Skip to main content

Advertisement

Log in

The Kandersteg rock avalanche (Switzerland): integrated analysis of a late Holocene catastrophic event

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

In this study, we focus on the Kandersteg rock avalanche in the central Bernese Alps in Switzerland. We achieved an improved understanding of the release and emplacement of the rock avalanche through a combination of detailed field mapping, remote image analysis, reconstruction of deposit and source area volumes, and runout modelling with DAN3D. Based on cosmogenic 36Cl dating of siliceous limestone boulders all across the landslide deposit, we determined an age of 3210 ± 220 years for the event. This age is markedly younger than the previously suggested age of 9600 years. An estimated 750–900 Mm3 of Cretaceous limestones, siliceous limestones (Oehrlikalk, Kieselkalk and Bänderkalk formations) and Tertiary sandstones of the Doldenhorn nappe detached along pre-existing discontinuities from the northwest face of the Fisistock peak. The sliding body fragmented upon encountering the valley floor and the steep opposite valley wall. Next, the dry fragmented rock avalanche propagated northward over a substrate of fluvial sediments. As it moved, the debris became more fluid through entrainment of water and water-rich sediments, until it finally came to a halt 10 km downstream. The final volume of the deposit is estimated at 1.1 km3. Our multi-method approach allowed us to establish that the deposit stems from one colossal event at 3.2 ka and to reconstruct the processes that dominated each phase of the rock avalanche. Our research contributes significantly to understanding not only the Kandersteg event but also complex emplacement processes and mechanics of large rock slope failures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aaron J, Hungr O (2016) Dynamic analysis of an extraordinarily mobile rock avalanche in the Northwest Territories, Canada. Can Geotech J 53:899–908. https://doi.org/10.1139/cgj-2015-0371

    Article  Google Scholar 

  • Aaron J, McDougall S (2019) Rock avalanche mobility: the role of path material. Eng Geol 257:105126. https://doi.org/10.1016/j.enggeo.2019.05.003

    Article  Google Scholar 

  • Aaron J, McDougall S, Nolde N (2019) Two methodologies to calibrate landslide runout models. Landslides 16:1–14. https://doi.org/10.1007/s10346-018-1116-8

    Article  Google Scholar 

  • Abele G (1974) Bergstürze in den Alpen: ihre Verbreitung, Morphologie und Folgeerscheinungen. Wissenschaftliche Alpenvereinshefte 25:1–230

  • Adrian H (1915) Geologische Untersuchungen der beiden Seiten des Kandertales. Eclogae Geol Helv 13:238–351

    Google Scholar 

  • Agliardi F, Crosta GB, Zanchi A (2001) Structural constraints on deep-seated slope deformation kinematics. Eng Geol 59(1–2):83–102. https://doi.org/10.1016/S0013-7952(00)00066-1

    Article  Google Scholar 

  • Alfimov V, Ivy-Ochs S (2009) How well do we understand production of 36Cl in limestone and dolomite? Quat Geochronol 4:462–474. https://doi.org/10.1016/j.quageo.2009.08.005

    Article  Google Scholar 

  • Bachmann I (1870) Die Kander im Berner Oberland: ein ehemaliges Gletscher- und Flussgebiet; Beitrag zur Kenntnis der schweizerischen Quartärbildungen in gemeinfasslicher Darstellung. Dalp, Bern

    Google Scholar 

  • Badino F, Ravazzi C, Vallè F et al (2018) 8800 years of high-altitude vegetation and climate history at the Rutor Glacier forefield, Italian Alps. Evidence of middle Holocene timberline rise and glacier contraction. Quat Sci Rev 185:41–68. https://doi.org/10.1016/j.quascirev.2018.01.022

    Article  Google Scholar 

  • Beck P (1929) Vorläufige Mitteilung über die Bergstürze und den Murgang im Kandertal (Berner Oberland). Eclogae Geol Helv 22:155–159

    Google Scholar 

  • Beck P (1952) Neue Erkenntnisse über die Bergstürze im Kandertal. Eclogae Geol Helv 45:277–280

    Google Scholar 

  • Bini A, Buoncristiani J, Couterrand S et al (2009) Die Schweiz während des letzteiszeitlichen Maximums (LGM), karte 1:500 000. Bundesamt für Landestopografie swisstopo, Wabern

  • Boeckli L, Brenning A, Gruber S, Noetzli J (2012) A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges. Cryosphere 6:125–140. https://doi.org/10.5194/tc-6-125-2012

    Article  Google Scholar 

  • Brideau MA, Yan M, Stead D (2009) The role of tectonic damage and brittle rock fracture in the development of large rock slope failures. Geomorphology 103:30–49. https://doi.org/10.1016/j.geomorph.2008.04.010

    Article  Google Scholar 

  • Brideau MA, Pedrazzini A, Stead D, Froese C, Jaboyedoff M, van Zeyl D (2011) Three-dimensional slope stability analysis of South Peak, Crowsnest Pass, Alberta, Canada. Landslides 8:139–158. https://doi.org/10.1007/s10346-010-0242-8

    Article  Google Scholar 

  • Brückner E (1897) Die feste Erdrinde und ihre Formen: Ein Abriss der allgemeinen Geologie und der Morphologie der Erdoberfläche. Tempsky, Prag

    Google Scholar 

  • Charrière M, Humair F, Froese C, Jaboyedoff M, Pedrazzini A, Longchamp C (2016) From the source area to the deposit: collapse, fragmentation, and propagation of the Frank Slide. Geol Soc Am Bull 128:332–351. https://doi.org/10.1130/B31243.1

    Article  Google Scholar 

  • Clague JJ, Stead D (2012) Landslides: types, mechanisms and modeling. Cambridge University Press, Cambridge

  • Crosta GB, Frattini P, Fusi N (2007) Fragmentation in the Val Pola rock avalanche, Italian Alps. J Geophys Res Earth Surf 112:1–23. https://doi.org/10.1029/2005JF000455

    Article  Google Scholar 

  • Deplazes G, Anselmetti FS (2007) Auf den Spuren des Flimser Bergsturzes im Lag la Cauma und Lag Grond. Geosci Actuel Sci Nat 3:46–50

    Google Scholar 

  • Dufresne A, Davies TRH (2009) Longitudinal ridges in mass movement deposits. Geomorphology 105:171–181. https://doi.org/10.1016/j.geomorph.2008.09.009

    Article  Google Scholar 

  • Dufresne A, Prager C, Bösmeier A (2016) Insights into rock avalanche emplacement processes from detailed morpho-lithological studies of the Tschirgant deposit (Tyrol, Austria). Earth Surf Process Landf 41:587–602. https://doi.org/10.1002/esp.3847

    Article  Google Scholar 

  • Dunning SA, Armitage PJ (2011) The grain-size distribution of rock-avalanche deposits: implications for natural dam stability. In: Evans SG et al (eds) Natural and artificial rockslide dams. Springer, Berlin, Heidelberg, pp 479–498

    Chapter  Google Scholar 

  • Dunning SA, Petley DN, Rosser NJ, Strom AL (2005) The morphology and sedimentology of valley confined rock-avalanche deposits and their effect on potential dam hazard. In: Hungr O et al (eds) Landslide risk management. CRC press, Boca Raton, pp 691–701

    Google Scholar 

  • Eisbacher GH (1979) Cliff collapse and rock avalanches (Sturzstroms). Can Geotech J 16:309–334

    Article  Google Scholar 

  • Eisbacher GH, Clague JJ (1984) Destructive mass movements in high mountains: hazard and management. Geol Surv Can:84–16

  • Evans SG, Mugnozza GS, Strom AL, Hermanns RL, Ischuk A, Vinnichenko S (eds) (2006) Landslides from massive rock slope failure. Springer, Dordrecht

    Google Scholar 

  • Fäh D, Giardini D, Kästli P et al (2011) ECOS-09 Earthquake Catalogue of Switzerland Release 2011 Report and Database. Public catalogue, 17.4.2011. Swiss Seismological Service ETH, Zurich

    Google Scholar 

  • Fellenberg E, Kissling E, Schardt H (1901) Lötschberg- und Wildstrubeltunnel: Geologische Expertise. Mitt Naturforsch Ges Bern:11–131

  • Fisher R (1953) Dispersion on a sphere. Proc R Soc Lond A 217(1130):295–305

    Article  Google Scholar 

  • Fort M, Cossart E, Deline P et al (2009) Geomorphic impacts of large and rapid mass movements: a review. Groupe Franç Géomorphol 15:47–64

    Google Scholar 

  • Fritsche S, Fäh D, Schwarz-Zanetti G (2012) Historical intensity VIII earthquakes along the Rhone valley (Valais, Switzerland): primary and secondary effects. Swiss J Geosci 105:1–18. https://doi.org/10.1007/s00015-012-0095-3

    Article  Google Scholar 

  • Furrer H, Huber K, Adrian H et al (1993) Geologischer Atlas der Schweiz, Blatt 87, Adelboden. Bundesamt für Wasser und Geologie BWG, Ittigen

    Google Scholar 

  • Gerber E, Scheidegger AE (1969) Stress-induced weathering of rock masses. Eclogae Geol Helv 62:401–415. https://doi.org/10.5169/seals-163705

    Article  Google Scholar 

  • Gischig V, Preisig G, Eberhardt E (2016) Numerical investigation of seismically induced rock mass fatigue as mechanism contributing to the progressive failure of deep-seated landslides. Rock Mech Rock Eng 49:2457–2478. https://doi.org/10.1007/s00603-015-0821-z

    Article  Google Scholar 

  • Grämiger LM, Moore JR, Vockenhuber C, Aaron J, Hajdas I, Ivy-Ochs S (2016) Two early Holocene rock avalanches in the Bernese Alps (Rinderhorn, Switzerland). Geomorphology 268:207–221. https://doi.org/10.1016/j.geomorph.2016.06.008

    Article  Google Scholar 

  • Grämiger LM, Moore JR, Gischig VS, Ivy-Ochs S, Loew S (2017) Beyond debuttressing: mechanics of paraglacial rock slope damage during repeat glacial cycles. J Geophys Res Earth Surf 122:1004–1036. https://doi.org/10.1002/2016JF003967

    Article  Google Scholar 

  • Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res Earth Surf:112. https://doi.org/10.1029/2006JF000547

  • Guthrie RH, Friele P, Allstadt K et al (2012) The 6 August 2010 Mount Meager rock slide-debris flow, Coast Mountains, British Columbia: characteristics, dynamics, and implications for hazard and risk assessment. Nat Hazards Earth Syst Sci 12:1277–1294. https://doi.org/10.5194/nhess-12-1277-2012

    Article  Google Scholar 

  • Heim A (1932) Bergsturz und Menschenleben. Fretz & Wasmuth, Zürich

    Google Scholar 

  • Hermanns RL, Longva O (2012) Rapid rock-slope failures. In: Clague JJ, Stead D (eds) Landslides: types, mechanisms and modeling. Cambridge University Press, Cambridge, pp 59–70

  • Hermanns RL, Schleier M, Böhme M, Blikra LH, Gosse JC, Ivy-Ochs S, Hilger P (2017) Rock avalanche activity in W and S Norway peaks after the retreat of the Scandinavian Ice Sheet. In: Mikoš M et al (eds) Advancing culture of living with landslides. Springer, Cham, pp 331–338

    Chapter  Google Scholar 

  • Hewitt K, Clague JJ, Orwin JF (2008) Legacies of catastrophic rock slope failures in mountain landscapes. Earth Sci Rev 87:1–38. https://doi.org/10.1016/j.earscirev.2007.10.002

    Article  Google Scholar 

  • Hilger P, Hermanns RL, Gosse JC, Jacobs B, Etzelmüller B, Krautblatter MJTH (2018) Multiple rock-slope failures from Mannen in Romsdal Valley, western Norway, revealed from Quaternary geological mapping and 10Be exposure dating. Holocene 28:1841–1854. https://doi.org/10.1177/0959683618798165

    Article  Google Scholar 

  • Hilger P, Gosse JC, Hermanns RL (2019) How significant is inheritance when dating rockslide boulders with terrestrial cosmogenic nuclide dating?—a case study of an historic event. Landslides 16:729–738. https://doi.org/10.1007/s10346-018-01132-0

    Article  Google Scholar 

  • Holzhauser H (1995) Gletscherschwankungen innerhalb der letzten 3200 Jahre am Beispiel des grossen Aletsch- und des Gornergletschers. Neue Ergebnisse. In: Gletscher im ständigen Wandel. Publikationen der Schweizerischen Akademie der Naturwissenschaften 6:101–123

  • Huggel C, Salzmann N, Allen S et al (2010) Recent and future warm extreme events and high-mountain slope stability. Phil Trans R Soc Lond A 368(1919):2435–2459. https://doi.org/10.1098/rsta.2010.0078

    Article  Google Scholar 

  • Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32(2):610–623. https://doi.org/10.1139/t95-063

    Article  Google Scholar 

  • Hungr O, Evans SG (1996) Rock avalanche runout prediction using a dynamic model. In: Senneset K (ed) Proceedings of the 7th International Symposium on Landslides. Balkema, Rotterdam, pp 233–238

    Google Scholar 

  • Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long runout mechanism. Geol Soc Am Bull 116:1240–1252. https://doi.org/10.1130/B25362.1

    Article  Google Scholar 

  • Hungr O, Mcougall S (2009) Two numerical models for landslide dynamic analysis. Comput Geosci 35(5):978–992. https://doi.org/10.1016/j.cageo.2007.12.003

    Article  Google Scholar 

  • International Society for Rock Mechanics Commission on Standardisation of Laboratory and Field Tests (ISRM) (1978) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr 15:319–368

    Article  Google Scholar 

  • Ivy-Ochs S (2015) Glacier variations in the European Alps at the end of the last glaciation. Cuad Investig Geog 41:295–315

    Google Scholar 

  • Ivy-Ochs S, Heuberger H, Kubik PW, Kerschner H, Bonani G, Frank M, Schlüchter C (1998) The age of the Köfels event-relative, 14C and cosmogenic isotope dating of an early Holocene landslide in the Central Alps (Tyrol, Austria). Z. Gletsch.kd. Glazialgeol 34:57–68

    Google Scholar 

  • Ivy-Ochs S, Synal HA, Roth C, Schaller M (2004) Initial results from isotope dilution for Cl and 36Cl measurements at the PSI/ETH Zurich AMS facility. Nucl Instrum Meth B 223:623–627. https://doi.org/10.1016/j.nimb.2004.04.115

  • Ivy-Ochs S, Poschinger A, Synal HA, Maisch M (2009) Surface exposure dating of the Flims landslide, Graubünden, Switzerland. Geomorphology 103:104–112. https://doi.org/10.1016/j.geomorph.2007.10.024

    Article  Google Scholar 

  • Ivy-Ochs S, Martin S, Campedel P et al (2017) Geomorphology and age of the Marocche di Dro rock avalanches (Trentino, Italy). Quat Sci Rev 169:188–205. https://doi.org/10.1016/j.quascirev.2017.05.014

    Article  Google Scholar 

  • Jaboyedoff M, Couture R, Locat P (2009) Structural analysis of Turtle Mountain (Alberta) using digital elevation model: toward a progressive failure. Geomorphology 103:5–16. https://doi.org/10.1016/j.geomorph.2008.04.012

    Article  Google Scholar 

  • Kellerhals P, Isler A (1998) Lötschberg-Basistunnel: Geologische Voruntersuchungen und Prognose. Geologische Berichte Nr. 22, Landeshydrologie und Geologie, Bern

  • Kenner R (2017) Permafrost and ground ice map of Switzerland [data set]. Zenodo. https://doi.org/10.5281/zenodo.803850

  • Knapp S, Gilli A, Anselmetti FS, Krautblatter M, Hajdas I (2018) Multistage rock-slope failures revealed in lake sediments in a seismically active Alpine region (Lake Oeschinen, Switzerland). J Geophys Res Earth Surf 123:658–677. https://doi.org/10.1029/2017JF004455

    Article  Google Scholar 

  • Köpfli P, Grämiger LM, Moore JR, Vockenhuber C, Ivy-Ochs S (2018) The Oeschinensee rock avalanche, Bernese Alps, Switzerland: a co-seismic failure 2300 years ago? Swiss J Geosci 111:205–219. https://doi.org/10.1007/s00015-017-0293-0

    Article  Google Scholar 

  • Körner H (1976) Reichweite und Geschwindigkeit von Bergsturzen und Fliessschneelawinen. Rock Mech 8:225–256

    Article  Google Scholar 

  • Korup O, Densmore AL, Schlunegger F (2010) The role of landslides in mountain range evolution. Geomorphology 120(1):77–90. https://doi.org/10.1016/j.geomorph.2009.09.017

    Article  Google Scholar 

  • Krautblatter M, Huggel C, Deline P, Hasler A (2012) Research perspectives for unstable high-alpine bedrock permafrost: measurement, modelling and process understanding. Permafrost Periglac 23:80–88. https://doi.org/10.1002/ppp.740

    Article  Google Scholar 

  • Krautblatter M, Funk D, Günzel FK (2013) Why permafrost rocks become unstable: a rock–ice-mechanical model in time and space. Earth Surf Process Landf 38(8):876–887. https://doi.org/10.1002/esp.3374

    Article  Google Scholar 

  • Krebs J (1925) Stratigraphie der Blüemlisalp-Gruppe: Fisistock-Doldenhorn-Blümlisalp-Gspaltenhorn im Berner Oberland. Stämpfli, Bern

    Google Scholar 

  • Kremer K, Wirth SB, Reusch A, Fäh D, Bellwald B, Anselmetti FS, Girardclos S, Strasser M (2017) Lake-sediment based paleoseismology: limitations and perspectives from the Swiss Alps. Quat Sci Rev 168:1–18. https://doi.org/10.1016/j.quascirev.2017.04.026

    Article  Google Scholar 

  • Lambiel C, Reynard E (2001) Regional modelling of present, past and future potential distribution of discontinuous permafrost based on a rock glacier inventory in the Bagnes-Hérémence area (Western Swiss Alps). Nor Geogr Tidsskr 55(4):219–223. https://doi.org/10.1080/00291950152746559

    Article  Google Scholar 

  • Leith K, Moore JR, Amann F, Loew S (2014) Subglacial extensional fracture development and implications for Alpine valley evolution. J Geophys Res Earth Surf 119(1):62–81. https://doi.org/10.1002/2012JF002691

    Article  Google Scholar 

  • LeRoy M, Deline P, Carcaillet J, Schimmelpfennig I, Ermini M, ASTER Team (2017) 10Be exposure dating of the timing of Neoglacial glacier advances in the Ecrins-Pelvoux massif, southern French Alps. Quat Sci Rev 178:118–138. https://doi.org/10.1016/j.quascirev.2017.10.010

    Article  Google Scholar 

  • Marrero SM, Phillips FM, Caffee MW, Gosse JC (2016) CRONUS-Earth cosmogenic 36Cl calibration. Quat Geochronol 31:199–219. https://doi.org/10.1016/j.quageo.2015.10.002

    Article  Google Scholar 

  • Martin S, Campedel P, Ivy-Ochs S et al (2014) Lavini di Marco (Trentino, Italy): 36Cl exposure dating of a polyphase rock avalanche. Quat Geochronol 19:106–116. https://doi.org/10.1016/j.quageo.2013.08.003

    Article  Google Scholar 

  • Mathews WH, McTaggart KC (1969) Hope rockslide, British Columbia, Canada. In: Voight B (ed) Rockslides and avalanches natural phenomena. Elsevier, Amsterdam, pp 253–257

    Google Scholar 

  • McColl S (2015) Landslide causes and triggers. In: Shroder J, Davies T (eds) Landslide hazards. Risks and Disasters. Elsevier, Amsterdam, pp 17–42

    Google Scholar 

  • McColl ST, Davies TRH, McSaveney MJ (2010) Glacier retreat and rock-slope stability: debunking debuttressing. In: William AL et al (eds) Geologically active. Taylor and Francis, London, pp 467–474

    Google Scholar 

  • McDougall S (2006) A continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain. PhD Thesis, University of British Columbia

  • McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41(6):1084–1097. https://doi.org/10.1139/t04-052

    Article  Google Scholar 

  • McSaveney MJ, Davies TR (2006) Rapid rock mass flow with dynamic fragmentation: inferences from morphology and internal structure of rockslides and rock avalanches. In: Evans SG et al (eds) Landslides from massive rock slope failure. Springer, Dordrecht, pp 285–304

    Chapter  Google Scholar 

  • Moore JR, Gischig V, Katterbach M, Loew S (2011) Air circulation in deep fractures and the temperature field of an alpine rock slope. Earth Surf Process Landf 36:1985–1996. https://doi.org/10.1002/esp.2217

    Article  Google Scholar 

  • Moore JR, Gischig V, Amann F, Hunziker M, Burjanek J (2012) Earthquake-triggered rock slope failures: damage and site effects. In: Proceedings 11th International & 2nd North American Symposium on Landslides. CRC Press, Banff, pp 869–875

    Google Scholar 

  • Nicolussi K, Kaufmann M, Patzelt G, van der Plicht J, Thurner A (2005) Holocene tree-line variability in the Kauner Valley, Central Eastern Alps, indicated by dendrochronological analysis of living trees and subfossil logs. Veget Hist Archaeobot 14:221–234. https://doi.org/10.1007/s00334-005-0013-y

    Article  Google Scholar 

  • Nicolussi K, Spötl C, Thurner A, Reimer PJ (2015) Precise radiocarbon dating of the giant Köfels landslide (Eastern Alps, Austria). Geomorphology 243:87–91. https://doi.org/10.1016/j.geomorph.2015.05.001

    Article  Google Scholar 

  • Nussbaum F (1934) Ueber die Formen von Bergsturzmassen, mit besonderer Berücksichtigung des Bergsturzes im Kandertal. Der Schweizer Geograph 11:12–13

    Google Scholar 

  • Orwin JF, Clague JC, Gerath RF (2004) The Cheam rock avalanche, Fraser Valley, British Columbia, Canada. Landslides 4:289–298. https://doi.org/10.1007/s10346-004-0036-y

    Article  Google Scholar 

  • Ostermann M, Sanders D, Ivy-Ochs S, Alfimov V, Rockenschaub M, Römer A (2012) Early Holocene (8.6 ka) rock avalanche deposits, Obernberg valley (Eastern Alps): landform interpretation and kinematics of rapid mass movement. Geomorphology 171-172:83–93. https://doi.org/10.1016/j.geomorph 2012.05.006

    Article  Google Scholar 

  • Paguican EM, de Vries BV, Lagmay AM (2014) Hummocks: how they form and how they evolve in rockslide-debris avalanches. Landslides 11:67–80. https://doi.org/10.1007/s10346-012-0368-y

    Article  Google Scholar 

  • Pánek T, Hradecký J, Šilhán K, Smolková V, Altová V (2009) Time constraints for the evolution of a large slope collapse in karstified mountainous terrain of the southwestern Crimean Mountains, Ukraine. Geomorphology 108:171–181. https://doi.org/10.1016/j.geomorph.2009.01.003

    Article  Google Scholar 

  • Parise M (2008) Rock failures in karst. In: Cheng Z et al (eds) Landslides and engineered slopes. CRC Press, Boca Raton, pp 275–280

  • Pesendorfer M, Loew S (2004) Hydrogeologic exploration during excavation of the Lötschberg base tunnel (AlpTransit Switzerland). In: Azzam R (ed) Engineering geology for infrastructure planning in Europe. Springer, Berlin, Heidelberg, pp 347–358

    Chapter  Google Scholar 

  • Pfiffner A (2010) The Helvetic nappe system and landscape evolution of the Kander valley. Schweiz Bull Angew Geol 15:53–61

    Google Scholar 

  • Phillips M, Wolter A, Lüthi R, Amann F, Kenner R, Bühler Y (2017) Rock slope failure in a recently deglaciated permafrost rock wall at Piz Kesch (Eastern Swiss Alps), February 2014. Earth Surf Process Landf 42:426–438. https://doi.org/10.1002/esp.3992

    Article  Google Scholar 

  • Prager C, Zangerl C, Patzelt G, Brandner R (2008) Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Nat Hazards Earth Syst Sci 8:377–407

    Article  Google Scholar 

  • Ravanel L, Deline P (2010) Climate influence on rockfalls in high-alpine steep rock walls: the north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the Little Ice Age. The Holocene 21:357–365. https://doi.org/10.1177/0959683610374887

    Article  Google Scholar 

  • Santo A, Del Prete S, Di Crescenzo G, Rotella M (2007) Karst processes and slope instability: some investigations in the carbonate Apennine of Campania (southern Italy). Geol Soc Lond Spec Pub 279:59–72. https://doi.org/10.1144/SP279.6

    Article  Google Scholar 

  • Schleier M, Hermanns RL, Gosse JC, Oppikofer T, Rohn J, Tønnesen JF (2017) Subaqueous rock-avalanche deposits exposed by post-glacial isostatic rebound, Innfjorddalen, Western Norway. Geomorphology 289:117–133. https://doi.org/10.1016/j.geomorph.2016.08.024

    Article  Google Scholar 

  • Schulz WH, McKenna JP, Kibler JD, Biavati G (2009) Relations between hydrology and velocity of a continuously moving landslide—evidence of pore-pressure feedback regulating landslide motion? Landslides 6:181–190. https://doi.org/10.1007/s10346-009-0157-4

    Article  Google Scholar 

  • Shea T, de Vries BVW (2008) Structural analysis and analogue modeling of the kinematics and dynamics of rockslide avalanches. Geosphere 4:657–686. https://doi.org/10.1130/GES00131.1

    Article  Google Scholar 

  • Shugar DH, Clague JJ (2011) The sedimentology and geomorphology of rock avalanche deposits on glaciers. Sedimentology 58:1762–1783. https://doi.org/10.1111/j.1365-3091.2011.01238.x

    Article  Google Scholar 

  • Sosio R, Crosta GB, Hungr O (2008) Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng Geol 100:11–26. https://doi.org/10.1016/j.enggeo.2008.02.012

    Article  Google Scholar 

  • Spreafico MC, Wolter A, Picotti V, Borgatti L, Mangeney A, Ghirotti M (2018) Forensic investigations of the Cima Salti Landslide, northern Italy, using runout simulations. Geomorphology 318:172–186. https://doi.org/10.1016/j.geomorph.2018.04.013

    Article  Google Scholar 

  • Stead D, Wolter A (2015) A critical review of rock slope failure mechanisms: the importance of structural geology. J Struct Geol 74:1–23. https://doi.org/10.1016/j.jsg.2015.02.002

    Article  Google Scholar 

  • Stone JOH, Allan GL, Fifield LK, Cresswell RG (1996) Cosmogenic chlorine-36 from calcium spallation. Geochim Cosmochim Acta 60:679–692. https://doi.org/10.1016/0016-7037(95)00429-7

    Article  Google Scholar 

  • Strom A (2006) Morphology and internal structure of rockslides and rock avalanches: grounds and constraints for their modelling. In: Evans SG et al (eds) Landslides from massive rock slope failure. Springer, Dordrecht, pp 305–326

    Chapter  Google Scholar 

  • Tinner W, Kaltenrieder P, Soom M, Zwahlen P, Schmidhalter M, Boschetti A, Schlüchter C (2005) Der nacheiszeitliche Bergsturz im Kandertal (Schweiz): Alter und Auswirkungen auf die damalige Umwelt. Swiss J Geosci 98:83–95. https://doi.org/10.1007/s00015-005-1147-8

    Article  Google Scholar 

  • Turnau V (1906) Beiträge zur Geologie der Berner Alpen. Wyss, Bern

    Google Scholar 

  • Vockenhuber C, Miltenberger KU, Synal HA (2019) 36Cl measurements with a gas-filled magnet at 6 MV. Nucl Instrum Meth B 455:190–194. https://doi.org/10.1016/j.nimb.2018.12.046

    Article  Google Scholar 

  • Walter F, Amann F, Kos A, Kenner R, Phillips M, de Preux A, Huss M, Tognacca C, Clinton J, Diehl T, Bonanomi Y (2020) Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows. Geomorphology 351. https://doi.org/10.1016/j.geomorph.2019.106933

  • Wang YF, Cheng QG, Lin QW, Li K, Yang HF (2018) Insights into the kinematics and dynamics of the Luanshibao rock avalanche (Tibetan plateau, China) based on its complex surface landforms. Geomorphology 317:170–183. https://doi.org/10.1016/j.geomorph.2018.05.025

    Article  Google Scholar 

  • Weidinger JT, Korup O, Munack H, Altenberger U, Dunning SA, Tippelt G, Lottermoser W (2014) Giant rockslides from the inside. Earth Planet Sci Lett 389:62–73. https://doi.org/10.1016/j.epsl.2013.12.017

    Article  Google Scholar 

  • Wildberger A, Preiswerk C (1997) Karst und Höhlen der Schweiz/Karst et grottes de Suisse/Carso e grotte della Svizzera/Karst and Caves of Switzerland. Speleo Projects, Basel

    Google Scholar 

  • Wolter A, Gischig V, Stead D, Clague JJ (2016) Investigation of geomorphic and seismic effects on the 1959 Madison Canyon, Montana, landslide using an integrated field, engineering geomorphology mapping, and numerical modelling approach. Rock Mech Rock Eng 49:2479–2501. https://doi.org/10.1007/s00603-015-0889-5

    Article  Google Scholar 

  • Yin Y, Sun P, Zhang M, Li B (2011) Mechanism on apparent dip sliding of oblique inclined bedding rockslide at Jiweishan, Chongqing, China. Landslides 8:49–65. https://doi.org/10.1007/s10346-010-0237-5

    Article  Google Scholar 

  • Zerathe S, Lebourg T, Braucher R, Bourlès DL (2014) Mid-Holocene cluster of large-scale landslides revealed in the Southwestern Alps by 36Cl dating. Insight on an Alpine-scale landslide activity. Quat Sci Rev 90:106–127. https://doi.org/10.1016/j.quascirev.2014.02.015

    Article  Google Scholar 

  • Ziegler HJ, Isler A (2013) Lötschberg Basistunnel: Zusammenfassender geologischer Schlussbericht. Berichte der Landesgeologie 4. Swisstopo, Wabern

  • Zwahlen P (1986) Die Kandertal-Störung: eine transversale Diskontinuität im Bau der Helvetischen Decken. Dissertation, Universität Bern

Download references

Acknowledgements

We thank S. Wohlwend for help with thin section analysis and J. Aaron, J. Moore and A. Pfiffner for insightful discussions. We appreciate the numerous suggestions of three anonymous reviewers and handling editor M.A. Brideau. The Amt für Geoinformation of the Kanton of Bern kindly provided the 0.5-m LiDAR DEM. All members of the AMS group at the Laboratory for Ion Beam Physics ETH are appreciated for their dedication and support.

Funding

C. Singeisen’s fieldwork was funded by the Swiss Quaternary Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Ivy-Ochs.

Electronic supplementary material

ESM 1

(PDF 291 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singeisen, C., Ivy-Ochs, S., Wolter, A. et al. The Kandersteg rock avalanche (Switzerland): integrated analysis of a late Holocene catastrophic event. Landslides 17, 1297–1317 (2020). https://doi.org/10.1007/s10346-020-01365-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-020-01365-y

Keywords

Navigation