ed. 4. TURBULENT BL SEPARATION

In a 2016 paper, Faith A. Morrison created a curve fit equation for C_{D} of a sphere that spans the entire range of Reynolds number up to 10^{6}. Here is the Morrison Equation:

$$
C_{D} \approx \frac{24}{\mathrm{Re}}+\frac{2.6\left(\frac{\mathrm{Re}}{5.0}\right)}{1+\left(\frac{\mathrm{Re}}{5.0}\right)^{1.52}}+\frac{0.411\left(\frac{\mathrm{Re}}{2.63 \times 10^{5}}\right)^{-7.94}}{1+\left(\frac{\mathrm{Re}}{2.63 \times 10^{5}}\right)^{-8.00}}+\frac{0.25\left(\frac{\mathrm{Re}}{10^{6}}\right)}{1+\left(\frac{\mathrm{Re}}{10^{6}}\right)} \text { for } \mathrm{Re}<10^{6}
$$

Example: Drag coefficient on a sphere

Given: A 1.55 mm sphere is moving in air at a speed of $1.25 \mathrm{~m} / \mathrm{s}$. The air properties are:

- $\rho=1.246 \mathrm{~kg} / \mathrm{m}^{3}$
- $v=1.426 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$

To do: Calculate the Reynolds number and the drag coefficient for this sphere.
Solution:

MORRISON EQ IS FOR SMOOTH SPHERES

$$
\begin{aligned}
& \operatorname{Re}=\frac{V D_{p}}{v} C_{D} \approx \frac{24}{\mathrm{Re}}+\frac{2.6\left(\frac{\mathrm{Re}}{5.0}\right)}{1+\left(\frac{\mathrm{Re}}{5.0}\right)^{1.52}}+\frac{0.411\left(\frac{\mathrm{Re}}{2.63 \times 10^{5}}\right)^{-7.94}}{1+\left(\frac{\mathrm{Re}}{2.63 \times 10^{5}}\right)^{-8.00}}+\frac{0.25\left(\frac{\mathrm{Re}}{10^{6}}\right)}{1+\left(\frac{\mathrm{Re}}{10^{6}}\right)} \text { for } \mathrm{Re} \\
& R_{e}=\frac{(1.25 \mathrm{~m} / \mathrm{s})(1.55 \mathrm{~mm})}{1.426 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}}\left(\frac{1 \mathrm{~m}}{1000 \mathrm{~mm}} \Rightarrow R_{e}=135.869\right. \\
& C_{D}=\frac{0.90149}{C_{D}=0.901 \Rightarrow 136} \Rightarrow \frac{R_{e}=135}{135.8690 .90149} \text { \& \& }
\end{aligned}
$$

Aerodynamic Drag on Smooth Cylinders

Circular cylinder C_{D} values also vary with Reynolds number, similarly to those of a sphere.
Data are again based on Hermann Schlichting, Boundary Layer Theory, 1954.

Figures from Çengel and Cimbala, Ed. 4.

The Drag Crisis and the Effect of Roughness on Spheres and Cylinders

Why do Golf Balls Have Dimples?

- If smooth golf ball, laminar BL

Thick wake ¿. larcue drag

- with dimples, laminar BL is tripped to a turbulent BL

- Skin friction drag is higher for turbulent case
- Pressure drag is much lower ". " (Pressure Dray "wins")

