US20010025046A1 - Self-emulsifying systems containing anticancer medicament - Google Patents

Self-emulsifying systems containing anticancer medicament Download PDF

Info

Publication number
US20010025046A1
US20010025046A1 US09/339,595 US33959599A US2001025046A1 US 20010025046 A1 US20010025046 A1 US 20010025046A1 US 33959599 A US33959599 A US 33959599A US 2001025046 A1 US2001025046 A1 US 2001025046A1
Authority
US
United States
Prior art keywords
acid
emulsifying system
self
weight percent
stabilizing component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/339,595
Inventor
Rong(Ron) Liu
Zheng Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott Laboratories
Original Assignee
Abbott Laboratories
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abbott Laboratories filed Critical Abbott Laboratories
Priority to US09/339,595 priority Critical patent/US20010025046A1/en
Assigned to ABBOTT LABORATORIES reassignment ABBOTT LABORATORIES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WANG, ZHENG, LIU, RONG (RON)
Priority to MXPA01013385A priority patent/MXPA01013385A/en
Priority to CA002377086A priority patent/CA2377086A1/en
Priority to EP00937683A priority patent/EP1194129A1/en
Priority to JP2001505890A priority patent/JP2003503339A/en
Priority to PCT/US2000/014116 priority patent/WO2001000180A1/en
Priority to US09/874,622 priority patent/US6316497B1/en
Publication of US20010025046A1 publication Critical patent/US20010025046A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/336Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having three-membered rings, e.g. oxirane, fumagillin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4858Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis

Definitions

  • the present invention relates to a stabilized self-emulsifying system comprising anticancer medicament.
  • the claimed invention is suitable for formulation of angiogenesis inhibitor o-(chloroacetylcarbamoyl)fumagillol.
  • Fumagillins are a class of compounds naturally secreted from aspergillus fumigatus fungus. Synthetic analogues of fumagillins provide a class of angiogenesis inhibitors that exhibit potent anti-angiogenic activity and low systemic toxicity. A synthetic derivative of fumagillin having a formula (I):
  • European Patent No. 0 602 586 discloses a pharmaceutical composition comprising a fumagillol derivative and a fatty acid ester of glycerin or polyglycerin. Typical formulations are less effective for delivery of the medicament to the angiogenic tumors due to low oral bioavailability of the medicament in the formulation.
  • European Patent No. 0 517 412 describes an oil-based self-emulsifying formulation containing benzodiazepine compounds useful for treating pain, panic, or anxiety.
  • compositions wherein the composition is in the form of a self-emulsifying system have particularly advantageous properties with respect to the above fumagillol derivative.
  • Formulations of fumagillin anticancer agents in typical self-emulsifying systems rapidly degrade if formulated without a suitable stabilizing component. Therefore, there continues to be a need to provide effective methods of formulating fumagillin anticancer agents to ensure more effective bioavailability and wider availability of the desired medicaments.
  • the present invention relates to a stabilized self-emulsifying system, comprising a therapeutically effective amount of o-(chloroacetylcarbamoyl)fumigillol, a pharmaceutically acceptable carrier, and a stabilizing component, wherein the pharmaceutically acceptable carrier comprises an oily constituent and at least one surfactant.
  • the stabilizing component of the self-emulsifying system comprises from about 1% to about 15% water relative to the weight of the formulation.
  • Another aspect of the invention relates to a self-emulsifying system comprising a therapeutically effective amount of o-(chloroacetylcarbamoyl)fumigillol and a pharmaceutically acceptable carrier stabilized by an acid.
  • Yet another aspect of the present invention relates to a stable system for active medicament, comprising a self-emulsifying system comprising medicament, a pharmaceutically acceptable carrier, and a stabilizing component, wherein the stabilizing component is an adsorbent or complex-forming agent.
  • the present invention relates to a stabilized self-emulsifying system for medicaments having anticancer activity.
  • the invention particularly relates to a self-emulsifying system having a stabilizing component to prevent degradation of the active medicament in the formulation.
  • Formulations of the present invention exhibit improved bioavailablity of lipophilic compounds useful against cancer conditions.
  • Self-emulsifying system refers to a physically and chemically stable oily solutions, suspensions, or semisolids which, upon contact in an aqueous medium, form a fine dispersion of oil in aqueous medium wherein the dispersion is stabilized by an interfacial film of surfactant molecules.
  • the aqueous medium can be water or the aqueous physiological fluids of the gastrointestinal system.
  • Embodision refers to a liquid-liquid dispersion wherein the dispersion droplets are stabilized by an interfacial film of surfactant molecules.
  • Emsion refers to all such dispersions whether formed by a mixture of nonhomogenous liquids and/or solutions or by introducing a self-emulsifying system as defined above into an aqueous medium.
  • stabilizing component refers to the useful components of the self-emulsifying system that provide chemical and/or physical stability to a self-emulsifying system as defined above.
  • the stabilizing component provides useful materials for stabilizing a formulation described as the self-emulsifying system independent of its contact with an aqueous environment or medium.
  • Medicaments useful in the compositions of the present invention are a class of compounds naturally secreted from aspergillus fumigatus fungus named fumagillins, derivatives, and synthetic analogues thereof.
  • the medicaments useful in the compositions of the present invention have a formula:
  • the medicaments and pharmaceutical formulations containing the medicaments are useful for the treatment of cancer conditions characterized by proliferation of endothelial cells and neovascularization.
  • the useful medicament is (3R, 4S, 5S, 6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-2-butenyl)oxiranyl]-1-oxaspiro[2,5]-oct-6yl(chloroacetylcarbamoyl)carbamate or o-(chloroacetylcarbamoyl)fumagillol.
  • the drug typically degrades by hydrolysis under aqueous conditions.
  • the pharmaceutical compositions described herein provide suitable formulations of o-(chloroacetylcarbamoyl)fumigillol in an aqueous environment, such as the stomache of a mammal ingesting the composition, demonstrating an improved oral formulation.
  • Benefits of the claimed formulations include, but are not limited to, the improved solubility of the medicament in solution as well as improved oral bioavailability of the active agent over formulations reported in the scientific literature.
  • the medicaments useful in the compositions of the present invention include not only those specifically named above, but also where appropriate the pharmaceutically acceptable salts, esters, amides and prodrugs thereof.
  • “Pharmaceutically acceptable salts, esters, amides and prodrugs” as used herein means those carboxylate salts, amino acid addition salts, esters, amides and prodrugs of a compound which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals with undue toxicity, irritation, allergic response and the like, commensurate with a reasonable benefit/risk ratio and effective for their intended use.
  • a preferred therapeutic agent is sparingly soluble in water and has solubility in water of less than 5 mg/mL.
  • pharmaceutically acceptable carrier refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type.
  • the pharmaceutically acceptable carrier comprises the combination of solvents, surfactants, optional co-surfactants, and stabilizing agents used in the formulation.
  • Oily components suitable for the process are selected from the group consisting of alcohols, propylene glycol, polyethylene glycol, propylene glycol esters, medium chain mono-, di-, or triglycerides, long chain fatty acids, naturally occurring oils, and a mixture thereof.
  • the oily components suitable for the solvent system include commercially available oils as well as naturally occurring oils.
  • the oils can be characterized as non-surface active oils, which typically have no hydrophile lipophile balance value.
  • excipients comprising medium chain triglycerides include, but are not limited to, Captex 100, Captex 300, Captex 355, Miglyol 810, Miglyol 812, Miglyol 818, Miglyol 829, and Dynacerin 660.
  • Propylene glycol ester compositions that are commercially available encompass Captex 200 and Miglyol 840, and the like.
  • the commercial product, Capmul MCM discloses one of many medium chain mixtures comprising monoglycerides and diglycerides.
  • Suitable naturally occurring oils are seed oils. Exemplary natural oils include oleic acid, castor oil, safflower seed oil, soybean oil, olive oil, sunflower seed oil, and peanut oil.
  • the active medicament generally has greater solubility in commercially available excipients, and therefore, commercially available excipients are preferred over naturally occurring oils as the suitable oil.
  • the oily component comprises medium chain triglycerides or propylene glycol esters.
  • Equivalent compositions whether commercially prepared or prepared according to methods known to those having skill in the art are also suitable for the invention.
  • the most preferred oily component is Captex 200, Miglyol 840, Miglyol 812 or an equivalent composition.
  • the surfactants are selected from a group of compounds having a hydrophile lipophile balance (HLB) of less than or equal to 7.
  • Suitable surfactants are selected from a group consisting of propylene glycols, glyceryl fatty acids, glyceryl fatty acid esters, polyethylene glycol esters, glyceryl glycol esters, polyglycolyzed glycerides and polyoxyethyl steryl ethers.
  • Propylene glycol esters or partial esters form the composition of commercial products, such as Lauroglycol FCC, which contains propylene glycol laureate.
  • the commercially available excipient Maisine 35-1 comprises long chain fatty acids, for example glyceryl linoleate.
  • Products, such as Acconon E, which comprise polyoxyethylene stearyl ethers are also suitable for the formulation of the invention.
  • Mixtures of the above named surfactants and compounds are also suitable for the invention.
  • Labrafil M 1944 CS is one example of a suitable surfactant wherein the composition contains a mixture of glyceryl glycol esters and polyethylene glycol esters.
  • Certain surfactants show acceptable compatibility despite having an HLB greater than 7.
  • acceptable surfactants having an HLB greater than 7 are used in combination with other surfactant as co-surfactants.
  • Suitable co-surfactants are selected from the group consisting of glyceryl glycol esters, polyethylene glycol esters, polyglycolyzed glycerides, polyoxyethylene glycerol esters, and a mixture thereof.
  • Commercially available co-surfactants based on an oleate or laureate ester of a polyalcohol copolymerized with ethylene oxide are also useful in the invention.
  • Labrasol is a commercially available excipient based on glyceryl glycol esters and polyethylene glycol esters.
  • Gelucire 44/14 comprises polyglycolyzed glycerides.
  • Tween 80 polysorbate 80
  • Tween 80 and Labrasol are the preferred co-surfactants.
  • the present invention relates to a stabilized self-emulsifying system comprising the medicament, a pharmaceutically acceptable carrier and a stabilizing component, wherein the stabilizing component is water.
  • the stabilized self-emulsifying system comprises the medicament, the pharmaceutically acceptable carrier, and a stabilizing component, wherein the stabilizing component comprises an acid.
  • the present invention relates to a stabilized self-emulsifying system comprising the medicament, the pharmaceutically acceptable carrier, and a stabilizing component, wherein the stabilizing component comprises an adsorbent or complex-forming agent.
  • the stabilizing component in the present aspect of the invention comprises from about 1% to about 15% water relative to the weight of the self-emulsifying system.
  • the relative amount of water is critical to the stability of the self-emulsifying system in this aspect of the invention. Presence of excess water causes degradation of the active medicament in the formulation. Moreover, formulations having less than 1% water are unsatisfactory due to instability of the medicament. Chemical stability of the medicament in the self-emulsifying system is accomplished from about 1% to about 15% water.
  • the self-emulsifying system contains from about 2% to about 12% water relative to the weight of the formulation. Most preferably, the formulation contains from about 7.0% to about 7.5% water.
  • the presence of water in the self-emulsifying system will form reverse micelles with surfactants, for example Tween 80 or Capmul MCM.
  • the core of the micelle consists of an aqueous or hydrophilic micro-phase. Hydrophilic impurities will be solubilized or partitioned into the reversed micelles in formulation, thereby minimizing the degradation of the o-(chloroacetylcarbamoyl)fumigillol.
  • the formation of reversed micelles in the self-emulsifying system protects the drug from degradation or stabilizes the drug in the macroscopically homogeneous SES solution.
  • Suitable acids for the formulation comprise organic acids as well as inorganic acids and derivatives thereof.
  • Organic acids suitable for the formulation are selected from the group consisting of aliphatic carboxylic acids, aromatic carboxylic acids, and sulfonic acids.
  • Suitable aliphatic carboxylic acids comprise C 1 -C 16 carboxylic acids, including hydroxycarboxylic acids.
  • Exemplary aliphatic carboxylic acids include, but are not limited to, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, and the like, or a mixture thereof.
  • Hydroxycarboxylic acids are selected from the group consisting of citric acid, glycolic acid, lactic acid, malic acid, and the like, or a mixture thereof.
  • Aromatic organic acids suitable for the formulation are selected from the group comprising benzoic acids and derivatives thereof.
  • Suitable aromatic carboxylic acids and derivatives thereof include, but are not limited to, aminobenzoic acid, benzoic acid, acetylsalicylic acid, salicylic acid, and the like, or a mixture thereof.
  • Additional organic acids include suitable sulfonic acids, such as alkanesulfonic and arenesulfonic acids, which are selected from the group consisting of methanesulfonic acid, 2-propanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and the like, or a mixture thereof.
  • Inorganic acids suitable for the invention are selected from the group consisting of orthophosphoric acid, polyphosphoric acid, pyrophosphoric acid, hydrochloric acid and the like, or a mixture thereof.
  • the acid used is an organic acid.
  • the preferred organic acid is hydroxycarboxylic acid.
  • Citric acid is the most preferred acid.
  • the acid will comprise between about 0.005% to about 5.0% weight relative to the self-emulsifying system. It is preferred that the acid comprises from about 0.05% to about 1.0% weight of the stabilized self-emulsifying system.
  • Suitable adsorbents or complex forming agents are selected from the group consisting of gelatin, active charcoal, silica gel, and chelating agents.
  • the pharmaceutically acceptable carrier having the medicament can be filled, mixed, adsorbed, filtered or otherwise combined, contacted, or reacted with the adsorbent or complex forming agent.
  • Exemplary chelating agents are chelates and/or salts of ethylenediaminetetraacetic acid (EDTA).
  • the adsorbent is a gelatin, which can be shaped as a capsule, shell, pod, caplet or any other suitable form for containing a liquid self-emulsifying system.
  • the gelatin form can be a hard or soft gelatin capsule.
  • the adsorbent or complex-forming agent typically comprises from about 0.05% to 15% weight adsorbent or complex-forming agent relative to the weight of the medicament.
  • the adsorbent or complex-forming agent comprises from about 0.05 to about 10 weight percent of the total formulation.
  • the exact amount of adsorbent or complex-forming agent can be determined by one having ordinary skill in the art considering the active agent, excipients, and the nature of the stabilizing component in the self-emulsifying system and the amount of material necessary to stabilize the medicament.
  • the stabilized self-emulsifying systems of the present invention form emulsions upon gentle agitation in an aqueous environment.
  • Droplet sizes of the emulsion preferably have a diameter of less than 25 microns. Typically, smaller droplets in the formed emulsion more effectively deliver the active medicament.
  • Droplet size in the formed emulsion can be determined using a Sympatec Helos (H0687) laser diffraction particle sizer.
  • the dispersing system is stirred at a rate of 40 r.p.m. and 0.1 mL of sample is added to 4 mL of water. The sample is shaken for 10 minutes and measured for a measuring time of 10 seconds.
  • Emulsion Component Preferred Proportions Oil components between 20% and 90%, preferably 40% to 60% by weight of the total Surfactant between 5% and 50%, preferably 20% to 40% by weight of the total Co-surfactants between 0 and 40%, preferably 4% to 20% by weight of the total Stabilizing agent at least one of the following in the indicated proportions: -preferably 1-15%, and more preferably 2-12%, water by weight of the total; -preferably 0.005-5.0%, and more preferably 0.05-1.0%, acid by weight of the total, and -preferably more than 0.05-15%, and more preferably 0.05-10%, adsorbent or complex- forming agent relative to the weight of the medicament
  • a pharmaceutical composition in accordance with the invention comprises a therapeutically active amount of o-(chloroacetylcarbamoyl)fumigillol, an oily constituent, at least one surfactant, and stabilizing component, wherein the stabilizing component is selected from about 1 to about 15 weight percent water; from about 0.005 to about 5.0 weight percent acid; and from about 0.05 to about 15 weight percent of an adsorbent or complex-forming agent.
  • a preferred composition of the invention comprises from 40 to about 60 weight percent of the oily component; from 20 to about 40 weight percent surfactant; from about 4 to about 20 weight percent co-surfactant, and from 1 to about weight percent water.
  • a more preferred composition comprises from about 2 to about 12 weight percent water.
  • the most preferred composition comprises from about 7.0 to about 7.5 weight percent water.
  • Another preferred composition of the invention comprises from 40 to about 60 weight percent of the oily component; from 20 to about 40 weight percent surfactant; from about 4 to about 20 weight percent co-surfactant; and from about 0.05 to about 5.0 weight percent acid.
  • a more preferred composition comprises from about 0.05 to about 1.0 weight percent acid.
  • Yet another preferred composition of the invention comprises from 40 to about 60 weight percent of the oily component; from 20 to about 40 weight percent surfactant; from about 4 to about 20 weight percent co-surfactant; and from about 0.05 to about 15 weight percent adsorbent or complex-forming agent.
  • a more preferred composition comprises from about 0.05 to about 10 weight percent adsorbent or complex-forming agent.
  • compositions of the present invention can comprise additives conventionally used for preparing formulations.
  • the additives include those used for oral liquid systems and injectable preparations, such as preservatives, antioxidants, and thickening agents.
  • exemplary preservatives include, but are not limited to, benzylalcohol, ethylalcohol, benzalkonium chloride, phenol, chlorobutanol, and the like.
  • the antioxidants for the invention provide oxygen or peroxide inhibiting agents for the formulation and include, but are not limited to, butylated hydroxytoluene, butylhydroxyanisole, propyl gallate, ascorbic acid palmitate, ⁇ -tocopherol, and the like.
  • Thickening agents such as lecithin, hydroxypropylcellulose, aluminum stearate, and the like, may improve the texture of the formulation.
  • the pharmaceutical formulations of the present invention optionally can be molded into solid, semisolid or liquid preparations.
  • the composition of the present invention is molded into powder composition as it is or after mixing it with added vehicles, such as glucose, mannitol, starch, microcrystalline cellulose, and the like; thickening agents, such as natural gums, cellulose derivatives, acrylic acid polymers, and the like; and other additives or excipients used in solid or semisolid preparations.
  • added vehicles such as glucose, mannitol, starch, microcrystalline cellulose, and the like
  • thickening agents such as natural gums, cellulose derivatives, acrylic acid polymers, and the like
  • other additives or excipients used in solid or semisolid preparations used in solid or semisolid preparations.
  • oily or aqueous preparations of emulsions formed from the self-emulsifying systems of the invention are prepared according to almost the same manner as that in the above injectable preparations.
  • composition of the present invention can be molded into oily or aqueous solid, semisolid or liquid suppositories by methods known in the art.
  • the present invention relates to a method of suppressing cell proliferation and neovascularization comprising administering a formulation having the above stabilized self-emulsifying system.
  • the stabilized self-emulsifying system suitable for an intended mode of administration, such as topical, parenteral, or oral, e.g. in the form of capsule fillings.
  • parenteral refers to modes of administration, which include intravenous, intramuscular, intraperitoneal, intracisternal, subcutaneous and intraarticular injection and infusion.
  • compositions and methods of the present invention will be better understood in connection with the following Examples.
  • the Examples are intended as illustrations of and not a limitation upon the scope of the invention.
  • Captex 200 propylene glycol dicaprylate/dicaprate; ABITEC Co.
  • Capmul MCM medium chain mono and diglyceride; ABITECH Co.
  • Tween 80 polysorbate 80; Sigma
  • the o-(chloroacetylcarbamoyl)fumagillol (EP 0 359 036; Takeda Chemical Industries., Ltd., Tokyo, Japan) was added with stirring until the drug completely dissolved to form a clear, yellowish solution. The final formulations were gently agitated to blend the ingredients.
  • Captex 200 To a base formulation of Captex 200, Capmul MCM, and Tween 80 was added o-(chloroacetylcarbamoyl)fumigillol until the drug was completely dissolved. Water was added to the formulation to obtain a composition having final concentrations of 66.5% Captex 200, 19% Capmul MCM, 9.5% Tween 80, 7.5% water, and 5% medicament wt./wt. based on the total weight of the formulation.
  • the o-(chloroacetylcarbamoyl) fumagillol (EP 0 359 036; Takeda Chemical Industries., Ltd., Tokyo, Japan) was added with stirring until the drug completely dissolved to form a clear, yellowish solution to prepare a base formulation having final concentrations of 66.5% Captex 200, 19% Capmul MCM, 9.5% Tween 80, and 5% medicament wt./wt. based on the total weight of the formulation. Water was combined in the amounts shown in Table 2 based on the weight of the base formulation. The final formulations were gently agitated to blend the ingredients before the initial stability determination was taken.
  • Citric acid was added to Labrasol (glyceryl and polyethylene glycol esters; Gettefosse) and stirred using a magnetic stir bar at 50° C. until the citric acid dissolved.
  • Labrasol glyceryl and polyethylene glycol esters; Gettefosse
  • Miglyol 812 caprylic acid/capric acid triglyceride; Huls America
  • Laurolglycol FCC Laurolglycol FCC
  • the o-(chloroacetylcarbamoyl)fumagillol was added with stirring until the drug completely dissolved to produce a final formulation containing concentrations of 20% Labrasol, 20% Miglyol 812, 50% Lauroglycol FCC, and 10% medicament wt./wt based on the total weight of the formulation.
  • the final formulations were gently agitated to blend the ingredients.
  • the formulations were stored at 80° C. for 24 hours before determining the percentage of medicament remaining.
  • a control group of 5 mice and 3 subject groups of athymic mice with 50 mice per group were treated in the study.
  • the control group was bled before treatment and the plasma from the mice was prepared by mixing 0.1 volumes of 2% sulfuric acid in water.
  • Each of the subject groups, 1, 2, and 3, was treated with a single dose of 50 mg/kg body weight of o-(chloroacetylcarbamoyl)fumagillol (the medicament) administered subcutaneously (in gum arabic solution), orally in gum arabic (2% ethanol/5% gum arabic/93% saline), or orally in a self-emulsifying system, respectively.
  • a self-emulsifying system (10 g) was prepared by combining medicament (0.5 mg) in Captex 200 (6.5 g), Capmul CMC (1.9 g), and Tween 80 (0.95g). The dosing volume for all mice was 0.1 mL per 10 grams of body weight. Plasma samples were collected at pre-treatment (control group only) and at the following time intervals: 15 min., 30 min., 60 min., 90 min., 120 min., 150 min., 3 hrs., 4 hrs., 6 hrs., and 8 hrs. after treatment. At the designated time intervals, 5 mice in each subject group were sacrificed and bled using heparin as an anticoagulant. Plasma samples taken from the subject group mice were treated in the same manner as indicated for the pretreatment group.
  • a 50 mg oral dose of o-(chloroacetylcarbamoyl)fumagillol dissolved in a glyceride solution was compared with an SES prepared as described in Example 4. Each dose was orally administered to dog subjects treated in the study. Blood samples were collected at 0, 0.25, 0.5, 1, 1.5, 2, 3, 4, 6, and 9 hours after the dosing. Bioavailability of the drug was assessed by evaluating the plasma level of an o-(chloroacetylcarbamoyl)fumagillol inactive metabolite.
  • the mean droplet sizes of the O/W emulsions generated by formulations I and II were 1.48 ⁇ m and 1.60 ⁇ m, respectively. No significant difference in the size was observed between formulations I and II.

Abstract

The present invention relates to a stabilized self-emulsifying system, comprising a therapeutically effective amount of o-(chloroacetylcarbamoyl)fumigillol, a pharmaceutically acceptable carrier and a stabilizing component, wherein the pharmaceutically acceptable carrier comprises an oily constituent and at least one surfactant. The stabilizing component comprises from about 1% to about 15% water relative to the weight of the self-emulsifying system, an acid, an adsorbent, or a complex-forming agent.

Description

    TECHNICAL FIELD
  • The present invention relates to a stabilized self-emulsifying system comprising anticancer medicament. The claimed invention is suitable for formulation of angiogenesis inhibitor o-(chloroacetylcarbamoyl)fumagillol. [0001]
  • BACKGROUND OF THE INVENTION
  • Fumagillins are a class of compounds naturally secreted from aspergillus fumigatus fungus. Synthetic analogues of fumagillins provide a class of angiogenesis inhibitors that exhibit potent anti-angiogenic activity and low systemic toxicity. A synthetic derivative of fumagillin having a formula (I): [0002]
    Figure US20010025046A1-20010927-C00001
  • has been described in European Patent No. 0 359 036 and European Patent No. 0 357 061 as having inhibitory effect of suppressing the proliferation of endothelial cells and inhibiting neovascularization. The compounds having angiogenesis inhibiting activity have use in treating tumors in cancerous conditions. ([0003] Cancer Medicine, 3d. edition, Lea & Febiger, Philadelphia (1993)).
  • Developing stable formulations for delivering effective amounts of medicament to target organs presents unique challenges in obtaining a suitable formulation for the medicament. Characterized by their lipophilic properties and low water solubility, these drugs typically result in formulations producing low oral bioavailability. European Patent No. 0 602 586 discloses a pharmaceutical composition comprising a fumagillol derivative and a fatty acid ester of glycerin or polyglycerin. Typical formulations are less effective for delivery of the medicament to the angiogenic tumors due to low oral bioavailability of the medicament in the formulation. [0004]
  • Recent developments in drug formulation have resulted in self-emulsifying drug systems (SES) being used as vehicles for orally administering lipophilic medicaments. (Charman, [0005] Pharmaceutical Research, 39(1): 87-93 (1992)). Self-emulsifying systems are generally recognized to be mixtures of oil and surfactant which, upon exposure to aqueous media, form isotropic dispersions stabilized by an interfacial film of surfactant molecules.
  • Several self-emulsifying systems containing active drug in mixtures of oil and surfactant, which emulsify and form dispersions under gentle agitation, have been described using various components and for numerous uses. [0006]
  • European Patent No. 0 517 412 describes an oil-based self-emulsifying formulation containing benzodiazepine compounds useful for treating pain, panic, or anxiety. [0007]
  • The self-emulsifying systems described in Shah, [0008] Intl. J of Pharm., 106:15-23 (1994) contain polyglycolized glyceride oils with varying fatty acid and polyethylene glycol.
  • Pouton, et al., [0009] Intl. J of Pharm., 27:335-348 (1985), discloses self-emulsifying systems containing Miglyol 812 or Miglyol 840 oils in combination with Tween 85 surfactant.
  • Pharmaceutical formulations wherein the composition is in the form of a self-emulsifying system have particularly advantageous properties with respect to the above fumagillol derivative. Formulations of fumagillin anticancer agents in typical self-emulsifying systems rapidly degrade if formulated without a suitable stabilizing component. Therefore, there continues to be a need to provide effective methods of formulating fumagillin anticancer agents to ensure more effective bioavailability and wider availability of the desired medicaments. [0010]
  • SUMMARY OF THE INVENTION
  • The present invention relates to a stabilized self-emulsifying system, comprising a therapeutically effective amount of o-(chloroacetylcarbamoyl)fumigillol, a pharmaceutically acceptable carrier, and a stabilizing component, wherein the pharmaceutically acceptable carrier comprises an oily constituent and at least one surfactant. In one aspect of the invention, the stabilizing component of the self-emulsifying system comprises from about 1% to about 15% water relative to the weight of the formulation. Another aspect of the invention relates to a self-emulsifying system comprising a therapeutically effective amount of o-(chloroacetylcarbamoyl)fumigillol and a pharmaceutically acceptable carrier stabilized by an acid. Yet another aspect of the present invention relates to a stable system for active medicament, comprising a self-emulsifying system comprising medicament, a pharmaceutically acceptable carrier, and a stabilizing component, wherein the stabilizing component is an adsorbent or complex-forming agent. [0011]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to a stabilized self-emulsifying system for medicaments having anticancer activity. The invention particularly relates to a self-emulsifying system having a stabilizing component to prevent degradation of the active medicament in the formulation. Formulations of the present invention exhibit improved bioavailablity of lipophilic compounds useful against cancer conditions. [0012]
  • “Self-emulsifying system” as used herein refers to a physically and chemically stable oily solutions, suspensions, or semisolids which, upon contact in an aqueous medium, form a fine dispersion of oil in aqueous medium wherein the dispersion is stabilized by an interfacial film of surfactant molecules. The aqueous medium can be water or the aqueous physiological fluids of the gastrointestinal system. [0013]
  • The term “emulsion” as used herein refers to a liquid-liquid dispersion wherein the dispersion droplets are stabilized by an interfacial film of surfactant molecules. “Emulsion” as defined herein refers to all such dispersions whether formed by a mixture of nonhomogenous liquids and/or solutions or by introducing a self-emulsifying system as defined above into an aqueous medium. [0014]
  • The term “stabilizing component” as used herein refers to the useful components of the self-emulsifying system that provide chemical and/or physical stability to a self-emulsifying system as defined above. The stabilizing component provides useful materials for stabilizing a formulation described as the self-emulsifying system independent of its contact with an aqueous environment or medium. [0015]
  • Medicaments useful in the compositions of the present invention are a class of compounds naturally secreted from aspergillus fumigatus fungus named fumagillins, derivatives, and synthetic analogues thereof. In particular, the medicaments useful in the compositions of the present invention have a formula: [0016]
    Figure US20010025046A1-20010927-C00002
  • which have been described as having anti-angiogenic activity in the European Patent No. 0 359 036. The medicaments and pharmaceutical formulations containing the medicaments are useful for the treatment of cancer conditions characterized by proliferation of endothelial cells and neovascularization. In particular, the useful medicament is (3R, 4S, 5S, 6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-2-butenyl)oxiranyl]-1-oxaspiro[2,5]-oct-6yl(chloroacetylcarbamoyl)carbamate or o-(chloroacetylcarbamoyl)fumagillol. The drug typically degrades by hydrolysis under aqueous conditions. The pharmaceutical compositions described herein provide suitable formulations of o-(chloroacetylcarbamoyl)fumigillol in an aqueous environment, such as the stomache of a mammal ingesting the composition, demonstrating an improved oral formulation. Benefits of the claimed formulations include, but are not limited to, the improved solubility of the medicament in solution as well as improved oral bioavailability of the active agent over formulations reported in the scientific literature. [0017]
  • The medicaments useful in the compositions of the present invention include not only those specifically named above, but also where appropriate the pharmaceutically acceptable salts, esters, amides and prodrugs thereof. [0018]
  • “Pharmaceutically acceptable salts, esters, amides and prodrugs” as used herein means those carboxylate salts, amino acid addition salts, esters, amides and prodrugs of a compound which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals with undue toxicity, irritation, allergic response and the like, commensurate with a reasonable benefit/risk ratio and effective for their intended use. A preferred therapeutic agent is sparingly soluble in water and has solubility in water of less than 5 mg/mL. [0019]
  • The term “pharmaceutically acceptable carrier” refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. In relation to the present invention, the pharmaceutically acceptable carrier comprises the combination of solvents, surfactants, optional co-surfactants, and stabilizing agents used in the formulation. [0020]
  • Oily components suitable for the process are selected from the group consisting of alcohols, propylene glycol, polyethylene glycol, propylene glycol esters, medium chain mono-, di-, or triglycerides, long chain fatty acids, naturally occurring oils, and a mixture thereof. The oily components suitable for the solvent system include commercially available oils as well as naturally occurring oils. The oils can be characterized as non-surface active oils, which typically have no hydrophile lipophile balance value. Commercially available excipients comprising medium chain triglycerides include, but are not limited to, Captex 100, Captex 300, Captex 355, Miglyol 810, Miglyol 812, Miglyol 818, Miglyol 829, and Dynacerin 660. Propylene glycol ester compositions that are commercially available encompass Captex 200 and Miglyol 840, and the like. The commercial product, Capmul MCM, discloses one of many medium chain mixtures comprising monoglycerides and diglycerides. Suitable naturally occurring oils are seed oils. Exemplary natural oils include oleic acid, castor oil, safflower seed oil, soybean oil, olive oil, sunflower seed oil, and peanut oil. The active medicament generally has greater solubility in commercially available excipients, and therefore, commercially available excipients are preferred over naturally occurring oils as the suitable oil. [0021]
  • Preferably, the oily component comprises medium chain triglycerides or propylene glycol esters. Equivalent compositions whether commercially prepared or prepared according to methods known to those having skill in the art are also suitable for the invention. The most preferred oily component is Captex 200, Miglyol 840, Miglyol 812 or an equivalent composition. [0022]
  • Generally, the surfactants are selected from a group of compounds having a hydrophile lipophile balance (HLB) of less than or equal to 7. Suitable surfactants are selected from a group consisting of propylene glycols, glyceryl fatty acids, glyceryl fatty acid esters, polyethylene glycol esters, glyceryl glycol esters, polyglycolyzed glycerides and polyoxyethyl steryl ethers. Propylene glycol esters or partial esters form the composition of commercial products, such as Lauroglycol FCC, which contains propylene glycol laureate. The commercially available excipient Maisine 35-1 comprises long chain fatty acids, for example glyceryl linoleate. Products, such as Acconon E, which comprise polyoxyethylene stearyl ethers are also suitable for the formulation of the invention. Mixtures of the above named surfactants and compounds are also suitable for the invention. Labrafil M 1944 CS is one example of a suitable surfactant wherein the composition contains a mixture of glyceryl glycol esters and polyethylene glycol esters. These surfactants, mixtures, and other equivalent compositions having an HLB less than or equal to 7 can be used for the formulation of the invention. [0023]
  • Certain surfactants show acceptable compatibility despite having an HLB greater than 7. Generally, acceptable surfactants having an HLB greater than 7 are used in combination with other surfactant as co-surfactants. Suitable co-surfactants are selected from the group consisting of glyceryl glycol esters, polyethylene glycol esters, polyglycolyzed glycerides, polyoxyethylene glycerol esters, and a mixture thereof. Commercially available co-surfactants based on an oleate or laureate ester of a polyalcohol copolymerized with ethylene oxide are also useful in the invention. Labrasol is a commercially available excipient based on glyceryl glycol esters and polyethylene glycol esters. Gelucire 44/14 comprises polyglycolyzed glycerides. Tween 80 (polysorbate 80) exemplifies a polyoxyethylene sorbitan monooleate suitable as the co-surfactant. Tween 80 and Labrasol are the preferred co-surfactants. [0024]
  • In one aspect, the present invention relates to a stabilized self-emulsifying system comprising the medicament, a pharmaceutically acceptable carrier and a stabilizing component, wherein the stabilizing component is water. In another aspect of the invention, the stabilized self-emulsifying system comprises the medicament, the pharmaceutically acceptable carrier, and a stabilizing component, wherein the stabilizing component comprises an acid. In yet another aspect, the present invention relates to a stabilized self-emulsifying system comprising the medicament, the pharmaceutically acceptable carrier, and a stabilizing component, wherein the stabilizing component comprises an adsorbent or complex-forming agent. [0025]
  • Surprisingly, adding a small amount of water to the oil-based formulation stabilizes the self-emulsifying system. The stabilizing component in the present aspect of the invention comprises from about 1% to about 15% water relative to the weight of the self-emulsifying system. The relative amount of water is critical to the stability of the self-emulsifying system in this aspect of the invention. Presence of excess water causes degradation of the active medicament in the formulation. Moreover, formulations having less than 1% water are unsatisfactory due to instability of the medicament. Chemical stability of the medicament in the self-emulsifying system is accomplished from about 1% to about 15% water. Preferably, the self-emulsifying system contains from about 2% to about 12% water relative to the weight of the formulation. Most preferably, the formulation contains from about 7.0% to about 7.5% water. [0026]
  • The presence of water in the self-emulsifying system will form reverse micelles with surfactants, for example Tween 80 or Capmul MCM. The core of the micelle consists of an aqueous or hydrophilic micro-phase. Hydrophilic impurities will be solubilized or partitioned into the reversed micelles in formulation, thereby minimizing the degradation of the o-(chloroacetylcarbamoyl)fumigillol. The formation of reversed micelles in the self-emulsifying system protects the drug from degradation or stabilizes the drug in the macroscopically homogeneous SES solution. [0027]
  • Another stabilizing component useful in the stabilized self-emulsifying system is an acid. Suitable acids for the formulation comprise organic acids as well as inorganic acids and derivatives thereof. Organic acids suitable for the formulation are selected from the group consisting of aliphatic carboxylic acids, aromatic carboxylic acids, and sulfonic acids. Suitable aliphatic carboxylic acids comprise C[0028] 1-C16 carboxylic acids, including hydroxycarboxylic acids. Exemplary aliphatic carboxylic acids include, but are not limited to, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, and the like, or a mixture thereof. Hydroxycarboxylic acids are selected from the group consisting of citric acid, glycolic acid, lactic acid, malic acid, and the like, or a mixture thereof. Aromatic organic acids suitable for the formulation are selected from the group comprising benzoic acids and derivatives thereof. Suitable aromatic carboxylic acids and derivatives thereof include, but are not limited to, aminobenzoic acid, benzoic acid, acetylsalicylic acid, salicylic acid, and the like, or a mixture thereof. Additional organic acids include suitable sulfonic acids, such as alkanesulfonic and arenesulfonic acids, which are selected from the group consisting of methanesulfonic acid, 2-propanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and the like, or a mixture thereof. Inorganic acids suitable for the invention are selected from the group consisting of orthophosphoric acid, polyphosphoric acid, pyrophosphoric acid, hydrochloric acid and the like, or a mixture thereof. Preferably, the acid used is an organic acid. The preferred organic acid is hydroxycarboxylic acid. Citric acid is the most preferred acid.
  • Preferably, the acid will comprise between about 0.005% to about 5.0% weight relative to the self-emulsifying system. It is preferred that the acid comprises from about 0.05% to about 1.0% weight of the stabilized self-emulsifying system. [0029]
  • Suitable adsorbents or complex forming agents are selected from the group consisting of gelatin, active charcoal, silica gel, and chelating agents. The pharmaceutically acceptable carrier having the medicament can be filled, mixed, adsorbed, filtered or otherwise combined, contacted, or reacted with the adsorbent or complex forming agent. Exemplary chelating agents are chelates and/or salts of ethylenediaminetetraacetic acid (EDTA). Preferably, the adsorbent is a gelatin, which can be shaped as a capsule, shell, pod, caplet or any other suitable form for containing a liquid self-emulsifying system. The gelatin form can be a hard or soft gelatin capsule. [0030]
  • The adsorbent or complex-forming agent typically comprises from about 0.05% to 15% weight adsorbent or complex-forming agent relative to the weight of the medicament. Preferably, the adsorbent or complex-forming agent comprises from about 0.05 to about 10 weight percent of the total formulation. The exact amount of adsorbent or complex-forming agent can be determined by one having ordinary skill in the art considering the active agent, excipients, and the nature of the stabilizing component in the self-emulsifying system and the amount of material necessary to stabilize the medicament. [0031]
  • The stabilized self-emulsifying systems of the present invention form emulsions upon gentle agitation in an aqueous environment. Droplet sizes of the emulsion preferably have a diameter of less than 25 microns. Typically, smaller droplets in the formed emulsion more effectively deliver the active medicament. Droplet size in the formed emulsion can be determined using a Sympatec Helos (H0687) laser diffraction particle sizer. The dispersing system is stirred at a rate of 40 r.p.m. and 0.1 mL of sample is added to 4 mL of water. The sample is shaken for 10 minutes and measured for a measuring time of 10 seconds. [0032]
  • A preferred mixture having the proper ratio of components is described below in Table 1. [0033]
    TABLE 1
    Emulsion Component Preferred Proportions
    Oil components between 20% and 90%, preferably 40% to 60%
    by weight of the total
    Surfactant between 5% and 50%, preferably 20% to 40% by
    weight of the total
    Co-surfactants between 0 and 40%, preferably 4% to 20% by
    weight of the total
    Stabilizing agent at least one of the following in the indicated
    proportions:
      -preferably 1-15%, and more preferably
    2-12%, water by weight of the total;
      -preferably 0.005-5.0%, and more preferably
    0.05-1.0%, acid by weight of the total, and
      -preferably more than 0.05-15%, and more
    preferably 0.05-10%, adsorbent or complex-
    forming agent relative to the weight of the
    medicament
  • A pharmaceutical composition in accordance with the invention comprises a therapeutically active amount of o-(chloroacetylcarbamoyl)fumigillol, an oily constituent, at least one surfactant, and stabilizing component, wherein the stabilizing component is selected from about 1 to about 15 weight percent water; from about 0.005 to about 5.0 weight percent acid; and from about 0.05 to about 15 weight percent of an adsorbent or complex-forming agent. [0034]
  • A preferred composition of the invention comprises from 40 to about 60 weight percent of the oily component; from 20 to about 40 weight percent surfactant; from about 4 to about 20 weight percent co-surfactant, and from 1 to about weight percent water. A more preferred composition comprises from about 2 to about 12 weight percent water. The most preferred composition comprises from about 7.0 to about 7.5 weight percent water. [0035]
  • Another preferred composition of the invention comprises from 40 to about 60 weight percent of the oily component; from 20 to about 40 weight percent surfactant; from about 4 to about 20 weight percent co-surfactant; and from about 0.05 to about 5.0 weight percent acid. A more preferred composition comprises from about 0.05 to about 1.0 weight percent acid. [0036]
  • Yet another preferred composition of the invention comprises from 40 to about 60 weight percent of the oily component; from 20 to about 40 weight percent surfactant; from about 4 to about 20 weight percent co-surfactant; and from about 0.05 to about 15 weight percent adsorbent or complex-forming agent. A more preferred composition comprises from about 0.05 to about 10 weight percent adsorbent or complex-forming agent. [0037]
  • The compositions of the present invention can comprise additives conventionally used for preparing formulations. Examples of the additives include those used for oral liquid systems and injectable preparations, such as preservatives, antioxidants, and thickening agents. Exemplary preservatives include, but are not limited to, benzylalcohol, ethylalcohol, benzalkonium chloride, phenol, chlorobutanol, and the like. The antioxidants for the invention provide oxygen or peroxide inhibiting agents for the formulation and include, but are not limited to, butylated hydroxytoluene, butylhydroxyanisole, propyl gallate, ascorbic acid palmitate, α-tocopherol, and the like. Thickening agents, such as lecithin, hydroxypropylcellulose, aluminum stearate, and the like, may improve the texture of the formulation. [0038]
  • The pharmaceutical formulations of the present invention optionally can be molded into solid, semisolid or liquid preparations. For such preparations, the composition of the present invention is molded into powder composition as it is or after mixing it with added vehicles, such as glucose, mannitol, starch, microcrystalline cellulose, and the like; thickening agents, such as natural gums, cellulose derivatives, acrylic acid polymers, and the like; and other additives or excipients used in solid or semisolid preparations. For the liquid preparations, oily or aqueous preparations of emulsions formed from the self-emulsifying systems of the invention are prepared according to almost the same manner as that in the above injectable preparations. [0039]
  • To prepare suppositories, the composition of the present invention can be molded into oily or aqueous solid, semisolid or liquid suppositories by methods known in the art. [0040]
  • In another aspect of the invention, the present invention relates to a method of suppressing cell proliferation and neovascularization comprising administering a formulation having the above stabilized self-emulsifying system. The stabilized self-emulsifying system suitable for an intended mode of administration, such as topical, parenteral, or oral, e.g. in the form of capsule fillings. The term “parenteral” as used herein refers to modes of administration, which include intravenous, intramuscular, intraperitoneal, intracisternal, subcutaneous and intraarticular injection and infusion. [0041]
  • The compositions and methods of the present invention will be better understood in connection with the following Examples. The Examples are intended as illustrations of and not a limitation upon the scope of the invention. [0042]
  • EXAMPLES Example 1 Preparation of the Stabilized SES Formulation Example 1a
  • Captex 200 (propylene glycol dicaprylate/dicaprate; ABITEC Co.), Capmul MCM (medium chain mono and diglyceride; ABITECH Co.), Tween 80 (polysorbate 80; Sigma) were added in a container and mixed well with a magnetic stir bar. The o-(chloroacetylcarbamoyl)fumagillol (EP 0 359 036; Takeda Chemical Industries., Ltd., Tokyo, Japan) was added with stirring until the drug completely dissolved to form a clear, yellowish solution. The final formulations were gently agitated to blend the ingredients. To a base formulation of Captex 200, Capmul MCM, and Tween 80 was added o-(chloroacetylcarbamoyl)fumigillol until the drug was completely dissolved. Water was added to the formulation to obtain a composition having final concentrations of 66.5% Captex 200, 19% Capmul MCM, 9.5% Tween 80, 7.5% water, and 5% medicament wt./wt. based on the total weight of the formulation. [0043]
  • Example 1b
  • To a base formulation of Labrasol, Miglyol 812, and Lauroglycol FCC was added o-(chloroacetylcarbamoyl)fumigillol until the drug was completely dissolved to obtain a composition having final concentrations of 20% Labrasol, 20% Miglyol 812, 50% Lauroglycol FCC, and 10% medicament wt./wt. based on the total weight of the formulation. The solution was filled into a 200 mg airfill softgell capsule. [0044]
  • Example 1c
  • To a base formulation of Miglyol 840, Lauroglycol FCC and Tween 80 was added o-(chloroacetylcarbamoyl)fumigillol until the drug was completely dissolved to obtain a composition having final concentrations of 42.5% of Miglyol 840, 42.5% of Lauroglycol FCC, 5% of Tween 80, and 10% of the medicament wt./wt. based on the total weight of the formulation. The solution was filled into a 50 mg airfill softgell capsule shell. [0045]
  • Example 2 Stability of Stabilized SES Formulations Containing Water
  • A determination of the effect of water on the stability of several SES formulations prepared in accordance with the invention were conducted as follows: Captex 200 (propylene glycol dicaprylate/dicaprate; ABITEC Co.), Capmul MCM (medium chain mono and diglyceride; ABITECH Co.), Tween 80 (polysorbate 80; Sigma) were added in a container and mixed well with a magnetic stir bar. The o-(chloroacetylcarbamoyl) fumagillol (EP 0 359 036; Takeda Chemical Industries., Ltd., Tokyo, Japan) was added with stirring until the drug completely dissolved to form a clear, yellowish solution to prepare a base formulation having final concentrations of 66.5% Captex 200, 19% Capmul MCM, 9.5% Tween 80, and 5% medicament wt./wt. based on the total weight of the formulation. Water was combined in the amounts shown in Table 2 based on the weight of the base formulation. The final formulations were gently agitated to blend the ingredients before the initial stability determination was taken. [0046]
  • Results of these tests are shown below in Table 2. The data obtained showed that water produced a good stabilizing quality in the self-emulsifying systems, with the best results obtained at 7.5%. [0047]
    TABLE 2
    Amount of Water
    (% wt./wt.) k (per day) t 0.5 (day) Corr. r.
    0 0.351 1.976 0.9795
    2.5 0.082 8.413 0.9940
    5 0.025 27.709 0.9969
    7.5 0.019 36.130 0.9950
  • Example 3 Stability of Stabilized SES Formulations in Acid
  • To illustrate the effect of citric acid on the stability of the SES, several formulations were prepared as follows: Citric acid was added to Labrasol (glyceryl and polyethylene glycol esters; Gettefosse) and stirred using a magnetic stir bar at 50° C. until the citric acid dissolved. To the cooled solution, Miglyol 812 (caprylic acid/capric acid triglyceride; Huls America) and Laurolglycol FCC (Gettefosse) were added and mixed well. The o-(chloroacetylcarbamoyl)fumagillol was added with stirring until the drug completely dissolved to produce a final formulation containing concentrations of 20% Labrasol, 20% Miglyol 812, 50% Lauroglycol FCC, and 10% medicament wt./wt based on the total weight of the formulation. The final formulations were gently agitated to blend the ingredients. The formulations were stored at 80° C. for 24 hours before determining the percentage of medicament remaining. [0048]
  • The results of these studies, shown below in Table 3, demonstrate the stabilizing effect of citric acid on the formulations of the present invention. The percentages of medicament remaining in the respective citric acid formulations at 80° C. are indicated below. [0049]
    TABLE 3
    % Citric Acid
    0 .2 .4 .6 1.0
    % Medicament 77.6 93.7  96.1  92.4  90.5 
    Remaining
  • Example 4 Stability of Stabilized SES Formulations in Gelatin
  • The effect of gelatin on the stability of several SES formulations prepared in accordance with the invention was determined by studies conducted as follows: Tween 80, Miglyol 840 and Laurolglycol FCC were combined at room temperature and mixed well. The o-(chloroacetylcarbamoyl)fumagillol was added with stirring until the drug completely dissolved to produce a final formulation containing concentrations of 5% Tween 80, 42.5% Miglyol 840, 42.5% Laurolglycol FCC, and 10% medicament wt./wt. based of the total weight of the formulation. The final formulations were gently agitated before the initial stability determination was taken. [0050]
  • To prepare the formulation with gelatin, an opening was formed in the tip of a gelatin capsule and the preparation was injected into the capsule using a Hamilton gastight teflon glass syringe. Sealing the opening with heat and pinching contained the formulation in the capsule. [0051]
  • The amounts of medicament remaining in the prepared formulation and in the filled capsule were measured. Measurements were taken under separate reaction condition at 50° C. and 80° C., respectively. Results of these tests shown below in Table 4 describe the percentage of medicament remaining in the formulation with and without gelatin relative to each set of reaction conditions. The data obtained showed that the gelatin produced a good stabilizing effect on self-emulsifying drug formulations. [0052]
    TABLE 4
    Reaction Conditions
    Prototype 50° C., 15 days 80° C., 5 days
    Formulation 80.52% 14.52%
    without Gelatin
    Formulation with 90.14% 52.47%
    Gelatin
  • Example 5 Stability of Stabilized SES Formulations in Gelatin
  • Measurements were also taken under separate reaction conditions in a related study of the formulation stability. The formulation with gelatin was prepared as described above in Example 4. Results of the storage stability for the formulation with gelatin is shown below in Table 5. The results illustrate the percentage of medicament remaining in the formulation per time interval, described in months (M), relative to each set of storage conditions. The data obtained showed that the gelatin produced a long-term stabilizing effect on self-emulsifying drug formulations. [0053]
    TABLE 5
    Stability Data
    % Medicament
    Storage Conditions Interval Remaining
    Initial 0 100%  
    5° C. 1 M 99.5%
    3 M 99.0%
    25° C./60 RH 1 M 99.0%
    2 M 98.5%
    3 M 97.0%
  • Example 6 Bioavailability of the Stabilized SES Formulation
  • A control group of 5 mice and 3 subject groups of athymic mice with 50 mice per group were treated in the study. The control group was bled before treatment and the plasma from the mice was prepared by mixing 0.1 volumes of 2% sulfuric acid in water. Each of the subject groups, 1, 2, and 3, was treated with a single dose of 50 mg/kg body weight of o-(chloroacetylcarbamoyl)fumagillol (the medicament) administered subcutaneously (in gum arabic solution), orally in gum arabic (2% ethanol/5% gum arabic/93% saline), or orally in a self-emulsifying system, respectively. A self-emulsifying system (10 g) was prepared by combining medicament (0.5 mg) in Captex 200 (6.5 g), Capmul CMC (1.9 g), and Tween 80 (0.95g). The dosing volume for all mice was 0.1 mL per 10 grams of body weight. Plasma samples were collected at pre-treatment (control group only) and at the following time intervals: 15 min., 30 min., 60 min., 90 min., 120 min., 150 min., 3 hrs., 4 hrs., 6 hrs., and 8 hrs. after treatment. At the designated time intervals, 5 mice in each subject group were sacrificed and bled using heparin as an anticoagulant. Plasma samples taken from the subject group mice were treated in the same manner as indicated for the pretreatment group. [0054]
  • Compilation of the results determining the bioavailability of the o-(chloroacetylcarbamoyl)fumagillol are shown in Table 6 below. Subcutaneous administration in gum arabic solution provides a standard for comparing gum arabic and the SES oral dosage forms. Samples were measured for plasma concentration of the medicament (A), an active metabolite (B), and an inactive metabolite (C). [0055]
    TABLE 6
    Relative
    Cmax Tmax AUC0-8 hrs. Bioavailability
    Dosage Form (ng/mL) (hr) (ng · hr/mL) (%)
    Subcutaneous A:  70.41 A: 0.4 A:  30.09 N/A
    B: 218.86 B: 0.3 B: 116.62
    C: 536.36 C: 0.3 C: 329.14
    Oral Solution A:  1.06 A: 3.1 A:  1.11 A:  3.7%
    (Gum Arabic) B:  14.61 B: 0.3 B:  6.93 B:  5.9%
    C: 148.71 C: 0.25 C: 106.46 C: 32.3%
    Oral SES A:  5.54 A: 1.4 A:  5.40 A: 17.9%
    Formulation B:  11.41 B: 1.3 B:  20.57 B: 17.6%
    C:  51.70 C: 2.3 C: 171.90 C: 52.2%
  • Example 7 Comparison of Stabilized SES Bioavailability with Oil Formulations
  • A 50 mg oral dose of o-(chloroacetylcarbamoyl)fumagillol dissolved in a glyceride solution was compared with an SES prepared as described in Example 4. Each dose was orally administered to dog subjects treated in the study. Blood samples were collected at 0, 0.25, 0.5, 1, 1.5, 2, 3, 4, 6, and 9 hours after the dosing. Bioavailability of the drug was assessed by evaluating the plasma level of an o-(chloroacetylcarbamoyl)fumagillol inactive metabolite. [0056]
  • Results of the comparative study illustrate that, for MII, a metabolite of TNP-470 which was used as one the criteria for bioavailability assessment, the SES formulation provides nearly 2.5 times the absolute oral bioavailability (F) of a known oily solution. Summary of the study is shown below in Table 7. [0057]
    TABLE 7
    Cmax Tmax AUC F
    Formulation (ng/mL) (hr) (ng · hr/mL) (%)
    SES 1111.2 1.0 2541.3 66.7
    SD‡ 153.9 0.5 752.0 7.6
    Glyceride Solution 486.3 0.5 1069.5 26.9
    SD 91.9 0.3 494.6 9.3
  • Example 8 Droplet Size Comparison of Stabilized SES with Oil Formulations
  • The effect of gelatin on the stability of several SES formulations prepared in accordance with the invention was determined by studies conducted as follows: Tween 80, Captex 200 and Capmul MCM were combined at room temperature and mixed well. The o-(chloroacetylcarbamoyl)fumagillol was added with stirring until the drug completely dissolved to produce a final formulation containing concentrations of 9.5% Tween 80, 66.5% Captex 200, 19% Capmul MCM, and 5% medicament wt./wt. (I). [0058]
  • To the mixture of Tween 80, Captex 200 and Capmul MCM was added 7% wt./wt. water. The o-(chloroacetylcarbamoyl)fumigillol was added with stirring until the drug completely dissolved to product a final formulation containing concentrations of 8.8% Tween 80, 61.6% Captex 200, 17.6% Capmul MCM, and % medicament wt./wt. (II). [0059]
  • The final formulations were gently agitated before the self-emulsifying ability for the SES formulations were taken. [0060]
  • The tip an airfill softgell capsule shell was snipped off and an agitated solution of formula (I) (0.8 mL) was filled into the capsule. The neck of the capsule shell was heated using a heat gun and then immediately sealed by pinching the opening with forceps. [0061]
  • Self-emulsifying formulations I, II and III were agitated and added into a 10 mL test tube containing 4 mL of water as the dispersant. The samples were analyzed for particle size using a laser light scattering particle sizer (HELOS BF, Sympatec GmbH) at a stirring rate of 40 r.p.m. [0062]
  • The mean droplet sizes of the O/W emulsions generated by formulations I and II were 1.48 μm and 1.60 μm, respectively. No significant difference in the size was observed between formulations I and II. [0063]
  • It is understood that the foregoing detailed description and accompanying examples are merely illustrative and are not to be taken as limitations upon the scope of the invention, which is defined solely by the appended claims and their equivalents. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art. Such changes and modifications, including without limitation those relating to the substituents, means or preparation and/or methods of use of the invention, may be made without departing from the spirit and scope thereof. [0064]

Claims (32)

What is claimed is:
1. A stabilized self-emulsifying system, comprising a therapeutically effective amount of o-(chloroacetylcarbamoyl)fumigillol, a pharmaceutically acceptable carrier and a stabilizing component, wherein the pharmaceutically acceptable carrier comprises an oily constituent and at least one surfactant and the stabilizing component comprises from about 1% to about 15% water relative to the weight of the stabilized self-emulsifying system.
2. The stabilized self-emulsifying system according to
claim 1
, wherein the stabilizing component comprises from about 2% to about 10% water.
3. The stabilized self-emulsifying system according to
claim 2
, wherein the stabilizing component comprises from about 7.0% to about 7.5% water.
4. A stabilized self-emulsifying system, comprising a therapeutically effective amount of o-(chloroacetylcarbamoyl)fumigillol, a pharmaceutically acceptable carrier and a stabilizing component, wherein the pharmaceutically acceptable carrier comprises an oily constituent and at least one surfactant and the stabilizing component comprises an acid.
5. The stabilized self-emulsifying system according to
claim 4
, wherein the acid is an organic or an inorganic acid.
6. The stabilized self-emulsifying system according to
claim 5
, wherein the organic acid is selected from the group consisting of aliphatic carboxylic acids, aromatic carboxylic acids, and sulfonic acids.
7. The stabilized self-emulsifying system according to
claim 6
, wherein the organic acid is selected from the group consisting of aminobenzoic acid, benzoic acid, acetylsalicylic acid, salicylic acid, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, glycolic acid, lactic acid, malic acid, citric acid, methanesulfonic acid, 2-propanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, and p-toluenesulfonic acid.
8. The stabilized self-emulsifying system according to
claim 7
, wherein the acid is citric acid.
9. The stabilized self-emulsifying system according to
claim 5
, wherein the inorganic acid is selected from the group consisting of orthophosphoric acid, polyphosphoric acid, pyrophosphoric acid, and hydrochloric acid.
10. The stabilized self-emulsifying system according to
claim 4
, wherein the stabilizing component comprises from about 0.005% to about 5.0% acid.
11. The stabilized self-emulsifying system according to
claim 10
, wherein the stabilizing component comprises from about 0.05% to about 1.0% acid.
12. A stable drug system comprising a therapeutically effective amount of o-(chloroacetylcarbamoyl)fumigillol, a pharmaceutically acceptable carrier and a stabilizing component, wherein the pharmaceutically acceptable carrier comprises an oily constituent and at least one surfactant and the stabilizing component is an adsorbent or complex-forming agent.
13. The stabilized self-emulsifying system according to
claim 12
, wherein the stabilizing component is selected from the group consisting of gelatin, active charcoal, and silica gel.
14. The stabilized self-emulsifying system according to
claim 12
, wherein the stabilizing component is a chelate or salt of ethylenediaminetetraacetic acid.
15. The stabilized self-emulsifying system according to
claim 13
, wherein the stabilizing component is gelatin.
16. The stabilized self-emulsifying system according to
claim 12
, wherein the stabilizing component comprises from about 0.01% to about 15% of the adsorbent or complex-forming agent.
17. The stabilized self-emulsifying system according to
claim 16
, wherein the stabilizing component comprises from about 0.05% to about 10% of the adsorbent or complex-forming agent.
18. The stabilized self-emulsifying system according to
claim 1
, wherein the oily component is a non-surface active oil.
19. The stabilized self-emulsifying system according to
claim 1
, wherein the oily component is selected from Captex 100, Captex 300, Captex 355, Miglyol 810, Miglyol 812, Miglyol 818, Miglyol 829, and Dynacerin 660.
20. The stabilized self-emulsifying system according to
claim 1
, wherein the self-emulsifying system is suitable for oral, enteral, parenteral, and intravenous administration.
21. The stabilized self-emulsifying system according to
claim 4
, wherein the self-emulsifying system is suitable for oral, enteral, parenteral, and intravenous administration.
22. The stabilized self-emulsifying system according to
claim 12
, wherein the self-emulsifying system is suitable for oral, enteral, parenteral, and intravenous administration.
23. A pharmaceutical composition comprising a therapeutically active amount of o-(chloroacetylcarbamoyl)fumigillol, an oily constituent, at least one surfactant, and stabilizing component, wherein the stabilizing component is selected from about 1 to about 15 weight percent water; from about 0.005 to about 5.0 weight percent acid; and 0.05 to about 15 weight percent of an adsorbent or complex-forming agent.
24. The composition according to
claim 23
, comprising from 40 to 60 weight percent of the oily component; from 20 to 40 weight percent surfactant; from 4 to 20 weight percent co-surfactant, and from 2 to about 12 weight percent water.
25. The composition according to
claim 24
, wherein the composition comprises from about 7.0 to about 7.5 weight percent water.
26. The composition according to
claim 23
, comprising from 40 to 60 weight percent of the oily component; from 20 to 40 weight percent surfactant; from 4 to 20 weight percent co-surfactant; and from 0.005 to about 5.0 weight percent acid.
27. The composition according to
claim 26
, wherein the composition comprises from about 0.05 to about 1.0 weight percent acid.
28. The composition according to
claim 23
, comprising from 40 to 60 weight percent of the oily component; from 20 to 40 weight percent surfactant; from 4 to 20 weight percent co-surfactant; and from 0.05 to about 15 weight percent.
29. The composition according to
claim 28
, wherein the composition comprises from about 0.05 to about 10 weight percent of the adsorbent or complex-forming agent.
30. A method of suppressing cell proliferation and neovascularization comprising administering the self-emulsifying system of
claim 1
.
31. A method of suppressing cell proliferation and neovascularization comprising administering the stabilized self-emulsifying system of
claim 4
.
32. A method of suppressing cell proliferation and neovascularization comprising administering the stabilized self-emulsifying system of
claim 10
.
US09/339,595 1998-06-24 1999-06-24 Self-emulsifying systems containing anticancer medicament Abandoned US20010025046A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US09/339,595 US20010025046A1 (en) 1999-06-24 1999-06-24 Self-emulsifying systems containing anticancer medicament
MXPA01013385A MXPA01013385A (en) 1999-06-24 2000-05-23 Self-emulsifying systems containing anticancer medicament.
CA002377086A CA2377086A1 (en) 1999-06-24 2000-05-23 Self-emulsifying systems containing anticancer medicament
EP00937683A EP1194129A1 (en) 1999-06-24 2000-05-23 Self-emulsifying systems containing anticancer medicament
JP2001505890A JP2003503339A (en) 1999-06-24 2000-05-23 Self-emulsifying system containing anticancer drug
PCT/US2000/014116 WO2001000180A1 (en) 1999-06-24 2000-05-23 Self-emulsifying systems containing anticancer medicament
US09/874,622 US6316497B1 (en) 1998-06-24 2001-06-05 Self-emulsifying systems containing anticancer medicament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/339,595 US20010025046A1 (en) 1999-06-24 1999-06-24 Self-emulsifying systems containing anticancer medicament

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/874,622 Continuation US6316497B1 (en) 1998-06-24 2001-06-05 Self-emulsifying systems containing anticancer medicament

Publications (1)

Publication Number Publication Date
US20010025046A1 true US20010025046A1 (en) 2001-09-27

Family

ID=23329750

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/339,595 Abandoned US20010025046A1 (en) 1998-06-24 1999-06-24 Self-emulsifying systems containing anticancer medicament
US09/874,622 Expired - Fee Related US6316497B1 (en) 1998-06-24 2001-06-05 Self-emulsifying systems containing anticancer medicament

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/874,622 Expired - Fee Related US6316497B1 (en) 1998-06-24 2001-06-05 Self-emulsifying systems containing anticancer medicament

Country Status (6)

Country Link
US (2) US20010025046A1 (en)
EP (1) EP1194129A1 (en)
JP (1) JP2003503339A (en)
CA (1) CA2377086A1 (en)
MX (1) MXPA01013385A (en)
WO (1) WO2001000180A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020107265A1 (en) * 1999-10-18 2002-08-08 Feng-Jing Chen Emulsion compositions for polyfunctional active ingredients
US20050123602A1 (en) * 2003-09-25 2005-06-09 Michaelis Arthur F. Rifalazil formulations
WO2006085217A2 (en) * 2005-02-08 2006-08-17 Pfizer Products Inc. Solid adsorbates of hydrophobic drugs
US20070248668A1 (en) * 2006-04-06 2007-10-25 Michaelis Arthur F Pharmaceutical compositions and uses thereof
CN101905025A (en) * 2010-07-20 2010-12-08 浙江大学 Preparation method for protective agent of intestinal mucosal barrier

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60034770T2 (en) * 1999-02-26 2008-04-30 Sanofi-Aventis STABLE FUMAGILLIN FORMULATION
MXPA03010165A (en) 2001-06-22 2004-03-10 Pfizer Prod Inc Pharmaceutical compositions of adsorbates of amorphous drug.
WO2003047494A2 (en) * 2001-12-03 2003-06-12 Dor Biopharma Inc. Reverse micelle compositions and uses thereof
US8535650B2 (en) * 2001-12-03 2013-09-17 Soligenix, Inc. Stabilized reverse micelle compositions and uses thereof
US20030113366A1 (en) * 2001-12-14 2003-06-19 Macgregor Alexander Reverse-micellar delivery system for controlled transportation and enhanced absorption of agents
BR0307344A (en) 2002-02-01 2004-12-14 Pfizer Prod Inc Pharmaceutical compositions of amorphous dispersions of drugs and lipophilic microphase forming materials
JP2006056781A (en) * 2002-11-15 2006-03-02 Bioserentack Co Ltd Solidified preparation containing surfactant
JP2007501218A (en) 2003-08-04 2007-01-25 ファイザー・プロダクツ・インク Pharmaceutical composition of adsorbate of amorphous drug and lipophilic microphase-forming substance
US9259390B2 (en) * 2003-08-13 2016-02-16 The University Of Houston System Parenteral and oral formulations of benzimidazoles
WO2005053612A2 (en) * 2003-11-26 2005-06-16 Shire Laboratories, Inc. Micellar systems useful for delivery of lipophilic or hydrophobic compounds
GB0716385D0 (en) * 2007-08-22 2007-10-03 Camurus Ab Formulations

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE153854T1 (en) * 1992-12-16 1997-06-15 Takeda Chemical Industries Ltd STABLE PHARMACEUTICAL PREPARATION CONTAINING FUMAGILLOL DERIVATIVES
US5693337A (en) * 1994-07-13 1997-12-02 Wakamoto Pharmaceutical Co., Ltd. Stable lipid emulsion
EP0799616A1 (en) * 1996-04-01 1997-10-08 Takeda Chemical Industries, Ltd. Oral composition comprising a fumagillol derivative
CA2210600A1 (en) * 1996-07-17 1998-01-17 Takashi Houkan Inhibitor of tumor metastasis or recurrence

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020107265A1 (en) * 1999-10-18 2002-08-08 Feng-Jing Chen Emulsion compositions for polyfunctional active ingredients
US6720001B2 (en) * 1999-10-18 2004-04-13 Lipocine, Inc. Emulsion compositions for polyfunctional active ingredients
US20050123602A1 (en) * 2003-09-25 2005-06-09 Michaelis Arthur F. Rifalazil formulations
WO2006085217A2 (en) * 2005-02-08 2006-08-17 Pfizer Products Inc. Solid adsorbates of hydrophobic drugs
WO2006085217A3 (en) * 2005-02-08 2006-09-28 Pfizer Prod Inc Solid adsorbates of hydrophobic drugs
US20090169583A1 (en) * 2005-02-08 2009-07-02 Pfizer, Inc. Solid Adsorbates of Hydrophobic Drugs
US20070248668A1 (en) * 2006-04-06 2007-10-25 Michaelis Arthur F Pharmaceutical compositions and uses thereof
CN101905025A (en) * 2010-07-20 2010-12-08 浙江大学 Preparation method for protective agent of intestinal mucosal barrier

Also Published As

Publication number Publication date
WO2001000180A1 (en) 2001-01-04
CA2377086A1 (en) 2001-01-04
MXPA01013385A (en) 2002-07-22
US6316497B1 (en) 2001-11-13
EP1194129A1 (en) 2002-04-10
US20010036962A1 (en) 2001-11-01
JP2003503339A (en) 2003-01-28

Similar Documents

Publication Publication Date Title
US6316497B1 (en) Self-emulsifying systems containing anticancer medicament
RU2532362C2 (en) Self-microemulsified oral pharmaceutical composition containing hydrophilic therapeutic agent, and method for preparing it
JP4695260B2 (en) Anticancer composition
JP2002505271A (en) Emulsion pre-concentrate containing cyclosporins or macrolides
ES2239605T3 (en) CYCLOSPORINE COMPOSITIONS SUBSTANTIALLY OIL FREE.
JP2002531515A (en) Self-emulsifying compositions for poorly water soluble drugs
EP1465618A2 (en) Pharmaceutical compositions of orally active taxane derivatives having enhanced bioavailability
KR102213143B1 (en) A composition comprising a lipid compound, a triglyceride, and a surfactant, and methods of using the same
EP1551375B1 (en) Pharmaceutical formulation comprising cyclosporin, propylene glycol ester and non-ionic surfactant
US20020049158A1 (en) Oral drug composition containing a verapamil derivative as a drug-absorption promotor
BRPI0609023A2 (en) microemulsions of cannabinoid receptor binding compounds
EP1648517B1 (en) Self-emulsifying and self-microemulsifying formulations for the oral administration of taxoids
RU2639482C2 (en) Pharmaceutical compositions
SI9720010A (en) Cyclosporin-containing soft capsule preparations
AU2004262496B2 (en) Semi-solid formulations for the oral administration of taxoids
RU2397759C2 (en) Microemulsion compositions including substance p antagonists
KR100426346B1 (en) Pharmaceutical compositions for Hypercholesterolemia treatment using of Self Emulsifying drug delivery system
JP2973077B2 (en) Vitamin E preparation composition
KR100569595B1 (en) Formulation and manufacturing process solubilized simvastatin soft capsules
US20050220866A1 (en) Novel capsule formulations of etoposide for oral use
TW200409644A (en) Improved carrier system for cyclosporin pharmaceutical compositions
RU2235554C2 (en) Preliminary prepared emulsion concentrates containing cyclosporine or macrolide
WO2005037250A1 (en) Self emulsifying drug delivery systems for hydrophobic therapeutic compounds
BRPI0720489A2 (en) GELATINE CAPSULES UNDERSTANDING AN ACID
KR20030074822A (en) Pharmaceutical composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: ABBOTT LABORATORIES, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIU, RONG (RON);WANG, ZHENG;REEL/FRAME:010302/0934;SIGNING DATES FROM 19990624 TO 19991002

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION